blob: 7081070bf7d52a13b074bdb3fefb513f3103bc48 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine43bd07d2022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Dave Rodgman7ff79652023-11-03 12:04:52 +000024 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Gilles Peskinef3b731e2018-12-12 13:38:31 +010025 */
26
27#ifndef PSA_CRYPTO_VALUES_H
28#define PSA_CRYPTO_VALUES_H
29
30/** \defgroup error Error codes
31 * @{
32 */
33
David Saadab4ecc272019-02-14 13:48:10 +020034/* PSA error codes */
35
Gilles Peskine43bd07d2022-06-20 18:41:20 +020036/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskinebe059e42022-06-29 14:37:17 +020037 * etc.). Do not change the values in this section or even the expansions
38 * of each macro: it must be possible to `#include` both this header
39 * and some other PSA component's headers in the same C source,
40 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
41 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
42 * to the same sequence of tokens.
43 *
44 * If you must add a new
Gilles Peskine43bd07d2022-06-20 18:41:20 +020045 * value, check with the Arm PSA framework group to pick one that other
46 * domains aren't already using. */
47
Gilles Peskined3ce75c2023-01-04 19:50:27 +010048/* Tell uncrustify not to touch the constant definitions, otherwise
49 * it might change the spacing to something that is not PSA-compliant
50 * (e.g. adding a space after casts).
51 *
52 * *INDENT-OFF*
53 */
54
Gilles Peskinef3b731e2018-12-12 13:38:31 +010055/** The action was completed successfully. */
56#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010057
58/** An error occurred that does not correspond to any defined
59 * failure cause.
60 *
61 * Implementations may use this error code if none of the other standard
62 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020063#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010064
65/** The requested operation or a parameter is not supported
66 * by this implementation.
67 *
68 * Implementations should return this error code when an enumeration
69 * parameter such as a key type, algorithm, etc. is not recognized.
70 * If a combination of parameters is recognized and identified as
71 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020072#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010073
74/** The requested action is denied by a policy.
75 *
76 * Implementations should return this error code when the parameters
77 * are recognized as valid and supported, and a policy explicitly
78 * denies the requested operation.
79 *
80 * If a subset of the parameters of a function call identify a
81 * forbidden operation, and another subset of the parameters are
82 * not valid or not supported, it is unspecified whether the function
83 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
84 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
87/** An output buffer is too small.
88 *
89 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
90 * description to determine a sufficient buffer size.
91 *
92 * Implementations should preferably return this error code only
93 * in cases when performing the operation with a larger output
94 * buffer would succeed. However implementations may return this
95 * error if a function has invalid or unsupported parameters in addition
96 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020097#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
David Saadab4ecc272019-02-14 13:48:10 +020099/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100 *
David Saadab4ecc272019-02-14 13:48:10 +0200101 * Implementations should return this error, when attempting
102 * to write an item (like a key) that already exists. */
103#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100104
David Saadab4ecc272019-02-14 13:48:10 +0200105/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100106 *
David Saadab4ecc272019-02-14 13:48:10 +0200107 * Implementations should return this error, if a requested item (like
108 * a key) does not exist. */
109#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100110
111/** The requested action cannot be performed in the current state.
112 *
113 * Multipart operations return this error when one of the
114 * functions is called out of sequence. Refer to the function
115 * descriptions for permitted sequencing of functions.
116 *
117 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100118 * that a key either exists or not,
119 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * as applicable.
121 *
122 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200123 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100124 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** The parameters passed to the function are invalid.
128 *
129 * Implementations may return this error any time a parameter or
130 * combination of parameters are recognized as invalid.
131 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100132 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200133 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100134 * instead.
135 */
David Saadab4ecc272019-02-14 13:48:10 +0200136#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100137
138/** There is not enough runtime memory.
139 *
140 * If the action is carried out across multiple security realms, this
141 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200142#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100143
144/** There is not enough persistent storage.
145 *
146 * Functions that modify the key storage return this error code if
147 * there is insufficient storage space on the host media. In addition,
148 * many functions that do not otherwise access storage may return this
149 * error code if the implementation requires a mandatory log entry for
150 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200151#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152
153/** There was a communication failure inside the implementation.
154 *
155 * This can indicate a communication failure between the application
156 * and an external cryptoprocessor or between the cryptoprocessor and
157 * an external volatile or persistent memory. A communication failure
158 * may be transient or permanent depending on the cause.
159 *
160 * \warning If a function returns this error, it is undetermined
161 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200162 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
164 * if the requested action was completed successfully in an external
165 * cryptoprocessor but there was a breakdown of communication before
166 * the cryptoprocessor could report the status to the application.
167 */
David Saadab4ecc272019-02-14 13:48:10 +0200168#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100169
170/** There was a storage failure that may have led to data loss.
171 *
172 * This error indicates that some persistent storage is corrupted.
173 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200174 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100175 * between the cryptoprocessor and its external storage (use
176 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
177 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
178 *
179 * Note that a storage failure does not indicate that any data that was
180 * previously read is invalid. However this previously read data may no
181 * longer be readable from storage.
182 *
183 * When a storage failure occurs, it is no longer possible to ensure
184 * the global integrity of the keystore. Depending on the global
185 * integrity guarantees offered by the implementation, access to other
186 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100187 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188 *
189 * Implementations should only use this error code to report a
190 * permanent storage corruption. However application writers should
191 * keep in mind that transient errors while reading the storage may be
192 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200193#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100194
195/** A hardware failure was detected.
196 *
197 * A hardware failure may be transient or permanent depending on the
198 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200199#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100200
201/** A tampering attempt was detected.
202 *
203 * If an application receives this error code, there is no guarantee
204 * that previously accessed or computed data was correct and remains
205 * confidential. Applications should not perform any security function
206 * and should enter a safe failure state.
207 *
208 * Implementations may return this error code if they detect an invalid
209 * state that cannot happen during normal operation and that indicates
210 * that the implementation's security guarantees no longer hold. Depending
211 * on the implementation architecture and on its security and safety goals,
212 * the implementation may forcibly terminate the application.
213 *
214 * This error code is intended as a last resort when a security breach
215 * is detected and it is unsure whether the keystore data is still
216 * protected. Implementations shall only return this error code
217 * to report an alarm from a tampering detector, to indicate that
218 * the confidentiality of stored data can no longer be guaranteed,
219 * or to indicate that the integrity of previously returned data is now
220 * considered compromised. Implementations shall not use this error code
221 * to indicate a hardware failure that merely makes it impossible to
222 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
223 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
224 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
225 * instead).
226 *
227 * This error indicates an attack against the application. Implementations
228 * shall not return this error code as a consequence of the behavior of
229 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200230#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100231
232/** There is not enough entropy to generate random data needed
233 * for the requested action.
234 *
235 * This error indicates a failure of a hardware random generator.
236 * Application writers should note that this error can be returned not
237 * only by functions whose purpose is to generate random data, such
238 * as key, IV or nonce generation, but also by functions that execute
239 * an algorithm with a randomized result, as well as functions that
240 * use randomization of intermediate computations as a countermeasure
241 * to certain attacks.
242 *
243 * Implementations should avoid returning this error after psa_crypto_init()
244 * has succeeded. Implementations should generate sufficient
245 * entropy during initialization and subsequently use a cryptographically
246 * secure pseudorandom generator (PRNG). However implementations may return
247 * this error at any time if a policy requires the PRNG to be reseeded
248 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The signature, MAC or hash is incorrect.
252 *
253 * Verification functions return this error if the verification
254 * calculations completed successfully, and the value to be verified
255 * was determined to be incorrect.
256 *
257 * If the value to verify has an invalid size, implementations may return
258 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200259#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100260
261/** The decrypted padding is incorrect.
262 *
263 * \warning In some protocols, when decrypting data, it is essential that
264 * the behavior of the application does not depend on whether the padding
265 * is correct, down to precise timing. Applications should prefer
266 * protocols that use authenticated encryption rather than plain
267 * encryption. If the application must perform a decryption of
268 * unauthenticated data, the application writer should take care not
269 * to reveal whether the padding is invalid.
