blob: b30f9556779bda67f5df94e4c16c1686ad67258f [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
412 * The key policy determines which key derivation algorithm the key
413 * can be used for.
414 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100415#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416
Gilles Peskine737c6be2019-05-21 16:01:06 +0200417/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 *
419 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
420 * 32 bytes (AES-256).
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Gilles Peskine8890f642021-09-21 11:59:39 +0200424/** Key for a cipher, AEAD or MAC algorithm based on the
425 * ARIA block cipher. */
426#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
427
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100428/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
429 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100430 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
431 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100432 *
433 * Note that single DES and 2-key 3DES are weak and strongly
434 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
435 * is weak and deprecated and should only be used in legacy protocols.
436 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100437#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438
Gilles Peskine737c6be2019-05-21 16:01:06 +0200439/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100441#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100442
443/** Key for the RC4 stream cipher.
444 *
445 * Note that RC4 is weak and deprecated and should only be used in
446 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100447#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200449/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
450 *
451 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
452 *
453 * Implementations must support 12-byte nonces, may support 8-byte nonces,
454 * and should reject other sizes.
455 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100456#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200457
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100458/** RSA public key.
459 *
460 * The size of an RSA key is the bit size of the modulus.
461 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100462#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100463/** RSA key pair (private and public key).
464 *
465 * The size of an RSA key is the bit size of the modulus.
466 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100467#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468/** Whether a key type is an RSA key (pair or public-only). */
469#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200470 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100471
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100472#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100473#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
474#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100475/** Elliptic curve key pair.
476 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100477 * The size of an elliptic curve key is the bit size associated with the curve,
478 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
479 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
480 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100481 * \param curve A value of type ::psa_ecc_family_t that
482 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100483 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200484#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
485 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100486/** Elliptic curve public key.
487 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100488 * The size of an elliptic curve public key is the same as the corresponding
489 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
490 * `PSA_ECC_FAMILY_xxx` curve families).
491 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100492 * \param curve A value of type ::psa_ecc_family_t that
493 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100494 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100495#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
496 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
497
498/** Whether a key type is an elliptic curve key (pair or public-only). */
499#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200500 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100501 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100502/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200503#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100504 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200505 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100506/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100507#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
508 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
509 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
510
511/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100512#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
513 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100514 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
515 0))
516
Gilles Peskine228abc52019-12-03 17:24:19 +0100517/** SEC Koblitz curves over prime fields.
518 *
519 * This family comprises the following curves:
520 * secp192k1, secp224k1, secp256k1.
521 * They are defined in _Standards for Efficient Cryptography_,
522 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
523 * https://www.secg.org/sec2-v2.pdf
524 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100525#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100526
527/** SEC random curves over prime fields.
528 *
529 * This family comprises the following curves:
530 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
531 * They are defined in _Standards for Efficient Cryptography_,
532 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
533 * https://www.secg.org/sec2-v2.pdf
534 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100535#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100536/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100537#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100538
539/** SEC Koblitz curves over binary fields.
540 *
541 * This family comprises the following curves:
542 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
543 * They are defined in _Standards for Efficient Cryptography_,
544 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
545 * https://www.secg.org/sec2-v2.pdf
546 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100547#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100548
549/** SEC random curves over binary fields.
550 *
551 * This family comprises the following curves:
552 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
553 * They are defined in _Standards for Efficient Cryptography_,
554 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
555 * https://www.secg.org/sec2-v2.pdf
556 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100557#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100558
559/** SEC additional random curves over binary fields.
560 *
561 * This family comprises the following curve:
562 * sect163r2.
563 * It is defined in _Standards for Efficient Cryptography_,
564 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
565 * https://www.secg.org/sec2-v2.pdf
566 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100568
569/** Brainpool P random curves.
570 *
571 * This family comprises the following curves:
572 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
573 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
574 * It is defined in RFC 5639.
575 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100576#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100577
578/** Curve25519 and Curve448.
579 *
580 * This family comprises the following Montgomery curves:
581 * - 255-bit: Bernstein et al.,
582 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
583 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
584 * - 448-bit: Hamburg,
585 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
586 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
587 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100588#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100589
Gilles Peskine67546802021-02-24 21:49:40 +0100590/** The twisted Edwards curves Ed25519 and Ed448.
591 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100592 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100593 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100594 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100595 *
596 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100597 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100598 * to Curve25519.
599 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
600 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
601 * to Curve448.
602 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
603 */
604#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
605
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100606#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100607#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
608#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100609/** Diffie-Hellman key pair.
610 *
Paul Elliott75e27032020-06-03 15:17:39 +0100611 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100612 * Diffie-Hellman group to be used.
613 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200614#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
615 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100616/** Diffie-Hellman public key.
617 *
Paul Elliott75e27032020-06-03 15:17:39 +0100618 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100619 * Diffie-Hellman group to be used.
620 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200621#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
622 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
623
624/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
625#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200626 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200627 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
628/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200629#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200630 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200631 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200632/** Whether a key type is a Diffie-Hellman public key. */
633#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
634 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
635 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
636
637/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100638#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
639 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200640 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
641 0))
642
Gilles Peskine228abc52019-12-03 17:24:19 +0100643/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
644 *
645 * This family includes groups with the following key sizes (in bits):
646 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
647 * all of these sizes or only a subset.
648 */
Paul Elliott75e27032020-06-03 15:17:39 +0100649#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100650
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100651#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100652 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100653/** The block size of a block cipher.
654 *
655 * \param type A cipher key type (value of type #psa_key_type_t).
656 *
657 * \return The block size for a block cipher, or 1 for a stream cipher.
658 * The return value is undefined if \p type is not a supported
659 * cipher key type.
660 *
661 * \note It is possible to build stream cipher algorithms on top of a block
662 * cipher, for example CTR mode (#PSA_ALG_CTR).
663 * This macro only takes the key type into account, so it cannot be
664 * used to determine the size of the data that #psa_cipher_update()
665 * might buffer for future processing in general.
666 *
667 * \note This macro returns a compile-time constant if its argument is one.
668 *
669 * \warning This macro may evaluate its argument multiple times.
670 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100671#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100672 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100673 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100674 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100675
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100676/** Vendor-defined algorithm flag.
