blob: ca04c4a7a02963992b9f358fd0247a2139707c5f [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
18 * Copyright (C) 2018, ARM Limited, All Rights Reserved
19 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
32 *
33 * This file is part of mbed TLS (https://tls.mbed.org)
34 */
35
36#ifndef PSA_CRYPTO_VALUES_H
37#define PSA_CRYPTO_VALUES_H
38
39/** \defgroup error Error codes
40 * @{
41 */
42
David Saadab4ecc272019-02-14 13:48:10 +020043/* PSA error codes */
44
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045/** The action was completed successfully. */
46#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010047
48/** An error occurred that does not correspond to any defined
49 * failure cause.
50 *
51 * Implementations may use this error code if none of the other standard
52 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020053#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010054
55/** The requested operation or a parameter is not supported
56 * by this implementation.
57 *
58 * Implementations should return this error code when an enumeration
59 * parameter such as a key type, algorithm, etc. is not recognized.
60 * If a combination of parameters is recognized and identified as
61 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020062#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010063
64/** The requested action is denied by a policy.
65 *
66 * Implementations should return this error code when the parameters
67 * are recognized as valid and supported, and a policy explicitly
68 * denies the requested operation.
69 *
70 * If a subset of the parameters of a function call identify a
71 * forbidden operation, and another subset of the parameters are
72 * not valid or not supported, it is unspecified whether the function
73 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
74 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** An output buffer is too small.
78 *
79 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
80 * description to determine a sufficient buffer size.
81 *
82 * Implementations should preferably return this error code only
83 * in cases when performing the operation with a larger output
84 * buffer would succeed. However implementations may return this
85 * error if a function has invalid or unsupported parameters in addition
86 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020087#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088
David Saadab4ecc272019-02-14 13:48:10 +020089/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010090 *
David Saadab4ecc272019-02-14 13:48:10 +020091 * Implementations should return this error, when attempting
92 * to write an item (like a key) that already exists. */
93#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094
David Saadab4ecc272019-02-14 13:48:10 +020095/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096 *
David Saadab4ecc272019-02-14 13:48:10 +020097 * Implementations should return this error, if a requested item (like
98 * a key) does not exist. */
99#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100
101/** The requested action cannot be performed in the current state.
102 *
103 * Multipart operations return this error when one of the
104 * functions is called out of sequence. Refer to the function
105 * descriptions for permitted sequencing of functions.
106 *
107 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100108 * that a key either exists or not,
109 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 * as applicable.
111 *
112 * Implementations shall not return this error code to indicate that a
113 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
114 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200115#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
117/** The parameters passed to the function are invalid.
118 *
119 * Implementations may return this error any time a parameter or
120 * combination of parameters are recognized as invalid.
121 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * Implementations shall not return this error code to indicate that a
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * key handle is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
124 * instead.
125 */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** There is not enough runtime memory.
129 *
130 * If the action is carried out across multiple security realms, this
131 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200132#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100133
134/** There is not enough persistent storage.
135 *
136 * Functions that modify the key storage return this error code if
137 * there is insufficient storage space on the host media. In addition,
138 * many functions that do not otherwise access storage may return this
139 * error code if the implementation requires a mandatory log entry for
140 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There was a communication failure inside the implementation.
144 *
145 * This can indicate a communication failure between the application
146 * and an external cryptoprocessor or between the cryptoprocessor and
147 * an external volatile or persistent memory. A communication failure
148 * may be transient or permanent depending on the cause.
149 *
150 * \warning If a function returns this error, it is undetermined
151 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200152 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
154 * if the requested action was completed successfully in an external
155 * cryptoprocessor but there was a breakdown of communication before
156 * the cryptoprocessor could report the status to the application.
157 */
David Saadab4ecc272019-02-14 13:48:10 +0200158#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100159
160/** There was a storage failure that may have led to data loss.
161 *
162 * This error indicates that some persistent storage is corrupted.
163 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200164 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165 * between the cryptoprocessor and its external storage (use
166 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
167 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
168 *
169 * Note that a storage failure does not indicate that any data that was
170 * previously read is invalid. However this previously read data may no
171 * longer be readable from storage.
172 *
173 * When a storage failure occurs, it is no longer possible to ensure
174 * the global integrity of the keystore. Depending on the global
175 * integrity guarantees offered by the implementation, access to other
176 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100177 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100178 *
179 * Implementations should only use this error code to report a
180 * permanent storage corruption. However application writers should
181 * keep in mind that transient errors while reading the storage may be
182 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200183#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100184
185/** A hardware failure was detected.
186 *
187 * A hardware failure may be transient or permanent depending on the
188 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200189#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100190
191/** A tampering attempt was detected.
192 *
193 * If an application receives this error code, there is no guarantee
194 * that previously accessed or computed data was correct and remains
195 * confidential. Applications should not perform any security function
196 * and should enter a safe failure state.
197 *
198 * Implementations may return this error code if they detect an invalid
199 * state that cannot happen during normal operation and that indicates
200 * that the implementation's security guarantees no longer hold. Depending
201 * on the implementation architecture and on its security and safety goals,
202 * the implementation may forcibly terminate the application.
203 *
204 * This error code is intended as a last resort when a security breach
205 * is detected and it is unsure whether the keystore data is still
206 * protected. Implementations shall only return this error code
207 * to report an alarm from a tampering detector, to indicate that
208 * the confidentiality of stored data can no longer be guaranteed,
209 * or to indicate that the integrity of previously returned data is now
210 * considered compromised. Implementations shall not use this error code
211 * to indicate a hardware failure that merely makes it impossible to
212 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
213 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
214 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
215 * instead).
