blob: cf7a0e1268dc191f093dbffe38cbba734635733b [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100297/**@}*/
298
299/** \defgroup crypto_types Key and algorithm types
300 * @{
301 */
302
303/** An invalid key type value.
304 *
305 * Zero is not the encoding of any key type.
306 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100307#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100308
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100309/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100310 *
311 * Key types defined by this standard will never have the
312 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
313 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
314 * respect the bitwise structure used by standard encodings whenever practical.
315 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100316#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100317
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100318#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100319#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
320#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
321#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100322#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100323
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100324#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100325
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100326/** Whether a key type is vendor-defined.
327 *
328 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
329 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100330#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
331 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
332
333/** Whether a key type is an unstructured array of bytes.
334 *
335 * This encompasses both symmetric keys and non-key data.
336 */
337#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100338 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
339 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
341/** Whether a key type is asymmetric: either a key pair or a public key. */
342#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
343 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
344 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
345 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
346/** Whether a key type is the public part of a key pair. */
347#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
348 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
349/** Whether a key type is a key pair containing a private part and a public
350 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200351#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100352 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
353/** The key pair type corresponding to a public key type.
354 *
355 * You may also pass a key pair type as \p type, it will be left unchanged.
356 *
357 * \param type A public key type or key pair type.
358 *
359 * \return The corresponding key pair type.
360 * If \p type is not a public key or a key pair,
361 * the return value is undefined.
362 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200363#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100364 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
365/** The public key type corresponding to a key pair type.
366 *
367 * You may also pass a key pair type as \p type, it will be left unchanged.
368 *
369 * \param type A public key type or key pair type.
370 *
371 * \return The corresponding public key type.
372 * If \p type is not a public key or a key pair,
373 * the return value is undefined.
374 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200375#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100376 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
377
378/** Raw data.
379 *
380 * A "key" of this type cannot be used for any cryptographic operation.
381 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100382#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100383
384/** HMAC key.
385 *
386 * The key policy determines which underlying hash algorithm the key can be
387 * used for.
388 *
389 * HMAC keys should generally have the same size as the underlying hash.
390 * This size can be calculated with #PSA_HASH_SIZE(\c alg) where
391 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100392#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100393
394/** A secret for key derivation.
395 *
396 * The key policy determines which key derivation algorithm the key
397 * can be used for.
398 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100399#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
Gilles Peskine737c6be2019-05-21 16:01:06 +0200401/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100402 *
403 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
404 * 32 bytes (AES-256).
405 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100406#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407
408/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
409 *
410 * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
411 * 24 bytes (3-key 3DES).
412 *
413 * Note that single DES and 2-key 3DES are weak and strongly
414 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
415 * is weak and deprecated and should only be used in legacy protocols.
416 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100417#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418
Gilles Peskine737c6be2019-05-21 16:01:06 +0200419/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100421#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100422
423/** Key for the RC4 stream cipher.
424 *
425 * Note that RC4 is weak and deprecated and should only be used in
426 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100427#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100428
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200429/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
430 *
431 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
432 *
433 * Implementations must support 12-byte nonces, may support 8-byte nonces,
434 * and should reject other sizes.
435 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100436#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200437
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438/** RSA public key. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100439#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440/** RSA key pair (private and public key). */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100441#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100442/** Whether a key type is an RSA key (pair or public-only). */
443#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200444 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100445
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100446#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100447#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
448#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100449/** Elliptic curve key pair.
450 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100451 * \param curve A value of type ::psa_ecc_family_t that
452 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100453 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200454#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
455 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100456/** Elliptic curve public key.
457 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100458 * \param curve A value of type ::psa_ecc_family_t that
459 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100460 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100461#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
462 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
463
464/** Whether a key type is an elliptic curve key (pair or public-only). */
465#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200466 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100467 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100468/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200469#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100470 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200471 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100472/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100473#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
474 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
475 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
476
477/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100478#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
479 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100480 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
481 0))
482
Gilles Peskine228abc52019-12-03 17:24:19 +0100483/** SEC Koblitz curves over prime fields.
484 *
485 * This family comprises the following curves:
486 * secp192k1, secp224k1, secp256k1.