677 *
678 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
679 * bit set. Vendors who define additional algorithms must use an encoding with
680 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
681 * used by standard encodings whenever practical.
682 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100683#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100684
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100685#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100686#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
687#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100688#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100689#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
690#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
691#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
692#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
693#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100694
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100695/** Whether an algorithm is vendor-defined.
696 *
697 * See also #PSA_ALG_VENDOR_FLAG.
698 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100699#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
700 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
701
702/** Whether the specified algorithm is a hash algorithm.
703 *
704 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
705 *
706 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
707 * This macro may return either 0 or 1 if \p alg is not a supported
708 * algorithm identifier.
709 */
710#define PSA_ALG_IS_HASH(alg) \
711 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
712
713/** Whether the specified algorithm is a MAC algorithm.
714 *
715 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
716 *
717 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
718 * This macro may return either 0 or 1 if \p alg is not a supported
719 * algorithm identifier.
720 */
721#define PSA_ALG_IS_MAC(alg) \
722 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
723
724/** Whether the specified algorithm is a symmetric cipher algorithm.
725 *
726 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
727 *
728 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
729 * This macro may return either 0 or 1 if \p alg is not a supported
730 * algorithm identifier.
731 */
732#define PSA_ALG_IS_CIPHER(alg) \
733 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
734
735/** Whether the specified algorithm is an authenticated encryption
736 * with associated data (AEAD) algorithm.
737 *
738 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
739 *
740 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
741 * This macro may return either 0 or 1 if \p alg is not a supported
742 * algorithm identifier.
743 */
744#define PSA_ALG_IS_AEAD(alg) \
745 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
746
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200747/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200748 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100749 *
750 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
751 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200752 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100753 * This macro may return either 0 or 1 if \p alg is not a supported
754 * algorithm identifier.
755 */
756#define PSA_ALG_IS_SIGN(alg) \
757 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
758
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200759/** Whether the specified algorithm is an asymmetric encryption algorithm,
760 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100761 *
762 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
763 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200764 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100765 * This macro may return either 0 or 1 if \p alg is not a supported
766 * algorithm identifier.
767 */
768#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
769 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
770
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100771/** Whether the specified algorithm is a key agreement algorithm.
772 *
773 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
774 *
775 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
776 * This macro may return either 0 or 1 if \p alg is not a supported
777 * algorithm identifier.
778 */
779#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100780 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100781
782/** Whether the specified algorithm is a key derivation algorithm.
783 *
784 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
785 *
786 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
787 * This macro may return either 0 or 1 if \p alg is not a supported
788 * algorithm identifier.
789 */
790#define PSA_ALG_IS_KEY_DERIVATION(alg) \
791 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
792
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200793/** An invalid algorithm identifier value. */
794#define PSA_ALG_NONE ((psa_algorithm_t)0)
795
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100796#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100797/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100798#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100799/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100800#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100801/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100802#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100803/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100804#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100805/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100806#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100807/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100808#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100809/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100810#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100811/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100812#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100813/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100814#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100815/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100816#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100817/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100818#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100819/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100820#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100821/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100822#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100823/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100824#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100825/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100826#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100827/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100828 *
829 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
830 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
831 * has the same output size and a (theoretically) higher security strength.
832 */
Gilles Peskine27354692021-03-03 17:45:06 +0100833#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100834
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100835/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100836 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100837 * This value may be used to form the algorithm usage field of a policy
838 * for a signature algorithm that is parametrized by a hash. The key
839 * may then be used to perform operations using the same signature
840 * algorithm parametrized with any supported hash.
841 *
842 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine35115f92021-10-04 18:10:38 +0200843 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100844 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100845 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100846 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
847 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100848 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200849 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100850 * ```
851 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100852 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100853 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
854 * call to sign or verify a message may use a different hash.
855 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200856 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
857 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
858 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100859 * ```
860 *
861 * This value may not be used to build other algorithms that are
862 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100863 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100864 *
865 * This value may not be used to build an algorithm specification to
866 * perform an operation. It is only valid to build policies.
867 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100868#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100869
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100870#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100871#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100872/** Macro to build an HMAC algorithm.
873 *
874 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
875 *
876 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
877 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
878 *
879 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100880 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100881 * hash algorithm.
882 */
883#define PSA_ALG_HMAC(hash_alg) \
884 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
885
886#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
887 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
888
889/** Whether the specified algorithm is an HMAC algorithm.
890 *
891 * HMAC is a family of MAC algorithms that are based on a hash function.
892 *
893 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
894 *
895 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
896 * This macro may return either 0 or 1 if \p alg is not a supported
897 * algorithm identifier.
898 */
899#define PSA_ALG_IS_HMAC(alg) \
900 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
901 PSA_ALG_HMAC_BASE)
902
903/* In the encoding of a MAC algorithm, the bits corresponding to
904 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
905 * truncated. As an exception, the value 0 means the untruncated algorithm,
906 * whatever its length is. The length is encoded in 6 bits, so it can
907 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
908 * to full length is correctly encoded as 0 and any non-trivial truncation
909 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100910#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
911#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100912
Steven Cooremand927ed72021-02-22 19:59:35 +0100913/* In the encoding of a MAC algorithm, the bit corresponding to
914 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100915 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
916 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100917 * same base class and having a (potentially truncated) MAC length greater or
918 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
919#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
920
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100921/** Macro to build a truncated MAC algorithm.
922 *
923 * A truncated MAC algorithm is identical to the corresponding MAC
924 * algorithm except that the MAC value for the truncated algorithm
925 * consists of only the first \p mac_length bytes of the MAC value
926 * for the untruncated algorithm.
927 *
928 * \note This macro may allow constructing algorithm identifiers that
929 * are not valid, either because the specified length is larger
930 * than the untruncated MAC or because the specified length is
931 * smaller than permitted by the implementation.
932 *
933 * \note It is implementation-defined whether a truncated MAC that
934 * is truncated to the same length as the MAC of the untruncated
935 * algorithm is considered identical to the untruncated algorithm
936 * for policy comparison purposes.
937 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200938 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100939 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100940 * is true). This may be a truncated or untruncated
941 * MAC algorithm.
942 * \param mac_length Desired length of the truncated MAC in bytes.
943 * This must be at most the full length of the MAC
944 * and must be at least an implementation-specified
945 * minimum. The implementation-specified minimum
946 * shall not be zero.