216 *
217 * This error indicates an attack against the application. Implementations
218 * shall not return this error code as a consequence of the behavior of
219 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200220#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100221
222/** There is not enough entropy to generate random data needed
223 * for the requested action.
224 *
225 * This error indicates a failure of a hardware random generator.
226 * Application writers should note that this error can be returned not
227 * only by functions whose purpose is to generate random data, such
228 * as key, IV or nonce generation, but also by functions that execute
229 * an algorithm with a randomized result, as well as functions that
230 * use randomization of intermediate computations as a countermeasure
231 * to certain attacks.
232 *
233 * Implementations should avoid returning this error after psa_crypto_init()
234 * has succeeded. Implementations should generate sufficient
235 * entropy during initialization and subsequently use a cryptographically
236 * secure pseudorandom generator (PRNG). However implementations may return
237 * this error at any time if a policy requires the PRNG to be reseeded
238 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200239#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100240
241/** The signature, MAC or hash is incorrect.
242 *
243 * Verification functions return this error if the verification
244 * calculations completed successfully, and the value to be verified
245 * was determined to be incorrect.
246 *
247 * If the value to verify has an invalid size, implementations may return
248 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The decrypted padding is incorrect.
252 *
253 * \warning In some protocols, when decrypting data, it is essential that
254 * the behavior of the application does not depend on whether the padding
255 * is correct, down to precise timing. Applications should prefer
256 * protocols that use authenticated encryption rather than plain
257 * encryption. If the application must perform a decryption of
258 * unauthenticated data, the application writer should take care not
259 * to reveal whether the padding is invalid.
260 *
261 * Implementations should strive to make valid and invalid padding
262 * as close as possible to indistinguishable to an external observer.
263 * In particular, the timing of a decryption operation should not
264 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200265#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100266
David Saadab4ecc272019-02-14 13:48:10 +0200267/** Return this error when there's insufficient data when attempting
268 * to read from a resource. */
269#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270
Andrew Thoelke3c2b8032019-08-22 12:20:12 +0100271/** The key handle is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272 */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
275/**@}*/
276
277/** \defgroup crypto_types Key and algorithm types
278 * @{
279 */
280
281/** An invalid key type value.
282 *
283 * Zero is not the encoding of any key type.
284 */
285#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
286
287/** Vendor-defined flag
288 *
289 * Key types defined by this standard will never have the
290 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
291 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
292 * respect the bitwise structure used by standard encodings whenever practical.
293 */
294#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
295
296#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000)
297#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000)
298#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000)
299#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000)
300#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000)
301
302#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000)
303
304/** Whether a key type is vendor-defined. */
305#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
306 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
307
308/** Whether a key type is an unstructured array of bytes.
309 *
310 * This encompasses both symmetric keys and non-key data.
311 */
312#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
313 (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \
314 PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
315
316/** Whether a key type is asymmetric: either a key pair or a public key. */
317#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
318 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
319 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
320 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
321/** Whether a key type is the public part of a key pair. */
322#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
323 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
324/** Whether a key type is a key pair containing a private part and a public
325 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200326#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
328/** The key pair type corresponding to a public key type.
329 *
330 * You may also pass a key pair type as \p type, it will be left unchanged.
331 *
332 * \param type A public key type or key pair type.
333 *
334 * \return The corresponding key pair type.
335 * If \p type is not a public key or a key pair,
336 * the return value is undefined.
337 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200338#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
340/** The public key type corresponding to a key pair type.
341 *
342 * You may also pass a key pair type as \p type, it will be left unchanged.
343 *
344 * \param type A public key type or key pair type.
345 *
346 * \return The corresponding public key type.
347 * If \p type is not a public key or a key pair,
348 * the return value is undefined.
349 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200350#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100351 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
352
353/** Raw data.
354 *
355 * A "key" of this type cannot be used for any cryptographic operation.
356 * Applications may use this type to store arbitrary data in the keystore. */
357#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001)
358
359/** HMAC key.
360 *
361 * The key policy determines which underlying hash algorithm the key can be
362 * used for.
363 *
364 * HMAC keys should generally have the same size as the underlying hash.
365 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
366 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
367#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000)
368
369/** A secret for key derivation.
370 *
371 * The key policy determines which key derivation algorithm the key
372 * can be used for.
373 */
374#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000)
375
Gilles Peskine737c6be2019-05-21 16:01:06 +0200376/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100377 *
378 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
379 * 32 bytes (AES-256).
380 */
381#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001)
382
383/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
384 *
385 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
386 * 24 bytes (3-key 3DES).
387 *
388 * Note that single DES and 2-key 3DES are weak and strongly
389 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
390 * is weak and deprecated and should only be used in legacy protocols.
391 */
392#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002)
393
Gilles Peskine737c6be2019-05-21 16:01:06 +0200394/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100395 * Camellia block cipher. */
396#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003)
397
398/** Key for the RC4 stream cipher.
399 *
400 * Note that RC4 is weak and deprecated and should only be used in
401 * legacy protocols. */
402#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004)
403
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200404/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
405 *
406 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
407 *
408 * Implementations must support 12-byte nonces, may support 8-byte nonces,
409 * and should reject other sizes.
410 */
411#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x40000005)
412
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100413/** RSA public key. */
414#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000)
415/** RSA key pair (private and public key). */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200416#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x70010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100417/** Whether a key type is an RSA key (pair or public-only). */
418#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100421#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200422#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x70030000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100424/** Elliptic curve key pair.
425 *
426 * \param curve A value of type ::psa_ecc_curve_t that identifies the
427 * ECC curve to be used.