487 * They are defined in _Standards for Efficient Cryptography_,
488 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
489 * https://www.secg.org/sec2-v2.pdf
490 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100491#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100492
493/** SEC random curves over prime fields.
494 *
495 * This family comprises the following curves:
496 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
497 * They are defined in _Standards for Efficient Cryptography_,
498 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
499 * https://www.secg.org/sec2-v2.pdf
500 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100501#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100502/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100503#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100504
505/** SEC Koblitz curves over binary fields.
506 *
507 * This family comprises the following curves:
508 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
509 * They are defined in _Standards for Efficient Cryptography_,
510 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
511 * https://www.secg.org/sec2-v2.pdf
512 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100513#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100514
515/** SEC random curves over binary fields.
516 *
517 * This family comprises the following curves:
518 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
519 * They are defined in _Standards for Efficient Cryptography_,
520 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
521 * https://www.secg.org/sec2-v2.pdf
522 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100523#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100524
525/** SEC additional random curves over binary fields.
526 *
527 * This family comprises the following curve:
528 * sect163r2.
529 * It is defined in _Standards for Efficient Cryptography_,
530 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
531 * https://www.secg.org/sec2-v2.pdf
532 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100533#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100534
535/** Brainpool P random curves.
536 *
537 * This family comprises the following curves:
538 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
539 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
540 * It is defined in RFC 5639.
541 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100542#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100543
544/** Curve25519 and Curve448.
545 *
546 * This family comprises the following Montgomery curves:
547 * - 255-bit: Bernstein et al.,
548 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
549 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
550 * - 448-bit: Hamburg,
551 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
552 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
553 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100554#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100555
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100556#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100557#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
558#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100559/** Diffie-Hellman key pair.
560 *
Paul Elliott75e27032020-06-03 15:17:39 +0100561 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100562 * Diffie-Hellman group to be used.
563 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200564#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
565 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100566/** Diffie-Hellman public key.
567 *
Paul Elliott75e27032020-06-03 15:17:39 +0100568 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100569 * Diffie-Hellman group to be used.
570 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200571#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
572 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
573
574/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
575#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200576 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200577 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
578/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200579#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200580 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200581 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200582/** Whether a key type is a Diffie-Hellman public key. */
583#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
584 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
585 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
586
587/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100588#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
589 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200590 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
591 0))
592
Gilles Peskine228abc52019-12-03 17:24:19 +0100593/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
594 *
595 * This family includes groups with the following key sizes (in bits):
596 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
597 * all of these sizes or only a subset.
598 */
Paul Elliott75e27032020-06-03 15:17:39 +0100599#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100600
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100601#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100602 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100603/** The block size of a block cipher.
604 *
605 * \param type A cipher key type (value of type #psa_key_type_t).
606 *
607 * \return The block size for a block cipher, or 1 for a stream cipher.
608 * The return value is undefined if \p type is not a supported
609 * cipher key type.
610 *
611 * \note It is possible to build stream cipher algorithms on top of a block
612 * cipher, for example CTR mode (#PSA_ALG_CTR).
613 * This macro only takes the key type into account, so it cannot be
614 * used to determine the size of the data that #psa_cipher_update()
615 * might buffer for future processing in general.
616 *
617 * \note This macro returns a compile-time constant if its argument is one.
618 *
619 * \warning This macro may evaluate its argument multiple times.
620 */
621#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100622 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
623 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
624 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100625
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100626/** Vendor-defined algorithm flag.
627 *
628 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
629 * bit set. Vendors who define additional algorithms must use an encoding with
630 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
631 * used by standard encodings whenever practical.
632 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100633#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100634
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100635#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
636#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
637#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
638#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
639#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
640#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
641#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
Gilles Peskine6843c292019-01-18 16:44:49 +0100642#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x20000000)
643#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x30000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100644
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100645/** Whether an algorithm is vendor-defined.
646 *
647 * See also #PSA_ALG_VENDOR_FLAG.
648 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100649#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
650 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
651
652/** Whether the specified algorithm is a hash algorithm.
653 *
654 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
655 *
656 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
657 * This macro may return either 0 or 1 if \p alg is not a supported
658 * algorithm identifier.