947 *
948 * \return The corresponding MAC algorithm with the specified
949 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100950 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100951 * MAC algorithm or if \p mac_length is too small or
952 * too large for the specified MAC algorithm.
953 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100954#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
955 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
956 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100957 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
958
959/** Macro to build the base MAC algorithm corresponding to a truncated
960 * MAC algorithm.
961 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200962 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100963 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100964 * is true). This may be a truncated or untruncated
965 * MAC algorithm.
966 *
967 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100968 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100969 * MAC algorithm.
970 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100971#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
972 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
973 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100974
975/** Length to which a MAC algorithm is truncated.
976 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200977 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100978 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100979 * is true).
980 *
981 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100982 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
983 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100984 * MAC algorithm.
985 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200986#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
987 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100988
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100989/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100990 *
Steven Cooremana1d83222021-02-25 10:20:29 +0100991 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100992 * sharing the same base algorithm, and where the (potentially truncated) MAC
993 * length of the specific algorithm is equal to or larger then the wildcard
994 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100995 *
Steven Cooreman37389c72021-02-18 12:08:41 +0100996 * \note When setting the minimum required MAC length to less than the
997 * smallest MAC length allowed by the base algorithm, this effectively
998 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100999 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001000 * \param mac_alg A MAC algorithm identifier (value of type
1001 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1002 * is true).
1003 * \param min_mac_length Desired minimum length of the message authentication
1004 * code in bytes. This must be at most the untruncated
1005 * length of the MAC and must be at least 1.
1006 *
1007 * \return The corresponding MAC wildcard algorithm with the
1008 * specified minimum length.
1009 * \return Unspecified if \p mac_alg is not a supported MAC
1010 * algorithm or if \p min_mac_length is less than 1 or
1011 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001012 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001013#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1014 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1015 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001016
Bence Szépkútia2945512020-12-03 21:40:17 +01001017#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001018/** The CBC-MAC construction over a block cipher
1019 *
1020 * \warning CBC-MAC is insecure in many cases.
1021 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1022 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001023#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001024/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001025#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001026
1027/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1028 *
1029 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1030 *
1031 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1032 * This macro may return either 0 or 1 if \p alg is not a supported
1033 * algorithm identifier.
1034 */
1035#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1036 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1037 PSA_ALG_CIPHER_MAC_BASE)
1038
1039#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1040#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1041
1042/** Whether the specified algorithm is a stream cipher.
1043 *
1044 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1045 * by applying a bitwise-xor with a stream of bytes that is generated
1046 * from a key.
1047 *
1048 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1049 *
1050 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1051 * This macro may return either 0 or 1 if \p alg is not a supported
1052 * algorithm identifier or if it is not a symmetric cipher algorithm.
1053 */
1054#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1055 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1056 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1057
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001058/** The stream cipher mode of a stream cipher algorithm.
1059 *
1060 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001061 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1062 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001063 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001064#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001065
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001066/** The CTR stream cipher mode.
1067 *
1068 * CTR is a stream cipher which is built from a block cipher.
1069 * The underlying block cipher is determined by the key type.
1070 * For example, to use AES-128-CTR, use this algorithm with
1071 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1072 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001073#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001074
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001075/** The CFB stream cipher mode.
1076 *
1077 * The underlying block cipher is determined by the key type.
1078 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001079#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001080
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001081/** The OFB stream cipher mode.
1082 *
1083 * The underlying block cipher is determined by the key type.
1084 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001085#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001086
1087/** The XTS cipher mode.
1088 *
1089 * XTS is a cipher mode which is built from a block cipher. It requires at
1090 * least one full block of input, but beyond this minimum the input
1091 * does not need to be a whole number of blocks.
1092 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001093#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001094
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001095/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1096 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001097 * \warning ECB mode does not protect the confidentiality of the encrypted data
1098 * except in extremely narrow circumstances. It is recommended that applications
1099 * only use ECB if they need to construct an operating mode that the
1100 * implementation does not provide. Implementations are encouraged to provide
1101 * the modes that applications need in preference to supporting direct access
1102 * to ECB.
1103 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001104 * The underlying block cipher is determined by the key type.
1105 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001106 * This symmetric cipher mode can only be used with messages whose lengths are a
1107 * multiple of the block size of the chosen block cipher.
1108 *
1109 * ECB mode does not accept an initialization vector (IV). When using a
1110 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1111 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001112 */
1113#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1114
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001115/** The CBC block cipher chaining mode, with no padding.
1116 *
1117 * The underlying block cipher is determined by the key type.
1118 *
1119 * This symmetric cipher mode can only be used with messages whose lengths
1120 * are whole number of blocks for the chosen block cipher.
1121 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001122#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001123
1124/** The CBC block cipher chaining mode with PKCS#7 padding.
1125 *
1126 * The underlying block cipher is determined by the key type.
1127 *
1128 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1129 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001130#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001131
Gilles Peskine679693e2019-05-06 15:10:16 +02001132#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1133
1134/** Whether the specified algorithm is an AEAD mode on a block cipher.
1135 *
1136 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1137 *
1138 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1139 * a block cipher, 0 otherwise.
1140 * This macro may return either 0 or 1 if \p alg is not a supported
1141 * algorithm identifier.
1142 */
1143#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1144 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1145 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1146
Gilles Peskine9153ec02019-02-15 13:02:02 +01001147/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001148 *
1149 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001150 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001151#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001152
1153/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001154 *
1155 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001156 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001157#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001158
1159/** The Chacha20-Poly1305 AEAD algorithm.
1160 *
1161 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001162 *
1163 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1164 * and should reject other sizes.
1165 *
1166 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001167 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001168#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001169
1170/* In the encoding of a AEAD algorithm, the bits corresponding to
1171 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1172 * The constants for default lengths follow this encoding.
1173 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001174#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1175#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001176
Steven Cooremand927ed72021-02-22 19:59:35 +01001177/* In the encoding of an AEAD algorithm, the bit corresponding to
1178 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001179 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1180 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001181 * same base class and having a tag length greater than or equal to the one
1182 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1183#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1184
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001185/** Macro to build a shortened AEAD algorithm.
1186 *
1187 * A shortened AEAD algorithm is similar to the corresponding AEAD
1188 * algorithm, but has an authentication tag that consists of fewer bytes.