428 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200429#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
430 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100431/** Elliptic curve public key.
432 *
433 * \param curve A value of type ::psa_ecc_curve_t that identifies the
434 * ECC curve to be used.
435 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100436#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
437 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
438
439/** Whether a key type is an elliptic curve key (pair or public-only). */
440#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200441 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100442 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100443/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200444#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100445 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200446 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100447/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
449 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
450 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
451
452/** Extract the curve from an elliptic curve key type. */
453#define PSA_KEY_TYPE_GET_CURVE(type) \
454 ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
455 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
456 0))
457
458/* The encoding of curve identifiers is currently aligned with the
459 * TLS Supported Groups Registry (formerly known as the
460 * TLS EC Named Curve Registry)
461 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
462 * The values are defined by RFC 8422 and RFC 7027. */
463#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
464#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
465#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
466#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
467#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
468#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
469#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
470#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
471#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
472#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
473#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
474#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
475#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
476#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
477#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
478#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
479#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
480#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
481#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
482#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
483#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
484#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
485#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
486#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
487#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
488#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
489#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
490#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200491/** Curve25519.
492 *
493 * This is the curve defined in Bernstein et al.,
494 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
495 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
496 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100497#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
Gilles Peskinea9b9cf72019-05-21 19:18:33 +0200498/** Curve448
499 *
500 * This is the curve defined in Hamburg,
501 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
502 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
503 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100504#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
505
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100506/** Minimum value for a vendor-defined ECC curve identifier
507 *
508 * The range for vendor-defined curve identifiers is a subset of the IANA
509 * registry private use range, `0xfe00` - `0xfeff`.
510 */
511#define PSA_ECC_CURVE_VENDOR_MIN ((psa_ecc_curve_t) 0xfe00)
512/** Maximum value for a vendor-defined ECC curve identifier
513 *
514 * The range for vendor-defined curve identifiers is a subset of the IANA
515 * registry private use range, `0xfe00` - `0xfeff`.
516 */
517#define PSA_ECC_CURVE_VENDOR_MAX ((psa_ecc_curve_t) 0xfe7f)
518
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200519#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x60040000)
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200520#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x70040000)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200521#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x0000ffff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100522/** Diffie-Hellman key pair.
523 *
524 * \param group A value of type ::psa_dh_group_t that identifies the
525 * Diffie-Hellman group to be used.
526 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200527#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
528 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100529/** Diffie-Hellman public key.
530 *
531 * \param group A value of type ::psa_dh_group_t that identifies the
532 * Diffie-Hellman group to be used.
533 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200534#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
535 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
536
537/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
538#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200539 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200540 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
541/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200542#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200543 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200544 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200545/** Whether a key type is a Diffie-Hellman public key. */
546#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
547 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
548 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
549
550/** Extract the group from a Diffie-Hellman key type. */
551#define PSA_KEY_TYPE_GET_GROUP(type) \
552 ((psa_dh_group_t) (PSA_KEY_TYPE_IS_DH(type) ? \
553 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
554 0))
555
556/* The encoding of group identifiers is currently aligned with the
557 * TLS Supported Groups Registry (formerly known as the
558 * TLS EC Named Curve Registry)
559 * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
560 * The values are defined by RFC 7919. */
561#define PSA_DH_GROUP_FFDHE2048 ((psa_dh_group_t) 0x0100)
562#define PSA_DH_GROUP_FFDHE3072 ((psa_dh_group_t) 0x0101)
563#define PSA_DH_GROUP_FFDHE4096 ((psa_dh_group_t) 0x0102)
564#define PSA_DH_GROUP_FFDHE6144 ((psa_dh_group_t) 0x0103)
565#define PSA_DH_GROUP_FFDHE8192 ((psa_dh_group_t) 0x0104)
Jaeden Amero8851c402019-01-11 14:20:03 +0000566
Andrew Thoelkefd368e52019-09-25 22:14:29 +0100567/** Minimum value for a vendor-defined Diffie Hellman group identifier
568 *
569 * The range for vendor-defined group identifiers is a subset of the IANA
570 * registry private use range, `0x01fc` - `0x01ff`.
571 */
572#define PSA_DH_GROUP_VENDOR_MIN ((psa_dh_group_t) 0x01fc)
573/** Maximum value for a vendor-defined Diffie Hellman group identifier
574 *
575 * The range for vendor-defined group identifiers is a subset of the IANA
576 * registry private use range, `0x01fc` - `0x01ff`.
577 */
578#define PSA_DH_GROUP_VENDOR_MAX ((psa_dh_group_t) 0x01fd)
579
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100580/** The block size of a block cipher.
581 *
582 * \param type A cipher key type (value of type #psa_key_type_t).
583 *
584 * \return The block size for a block cipher, or 1 for a stream cipher.
585 * The return value is undefined if \p type is not a supported
586 * cipher key type.
587 *
588 * \note It is possible to build stream cipher algorithms on top of a block
589 * cipher, for example CTR mode (#PSA_ALG_CTR).
590 * This macro only takes the key type into account, so it cannot be
591 * used to determine the size of the data that #psa_cipher_update()
592 * might buffer for future processing in general.
593 *
594 * \note This macro returns a compile-time constant if its argument is one.
595 *
596 * \warning This macro may evaluate its argument multiple times.
597 */
598#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
599 ( \
600 (type) == PSA_KEY_TYPE_AES ? 16 : \
601 (type) == PSA_KEY_TYPE_DES ? 8 : \
602 (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
603 (type) == PSA_KEY_TYPE_ARC4 ? 1 : \
604 0)
605
606#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
607#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
608#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
609#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
610#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
611#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
612#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
613#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100614#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
615#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100616
617#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
618 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
619
620/** Whether the specified algorithm is a hash algorithm.