270 *
271 * Implementations should strive to make valid and invalid padding
272 * as close as possible to indistinguishable to an external observer.
273 * In particular, the timing of a decryption operation should not
274 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200275#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100276
David Saadab4ecc272019-02-14 13:48:10 +0200277/** Return this error when there's insufficient data when attempting
278 * to read from a resource. */
279#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100280
Ronald Croncf56a0a2020-08-04 09:51:30 +0200281/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100282 */
David Saadab4ecc272019-02-14 13:48:10 +0200283#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100284
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100285/** Stored data has been corrupted.
286 *
287 * This error indicates that some persistent storage has suffered corruption.
288 * It does not indicate the following situations, which have specific error
289 * codes:
290 *
291 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
292 * - A communication error between the cryptoprocessor and its external
293 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
294 * - When the storage is in a valid state but is full - use
295 * #PSA_ERROR_INSUFFICIENT_STORAGE.
296 * - When the storage fails for other reasons - use
297 * #PSA_ERROR_STORAGE_FAILURE.
298 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
299 *
300 * \note A storage corruption does not indicate that any data that was
301 * previously read is invalid. However this previously read data might no
302 * longer be readable from storage.
303 *
304 * When a storage failure occurs, it is no longer possible to ensure the
305 * global integrity of the keystore.
306 */
307#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
308
gabor-mezei-armfe309242020-11-09 17:39:56 +0100309/** Data read from storage is not valid for the implementation.
310 *
311 * This error indicates that some data read from storage does not have a valid
312 * format. It does not indicate the following situations, which have specific
313 * error codes:
314 *
315 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
316 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
317 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
318 *
319 * This error is typically a result of either storage corruption on a
320 * cleartext storage backend, or an attempt to read data that was
321 * written by an incompatible version of the library.
322 */
323#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
324
Gilles Peskined3ce75c2023-01-04 19:50:27 +0100325/* *INDENT-ON* */
326
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327/**@}*/
328
329/** \defgroup crypto_types Key and algorithm types
330 * @{
331 */
332
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200333/* Note that key type values, including ECC family and DH group values, are
334 * embedded in the persistent key store, as part of key metadata. As a
335 * consequence, they must not be changed (unless the storage format version
336 * changes).
337 */
338
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339/** An invalid key type value.
340 *
341 * Zero is not the encoding of any key type.
342 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100343#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100344
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100345/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346 *
347 * Key types defined by this standard will never have the
348 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
349 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
350 * respect the bitwise structure used by standard encodings whenever practical.
351 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100352#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100353
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100354#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
355#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
356#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
357#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
358#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100359
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100360#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100362/** Whether a key type is vendor-defined.
363 *
364 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
365 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100366#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
367 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
368
369/** Whether a key type is an unstructured array of bytes.
370 *
371 * This encompasses both symmetric keys and non-key data.
372 */
373#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100374 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
375 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100376
377/** Whether a key type is asymmetric: either a key pair or a public key. */
378#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
379 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
380 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
381 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
382/** Whether a key type is the public part of a key pair. */
383#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
384 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
385/** Whether a key type is a key pair containing a private part and a public
386 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200387#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100388 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
389/** The key pair type corresponding to a public key type.
390 *
391 * You may also pass a key pair type as \p type, it will be left unchanged.
392 *
393 * \param type A public key type or key pair type.
394 *
395 * \return The corresponding key pair type.
396 * If \p type is not a public key or a key pair,
397 * the return value is undefined.
398 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200399#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
401/** The public key type corresponding to a key pair type.
402 *
403 * You may also pass a key pair type as \p type, it will be left unchanged.
404 *
405 * \param type A public key type or key pair type.
406 *
407 * \return The corresponding public key type.
408 * If \p type is not a public key or a key pair,
409 * the return value is undefined.
410 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200411#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100412 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
413
414/** Raw data.
415 *
416 * A "key" of this type cannot be used for any cryptographic operation.
417 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100418#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419
420/** HMAC key.
421 *
422 * The key policy determines which underlying hash algorithm the key can be
423 * used for.
424 *
425 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100426 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100428#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100429
430/** A secret for key derivation.
431 *
432 * The key policy determines which key derivation algorithm the key
433 * can be used for.
434 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100435#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100436
Gilles Peskine737c6be2019-05-21 16:01:06 +0200437/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438 *
439 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
440 * 32 bytes (AES-256).
441 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100442#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100443
Gilles Peskine8890f642021-09-21 11:59:39 +0200444/** Key for a cipher, AEAD or MAC algorithm based on the
445 * ARIA block cipher. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100446#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
Gilles Peskine8890f642021-09-21 11:59:39 +0200447
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
449 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100450 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
451 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100452 *
453 * Note that single DES and 2-key 3DES are weak and strongly
454 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
455 * is weak and deprecated and should only be used in legacy protocols.
456 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100457#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100458
Gilles Peskine737c6be2019-05-21 16:01:06 +0200459/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100460 * Camellia block cipher. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100461#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100462
Gilles Peskine500e48f2022-04-22 16:49:30 +0200463/** Key for the ARC4 stream cipher (also known as RC4 or ARCFOUR).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100464 *
Gilles Peskine500e48f2022-04-22 16:49:30 +0200465 * Note that ARC4 is weak and deprecated and should only be used in
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100466 * legacy protocols. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100467#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t) 0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200469/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
470 *
471 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
472 *
473 * Implementations must support 12-byte nonces, may support 8-byte nonces,
474 * and should reject other sizes.
475 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100476#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200477
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100478/** RSA public key.
479 *
480 * The size of an RSA key is the bit size of the modulus.
481 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100482#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100483/** RSA key pair (private and public key).
484 *
485 * The size of an RSA key is the bit size of the modulus.
486 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100487#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100488/** Whether a key type is an RSA key (pair or public-only). */
489#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200490 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100491
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100492#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
493#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
494#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100495/** Elliptic curve key pair.
496 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100497 * The size of an elliptic curve key is the bit size associated with the curve,
498 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
499 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
500 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100501 * \param curve A value of type ::psa_ecc_family_t that
502 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100503 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200504#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
505 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100506/** Elliptic curve public key.
507 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100508 * The size of an elliptic curve public key is the same as the corresponding
509 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
510 * `PSA_ECC_FAMILY_xxx` curve families).
511 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100512 * \param curve A value of type ::psa_ecc_family_t that
513 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100514 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100515#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
516 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
517
518/** Whether a key type is an elliptic curve key (pair or public-only). */
519#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200520 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100521 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100522/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200523#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100524 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200525 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100526/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100527#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
528 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
529 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
530
531/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100532#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
533 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100534 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
535 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100536
Gilles Peskine228abc52019-12-03 17:24:19 +0100537/** SEC Koblitz curves over prime fields.
538 *
539 * This family comprises the following curves:
540 * secp192k1, secp224k1, secp256k1.
541 * They are defined in _Standards for Efficient Cryptography_,
542 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
543 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine4bc4a2d2024-01-03 20:59:03 +0100544 *
545 * \note For secp224k1, the bit-size is 225 (size of a private value).
Gilles Peskine228abc52019-12-03 17:24:19 +0100546 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100547#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100548
549/** SEC random curves over prime fields.
550 *
551 * This family comprises the following curves:
Gilles Peskine6bf4dfc2024-01-03 20:58:55 +0100552 * secp192r1, secp224r1, secp256r1, secp384r1, secp521r1.
Gilles Peskine228abc52019-12-03 17:24:19 +0100553 * They are defined in _Standards for Efficient Cryptography_,
554 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
555 * https://www.secg.org/sec2-v2.pdf
556 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100557#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100558/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100559#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100560
561/** SEC Koblitz curves over binary fields.