1189 * Depending on the algorithm, the tag length may affect the calculation
1190 * of the ciphertext.
1191 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001192 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001193 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001194 * is true).
1195 * \param tag_length Desired length of the authentication tag in bytes.
1196 *
1197 * \return The corresponding AEAD algorithm with the specified
1198 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001199 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001200 * AEAD algorithm or if \p tag_length is not valid
1201 * for the specified AEAD algorithm.
1202 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001203#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001204 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1205 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001206 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1207 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1208
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001209/** Retrieve the tag length of a specified AEAD algorithm
1210 *
1211 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001212 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001213 * is true).
1214 *
1215 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001216 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001217 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001218 */
1219#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1220 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1221 PSA_AEAD_TAG_LENGTH_OFFSET )
1222
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001223/** Calculate the corresponding AEAD algorithm with the default tag length.
1224 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001225 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001226 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001227 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001228 * \return The corresponding AEAD algorithm with the default
1229 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001230 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001231#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001232 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001233 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1234 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1235 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001236 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001237#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1238 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1239 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001240 ref :
1241
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001242/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001243 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001244 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001245 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001246 * algorithm is equal to or larger then the minimum tag length specified by the
1247 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001248 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001249 * \note When setting the minimum required tag length to less than the
1250 * smallest tag length allowed by the base algorithm, this effectively
1251 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001252 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001253 * \param aead_alg An AEAD algorithm identifier (value of type
1254 * #psa_algorithm_t such that
1255 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1256 * \param min_tag_length Desired minimum length of the authentication tag in
1257 * bytes. This must be at least 1 and at most the largest
1258 * allowed tag length of the algorithm.
1259 *
1260 * \return The corresponding AEAD wildcard algorithm with the
1261 * specified minimum length.
1262 * \return Unspecified if \p aead_alg is not a supported
1263 * AEAD algorithm or if \p min_tag_length is less than 1
1264 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001265 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001266#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001267 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1268 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001269
Bence Szépkútia2945512020-12-03 21:40:17 +01001270#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001271/** RSA PKCS#1 v1.5 signature with hashing.
1272 *
1273 * This is the signature scheme defined by RFC 8017
1274 * (PKCS#1: RSA Cryptography Specifications) under the name
1275 * RSASSA-PKCS1-v1_5.
1276 *
1277 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1278 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001279 * This includes #PSA_ALG_ANY_HASH
1280 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001281 *
1282 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001283 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001284 * hash algorithm.
1285 */
1286#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1287 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1288/** Raw PKCS#1 v1.5 signature.
1289 *
1290 * The input to this algorithm is the DigestInfo structure used by
1291 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1292 * steps 3&ndash;6.
1293 */
1294#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1295#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1296 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1297
Bence Szépkútia2945512020-12-03 21:40:17 +01001298#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskine35115f92021-10-04 18:10:38 +02001299#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001300/** RSA PSS signature with hashing.
1301 *
1302 * This is the signature scheme defined by RFC 8017
1303 * (PKCS#1: RSA Cryptography Specifications) under the name
1304 * RSASSA-PSS, with the message generation function MGF1, and with
1305 * a salt length equal to the length of the hash. The specified
1306 * hash algorithm is used to hash the input message, to create the
1307 * salted hash, and for the mask generation.
1308 *
1309 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1310 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001311 * This includes #PSA_ALG_ANY_HASH
1312 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001313 *
1314 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001315 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001316 * hash algorithm.
1317 */
1318#define PSA_ALG_RSA_PSS(hash_alg) \
1319 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine35115f92021-10-04 18:10:38 +02001320
1321/** RSA PSS signature with hashing with relaxed verification.
1322 *
1323 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1324 * but allows an arbitrary salt length (including \c 0) when verifying a
1325 * signature.
1326 *
1327 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1328 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1329 * This includes #PSA_ALG_ANY_HASH
1330 * when specifying the algorithm in a usage policy.
1331 *
1332 * \return The corresponding RSA PSS signature algorithm.
1333 * \return Unspecified if \p hash_alg is not a supported
1334 * hash algorithm.
1335 */
1336#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1337 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1338
1339/** Whether the specified algorithm is RSA PSS with standard salt.
1340 *
1341 * \param alg An algorithm value or an algorithm policy wildcard.
1342 *
1343 * \return 1 if \p alg is of the form
1344 * #PSA_ALG_RSA_PSS(\c hash_alg),
1345 * where \c hash_alg is a hash algorithm or
1346 * #PSA_ALG_ANY_HASH. 0 otherwise.
1347 * This macro may return either 0 or 1 if \p alg is not
1348 * a supported algorithm identifier or policy.
1349 */
1350#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001351 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1352
Gilles Peskine35115f92021-10-04 18:10:38 +02001353/** Whether the specified algorithm is RSA PSS with any salt.
1354 *
1355 * \param alg An algorithm value or an algorithm policy wildcard.
1356 *
1357 * \return 1 if \p alg is of the form
1358 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1359 * where \c hash_alg is a hash algorithm or
1360 * #PSA_ALG_ANY_HASH. 0 otherwise.
1361 * This macro may return either 0 or 1 if \p alg is not
1362 * a supported algorithm identifier or policy.
1363 */
1364#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1365 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1366
1367/** Whether the specified algorithm is RSA PSS.
1368 *
1369 * This includes any of the RSA PSS algorithm variants, regardless of the
1370 * constraints on salt length.
1371 *
1372 * \param alg An algorithm value or an algorithm policy wildcard.
1373 *
1374 * \return 1 if \p alg is of the form
1375 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1376 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1377 * where \c hash_alg is a hash algorithm or
1378 * #PSA_ALG_ANY_HASH. 0 otherwise.
1379 * This macro may return either 0 or 1 if \p alg is not
1380 * a supported algorithm identifier or policy.
1381 */
1382#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef8362ca2021-10-08 16:28:32 +02001383 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1384 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskine35115f92021-10-04 18:10:38 +02001385
Bence Szépkútia2945512020-12-03 21:40:17 +01001386#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001387/** ECDSA signature with hashing.
1388 *
1389 * This is the ECDSA signature scheme defined by ANSI X9.62,
1390 * with a random per-message secret number (*k*).