621 *
622 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
623 *
624 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
625 * This macro may return either 0 or 1 if \p alg is not a supported
626 * algorithm identifier.
627 */
628#define PSA_ALG_IS_HASH(alg) \
629 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
630
631/** Whether the specified algorithm is a MAC algorithm.
632 *
633 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
634 *
635 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
636 * This macro may return either 0 or 1 if \p alg is not a supported
637 * algorithm identifier.
638 */
639#define PSA_ALG_IS_MAC(alg) \
640 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
641
642/** Whether the specified algorithm is a symmetric cipher algorithm.
643 *
644 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
645 *
646 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
647 * This macro may return either 0 or 1 if \p alg is not a supported
648 * algorithm identifier.
649 */
650#define PSA_ALG_IS_CIPHER(alg) \
651 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
652
653/** Whether the specified algorithm is an authenticated encryption
654 * with associated data (AEAD) algorithm.
655 *
656 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
657 *
658 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
659 * This macro may return either 0 or 1 if \p alg is not a supported
660 * algorithm identifier.
661 */
662#define PSA_ALG_IS_AEAD(alg) \
663 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
664
665/** Whether the specified algorithm is a public-key signature algorithm.
666 *
667 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
668 *
669 * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise.
670 * This macro may return either 0 or 1 if \p alg is not a supported
671 * algorithm identifier.
672 */
673#define PSA_ALG_IS_SIGN(alg) \
674 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
675
676/** Whether the specified algorithm is a public-key encryption algorithm.
677 *
678 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
679 *
680 * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise.
681 * This macro may return either 0 or 1 if \p alg is not a supported
682 * algorithm identifier.
683 */
684#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
685 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
686
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100687/** Whether the specified algorithm is a key agreement algorithm.
688 *
689 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
690 *
691 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
692 * This macro may return either 0 or 1 if \p alg is not a supported
693 * algorithm identifier.
694 */
695#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100696 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100697
698/** Whether the specified algorithm is a key derivation algorithm.
699 *
700 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
701 *
702 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
703 * This macro may return either 0 or 1 if \p alg is not a supported
704 * algorithm identifier.
705 */
706#define PSA_ALG_IS_KEY_DERIVATION(alg) \
707 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
708
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100709#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100710
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100711#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
712#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
713#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
714#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
715#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
716/** SHA2-224 */
717#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
718/** SHA2-256 */
719#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
720/** SHA2-384 */
721#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
722/** SHA2-512 */
723#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
724/** SHA2-512/224 */
725#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
726/** SHA2-512/256 */
727#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
728/** SHA3-224 */
729#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
730/** SHA3-256 */
731#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
732/** SHA3-384 */
733#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
734/** SHA3-512 */
735#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
736
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100737/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100738 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100739 * This value may be used to form the algorithm usage field of a policy
740 * for a signature algorithm that is parametrized by a hash. The key
741 * may then be used to perform operations using the same signature
742 * algorithm parametrized with any supported hash.
743 *
744 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100745 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100746 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100747 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100748 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
749 * ```
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200750 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN); // or VERIFY
751 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100752 * ```
753 * - Import or generate key material.
754 * - Call psa_asymmetric_sign() or psa_asymmetric_verify(), passing
755 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
756 * call to sign or verify a message may use a different hash.
757 * ```
758 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
759 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
760 * psa_asymmetric_sign(handle, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
761 * ```
762 *
763 * This value may not be used to build other algorithms that are
764 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100765 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100766 *
767 * This value may not be used to build an algorithm specification to
768 * perform an operation. It is only valid to build policies.
769 */
770#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
771
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100772#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
773#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
774/** Macro to build an HMAC algorithm.
775 *
776 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
777 *
778 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
779 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
780 *
781 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100782 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100783 * hash algorithm.
784 */
785#define PSA_ALG_HMAC(hash_alg) \
786 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
787
788#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
789 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
790
791/** Whether the specified algorithm is an HMAC algorithm.
792 *
793 * HMAC is a family of MAC algorithms that are based on a hash function.
794 *
795 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
796 *
797 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
798 * This macro may return either 0 or 1 if \p alg is not a supported
799 * algorithm identifier.
800 */
801#define PSA_ALG_IS_HMAC(alg) \
802 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
803 PSA_ALG_HMAC_BASE)
804
805/* In the encoding of a MAC algorithm, the bits corresponding to
806 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
807 * truncated. As an exception, the value 0 means the untruncated algorithm,
808 * whatever its length is. The length is encoded in 6 bits, so it can
809 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
810 * to full length is correctly encoded as 0 and any non-trivial truncation
811 * is correctly encoded as a value between 1 and 63. */
812#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
813#define PSA_MAC_TRUNCATION_OFFSET 8
814
815/** Macro to build a truncated MAC algorithm.
816 *
817 * A truncated MAC algorithm is identical to the corresponding MAC
818 * algorithm except that the MAC value for the truncated algorithm
819 * consists of only the first \p mac_length bytes of the MAC value
820 * for the untruncated algorithm.
821 *
822 * \note This macro may allow constructing algorithm identifiers that
823 * are not valid, either because the specified length is larger
824 * than the untruncated MAC or because the specified length is
825 * smaller than permitted by the implementation.
826 *
827 * \note It is implementation-defined whether a truncated MAC that
828 * is truncated to the same length as the MAC of the untruncated
829 * algorithm is considered identical to the untruncated algorithm
830 * for policy comparison purposes.