562 *
563 * This family comprises the following curves:
564 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
565 * They are defined in _Standards for Efficient Cryptography_,
566 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
567 * https://www.secg.org/sec2-v2.pdf
568 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100569#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100570
571/** SEC random curves over binary fields.
572 *
573 * This family comprises the following curves:
574 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
575 * They are defined in _Standards for Efficient Cryptography_,
576 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
577 * https://www.secg.org/sec2-v2.pdf
578 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100579#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100580
581/** SEC additional random curves over binary fields.
582 *
583 * This family comprises the following curve:
584 * sect163r2.
585 * It is defined in _Standards for Efficient Cryptography_,
586 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
587 * https://www.secg.org/sec2-v2.pdf
588 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100589#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100590
591/** Brainpool P random curves.
592 *
593 * This family comprises the following curves:
594 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
595 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
596 * It is defined in RFC 5639.
597 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100598#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100599
600/** Curve25519 and Curve448.
601 *
602 * This family comprises the following Montgomery curves:
603 * - 255-bit: Bernstein et al.,
604 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
605 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
606 * - 448-bit: Hamburg,
607 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
608 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
609 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100610#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100611
Gilles Peskine67546802021-02-24 21:49:40 +0100612/** The twisted Edwards curves Ed25519 and Ed448.
613 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100614 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100615 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100616 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100617 *
618 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100619 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100620 * to Curve25519.
621 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
622 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
623 * to Curve448.
624 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
625 */
626#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
627
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100628#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
629#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
630#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100631/** Diffie-Hellman key pair.
632 *
Paul Elliott75e27032020-06-03 15:17:39 +0100633 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100634 * Diffie-Hellman group to be used.
635 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200636#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
637 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100638/** Diffie-Hellman public key.
639 *
Paul Elliott75e27032020-06-03 15:17:39 +0100640 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100641 * Diffie-Hellman group to be used.
642 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200643#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
644 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
645
646/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
647#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200648 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200649 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
650/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200651#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200652 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200653 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200654/** Whether a key type is a Diffie-Hellman public key. */
655#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
656 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
657 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
658
659/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100660#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
661 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100662 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
663 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200664
Gilles Peskine228abc52019-12-03 17:24:19 +0100665/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
666 *
667 * This family includes groups with the following key sizes (in bits):
668 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
669 * all of these sizes or only a subset.
670 */
Paul Elliott75e27032020-06-03 15:17:39 +0100671#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100672
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100673#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100674 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100675/** The block size of a block cipher.
676 *
677 * \param type A cipher key type (value of type #psa_key_type_t).
678 *
679 * \return The block size for a block cipher, or 1 for a stream cipher.
680 * The return value is undefined if \p type is not a supported
681 * cipher key type.
682 *
683 * \note It is possible to build stream cipher algorithms on top of a block
684 * cipher, for example CTR mode (#PSA_ALG_CTR).
685 * This macro only takes the key type into account, so it cannot be
686 * used to determine the size of the data that #psa_cipher_update()
687 * might buffer for future processing in general.
688 *
689 * \note This macro returns a compile-time constant if its argument is one.
690 *
691 * \warning This macro may evaluate its argument multiple times.
692 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100693#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100694 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100695 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100696 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100697
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200698/* Note that algorithm values are embedded in the persistent key store,
699 * as part of key metadata. As a consequence, they must not be changed
700 * (unless the storage format version changes).
701 */
702
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100703/** Vendor-defined algorithm flag.
704 *
705 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
706 * bit set. Vendors who define additional algorithms must use an encoding with
707 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
708 * used by standard encodings whenever practical.
709 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100710#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100711
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100712#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
713#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
714#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
715#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
716#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
717#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
718#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
719#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
720#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100721
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100722/** Whether an algorithm is vendor-defined.
723 *
724 * See also #PSA_ALG_VENDOR_FLAG.
725 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100726#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
727 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
728
729/** Whether the specified algorithm is a hash algorithm.
730 *
731 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
732 *
733 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
734 * This macro may return either 0 or 1 if \p alg is not a supported
735 * algorithm identifier.
736 */
737#define PSA_ALG_IS_HASH(alg) \
738 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
739
740/** Whether the specified algorithm is a MAC algorithm.
741 *
742 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
743 *
744 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
745 * This macro may return either 0 or 1 if \p alg is not a supported
746 * algorithm identifier.
747 */
748#define PSA_ALG_IS_MAC(alg) \
749 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
750
751/** Whether the specified algorithm is a symmetric cipher algorithm.
752 *
753 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
754 *
755 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
756 * This macro may return either 0 or 1 if \p alg is not a supported
757 * algorithm identifier.
758 */
759#define PSA_ALG_IS_CIPHER(alg) \
760 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
761
762/** Whether the specified algorithm is an authenticated encryption
763 * with associated data (AEAD) algorithm.
764 *
765 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
766 *
767 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
768 * This macro may return either 0 or 1 if \p alg is not a supported
769 * algorithm identifier.
770 */
771#define PSA_ALG_IS_AEAD(alg) \
772 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
773
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200774/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200775 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100776 *
777 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
778 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200779 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100780 * This macro may return either 0 or 1 if \p alg is not a supported
781 * algorithm identifier.
782 */
783#define PSA_ALG_IS_SIGN(alg) \
784 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
785
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200786/** Whether the specified algorithm is an asymmetric encryption algorithm,
787 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100788 *
789 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
790 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200791 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100792 * This macro may return either 0 or 1 if \p alg is not a supported
793 * algorithm identifier.
794 */
795#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
796 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
797
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100798/** Whether the specified algorithm is a key agreement algorithm.
799 *
800 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
801 *
802 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
803 * This macro may return either 0 or 1 if \p alg is not a supported
804 * algorithm identifier.
805 */
806#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100807 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100808
809/** Whether the specified algorithm is a key derivation algorithm.
810 *
811 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
812 *
813 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
814 * This macro may return either 0 or 1 if \p alg is not a supported
815 * algorithm identifier.
816 */
817#define PSA_ALG_IS_KEY_DERIVATION(alg) \
818 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
819
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200820/** An invalid algorithm identifier value. */
Gilles Peskine7f3659a2023-01-04 19:52:38 +0100821/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200822#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskine7f3659a2023-01-04 19:52:38 +0100823/* *INDENT-ON* */
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200824
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100825#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100826/** MD2 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100827#define PSA_ALG_MD2 ((psa_algorithm_t) 0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100828/** MD4 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100829#define PSA_ALG_MD4 ((psa_algorithm_t) 0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100830/** MD5 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100831#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100832/** PSA_ALG_RIPEMD160 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100833#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100834/** SHA1 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100835#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100836/** SHA2-224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100837#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100838/** SHA2-256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100839#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100840/** SHA2-384 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100841#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100842/** SHA2-512 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100843#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100844/** SHA2-512/224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100845#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100846/** SHA2-512/256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100847#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100848/** SHA3-224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100849#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100850/** SHA3-256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100851#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100852/** SHA3-384 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100853#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100854/** SHA3-512 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100855#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100856/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100857 *
858 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
859 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
860 * has the same output size and a (theoretically) higher security strength.
861 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100862#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100864/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100865 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100866 * This value may be used to form the algorithm usage field of a policy
867 * for a signature algorithm that is parametrized by a hash. The key
868 * may then be used to perform operations using the same signature
869 * algorithm parametrized with any supported hash.
870 *
871 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine35115f92021-10-04 18:10:38 +0200872 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100873 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100874 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100875 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
876 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100877 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200878 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100879 * ```
880 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100881 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100882 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
883 * call to sign or verify a message may use a different hash.
884 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200885 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
886 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
887 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100888 * ```
889 *
890 * This value may not be used to build other algorithms that are
891 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100892 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100893 *
894 * This value may not be used to build an algorithm specification to
895 * perform an operation. It is only valid to build policies.
896 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100897#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100898
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100899#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
900#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100901/** Macro to build an HMAC algorithm.
902 *
903 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
904 *
905 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
906 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
907 *
908 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100909 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100910 * hash algorithm.