1391 *
1392 * The representation of the signature as a byte string consists of
1393 * the concatentation of the signature values *r* and *s*. Each of
1394 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1395 * of the base point of the curve in octets. Each value is represented
1396 * in big-endian order (most significant octet first).
1397 *
1398 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1399 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001400 * This includes #PSA_ALG_ANY_HASH
1401 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001402 *
1403 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001404 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001405 * hash algorithm.
1406 */
1407#define PSA_ALG_ECDSA(hash_alg) \
1408 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1409/** ECDSA signature without hashing.
1410 *
1411 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1412 * without specifying a hash algorithm. This algorithm may only be
1413 * used to sign or verify a sequence of bytes that should be an
1414 * already-calculated hash. Note that the input is padded with
1415 * zeros on the left or truncated on the left as required to fit
1416 * the curve size.
1417 */
1418#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001419#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001420/** Deterministic ECDSA signature with hashing.
1421 *
1422 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1423 *
1424 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1425 *
1426 * Note that when this algorithm is used for verification, signatures
1427 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1428 * same private key are accepted. In other words,
1429 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1430 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1431 *
1432 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1433 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001434 * This includes #PSA_ALG_ANY_HASH
1435 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001436 *
1437 * \return The corresponding deterministic ECDSA signature
1438 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001439 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001440 * hash algorithm.
1441 */
1442#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1443 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001444#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001445#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001446 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001447 PSA_ALG_ECDSA_BASE)
1448#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001449 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001450#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1451 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1452#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1453 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1454
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001455/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1456 * using standard parameters.
1457 *
1458 * Contexts are not supported in the current version of this specification
1459 * because there is no suitable signature interface that can take the
1460 * context as a parameter. A future version of this specification may add
1461 * suitable functions and extend this algorithm to support contexts.
1462 *
1463 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1464 * In this specification, the following curves are supported:
1465 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1466 * in RFC 8032.
1467 * The curve is Edwards25519.
1468 * The hash function used internally is SHA-512.
1469 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1470 * in RFC 8032.
1471 * The curve is Edwards448.
1472 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001473 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001474 *
1475 * This algorithm can be used with psa_sign_message() and
1476 * psa_verify_message(). Since there is no prehashing, it cannot be used
1477 * with psa_sign_hash() or psa_verify_hash().
1478 *
1479 * The signature format is the concatenation of R and S as defined by
1480 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1481 * string for Ed448).
1482 */
1483#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1484
1485#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1486#define PSA_ALG_IS_HASH_EDDSA(alg) \
1487 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1488
1489/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001490 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001491 *
1492 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1493 *
1494 * This algorithm is Ed25519 as specified in RFC 8032.
1495 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001496 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001497 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001498 *
1499 * This is a hash-and-sign algorithm: to calculate a signature,
1500 * you can either:
1501 * - call psa_sign_message() on the message;
1502 * - or calculate the SHA-512 hash of the message
1503 * with psa_hash_compute()
1504 * or with a multi-part hash operation started with psa_hash_setup(),
1505 * using the hash algorithm #PSA_ALG_SHA_512,
1506 * then sign the calculated hash with psa_sign_hash().
1507 * Verifying a signature is similar, using psa_verify_message() or
1508 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001509 */
1510#define PSA_ALG_ED25519PH \
1511 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1512
1513/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1514 * using SHAKE256 and the Edwards448 curve.
1515 *
1516 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1517 *
1518 * This algorithm is Ed448 as specified in RFC 8032.
1519 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001520 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001521 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001522 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001523 *
1524 * This is a hash-and-sign algorithm: to calculate a signature,
1525 * you can either:
1526 * - call psa_sign_message() on the message;
1527 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1528 * with psa_hash_compute()
1529 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001530 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001531 * then sign the calculated hash with psa_sign_hash().
1532 * Verifying a signature is similar, using psa_verify_message() or
1533 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001534 */
1535#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001536 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001537
Gilles Peskine6d400852021-02-24 21:39:52 +01001538/* Default definition, to be overridden if the library is extended with
1539 * more hash-and-sign algorithms that we want to keep out of this header
1540 * file. */
1541#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1542
Gilles Peskined35b4892019-01-14 16:02:15 +01001543/** Whether the specified algorithm is a hash-and-sign algorithm.
1544 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001545 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1546 * structured in two parts: first the calculation of a hash in a way that
1547 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001548 * hash value and the key.
1549 *
1550 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1551 *
1552 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1553 * This macro may return either 0 or 1 if \p alg is not a supported
1554 * algorithm identifier.
1555 */
1556#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1557 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001558 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001559 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001560
gabor-mezei-arme8efa392021-04-14 21:14:28 +02001561/** Whether the specified algorithm is a signature algorithm that can be used
1562 * with psa_sign_message() and psa_verify_message().
1563 *
1564 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1565 *
1566 * \return 1 if alg is a signature algorithm that can be used to sign a
gabor-mezei-arm1f8036b2021-04-20 12:08:36 +02001567 * message. 0 if \p alg is a signature algorithm that can only be used
1568 * to sign an already-calculated hash. 0 if \p alg is not a signature
1569 * algorithm. This macro can return either 0 or 1 if \p alg is not a
gabor-mezei-arme8efa392021-04-14 21:14:28 +02001570 * supported algorithm identifier.
1571 */
1572#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
gabor-mezei-arm1f8036b2021-04-20 12:08:36 +02001573 (PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_PURE_EDDSA )
gabor-mezei-arme8efa392021-04-14 21:14:28 +02001574
Mateusz Starzykd22362c2021-08-26 11:46:14 +02001575/** Whether the specified algorithm is a signature algorithm that can be used
1576 * with psa_sign_hash() and psa_verify_hash().
1577 *
1578 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1579 *
1580 * \return 1 if alg is a signature algorithm that can be used to sign a
1581 * hash. 0 if alg is a signature algorithm that can only be used
1582 * to sign a message. 0 if alg is not a signature algorithm.
1583 * This macro can return either 0 or 1 if alg is not a
1584 * supported algorithm identifier.
1585 */
1586#define PSA_ALG_IS_SIGN_HASH(alg) \
1587 (PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_ED25519PH || \
1588 (alg) == PSA_ALG_ED448PH)
1589
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001590/** Get the hash used by a hash-and-sign signature algorithm.