659 */
660#define PSA_ALG_IS_HASH(alg) \
661 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
662
663/** Whether the specified algorithm is a MAC algorithm.
664 *
665 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
666 *
667 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
668 * This macro may return either 0 or 1 if \p alg is not a supported
669 * algorithm identifier.
670 */
671#define PSA_ALG_IS_MAC(alg) \
672 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
673
674/** Whether the specified algorithm is a symmetric cipher algorithm.
675 *
676 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
677 *
678 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
679 * This macro may return either 0 or 1 if \p alg is not a supported
680 * algorithm identifier.
681 */
682#define PSA_ALG_IS_CIPHER(alg) \
683 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
684
685/** Whether the specified algorithm is an authenticated encryption
686 * with associated data (AEAD) algorithm.
687 *
688 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
689 *
690 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
691 * This macro may return either 0 or 1 if \p alg is not a supported
692 * algorithm identifier.
693 */
694#define PSA_ALG_IS_AEAD(alg) \
695 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
696
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200697/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200698 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100699 *
700 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
701 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200702 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100703 * This macro may return either 0 or 1 if \p alg is not a supported
704 * algorithm identifier.
705 */
706#define PSA_ALG_IS_SIGN(alg) \
707 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
708
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200709/** Whether the specified algorithm is an asymmetric encryption algorithm,
710 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100711 *
712 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
713 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200714 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100715 * This macro may return either 0 or 1 if \p alg is not a supported
716 * algorithm identifier.
717 */
718#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
719 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
720
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100721/** Whether the specified algorithm is a key agreement algorithm.
722 *
723 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
724 *
725 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
726 * This macro may return either 0 or 1 if \p alg is not a supported
727 * algorithm identifier.
728 */
729#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100730 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731
732/** Whether the specified algorithm is a key derivation algorithm.
733 *
734 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
735 *
736 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
737 * This macro may return either 0 or 1 if \p alg is not a supported
738 * algorithm identifier.
739 */
740#define PSA_ALG_IS_KEY_DERIVATION(alg) \
741 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
742
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100743#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100744/** MD2 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100745#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100746/** MD4 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100747#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100748/** MD5 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100749#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100750/** PSA_ALG_RIPEMD160 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100751#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100752/** SHA1 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100753#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
754/** SHA2-224 */
755#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
756/** SHA2-256 */
757#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
758/** SHA2-384 */
759#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
760/** SHA2-512 */
761#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
762/** SHA2-512/224 */
763#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
764/** SHA2-512/256 */
765#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
766/** SHA3-224 */
767#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
768/** SHA3-256 */
769#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
770/** SHA3-384 */
771#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
772/** SHA3-512 */
773#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
774
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100775/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100776 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100777 * This value may be used to form the algorithm usage field of a policy
778 * for a signature algorithm that is parametrized by a hash. The key
779 * may then be used to perform operations using the same signature
780 * algorithm parametrized with any supported hash.
781 *
782 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100783 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100784 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100785 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100786 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
787 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100788 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200789 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100790 * ```
791 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100792 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100793 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
794 * call to sign or verify a message may use a different hash.
795 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200796 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
797 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
798 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100799 * ```
800 *
801 * This value may not be used to build other algorithms that are
802 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100803 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100804 *
805 * This value may not be used to build an algorithm specification to
806 * perform an operation. It is only valid to build policies.
807 */
808#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x010000ff)
809
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100810#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
811#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
812/** Macro to build an HMAC algorithm.
813 *
814 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
815 *
816 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
817 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
818 *
819 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100820 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100821 * hash algorithm.
822 */
823#define PSA_ALG_HMAC(hash_alg) \
824 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
825
826#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
827 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
828
829/** Whether the specified algorithm is an HMAC algorithm.
830 *
831 * HMAC is a family of MAC algorithms that are based on a hash function.
832 *
833 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
834 *
835 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
836 * This macro may return either 0 or 1 if \p alg is not a supported
837 * algorithm identifier.