911 */
912#define PSA_ALG_HMAC(hash_alg) \
913 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
914
915#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
916 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
917
918/** Whether the specified algorithm is an HMAC algorithm.
919 *
920 * HMAC is a family of MAC algorithms that are based on a hash function.
921 *
922 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
923 *
924 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
925 * This macro may return either 0 or 1 if \p alg is not a supported
926 * algorithm identifier.
927 */
928#define PSA_ALG_IS_HMAC(alg) \
929 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
930 PSA_ALG_HMAC_BASE)
931
932/* In the encoding of a MAC algorithm, the bits corresponding to
933 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
934 * truncated. As an exception, the value 0 means the untruncated algorithm,
935 * whatever its length is. The length is encoded in 6 bits, so it can
936 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
937 * to full length is correctly encoded as 0 and any non-trivial truncation
938 * is correctly encoded as a value between 1 and 63. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100939#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100940#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100941
Steven Cooremand927ed72021-02-22 19:59:35 +0100942/* In the encoding of a MAC algorithm, the bit corresponding to
943 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100944 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
945 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100946 * same base class and having a (potentially truncated) MAC length greater or
947 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100948#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +0100949
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100950/** Macro to build a truncated MAC algorithm.
951 *
952 * A truncated MAC algorithm is identical to the corresponding MAC
953 * algorithm except that the MAC value for the truncated algorithm
954 * consists of only the first \p mac_length bytes of the MAC value
955 * for the untruncated algorithm.
956 *
957 * \note This macro may allow constructing algorithm identifiers that
958 * are not valid, either because the specified length is larger
959 * than the untruncated MAC or because the specified length is
960 * smaller than permitted by the implementation.
961 *
962 * \note It is implementation-defined whether a truncated MAC that
963 * is truncated to the same length as the MAC of the untruncated
964 * algorithm is considered identical to the untruncated algorithm
965 * for policy comparison purposes.
966 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200967 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100968 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100969 * is true). This may be a truncated or untruncated
970 * MAC algorithm.
971 * \param mac_length Desired length of the truncated MAC in bytes.
972 * This must be at most the full length of the MAC
973 * and must be at least an implementation-specified
974 * minimum. The implementation-specified minimum
975 * shall not be zero.
976 *
977 * \return The corresponding MAC algorithm with the specified
978 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100979 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100980 * MAC algorithm or if \p mac_length is too small or
981 * too large for the specified MAC algorithm.
982 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100983#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
984 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
985 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100986 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
987
988/** Macro to build the base MAC algorithm corresponding to a truncated
989 * MAC algorithm.
990 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200991 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100992 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100993 * is true). This may be a truncated or untruncated
994 * MAC algorithm.
995 *
996 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100997 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100998 * MAC algorithm.
999 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001000#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1001 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1002 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001003
1004/** Length to which a MAC algorithm is truncated.
1005 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001006 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001007 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001008 * is true).
1009 *
1010 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001011 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1012 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001013 * MAC algorithm.
1014 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001015#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1016 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001017
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001018/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001019 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001020 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001021 * sharing the same base algorithm, and where the (potentially truncated) MAC
1022 * length of the specific algorithm is equal to or larger then the wildcard
1023 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001024 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001025 * \note When setting the minimum required MAC length to less than the
1026 * smallest MAC length allowed by the base algorithm, this effectively
1027 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001028 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001029 * \param mac_alg A MAC algorithm identifier (value of type
1030 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1031 * is true).
1032 * \param min_mac_length Desired minimum length of the message authentication
1033 * code in bytes. This must be at most the untruncated
1034 * length of the MAC and must be at least 1.
1035 *
1036 * \return The corresponding MAC wildcard algorithm with the
1037 * specified minimum length.
1038 * \return Unspecified if \p mac_alg is not a supported MAC
1039 * algorithm or if \p min_mac_length is less than 1 or
1040 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001041 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001042#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001043 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1044 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001045
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001046#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001047/** The CBC-MAC construction over a block cipher
1048 *
1049 * \warning CBC-MAC is insecure in many cases.
1050 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1051 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001052#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001053/** The CMAC construction over a block cipher */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001054#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001055
1056/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1057 *
1058 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1059 *
1060 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1061 * This macro may return either 0 or 1 if \p alg is not a supported
1062 * algorithm identifier.
1063 */
1064#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1065 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1066 PSA_ALG_CIPHER_MAC_BASE)
1067
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001068#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1069#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001070
1071/** Whether the specified algorithm is a stream cipher.
1072 *
1073 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1074 * by applying a bitwise-xor with a stream of bytes that is generated
1075 * from a key.
1076 *
1077 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1078 *
1079 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1080 * This macro may return either 0 or 1 if \p alg is not a supported
1081 * algorithm identifier or if it is not a symmetric cipher algorithm.
1082 */
1083#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1084 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001085 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001086
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001087/** The stream cipher mode of a stream cipher algorithm.
1088 *
1089 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001090 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1091 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001092 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001093#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001094
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001095/** The CTR stream cipher mode.
1096 *
1097 * CTR is a stream cipher which is built from a block cipher.
1098 * The underlying block cipher is determined by the key type.
1099 * For example, to use AES-128-CTR, use this algorithm with
1100 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1101 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001102#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001103
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001104/** The CFB stream cipher mode.
1105 *
1106 * The underlying block cipher is determined by the key type.
1107 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001108#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001109
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001110/** The OFB stream cipher mode.
1111 *
1112 * The underlying block cipher is determined by the key type.
1113 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001114#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001115
1116/** The XTS cipher mode.
1117 *
1118 * XTS is a cipher mode which is built from a block cipher. It requires at
1119 * least one full block of input, but beyond this minimum the input
1120 * does not need to be a whole number of blocks.
1121 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001122#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001123
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001124/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1125 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001126 * \warning ECB mode does not protect the confidentiality of the encrypted data
1127 * except in extremely narrow circumstances. It is recommended that applications
1128 * only use ECB if they need to construct an operating mode that the
1129 * implementation does not provide. Implementations are encouraged to provide
1130 * the modes that applications need in preference to supporting direct access
1131 * to ECB.
1132 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001133 * The underlying block cipher is determined by the key type.
1134 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001135 * This symmetric cipher mode can only be used with messages whose lengths are a
1136 * multiple of the block size of the chosen block cipher.
1137 *
1138 * ECB mode does not accept an initialization vector (IV). When using a
1139 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1140 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001141 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001142#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001143
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001144/** The CBC block cipher chaining mode, with no padding.
1145 *
1146 * The underlying block cipher is determined by the key type.
1147 *
1148 * This symmetric cipher mode can only be used with messages whose lengths
1149 * are whole number of blocks for the chosen block cipher.
1150 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001151#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001152
1153/** The CBC block cipher chaining mode with PKCS#7 padding.
1154 *
1155 * The underlying block cipher is determined by the key type.
1156 *
1157 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1158 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001159#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001160
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001161#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001162
1163/** Whether the specified algorithm is an AEAD mode on a block cipher.
1164 *
1165 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1166 *
1167 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1168 * a block cipher, 0 otherwise.
1169 * This macro may return either 0 or 1 if \p alg is not a supported
1170 * algorithm identifier.
1171 */
1172#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1173 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1174 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1175
Gilles Peskine9153ec02019-02-15 13:02:02 +01001176/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001177 *
1178 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001179 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001180#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001181
1182/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001183 *
1184 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001185 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001186#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001187
1188/** The Chacha20-Poly1305 AEAD algorithm.
1189 *
1190 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001191 *
1192 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1193 * and should reject other sizes.
1194 *
1195 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001196 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001197#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001198
Tom Cosgrove5205c972022-07-28 06:12:08 +01001199/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001200 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1201 * The constants for default lengths follow this encoding.