1591 *
1592 * A hash-and-sign algorithm is a signature algorithm which is
1593 * composed of two phases: first a hashing phase which does not use
1594 * the key and produces a hash of the input message, then a signing
1595 * phase which only uses the hash and the key and not the message
1596 * itself.
1597 *
1598 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1599 * #PSA_ALG_IS_SIGN(\p alg) is true).
1600 *
1601 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1602 * algorithm.
1603 * \return 0 if \p alg is a signature algorithm that does not
1604 * follow the hash-and-sign structure.
1605 * \return Unspecified if \p alg is not a signature algorithm or
1606 * if it is not supported by the implementation.
1607 */
1608#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001609 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001610 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1611 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1612 0)
1613
1614/** RSA PKCS#1 v1.5 encryption.
1615 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001616#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001617
Bence Szépkútia2945512020-12-03 21:40:17 +01001618#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001619/** RSA OAEP encryption.
1620 *
1621 * This is the encryption scheme defined by RFC 8017
1622 * (PKCS#1: RSA Cryptography Specifications) under the name
1623 * RSAES-OAEP, with the message generation function MGF1.
1624 *
1625 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1626 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1627 * for MGF1.
1628 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001629 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001630 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001631 * hash algorithm.
1632 */
1633#define PSA_ALG_RSA_OAEP(hash_alg) \
1634 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1635#define PSA_ALG_IS_RSA_OAEP(alg) \
1636 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1637#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1638 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1639 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1640 0)
1641
Bence Szépkútia2945512020-12-03 21:40:17 +01001642#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001643/** Macro to build an HKDF algorithm.
1644 *
1645 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1646 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001647 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001648 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001649 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001650 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1651 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1652 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1653 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001654 * starting to generate output.
1655 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001656 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1657 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1658 *
1659 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001660 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001661 * hash algorithm.
1662 */
1663#define PSA_ALG_HKDF(hash_alg) \
1664 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1665/** Whether the specified algorithm is an HKDF algorithm.
1666 *
1667 * HKDF is a family of key derivation algorithms that are based on a hash
1668 * function and the HMAC construction.
1669 *
1670 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1671 *
1672 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1673 * This macro may return either 0 or 1 if \c alg is not a supported
1674 * key derivation algorithm identifier.
1675 */
1676#define PSA_ALG_IS_HKDF(alg) \
1677 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1678#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1679 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1680
Bence Szépkútia2945512020-12-03 21:40:17 +01001681#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001682/** Macro to build a TLS-1.2 PRF algorithm.
1683 *
1684 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1685 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1686 * used with either SHA-256 or SHA-384.
1687 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001688 * This key derivation algorithm uses the following inputs, which must be
1689 * passed in the order given here:
1690 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001691 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1692 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001693 *
1694 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001695 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001696 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001697 *
1698 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1699 * TLS 1.2 PRF using HMAC-SHA-256.
1700 *
1701 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1702 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1703 *
1704 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001705 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001706 * hash algorithm.
1707 */
1708#define PSA_ALG_TLS12_PRF(hash_alg) \
1709 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1710
1711/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1712 *
1713 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1714 *
1715 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1716 * This macro may return either 0 or 1 if \c alg is not a supported
1717 * key derivation algorithm identifier.
1718 */
1719#define PSA_ALG_IS_TLS12_PRF(alg) \
1720 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1721#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1722 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1723
Bence Szépkútia2945512020-12-03 21:40:17 +01001724#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001725/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1726 *
1727 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1728 * from the PreSharedKey (PSK) through the application of padding
1729 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1730 * The latter is based on HMAC and can be used with either SHA-256
1731 * or SHA-384.
1732 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001733 * This key derivation algorithm uses the following inputs, which must be
1734 * passed in the order given here:
1735 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001736 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1737 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001738 *
1739 * For the application to TLS-1.2, the seed (which is
1740 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1741 * ClientHello.Random + ServerHello.Random,
1742 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001743 *
1744 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1745 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1746 *
1747 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1748 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1749 *
1750 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001751 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001752 * hash algorithm.
1753 */
1754#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1755 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1756
1757/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1758 *
1759 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1760 *
1761 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1762 * This macro may return either 0 or 1 if \c alg is not a supported
1763 * key derivation algorithm identifier.
1764 */
1765#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1766 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1767#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1768 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1769
Bence Szépkútia2945512020-12-03 21:40:17 +01001770#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1771#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001772
Gilles Peskine6843c292019-01-18 16:44:49 +01001773/** Macro to build a combined algorithm that chains a key agreement with
1774 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001775 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001776 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1777 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1778 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1779 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001780 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001781 * \return The corresponding key agreement and derivation
1782 * algorithm.
1783 * \return Unspecified if \p ka_alg is not a supported
1784 * key agreement algorithm or \p kdf_alg is not a
1785 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001786 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001787#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1788 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001789
1790#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1791 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1792
Gilles Peskine6843c292019-01-18 16:44:49 +01001793#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1794 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001795
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001796/** Whether the specified algorithm is a raw key agreement algorithm.
1797 *
1798 * A raw key agreement algorithm is one that does not specify
1799 * a key derivation function.
1800 * Usually, raw key agreement algorithms are constructed directly with
1801 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001802 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001803 *
1804 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1805 *
1806 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1807 * This macro may return either 0 or 1 if \p alg is not a supported
1808 * algorithm identifier.
1809 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001810#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001811 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1812 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001813
1814#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1815 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1816
1817/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001818 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001819 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001820 * `g^{ab}` in big-endian format.
1821 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1822 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001823 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001824#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001825
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001826/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1827 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001828 * This includes the raw finite field Diffie-Hellman algorithm as well as
1829 * finite-field Diffie-Hellman followed by any supporter key derivation
1830 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001831 *
1832 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1833 *
1834 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1835 * This macro may return either 0 or 1 if \c alg is not a supported
1836 * key agreement algorithm identifier.
1837 */
1838#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001839 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001840
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001841/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1842 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001843 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001844 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1845 * `m` is the bit size associated with the curve, i.e. the bit size of the
1846 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1847 * the byte containing the most significant bit of the shared secret
1848 * is padded with zero bits. The byte order is either little-endian
1849 * or big-endian depending on the curve type.