831 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200832 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100833 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
834 * is true). This may be a truncated or untruncated
835 * MAC algorithm.
836 * \param mac_length Desired length of the truncated MAC in bytes.
837 * This must be at most the full length of the MAC
838 * and must be at least an implementation-specified
839 * minimum. The implementation-specified minimum
840 * shall not be zero.
841 *
842 * \return The corresponding MAC algorithm with the specified
843 * length.
844 * \return Unspecified if \p alg is not a supported
845 * MAC algorithm or if \p mac_length is too small or
846 * too large for the specified MAC algorithm.
847 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200848#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
849 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100850 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
851
852/** Macro to build the base MAC algorithm corresponding to a truncated
853 * MAC algorithm.
854 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200855 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100856 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
857 * is true). This may be a truncated or untruncated
858 * MAC algorithm.
859 *
860 * \return The corresponding base MAC algorithm.
861 * \return Unspecified if \p alg is not a supported
862 * MAC algorithm.
863 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200864#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
865 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100866
867/** Length to which a MAC algorithm is truncated.
868 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200869 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100870 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
871 * is true).
872 *
873 * \return Length of the truncated MAC in bytes.
874 * \return 0 if \p alg is a non-truncated MAC algorithm.
875 * \return Unspecified if \p alg is not a supported
876 * MAC algorithm.
877 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200878#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
879 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100880
881#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100882/** The CBC-MAC construction over a block cipher
883 *
884 * \warning CBC-MAC is insecure in many cases.
885 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
886 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100887#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100888/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100889#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100890
891/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
892 *
893 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
894 *
895 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
896 * This macro may return either 0 or 1 if \p alg is not a supported
897 * algorithm identifier.
898 */
899#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
900 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
901 PSA_ALG_CIPHER_MAC_BASE)
902
903#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
904#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
905
906/** Whether the specified algorithm is a stream cipher.
907 *
908 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
909 * by applying a bitwise-xor with a stream of bytes that is generated
910 * from a key.
911 *
912 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
913 *
914 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
915 * This macro may return either 0 or 1 if \p alg is not a supported
916 * algorithm identifier or if it is not a symmetric cipher algorithm.
917 */
918#define PSA_ALG_IS_STREAM_CIPHER(alg) \
919 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
920 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
921
922/** The ARC4 stream cipher algorithm.
923 */
924#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
925
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200926/** The ChaCha20 stream cipher.
927 *
928 * ChaCha20 is defined in RFC 7539.
929 *
930 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
931 * must be 12.
932 *
933 * The initial block counter is always 0.
934 *
935 */
936#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
937
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100938/** The CTR stream cipher mode.
939 *
940 * CTR is a stream cipher which is built from a block cipher.
941 * The underlying block cipher is determined by the key type.
942 * For example, to use AES-128-CTR, use this algorithm with
943 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
944 */
945#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
946
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100947/** The CFB stream cipher mode.
948 *
949 * The underlying block cipher is determined by the key type.
950 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100951#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
952
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100953/** The OFB stream cipher mode.
954 *
955 * The underlying block cipher is determined by the key type.
956 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100957#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
958
959/** The XTS cipher mode.
960 *
961 * XTS is a cipher mode which is built from a block cipher. It requires at
962 * least one full block of input, but beyond this minimum the input
963 * does not need to be a whole number of blocks.
964 */
965#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
966
967/** The CBC block cipher chaining mode, with no padding.
968 *
969 * The underlying block cipher is determined by the key type.
970 *
971 * This symmetric cipher mode can only be used with messages whose lengths
972 * are whole number of blocks for the chosen block cipher.
973 */
974#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
975
976/** The CBC block cipher chaining mode with PKCS#7 padding.
977 *
978 * The underlying block cipher is determined by the key type.
979 *
980 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
981 */
982#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
983
Gilles Peskine679693e2019-05-06 15:10:16 +0200984#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
985
986/** Whether the specified algorithm is an AEAD mode on a block cipher.
987 *
988 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
989 *
990 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
991 * a block cipher, 0 otherwise.
992 * This macro may return either 0 or 1 if \p alg is not a supported
993 * algorithm identifier.
994 */
995#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
996 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
997 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
998
Gilles Peskine9153ec02019-02-15 13:02:02 +0100999/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001000 *
1001 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001002 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001003#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001004
1005/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001006 *
1007 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001008 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001009#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
1010
1011/** The Chacha20-Poly1305 AEAD algorithm.
1012 *
1013 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001014 *
1015 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1016 * and should reject other sizes.
1017 *
1018 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001019 */
1020#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001021
1022/* In the encoding of a AEAD algorithm, the bits corresponding to
1023 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1024 * The constants for default lengths follow this encoding.
1025 */
1026#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
1027#define PSA_AEAD_TAG_LENGTH_OFFSET 8
1028
1029/** Macro to build a shortened AEAD algorithm.
1030 *
1031 * A shortened AEAD algorithm is similar to the corresponding AEAD
1032 * algorithm, but has an authentication tag that consists of fewer bytes.
1033 * Depending on the algorithm, the tag length may affect the calculation
1034 * of the ciphertext.
1035 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001036 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001037 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1038 * is true).
1039 * \param tag_length Desired length of the authentication tag in bytes.
1040 *
1041 * \return The corresponding AEAD algorithm with the specified
1042 * length.
1043 * \return Unspecified if \p alg is not a supported
1044 * AEAD algorithm or if \p tag_length is not valid
1045 * for the specified AEAD algorithm.