1202 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001203#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001204#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001205
Steven Cooremand927ed72021-02-22 19:59:35 +01001206/* In the encoding of an AEAD algorithm, the bit corresponding to
1207 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001208 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1209 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001210 * same base class and having a tag length greater than or equal to the one
1211 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001212#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001213
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001214/** Macro to build a shortened AEAD algorithm.
1215 *
1216 * A shortened AEAD algorithm is similar to the corresponding AEAD
1217 * algorithm, but has an authentication tag that consists of fewer bytes.
1218 * Depending on the algorithm, the tag length may affect the calculation
1219 * of the ciphertext.
1220 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001221 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001222 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001223 * is true).
1224 * \param tag_length Desired length of the authentication tag in bytes.
1225 *
1226 * \return The corresponding AEAD algorithm with the specified
1227 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001228 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001229 * AEAD algorithm or if \p tag_length is not valid
1230 * for the specified AEAD algorithm.
1231 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001232#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001233 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1234 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001235 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001236 PSA_ALG_AEAD_TAG_LENGTH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001237
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001238/** Retrieve the tag length of a specified AEAD algorithm
1239 *
1240 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001241 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001242 * is true).
1243 *
1244 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001245 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001246 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001247 */
1248#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1249 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001250 PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001251
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001252/** Calculate the corresponding AEAD algorithm with the default tag length.
1253 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001254 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001255 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001256 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001257 * \return The corresponding AEAD algorithm with the default
1258 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001259 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001260#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001261 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001262 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1263 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1264 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001265 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001266#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1267 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1268 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001269 ref :
1270
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001271/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001272 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001273 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001274 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001275 * algorithm is equal to or larger then the minimum tag length specified by the
1276 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001277 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001278 * \note When setting the minimum required tag length to less than the
1279 * smallest tag length allowed by the base algorithm, this effectively
1280 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001281 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001282 * \param aead_alg An AEAD algorithm identifier (value of type
1283 * #psa_algorithm_t such that
1284 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1285 * \param min_tag_length Desired minimum length of the authentication tag in
1286 * bytes. This must be at least 1 and at most the largest
1287 * allowed tag length of the algorithm.
1288 *
1289 * \return The corresponding AEAD wildcard algorithm with the
1290 * specified minimum length.
1291 * \return Unspecified if \p aead_alg is not a supported
1292 * AEAD algorithm or if \p min_tag_length is less than 1
1293 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001294 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001295#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001296 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1297 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001298
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001299#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001300/** RSA PKCS#1 v1.5 signature with hashing.
1301 *
1302 * This is the signature scheme defined by RFC 8017
1303 * (PKCS#1: RSA Cryptography Specifications) under the name
1304 * RSASSA-PKCS1-v1_5.
1305 *
1306 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1307 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001308 * This includes #PSA_ALG_ANY_HASH
1309 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001310 *
1311 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001312 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001313 * hash algorithm.
1314 */
1315#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1316 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1317/** Raw PKCS#1 v1.5 signature.
1318 *
1319 * The input to this algorithm is the DigestInfo structure used by
1320 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1321 * steps 3&ndash;6.
1322 */
1323#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1324#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1325 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1326
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001327#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1328#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001329/** RSA PSS signature with hashing.
1330 *
1331 * This is the signature scheme defined by RFC 8017
1332 * (PKCS#1: RSA Cryptography Specifications) under the name
1333 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu54bc05d2022-06-17 10:25:05 +01001334 * a salt length equal to the length of the hash, or the largest
1335 * possible salt length for the algorithm and key size if that is
1336 * smaller than the hash length. The specified hash algorithm is
1337 * used to hash the input message, to create the salted hash, and
1338 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001339 *
1340 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1341 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001342 * This includes #PSA_ALG_ANY_HASH
1343 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001344 *
1345 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001346 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001347 * hash algorithm.
1348 */
1349#define PSA_ALG_RSA_PSS(hash_alg) \
1350 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine35115f92021-10-04 18:10:38 +02001351
1352/** RSA PSS signature with hashing with relaxed verification.
1353 *
1354 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1355 * but allows an arbitrary salt length (including \c 0) when verifying a
1356 * signature.
1357 *
1358 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1359 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1360 * This includes #PSA_ALG_ANY_HASH
1361 * when specifying the algorithm in a usage policy.
1362 *
1363 * \return The corresponding RSA PSS signature algorithm.
1364 * \return Unspecified if \p hash_alg is not a supported
1365 * hash algorithm.
1366 */
1367#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1368 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1369
1370/** Whether the specified algorithm is RSA PSS with standard salt.
1371 *
1372 * \param alg An algorithm value or an algorithm policy wildcard.
1373 *
1374 * \return 1 if \p alg is of the form
1375 * #PSA_ALG_RSA_PSS(\c hash_alg),
1376 * where \c hash_alg is a hash algorithm or
1377 * #PSA_ALG_ANY_HASH. 0 otherwise.
1378 * This macro may return either 0 or 1 if \p alg is not
1379 * a supported algorithm identifier or policy.
1380 */
1381#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001382 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1383
Gilles Peskine35115f92021-10-04 18:10:38 +02001384/** Whether the specified algorithm is RSA PSS with any salt.
1385 *
1386 * \param alg An algorithm value or an algorithm policy wildcard.
1387 *
1388 * \return 1 if \p alg is of the form
1389 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1390 * where \c hash_alg is a hash algorithm or
1391 * #PSA_ALG_ANY_HASH. 0 otherwise.
1392 * This macro may return either 0 or 1 if \p alg is not
1393 * a supported algorithm identifier or policy.
1394 */
1395#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1396 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1397
1398/** Whether the specified algorithm is RSA PSS.
1399 *
1400 * This includes any of the RSA PSS algorithm variants, regardless of the
1401 * constraints on salt length.
1402 *
1403 * \param alg An algorithm value or an algorithm policy wildcard.
1404 *
1405 * \return 1 if \p alg is of the form
1406 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1407 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1408 * where \c hash_alg is a hash algorithm or
1409 * #PSA_ALG_ANY_HASH. 0 otherwise.
1410 * This macro may return either 0 or 1 if \p alg is not
1411 * a supported algorithm identifier or policy.
1412 */
1413#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef8362ca2021-10-08 16:28:32 +02001414 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1415 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskine35115f92021-10-04 18:10:38 +02001416
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001417#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001418/** ECDSA signature with hashing.
1419 *
1420 * This is the ECDSA signature scheme defined by ANSI X9.62,
1421 * with a random per-message secret number (*k*).
1422 *
1423 * The representation of the signature as a byte string consists of
Shaun Case0e7791f2021-12-20 21:14:10 -08001424 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001425 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1426 * of the base point of the curve in octets. Each value is represented
1427 * in big-endian order (most significant octet first).
1428 *
1429 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1430 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001431 * This includes #PSA_ALG_ANY_HASH
1432 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001433 *
1434 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001435 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001436 * hash algorithm.
1437 */
1438#define PSA_ALG_ECDSA(hash_alg) \
1439 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1440/** ECDSA signature without hashing.
1441 *
1442 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1443 * without specifying a hash algorithm. This algorithm may only be
1444 * used to sign or verify a sequence of bytes that should be an
1445 * already-calculated hash. Note that the input is padded with
1446 * zeros on the left or truncated on the left as required to fit
1447 * the curve size.
1448 */
1449#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001450#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001451/** Deterministic ECDSA signature with hashing.
1452 *
1453 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1454 *
1455 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1456 *
1457 * Note that when this algorithm is used for verification, signatures
1458 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1459 * same private key are accepted. In other words,
1460 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1461 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1462 *
1463 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1464 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001465 * This includes #PSA_ALG_ANY_HASH
1466 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001467 *
1468 * \return The corresponding deterministic ECDSA signature
1469 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001470 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001471 * hash algorithm.
1472 */
1473#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1474 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001475#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001476#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001477 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001478 PSA_ALG_ECDSA_BASE)
1479#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001480 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001481#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1482 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1483#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1484 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1485
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001486/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1487 * using standard parameters.