1850 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001851 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001852 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1853 * in little-endian byte order.
1854 * The bit size is 448 for Curve448 and 255 for Curve25519.
1855 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001856 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001857 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1858 * in big-endian byte order.
1859 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1860 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001861 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001862 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1863 * in big-endian byte order.
1864 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001865 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001866#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001867
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001868/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1869 * algorithm.
1870 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001871 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1872 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1873 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001874 *
1875 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1876 *
1877 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1878 * 0 otherwise.
1879 * This macro may return either 0 or 1 if \c alg is not a supported
1880 * key agreement algorithm identifier.
1881 */
1882#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001883 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001884
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001885/** Whether the specified algorithm encoding is a wildcard.
1886 *
1887 * Wildcard values may only be used to set the usage algorithm field in
1888 * a policy, not to perform an operation.
1889 *
1890 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1891 *
1892 * \return 1 if \c alg is a wildcard algorithm encoding.
1893 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1894 * an operation).
1895 * \return This macro may return either 0 or 1 if \c alg is not a supported
1896 * algorithm identifier.
1897 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001898#define PSA_ALG_IS_WILDCARD(alg) \
1899 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1900 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1901 PSA_ALG_IS_MAC(alg) ? \
1902 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1903 PSA_ALG_IS_AEAD(alg) ? \
1904 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001905 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001906
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001907/**@}*/
1908
1909/** \defgroup key_lifetimes Key lifetimes
1910 * @{
1911 */
1912
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001913/** The default lifetime for volatile keys.
1914 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001915 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001916 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001917 *
1918 * A key with this lifetime is typically stored in the RAM area of the
1919 * PSA Crypto subsystem. However this is an implementation choice.
1920 * If an implementation stores data about the key in a non-volatile memory,
1921 * it must release all the resources associated with the key and erase the
1922 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001923 */
1924#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1925
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001926/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001927 *
1928 * A persistent key remains in storage until it is explicitly destroyed or
1929 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001930 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001931 * provide their own mechanism (for example to perform a factory reset,
1932 * to prepare for device refurbishment, or to uninstall an application).
1933 *
1934 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001935 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001936 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001937 */
1938#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1939
Gilles Peskineaff11812020-05-04 19:03:10 +02001940/** The persistence level of volatile keys.
1941 *
1942 * See ::psa_key_persistence_t for more information.
1943 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001944#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001945
1946/** The default persistence level for persistent keys.
1947 *
1948 * See ::psa_key_persistence_t for more information.
1949 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001950#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001951
1952/** A persistence level indicating that a key is never destroyed.
1953 *
1954 * See ::psa_key_persistence_t for more information.
1955 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001956#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001957
1958#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001959 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001960
1961#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001962 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001963
1964/** Whether a key lifetime indicates that the key is volatile.
1965 *
1966 * A volatile key is automatically destroyed by the implementation when
1967 * the application instance terminates. In particular, a volatile key
1968 * is automatically destroyed on a power reset of the device.
1969 *
1970 * A key that is not volatile is persistent. Persistent keys are
1971 * preserved until the application explicitly destroys them or until an
1972 * implementation-specific device management event occurs (for example,
1973 * a factory reset).
1974 *
1975 * \param lifetime The lifetime value to query (value of type
1976 * ::psa_key_lifetime_t).
1977 *
1978 * \return \c 1 if the key is volatile, otherwise \c 0.
1979 */
1980#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1981 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001982 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001983
Gilles Peskine7aa260d2021-04-21 20:05:59 +02001984/** Whether a key lifetime indicates that the key is read-only.
1985 *
1986 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
1987 * They must be created through platform-specific means that bypass the API.
1988 *
1989 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine11794b32021-06-07 23:21:50 +02001990 * consider a platform with multiple levels of privilege, where a
1991 * low-privilege application can use a key but is not allowed to destroy
1992 * it, and the platform exposes the key to the application with a read-only
1993 * lifetime. High-privilege code can destroy the key even though the
1994 * application sees the key as read-only.
Gilles Peskine7aa260d2021-04-21 20:05:59 +02001995 *
1996 * \param lifetime The lifetime value to query (value of type
1997 * ::psa_key_lifetime_t).
1998 *
1999 * \return \c 1 if the key is read-only, otherwise \c 0.
2000 */
2001#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2002 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2003 PSA_KEY_PERSISTENCE_READ_ONLY)
2004
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002005/** Construct a lifetime from a persistence level and a location.
2006 *
2007 * \param persistence The persistence level
2008 * (value of type ::psa_key_persistence_t).
2009 * \param location The location indicator
2010 * (value of type ::psa_key_location_t).
2011 *
2012 * \return The constructed lifetime value.
2013 */
2014#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2015 ((location) << 8 | (persistence))
2016
Gilles Peskineaff11812020-05-04 19:03:10 +02002017/** The local storage area for persistent keys.
2018 *
2019 * This storage area is available on all systems that can store persistent
2020 * keys without delegating the storage to a third-party cryptoprocessor.
2021 *
2022 * See ::psa_key_location_t for more information.
2023 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002024#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002025
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002026#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002027
Gilles Peskine4a231b82019-05-06 18:56:14 +02002028/** The minimum value for a key identifier chosen by the application.
2029 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002030#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002031/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002032 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002033#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002034/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002035 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002036#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002037/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002038 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002039#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002040
Ronald Cron7424f0d2020-09-14 16:17:41 +02002041
2042#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2043
2044#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2045#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2046#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2047
2048/** Utility to initialize a key identifier at runtime.
2049 *
2050 * \param unused Unused parameter.
2051 * \param key_id Identifier of the key.
2052 */
2053static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2054 unsigned int unused, psa_key_id_t key_id )
2055{
2056 (void)unused;
2057
2058 return( key_id );
2059}
2060
2061/** Compare two key identifiers.
2062 *
2063 * \param id1 First key identifier.
2064 * \param id2 Second key identifier.
2065 *
2066 * \return Non-zero if the two key identifier are equal, zero otherwise.
2067 */
2068static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2069 mbedtls_svc_key_id_t id2 )
2070{
2071 return( id1 == id2 );
2072}
2073
Ronald Cronc4d1b512020-07-31 11:26:37 +02002074/** Check whether a key identifier is null.