1046 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001047#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1048 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001049 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1050 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1051
1052/** Calculate the corresponding AEAD algorithm with the default tag length.
1053 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001054 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1055 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001056 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001057 * \return The corresponding AEAD algorithm with the default
1058 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001059 */
Unknowne2e19952019-08-21 03:33:04 -04001060#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1061 ( \
1062 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1063 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1064 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001065 0)
Unknowne2e19952019-08-21 03:33:04 -04001066#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1067 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1068 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001069 ref :
1070
1071#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1072/** RSA PKCS#1 v1.5 signature with hashing.
1073 *
1074 * This is the signature scheme defined by RFC 8017
1075 * (PKCS#1: RSA Cryptography Specifications) under the name
1076 * RSASSA-PKCS1-v1_5.
1077 *
1078 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1079 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001080 * This includes #PSA_ALG_ANY_HASH
1081 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001082 *
1083 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001084 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001085 * hash algorithm.
1086 */
1087#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1088 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1089/** Raw PKCS#1 v1.5 signature.
1090 *
1091 * The input to this algorithm is the DigestInfo structure used by
1092 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1093 * steps 3&ndash;6.
1094 */
1095#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1096#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1097 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1098
1099#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1100/** RSA PSS signature with hashing.
1101 *
1102 * This is the signature scheme defined by RFC 8017
1103 * (PKCS#1: RSA Cryptography Specifications) under the name
1104 * RSASSA-PSS, with the message generation function MGF1, and with
1105 * a salt length equal to the length of the hash. The specified
1106 * hash algorithm is used to hash the input message, to create the
1107 * salted hash, and for the mask generation.
1108 *
1109 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1110 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001111 * This includes #PSA_ALG_ANY_HASH
1112 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001113 *
1114 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001115 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001116 * hash algorithm.
1117 */
1118#define PSA_ALG_RSA_PSS(hash_alg) \
1119 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1120#define PSA_ALG_IS_RSA_PSS(alg) \
1121 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1122
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001123#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1124/** ECDSA signature with hashing.
1125 *
1126 * This is the ECDSA signature scheme defined by ANSI X9.62,
1127 * with a random per-message secret number (*k*).
1128 *
1129 * The representation of the signature as a byte string consists of
1130 * the concatentation of the signature values *r* and *s*. Each of
1131 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1132 * of the base point of the curve in octets. Each value is represented
1133 * in big-endian order (most significant octet first).
1134 *
1135 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1136 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001137 * This includes #PSA_ALG_ANY_HASH
1138 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001139 *
1140 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001141 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001142 * hash algorithm.
1143 */
1144#define PSA_ALG_ECDSA(hash_alg) \
1145 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1146/** ECDSA signature without hashing.
1147 *
1148 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1149 * without specifying a hash algorithm. This algorithm may only be
1150 * used to sign or verify a sequence of bytes that should be an
1151 * already-calculated hash. Note that the input is padded with
1152 * zeros on the left or truncated on the left as required to fit
1153 * the curve size.
1154 */
1155#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1156#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1157/** Deterministic ECDSA signature with hashing.
1158 *
1159 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1160 *
1161 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1162 *
1163 * Note that when this algorithm is used for verification, signatures
1164 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1165 * same private key are accepted. In other words,
1166 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1167 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1168 *
1169 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1170 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001171 * This includes #PSA_ALG_ANY_HASH
1172 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001173 *
1174 * \return The corresponding deterministic ECDSA signature
1175 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001176 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001177 * hash algorithm.
1178 */
1179#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1180 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1181#define PSA_ALG_IS_ECDSA(alg) \
1182 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \
1183 PSA_ALG_ECDSA_BASE)
1184#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1185 (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0)
1186#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1187 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1188#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1189 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1190
Gilles Peskined35b4892019-01-14 16:02:15 +01001191/** Whether the specified algorithm is a hash-and-sign algorithm.
1192 *
1193 * Hash-and-sign algorithms are public-key signature algorithms structured
1194 * in two parts: first the calculation of a hash in a way that does not
1195 * depend on the key, then the calculation of a signature from the
1196 * hash value and the key.
1197 *
1198 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1199 *
1200 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1201 * This macro may return either 0 or 1 if \p alg is not a supported
1202 * algorithm identifier.
1203 */
1204#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1205 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001206 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001207
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001208/** Get the hash used by a hash-and-sign signature algorithm.
1209 *
1210 * A hash-and-sign algorithm is a signature algorithm which is
1211 * composed of two phases: first a hashing phase which does not use
1212 * the key and produces a hash of the input message, then a signing
1213 * phase which only uses the hash and the key and not the message
1214 * itself.
1215 *
1216 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1217 * #PSA_ALG_IS_SIGN(\p alg) is true).
1218 *
1219 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1220 * algorithm.
1221 * \return 0 if \p alg is a signature algorithm that does not
1222 * follow the hash-and-sign structure.
1223 * \return Unspecified if \p alg is not a signature algorithm or
1224 * if it is not supported by the implementation.
1225 */
1226#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001227 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001228 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1229 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1230 0)
1231
1232/** RSA PKCS#1 v1.5 encryption.
1233 */
1234#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1235
1236#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1237/** RSA OAEP encryption.
1238 *
1239 * This is the encryption scheme defined by RFC 8017
1240 * (PKCS#1: RSA Cryptography Specifications) under the name
1241 * RSAES-OAEP, with the message generation function MGF1.
1242 *
1243 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1244 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1245 * for MGF1.
1246 *
1247 * \return The corresponding RSA OAEP signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001248 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001249 * hash algorithm.