1488 *
1489 * Contexts are not supported in the current version of this specification
1490 * because there is no suitable signature interface that can take the
1491 * context as a parameter. A future version of this specification may add
1492 * suitable functions and extend this algorithm to support contexts.
1493 *
1494 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1495 * In this specification, the following curves are supported:
1496 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1497 * in RFC 8032.
1498 * The curve is Edwards25519.
1499 * The hash function used internally is SHA-512.
1500 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1501 * in RFC 8032.
1502 * The curve is Edwards448.
1503 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001504 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001505 *
1506 * This algorithm can be used with psa_sign_message() and
1507 * psa_verify_message(). Since there is no prehashing, it cannot be used
1508 * with psa_sign_hash() or psa_verify_hash().
1509 *
1510 * The signature format is the concatenation of R and S as defined by
1511 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1512 * string for Ed448).
1513 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001514#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001515
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001516#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001517#define PSA_ALG_IS_HASH_EDDSA(alg) \
1518 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1519
1520/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001521 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001522 *
1523 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1524 *
1525 * This algorithm is Ed25519 as specified in RFC 8032.
1526 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001527 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001528 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001529 *
1530 * This is a hash-and-sign algorithm: to calculate a signature,
1531 * you can either:
1532 * - call psa_sign_message() on the message;
1533 * - or calculate the SHA-512 hash of the message
1534 * with psa_hash_compute()
1535 * or with a multi-part hash operation started with psa_hash_setup(),
1536 * using the hash algorithm #PSA_ALG_SHA_512,
1537 * then sign the calculated hash with psa_sign_hash().
1538 * Verifying a signature is similar, using psa_verify_message() or
1539 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001540 */
1541#define PSA_ALG_ED25519PH \
1542 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1543
1544/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1545 * using SHAKE256 and the Edwards448 curve.
1546 *
1547 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1548 *
1549 * This algorithm is Ed448 as specified in RFC 8032.
1550 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001551 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001552 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001553 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001554 *
1555 * This is a hash-and-sign algorithm: to calculate a signature,
1556 * you can either:
1557 * - call psa_sign_message() on the message;
1558 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1559 * with psa_hash_compute()
1560 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001561 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001562 * then sign the calculated hash with psa_sign_hash().
1563 * Verifying a signature is similar, using psa_verify_message() or
1564 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001565 */
1566#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001567 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001568
Gilles Peskine6d400852021-02-24 21:39:52 +01001569/* Default definition, to be overridden if the library is extended with
1570 * more hash-and-sign algorithms that we want to keep out of this header
1571 * file. */
1572#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1573
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001574/** Whether the specified algorithm is a signature algorithm that can be used
1575 * with psa_sign_hash() and psa_verify_hash().
1576 *
1577 * This encompasses all strict hash-and-sign algorithms categorized by
1578 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1579 * paradigm more loosely:
1580 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1581 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1582 *
1583 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1584 *
1585 * \return 1 if alg is a signature algorithm that can be used to sign a
1586 * hash. 0 if alg is a signature algorithm that can only be used
1587 * to sign a message. 0 if alg is not a signature algorithm.
1588 * This macro can return either 0 or 1 if alg is not a
1589 * supported algorithm identifier.
1590 */
1591#define PSA_ALG_IS_SIGN_HASH(alg) \
1592 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1593 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1594 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1595
1596/** Whether the specified algorithm is a signature algorithm that can be used
1597 * with psa_sign_message() and psa_verify_message().
1598 *
1599 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1600 *
1601 * \return 1 if alg is a signature algorithm that can be used to sign a
1602 * message. 0 if \p alg is a signature algorithm that can only be used
1603 * to sign an already-calculated hash. 0 if \p alg is not a signature
1604 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1605 * supported algorithm identifier.
1606 */
1607#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001608 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001609
Gilles Peskined35b4892019-01-14 16:02:15 +01001610/** Whether the specified algorithm is a hash-and-sign algorithm.
1611 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001612 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1613 * structured in two parts: first the calculation of a hash in a way that
1614 * does not depend on the key, then the calculation of a signature from the
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001615 * hash value and the key. Hash-and-sign algorithms encode the hash
1616 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1617 * to extract this algorithm.
1618 *
1619 * Thus, for a hash-and-sign algorithm,
1620 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1621 * ```
1622 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1623 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1624 * ```
1625 * Most usefully, separating the hash from the signature allows the hash
1626 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1627 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1628 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001629 *
1630 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1631 *
1632 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1633 * This macro may return either 0 or 1 if \p alg is not a supported
1634 * algorithm identifier.
1635 */
1636#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001637 (PSA_ALG_IS_SIGN_HASH(alg) && \
1638 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001639
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001640/** Get the hash used by a hash-and-sign signature algorithm.
1641 *
1642 * A hash-and-sign algorithm is a signature algorithm which is
1643 * composed of two phases: first a hashing phase which does not use
1644 * the key and produces a hash of the input message, then a signing
1645 * phase which only uses the hash and the key and not the message
1646 * itself.
1647 *
1648 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1649 * #PSA_ALG_IS_SIGN(\p alg) is true).
1650 *
1651 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1652 * algorithm.
1653 * \return 0 if \p alg is a signature algorithm that does not
1654 * follow the hash-and-sign structure.
1655 * \return Unspecified if \p alg is not a signature algorithm or
1656 * if it is not supported by the implementation.
1657 */
1658#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001659 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001660 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1661 0)
1662
1663/** RSA PKCS#1 v1.5 encryption.
1664 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001665#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001666
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001667#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001668/** RSA OAEP encryption.
1669 *
1670 * This is the encryption scheme defined by RFC 8017
1671 * (PKCS#1: RSA Cryptography Specifications) under the name
1672 * RSAES-OAEP, with the message generation function MGF1.
1673 *
1674 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1675 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1676 * for MGF1.
1677 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001678 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001679 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001680 * hash algorithm.
1681 */
1682#define PSA_ALG_RSA_OAEP(hash_alg) \
1683 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1684#define PSA_ALG_IS_RSA_OAEP(alg) \
1685 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1686#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1687 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1688 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1689 0)
1690
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001691#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001692/** Macro to build an HKDF algorithm.
1693 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001694 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001695 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001696 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001697 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001698 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001699 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1700 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1701 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1702 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001703 * starting to generate output.
1704 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001705 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1706 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1707 *
1708 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001709 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001710 * hash algorithm.
1711 */
1712#define PSA_ALG_HKDF(hash_alg) \
1713 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1714/** Whether the specified algorithm is an HKDF algorithm.
1715 *
1716 * HKDF is a family of key derivation algorithms that are based on a hash
1717 * function and the HMAC construction.
1718 *
1719 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1720 *
1721 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1722 * This macro may return either 0 or 1 if \c alg is not a supported
1723 * key derivation algorithm identifier.
1724 */
1725#define PSA_ALG_IS_HKDF(alg) \
1726 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1727#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1728 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1729
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001730#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001731/** Macro to build a TLS-1.2 PRF algorithm.
1732 *
1733 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1734 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1735 * used with either SHA-256 or SHA-384.
1736 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001737 * This key derivation algorithm uses the following inputs, which must be
1738 * passed in the order given here:
1739 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001740 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1741 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001742 *
1743 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001744 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001745 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001746 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001747 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001748 * TLS 1.2 PRF using HMAC-SHA-256.
1749 *
1750 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1751 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1752 *
1753 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001754 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001755 * hash algorithm.
1756 */
1757#define PSA_ALG_TLS12_PRF(hash_alg) \
1758 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1759
1760/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1761 *
1762 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1763 *
1764 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1765 * This macro may return either 0 or 1 if \c alg is not a supported
1766 * key derivation algorithm identifier.
1767 */
1768#define PSA_ALG_IS_TLS12_PRF(alg) \
1769 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1770#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1771 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1772
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001773#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001774/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1775 *
1776 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1777 * from the PreSharedKey (PSK) through the application of padding
1778 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1779 * The latter is based on HMAC and can be used with either SHA-256
1780 * or SHA-384.