2075 *
2076 * \param key Key identifier.
2077 *
2078 * \return Non-zero if the key identifier is null, zero otherwise.
2079 */
2080static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2081{
2082 return( key == 0 );
2083}
2084
Ronald Cron7424f0d2020-09-14 16:17:41 +02002085#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2086
2087#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2088#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2089#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2090
2091/** Utility to initialize a key identifier at runtime.
2092 *
2093 * \param owner_id Identifier of the key owner.
2094 * \param key_id Identifier of the key.
2095 */
2096static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2097 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2098{
2099 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
2100 .owner = owner_id } );
2101}
2102
2103/** Compare two key identifiers.
2104 *
2105 * \param id1 First key identifier.
2106 * \param id2 Second key identifier.
2107 *
2108 * \return Non-zero if the two key identifier are equal, zero otherwise.
2109 */
2110static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2111 mbedtls_svc_key_id_t id2 )
2112{
2113 return( ( id1.key_id == id2.key_id ) &&
2114 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2115}
2116
Ronald Cronc4d1b512020-07-31 11:26:37 +02002117/** Check whether a key identifier is null.
2118 *
2119 * \param key Key identifier.
2120 *
2121 * \return Non-zero if the key identifier is null, zero otherwise.
2122 */
2123static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2124{
Gilles Peskined9b41502021-05-28 12:59:49 +02002125 return( key.key_id == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002126}
2127
Ronald Cron7424f0d2020-09-14 16:17:41 +02002128#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002129
2130/**@}*/
2131
2132/** \defgroup policy Key policies
2133 * @{
2134 */
2135
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002136/** Whether the key may be exported.
2137 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002138 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002139 * regardless of the value of this permission flag.
2140 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002141 * If a key does not have export permission, implementations shall not
2142 * allow the key to be exported in plain form from the cryptoprocessor,
2143 * whether through psa_export_key() or through a proprietary interface.
2144 * The key may however be exportable in a wrapped form, i.e. in a form
2145 * where it is encrypted by another key.
2146 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002147#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2148
2149/** Whether the key may be copied.
2150 *
2151 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002152 * with the same policy or a more restrictive policy.
2153 *
2154 * For lifetimes for which the key is located in a secure element which
2155 * enforce the non-exportability of keys, copying a key outside the secure
2156 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2157 * Copying the key inside the secure element is permitted with just
2158 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2159 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2160 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2161 * is sufficient to permit the copy.
2162 */
2163#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2164
2165/** Whether the key may be used to encrypt a message.
2166 *
2167 * This flag allows the key to be used for a symmetric encryption operation,
2168 * for an AEAD encryption-and-authentication operation,
2169 * or for an asymmetric encryption operation,
2170 * if otherwise permitted by the key's type and policy.
2171 *
2172 * For a key pair, this concerns the public key.
2173 */
2174#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2175
2176/** Whether the key may be used to decrypt a message.
2177 *
2178 * This flag allows the key to be used for a symmetric decryption operation,
2179 * for an AEAD decryption-and-verification operation,
2180 * or for an asymmetric decryption operation,
2181 * if otherwise permitted by the key's type and policy.
2182 *
2183 * For a key pair, this concerns the private key.
2184 */
2185#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2186
2187/** Whether the key may be used to sign a message.
2188 *
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002189 * This flag allows the key to be used for a MAC calculation operation or for
2190 * an asymmetric message signature operation, if otherwise permitted by the
2191 * key’s type and policy.
2192 *
2193 * For a key pair, this concerns the private key.
2194 */
2195#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2196
2197/** Whether the key may be used to verify a message.
2198 *
2199 * This flag allows the key to be used for a MAC verification operation or for
2200 * an asymmetric message signature verification operation, if otherwise
2201 * permitted by the key’s type and policy.
2202 *
2203 * For a key pair, this concerns the public key.
2204 */
2205#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2206
2207/** Whether the key may be used to sign a message.
2208 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002209 * This flag allows the key to be used for a MAC calculation operation
2210 * or for an asymmetric signature operation,
2211 * if otherwise permitted by the key's type and policy.
2212 *
2213 * For a key pair, this concerns the private key.
2214 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002215#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002216
2217/** Whether the key may be used to verify a message signature.
2218 *
2219 * This flag allows the key to be used for a MAC verification operation
2220 * or for an asymmetric signature verification operation,
2221 * if otherwise permitted by by the key's type and policy.
2222 *
2223 * For a key pair, this concerns the public key.
2224 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002225#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002226
2227/** Whether the key may be used to derive other keys.
2228 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002229#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002230
2231/**@}*/
2232
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002233/** \defgroup derivation Key derivation
2234 * @{
2235 */
2236
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002237/** A secret input for key derivation.
2238 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002239 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2240 * (passed to psa_key_derivation_input_key())
2241 * or the shared secret resulting from a key agreement
2242 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002243 *
2244 * The secret can also be a direct input (passed to
2245 * key_derivation_input_bytes()). In this case, the derivation operation
2246 * may not be used to derive keys: the operation will only allow
2247 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002248 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002249#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002250
2251/** A label for key derivation.
2252 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002253 * This should be a direct input.
2254 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002255 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002256#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002257
2258/** A salt for key derivation.
2259 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002260 * This should be a direct input.
2261 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002262 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002263#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002264
2265/** An information string for key derivation.
2266 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002267 * This should be a direct input.
2268 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002269 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002270#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002271
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002272/** A seed for key derivation.
2273 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002274 * This should be a direct input.
2275 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002276 */
2277#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2278
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002279/**@}*/
2280
Bence Szépkútib639d432021-04-21 10:33:54 +02002281/** \defgroup helper_macros Helper macros
2282 * @{
2283 */
2284
2285/* Helper macros */
2286
2287/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2288 * regardless of the tag length they encode.
2289 *
2290 * \param aead_alg_1 An AEAD algorithm identifier.
2291 * \param aead_alg_2 An AEAD algorithm identifier.
2292 *
2293 * \return 1 if both identifiers refer to the same AEAD algorithm,
2294 * 0 otherwise.
2295 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2296 * a supported AEAD algorithm.
2297 */
2298#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2299 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2300 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2301
2302/**@}*/
2303
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002304#endif /* PSA_CRYPTO_VALUES_H */