1250 */
1251#define PSA_ALG_RSA_OAEP(hash_alg) \
1252 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1253#define PSA_ALG_IS_RSA_OAEP(alg) \
1254 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1255#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1256 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1257 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1258 0)
1259
Gilles Peskine6843c292019-01-18 16:44:49 +01001260#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001261/** Macro to build an HKDF algorithm.
1262 *
1263 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1264 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001265 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001266 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001267 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001268 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1269 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1270 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1271 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001272 * starting to generate output.
1273 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001274 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1275 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1276 *
1277 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001278 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001279 * hash algorithm.
1280 */
1281#define PSA_ALG_HKDF(hash_alg) \
1282 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1283/** Whether the specified algorithm is an HKDF algorithm.
1284 *
1285 * HKDF is a family of key derivation algorithms that are based on a hash
1286 * function and the HMAC construction.
1287 *
1288 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1289 *
1290 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1291 * This macro may return either 0 or 1 if \c alg is not a supported
1292 * key derivation algorithm identifier.
1293 */
1294#define PSA_ALG_IS_HKDF(alg) \
1295 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1296#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1297 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1298
Gilles Peskine6843c292019-01-18 16:44:49 +01001299#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001300/** Macro to build a TLS-1.2 PRF algorithm.
1301 *
1302 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1303 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1304 * used with either SHA-256 or SHA-384.
1305 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001306 * This key derivation algorithm uses the following inputs, which must be
1307 * passed in the order given here:
1308 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001309 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1310 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001311 *
1312 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001313 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001314 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001315 *
1316 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1317 * TLS 1.2 PRF using HMAC-SHA-256.
1318 *
1319 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1320 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1321 *
1322 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001323 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001324 * hash algorithm.
1325 */
1326#define PSA_ALG_TLS12_PRF(hash_alg) \
1327 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1328
1329/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1330 *
1331 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1332 *
1333 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1334 * This macro may return either 0 or 1 if \c alg is not a supported
1335 * key derivation algorithm identifier.
1336 */
1337#define PSA_ALG_IS_TLS12_PRF(alg) \
1338 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1339#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1340 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1341
Gilles Peskine6843c292019-01-18 16:44:49 +01001342#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001343/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1344 *
1345 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1346 * from the PreSharedKey (PSK) through the application of padding
1347 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1348 * The latter is based on HMAC and can be used with either SHA-256
1349 * or SHA-384.
1350 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001351 * This key derivation algorithm uses the following inputs, which must be
1352 * passed in the order given here:
1353 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001354 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1355 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001356 *
1357 * For the application to TLS-1.2, the seed (which is
1358 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1359 * ClientHello.Random + ServerHello.Random,
1360 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001361 *
1362 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1363 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1364 *
1365 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1366 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1367 *
1368 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001369 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001370 * hash algorithm.
1371 */
1372#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1373 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1374
1375/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1376 *
1377 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1378 *
1379 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1380 * This macro may return either 0 or 1 if \c alg is not a supported
1381 * key derivation algorithm identifier.
1382 */
1383#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1384 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1385#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1386 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1387
Gilles Peskinea52460c2019-04-12 00:11:21 +02001388#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1389#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001390
Gilles Peskine6843c292019-01-18 16:44:49 +01001391/** Macro to build a combined algorithm that chains a key agreement with
1392 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001393 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001394 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1395 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1396 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1397 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001398 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001399 * \return The corresponding key agreement and derivation
1400 * algorithm.
1401 * \return Unspecified if \p ka_alg is not a supported
1402 * key agreement algorithm or \p kdf_alg is not a
1403 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001404 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001405#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1406 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001407
1408#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1409 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1410
Gilles Peskine6843c292019-01-18 16:44:49 +01001411#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1412 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001413
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001414/** Whether the specified algorithm is a raw key agreement algorithm.
1415 *
1416 * A raw key agreement algorithm is one that does not specify
1417 * a key derivation function.
1418 * Usually, raw key agreement algorithms are constructed directly with
1419 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
1420 * constructed with PSA_ALG_KEY_AGREEMENT().
1421 *
1422 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1423 *
1424 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1425 * This macro may return either 0 or 1 if \p alg is not a supported
1426 * algorithm identifier.
1427 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001428#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001429 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1430 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001431
1432#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1433 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1434
1435/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001436 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001437 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001438 * `g^{ab}` in big-endian format.
1439 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1440 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001441 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001442#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1443
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001444/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1445 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001446 * This includes the raw finite field Diffie-Hellman algorithm as well as
1447 * finite-field Diffie-Hellman followed by any supporter key derivation
1448 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001449 *
1450 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1451 *
1452 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1453 * This macro may return either 0 or 1 if \c alg is not a supported
1454 * key agreement algorithm identifier.
1455 */
1456#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001457 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001458
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001459/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1460 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001461 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001462 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1463 * `m` is the bit size associated with the curve, i.e. the bit size of the
1464 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1465 * the byte containing the most significant bit of the shared secret
1466 * is padded with zero bits. The byte order is either little-endian
1467 * or big-endian depending on the curve type.
1468 *
1469 * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`),
1470 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1471 * in little-endian byte order.
1472 * The bit size is 448 for Curve448 and 255 for Curve25519.
1473 * - For Weierstrass curves over prime fields (curve types
1474 * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`),
1475 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1476 * in big-endian byte order.
1477 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1478 * - For Weierstrass curves over binary fields (curve types
1479 * `PSA_ECC_CURVE_SECTXXX`),
1480 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1481 * in big-endian byte order.
1482 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001483 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001484#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1485
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001486/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1487 * algorithm.