1781 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001782 * This key derivation algorithm uses the following inputs, which must be
1783 * passed in the order given here:
1784 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001785 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1786 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001787 *
1788 * For the application to TLS-1.2, the seed (which is
1789 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1790 * ClientHello.Random + ServerHello.Random,
1791 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001792 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001793 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001794 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1795 *
1796 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1797 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1798 *
1799 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001800 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001801 * hash algorithm.
1802 */
1803#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1804 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1805
1806/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1807 *
1808 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1809 *
1810 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1811 * This macro may return either 0 or 1 if \c alg is not a supported
1812 * key derivation algorithm identifier.
1813 */
1814#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1815 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1816#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1817 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1818
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001819#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
1820#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001821
Gilles Peskine6843c292019-01-18 16:44:49 +01001822/** Macro to build a combined algorithm that chains a key agreement with
1823 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001824 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001825 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1826 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1827 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1828 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001829 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001830 * \return The corresponding key agreement and derivation
1831 * algorithm.
1832 * \return Unspecified if \p ka_alg is not a supported
1833 * key agreement algorithm or \p kdf_alg is not a
1834 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001835 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001836#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1837 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001838
1839#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1840 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1841
Gilles Peskine6843c292019-01-18 16:44:49 +01001842#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1843 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001844
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001845/** Whether the specified algorithm is a raw key agreement algorithm.
1846 *
1847 * A raw key agreement algorithm is one that does not specify
1848 * a key derivation function.
1849 * Usually, raw key agreement algorithms are constructed directly with
1850 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001851 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001852 *
1853 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1854 *
1855 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1856 * This macro may return either 0 or 1 if \p alg is not a supported
1857 * algorithm identifier.
1858 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001859#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001860 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1861 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001862
1863#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1864 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1865
1866/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001867 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001868 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001869 * `g^{ab}` in big-endian format.
1870 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1871 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001872 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001873#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001874
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001875/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1876 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001877 * This includes the raw finite field Diffie-Hellman algorithm as well as
1878 * finite-field Diffie-Hellman followed by any supporter key derivation
1879 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001880 *
1881 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1882 *
1883 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1884 * This macro may return either 0 or 1 if \c alg is not a supported
1885 * key agreement algorithm identifier.
1886 */
1887#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001888 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001889
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001890/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1891 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001892 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001893 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1894 * `m` is the bit size associated with the curve, i.e. the bit size of the
1895 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1896 * the byte containing the most significant bit of the shared secret
1897 * is padded with zero bits. The byte order is either little-endian
1898 * or big-endian depending on the curve type.
1899 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001900 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001901 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1902 * in little-endian byte order.
1903 * The bit size is 448 for Curve448 and 255 for Curve25519.
1904 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001905 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001906 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1907 * in big-endian byte order.
1908 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1909 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001910 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001911 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1912 * in big-endian byte order.
1913 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001914 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001915#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001916
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001917/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1918 * algorithm.
1919 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001920 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1921 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1922 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001923 *
1924 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1925 *
1926 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1927 * 0 otherwise.
1928 * This macro may return either 0 or 1 if \c alg is not a supported
1929 * key agreement algorithm identifier.
1930 */
1931#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001932 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001933
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001934/** Whether the specified algorithm encoding is a wildcard.
1935 *
1936 * Wildcard values may only be used to set the usage algorithm field in
1937 * a policy, not to perform an operation.
1938 *
1939 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1940 *
1941 * \return 1 if \c alg is a wildcard algorithm encoding.
1942 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1943 * an operation).
1944 * \return This macro may return either 0 or 1 if \c alg is not a supported
1945 * algorithm identifier.
1946 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001947#define PSA_ALG_IS_WILDCARD(alg) \
1948 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1949 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1950 PSA_ALG_IS_MAC(alg) ? \
1951 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1952 PSA_ALG_IS_AEAD(alg) ? \
1953 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001954 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001955
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001956/**@}*/
1957
1958/** \defgroup key_lifetimes Key lifetimes
1959 * @{
1960 */
1961
Gilles Peskine43bd07d2022-06-20 18:41:20 +02001962/* Note that location and persistence level values are embedded in the
1963 * persistent key store, as part of key metadata. As a consequence, they
1964 * must not be changed (unless the storage format version changes).
1965 */
1966
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001967/** The default lifetime for volatile keys.
1968 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001969 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001970 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001971 *
1972 * A key with this lifetime is typically stored in the RAM area of the
1973 * PSA Crypto subsystem. However this is an implementation choice.
1974 * If an implementation stores data about the key in a non-volatile memory,
1975 * it must release all the resources associated with the key and erase the
1976 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001977 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001978#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001979
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001980/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001981 *
1982 * A persistent key remains in storage until it is explicitly destroyed or
1983 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001984 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001985 * provide their own mechanism (for example to perform a factory reset,
1986 * to prepare for device refurbishment, or to uninstall an application).
1987 *
1988 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001989 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001990 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001991 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001992#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001993
Gilles Peskineaff11812020-05-04 19:03:10 +02001994/** The persistence level of volatile keys.
1995 *
1996 * See ::psa_key_persistence_t for more information.
1997 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001998#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001999
2000/** The default persistence level for persistent keys.
2001 *
2002 * See ::psa_key_persistence_t for more information.
2003 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002004#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002005
2006/** A persistence level indicating that a key is never destroyed.
2007 *
2008 * See ::psa_key_persistence_t for more information.
2009 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002010#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002011
2012#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002013 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002014
2015#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002016 ((psa_key_location_t) ((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002017
2018/** Whether a key lifetime indicates that the key is volatile.
2019 *
2020 * A volatile key is automatically destroyed by the implementation when
2021 * the application instance terminates. In particular, a volatile key
2022 * is automatically destroyed on a power reset of the device.
2023 *
2024 * A key that is not volatile is persistent. Persistent keys are
2025 * preserved until the application explicitly destroys them or until an
2026 * implementation-specific device management event occurs (for example,
2027 * a factory reset).
2028 *
2029 * \param lifetime The lifetime value to query (value of type
2030 * ::psa_key_lifetime_t).
2031 *
2032 * \return \c 1 if the key is volatile, otherwise \c 0.
2033 */
2034#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2035 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002036 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002037
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002038/** Whether a key lifetime indicates that the key is read-only.
2039 *
2040 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2041 * They must be created through platform-specific means that bypass the API.
2042 *
2043 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine11794b32021-06-07 23:21:50 +02002044 * consider a platform with multiple levels of privilege, where a
2045 * low-privilege application can use a key but is not allowed to destroy
2046 * it, and the platform exposes the key to the application with a read-only
2047 * lifetime. High-privilege code can destroy the key even though the
2048 * application sees the key as read-only.
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002049 *
2050 * \param lifetime The lifetime value to query (value of type
2051 * ::psa_key_lifetime_t).
2052 *
2053 * \return \c 1 if the key is read-only, otherwise \c 0.
2054 */
2055#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2056 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2057 PSA_KEY_PERSISTENCE_READ_ONLY)
2058
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002059/** Construct a lifetime from a persistence level and a location.
2060 *
2061 * \param persistence The persistence level
2062 * (value of type ::psa_key_persistence_t).
2063 * \param location The location indicator
2064 * (value of type ::psa_key_location_t).
2065 *
2066 * \return The constructed lifetime value.
2067 */
2068#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2069 ((location) << 8 | (persistence))
2070
Gilles Peskineaff11812020-05-04 19:03:10 +02002071/** The local storage area for persistent keys.
2072 *
2073 * This storage area is available on all systems that can store persistent
2074 * keys without delegating the storage to a third-party cryptoprocessor.
2075 *
2076 * See ::psa_key_location_t for more information.
2077 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002078#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002079
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002080#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002081
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002082/* Note that key identifier values are embedded in the
2083 * persistent key store, as part of key metadata. As a consequence, they
2084 * must not be changed (unless the storage format version changes).