1488 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001489 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1490 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1491 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001492 *
1493 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1494 *
1495 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1496 * 0 otherwise.
1497 * This macro may return either 0 or 1 if \c alg is not a supported
1498 * key agreement algorithm identifier.
1499 */
1500#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001501 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001502
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001503/** Whether the specified algorithm encoding is a wildcard.
1504 *
1505 * Wildcard values may only be used to set the usage algorithm field in
1506 * a policy, not to perform an operation.
1507 *
1508 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1509 *
1510 * \return 1 if \c alg is a wildcard algorithm encoding.
1511 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1512 * an operation).
1513 * \return This macro may return either 0 or 1 if \c alg is not a supported
1514 * algorithm identifier.
1515 */
1516#define PSA_ALG_IS_WILDCARD(alg) \
1517 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1518 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1519 (alg) == PSA_ALG_ANY_HASH)
1520
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001521/**@}*/
1522
1523/** \defgroup key_lifetimes Key lifetimes
1524 * @{
1525 */
1526
1527/** A volatile key only exists as long as the handle to it is not closed.
1528 * The key material is guaranteed to be erased on a power reset.
1529 */
1530#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1531
1532/** The default storage area for persistent keys.
1533 *
1534 * A persistent key remains in storage until it is explicitly destroyed or
1535 * until the corresponding storage area is wiped. This specification does
1536 * not define any mechanism to wipe a storage area, but implementations may
1537 * provide their own mechanism (for example to perform a factory reset,
1538 * to prepare for device refurbishment, or to uninstall an application).
1539 *
1540 * This lifetime value is the default storage area for the calling
1541 * application. Implementations may offer other storage areas designated
1542 * by other lifetime values as implementation-specific extensions.
1543 */
1544#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1545
Gilles Peskine4a231b82019-05-06 18:56:14 +02001546/** The minimum value for a key identifier chosen by the application.
1547 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001548#define PSA_KEY_ID_USER_MIN ((psa_app_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001549/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001550 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001551#define PSA_KEY_ID_USER_MAX ((psa_app_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001552/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001553 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001554#define PSA_KEY_ID_VENDOR_MIN ((psa_app_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001555/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001556 */
Jaeden Amero6fa62a52019-08-20 17:43:48 +01001557#define PSA_KEY_ID_VENDOR_MAX ((psa_app_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001558
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001559/**@}*/
1560
1561/** \defgroup policy Key policies
1562 * @{
1563 */
1564
1565/** Whether the key may be exported.
1566 *
1567 * A public key or the public part of a key pair may always be exported
1568 * regardless of the value of this permission flag.
1569 *
1570 * If a key does not have export permission, implementations shall not
1571 * allow the key to be exported in plain form from the cryptoprocessor,
1572 * whether through psa_export_key() or through a proprietary interface.
1573 * The key may however be exportable in a wrapped form, i.e. in a form
1574 * where it is encrypted by another key.
1575 */
1576#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1577
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001578/** Whether the key may be copied.
1579 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001580 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001581 * with the same policy or a more restrictive policy.
1582 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001583 * For lifetimes for which the key is located in a secure element which
1584 * enforce the non-exportability of keys, copying a key outside the secure
1585 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1586 * Copying the key inside the secure element is permitted with just
1587 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1588 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001589 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1590 * is sufficient to permit the copy.
1591 */
1592#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1593
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001594/** Whether the key may be used to encrypt a message.
1595 *
1596 * This flag allows the key to be used for a symmetric encryption operation,
1597 * for an AEAD encryption-and-authentication operation,
1598 * or for an asymmetric encryption operation,
1599 * if otherwise permitted by the key's type and policy.
1600 *
1601 * For a key pair, this concerns the public key.
1602 */
1603#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1604
1605/** Whether the key may be used to decrypt a message.
1606 *
1607 * This flag allows the key to be used for a symmetric decryption operation,
1608 * for an AEAD decryption-and-verification operation,
1609 * or for an asymmetric decryption operation,
1610 * if otherwise permitted by the key's type and policy.
1611 *
1612 * For a key pair, this concerns the private key.
1613 */
1614#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1615
1616/** Whether the key may be used to sign a message.
1617 *
1618 * This flag allows the key to be used for a MAC calculation operation
1619 * or for an asymmetric signature operation,
1620 * if otherwise permitted by the key's type and policy.
1621 *
1622 * For a key pair, this concerns the private key.
1623 */
1624#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
1625
1626/** Whether the key may be used to verify a message signature.
1627 *
1628 * This flag allows the key to be used for a MAC verification operation
1629 * or for an asymmetric signature verification operation,
1630 * if otherwise permitted by by the key's type and policy.
1631 *
1632 * For a key pair, this concerns the public key.
1633 */
1634#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
1635
1636/** Whether the key may be used to derive other keys.
1637 */
1638#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1639
1640/**@}*/
1641
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001642/** \defgroup derivation Key derivation
1643 * @{
1644 */
1645
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001646/** A secret input for key derivation.
1647 *
1648 * This must be a key of type #PSA_KEY_TYPE_DERIVE.
1649 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001650#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001651
1652/** A label for key derivation.
1653 *
1654 * This must be a direct input.
1655 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001656#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001657
1658/** A salt for key derivation.
1659 *
1660 * This must be a direct input.
1661 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001662#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001663
1664/** An information string for key derivation.
1665 *
1666 * This must be a direct input.
1667 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001668#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001669
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001670/** A seed for key derivation.
1671 *
1672 * This must be a direct input.
1673 */
1674#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1675
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001676/**@}*/
1677
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001678#endif /* PSA_CRYPTO_VALUES_H */