2085 */
2086
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002087/** The null key identifier.
2088 */
Gilles Peskine7f3659a2023-01-04 19:52:38 +01002089/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002090#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine7f3659a2023-01-04 19:52:38 +01002091/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002092/** The minimum value for a key identifier chosen by the application.
2093 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002094#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002095/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002096 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002097#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002098/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002099 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002100#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002101/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002102 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002103#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002104
Ronald Cron7424f0d2020-09-14 16:17:41 +02002105
2106#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2107
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002108#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2109#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2110#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002111
2112/** Utility to initialize a key identifier at runtime.
2113 *
2114 * \param unused Unused parameter.
2115 * \param key_id Identifier of the key.
2116 */
2117static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002118 unsigned int unused, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002119{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002120 (void) unused;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002121
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002122 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002123}
2124
2125/** Compare two key identifiers.
2126 *
2127 * \param id1 First key identifier.
2128 * \param id2 Second key identifier.
2129 *
2130 * \return Non-zero if the two key identifier are equal, zero otherwise.
2131 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002132static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2133 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002134{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002135 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002136}
2137
Ronald Cronc4d1b512020-07-31 11:26:37 +02002138/** Check whether a key identifier is null.
2139 *
2140 * \param key Key identifier.
2141 *
2142 * \return Non-zero if the key identifier is null, zero otherwise.
2143 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002144static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002145{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002146 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002147}
2148
Ronald Cron7424f0d2020-09-14 16:17:41 +02002149#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2150
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002151#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2152#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).key_id)
2153#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).owner)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002154
2155/** Utility to initialize a key identifier at runtime.
2156 *
2157 * \param owner_id Identifier of the key owner.
2158 * \param key_id Identifier of the key.
2159 */
2160static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002161 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002162{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002163 return (mbedtls_svc_key_id_t){ .key_id = key_id,
2164 .owner = owner_id };
Ronald Cron7424f0d2020-09-14 16:17:41 +02002165}
2166
2167/** Compare two key identifiers.
2168 *
2169 * \param id1 First key identifier.
2170 * \param id2 Second key identifier.
2171 *
2172 * \return Non-zero if the two key identifier are equal, zero otherwise.
2173 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002174static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2175 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002176{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002177 return (id1.key_id == id2.key_id) &&
2178 mbedtls_key_owner_id_equal(id1.owner, id2.owner);
Ronald Cron7424f0d2020-09-14 16:17:41 +02002179}
2180
Ronald Cronc4d1b512020-07-31 11:26:37 +02002181/** Check whether a key identifier is null.
2182 *
2183 * \param key Key identifier.
2184 *
2185 * \return Non-zero if the key identifier is null, zero otherwise.
2186 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002187static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002188{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002189 return key.key_id == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002190}
2191
Ronald Cron7424f0d2020-09-14 16:17:41 +02002192#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002193
2194/**@}*/
2195
2196/** \defgroup policy Key policies
2197 * @{
2198 */
2199
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002200/* Note that key usage flags are embedded in the
2201 * persistent key store, as part of key metadata. As a consequence, they
2202 * must not be changed (unless the storage format version changes).
2203 */
2204
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002205/** Whether the key may be exported.
2206 *
2207 * A public key or the public part of a key pair may always be exported
2208 * regardless of the value of this permission flag.
2209 *
2210 * If a key does not have export permission, implementations shall not
2211 * allow the key to be exported in plain form from the cryptoprocessor,
2212 * whether through psa_export_key() or through a proprietary interface.
2213 * The key may however be exportable in a wrapped form, i.e. in a form
2214 * where it is encrypted by another key.
2215 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002216#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002217
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002218/** Whether the key may be copied.
2219 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002220 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002221 * with the same policy or a more restrictive policy.
2222 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002223 * For lifetimes for which the key is located in a secure element which
2224 * enforce the non-exportability of keys, copying a key outside the secure
2225 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2226 * Copying the key inside the secure element is permitted with just
2227 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2228 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002229 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2230 * is sufficient to permit the copy.
2231 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002232#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002233
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002234/** Whether the key may be used to encrypt a message.
2235 *
2236 * This flag allows the key to be used for a symmetric encryption operation,
2237 * for an AEAD encryption-and-authentication operation,
2238 * or for an asymmetric encryption operation,
2239 * if otherwise permitted by the key's type and policy.
2240 *
2241 * For a key pair, this concerns the public key.
2242 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002243#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002244
2245/** Whether the key may be used to decrypt a message.
2246 *
2247 * This flag allows the key to be used for a symmetric decryption operation,
2248 * for an AEAD decryption-and-verification operation,
2249 * or for an asymmetric decryption operation,
2250 * if otherwise permitted by the key's type and policy.
2251 *
2252 * For a key pair, this concerns the private key.
2253 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002254#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002255
2256/** Whether the key may be used to sign a message.
2257 *
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002258 * This flag allows the key to be used for a MAC calculation operation or for
2259 * an asymmetric message signature operation, if otherwise permitted by the
2260 * key’s type and policy.
2261 *
2262 * For a key pair, this concerns the private key.
2263 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002264#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002265
2266/** Whether the key may be used to verify a message.
2267 *
2268 * This flag allows the key to be used for a MAC verification operation or for
2269 * an asymmetric message signature verification operation, if otherwise
2270 * permitted by the key’s type and policy.
2271 *
2272 * For a key pair, this concerns the public key.
2273 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002274#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002275
2276/** Whether the key may be used to sign a message.
2277 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002278 * This flag allows the key to be used for a MAC calculation operation
2279 * or for an asymmetric signature operation,
2280 * if otherwise permitted by the key's type and policy.
2281 *
2282 * For a key pair, this concerns the private key.
2283 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002284#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002285
2286/** Whether the key may be used to verify a message signature.
2287 *
2288 * This flag allows the key to be used for a MAC verification operation
2289 * or for an asymmetric signature verification operation,
2290 * if otherwise permitted by by the key's type and policy.
2291 *
2292 * For a key pair, this concerns the public key.
2293 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002294#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002295
2296/** Whether the key may be used to derive other keys.
2297 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002298#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002299
2300/**@}*/
2301
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002302/** \defgroup derivation Key derivation
2303 * @{
2304 */
2305
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002306/* Key input steps are not embedded in the persistent storage, so you can
2307 * change them if needed: it's only an ABI change. */
2308
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002309/** A secret input for key derivation.
2310 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002311 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2312 * (passed to psa_key_derivation_input_key())
2313 * or the shared secret resulting from a key agreement
2314 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002315 *
2316 * The secret can also be a direct input (passed to
2317 * key_derivation_input_bytes()). In this case, the derivation operation
2318 * may not be used to derive keys: the operation will only allow
2319 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002320 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002321#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002322
2323/** A label for key derivation.
2324 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002325 * This should be a direct input.
2326 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002327 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002328#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002329
2330/** A salt for key derivation.
2331 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002332 * This should be a direct input.
2333 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002334 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002335#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002336
2337/** An information string for key derivation.
2338 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002339 * This should be a direct input.
2340 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002341 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002342#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002343
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002344/** A seed for key derivation.
2345 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002346 * This should be a direct input.
2347 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002348 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002349#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002350
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002351/**@}*/
2352
Bence Szépkútib639d432021-04-21 10:33:54 +02002353/** \defgroup helper_macros Helper macros
2354 * @{
2355 */
2356
2357/* Helper macros */
2358
2359/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2360 * regardless of the tag length they encode.
2361 *
2362 * \param aead_alg_1 An AEAD algorithm identifier.
2363 * \param aead_alg_2 An AEAD algorithm identifier.
2364 *
2365 * \return 1 if both identifiers refer to the same AEAD algorithm,
2366 * 0 otherwise.
2367 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2368 * a supported AEAD algorithm.
2369 */
2370#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2371 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2372 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2373
2374/**@}*/
2375
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002376#endif /* PSA_CRYPTO_VALUES_H */