838 */
839#define PSA_ALG_IS_HMAC(alg) \
840 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
841 PSA_ALG_HMAC_BASE)
842
843/* In the encoding of a MAC algorithm, the bits corresponding to
844 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
845 * truncated. As an exception, the value 0 means the untruncated algorithm,
846 * whatever its length is. The length is encoded in 6 bits, so it can
847 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
848 * to full length is correctly encoded as 0 and any non-trivial truncation
849 * is correctly encoded as a value between 1 and 63. */
850#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00)
851#define PSA_MAC_TRUNCATION_OFFSET 8
852
853/** Macro to build a truncated MAC algorithm.
854 *
855 * A truncated MAC algorithm is identical to the corresponding MAC
856 * algorithm except that the MAC value for the truncated algorithm
857 * consists of only the first \p mac_length bytes of the MAC value
858 * for the untruncated algorithm.
859 *
860 * \note This macro may allow constructing algorithm identifiers that
861 * are not valid, either because the specified length is larger
862 * than the untruncated MAC or because the specified length is
863 * smaller than permitted by the implementation.
864 *
865 * \note It is implementation-defined whether a truncated MAC that
866 * is truncated to the same length as the MAC of the untruncated
867 * algorithm is considered identical to the untruncated algorithm
868 * for policy comparison purposes.
869 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200870 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
872 * is true). This may be a truncated or untruncated
873 * MAC algorithm.
874 * \param mac_length Desired length of the truncated MAC in bytes.
875 * This must be at most the full length of the MAC
876 * and must be at least an implementation-specified
877 * minimum. The implementation-specified minimum
878 * shall not be zero.
879 *
880 * \return The corresponding MAC algorithm with the specified
881 * length.
882 * \return Unspecified if \p alg is not a supported
883 * MAC algorithm or if \p mac_length is too small or
884 * too large for the specified MAC algorithm.
885 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200886#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
887 (((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100888 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
889
890/** Macro to build the base MAC algorithm corresponding to a truncated
891 * MAC algorithm.
892 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200893 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100894 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
895 * is true). This may be a truncated or untruncated
896 * MAC algorithm.
897 *
898 * \return The corresponding base MAC algorithm.
899 * \return Unspecified if \p alg is not a supported
900 * MAC algorithm.
901 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200902#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
903 ((mac_alg) & ~PSA_ALG_MAC_TRUNCATION_MASK)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100904
905/** Length to which a MAC algorithm is truncated.
906 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200907 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100908 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg)
909 * is true).
910 *
911 * \return Length of the truncated MAC in bytes.
912 * \return 0 if \p alg is a non-truncated MAC algorithm.
913 * \return Unspecified if \p alg is not a supported
914 * MAC algorithm.
915 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200916#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
917 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100918
919#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100920/** The CBC-MAC construction over a block cipher
921 *
922 * \warning CBC-MAC is insecure in many cases.
923 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
924 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100925#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100926/** The CMAC construction over a block cipher */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100927#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100928
929/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
930 *
931 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
932 *
933 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
934 * This macro may return either 0 or 1 if \p alg is not a supported
935 * algorithm identifier.
936 */
937#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
938 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
939 PSA_ALG_CIPHER_MAC_BASE)
940
941#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
942#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
943
944/** Whether the specified algorithm is a stream cipher.
945 *
946 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
947 * by applying a bitwise-xor with a stream of bytes that is generated
948 * from a key.
949 *
950 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
951 *
952 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
953 * This macro may return either 0 or 1 if \p alg is not a supported
954 * algorithm identifier or if it is not a symmetric cipher algorithm.
955 */
956#define PSA_ALG_IS_STREAM_CIPHER(alg) \
957 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
958 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
959
960/** The ARC4 stream cipher algorithm.
961 */
962#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001)
963
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200964/** The ChaCha20 stream cipher.
965 *
966 * ChaCha20 is defined in RFC 7539.
967 *
968 * The nonce size for psa_cipher_set_iv() or psa_cipher_generate_iv()
969 * must be 12.
970 *
971 * The initial block counter is always 0.
972 *
973 */
974#define PSA_ALG_CHACHA20 ((psa_algorithm_t)0x04800005)
975
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100976/** The CTR stream cipher mode.
977 *
978 * CTR is a stream cipher which is built from a block cipher.
979 * The underlying block cipher is determined by the key type.
980 * For example, to use AES-128-CTR, use this algorithm with
981 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
982 */
983#define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001)
984
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100985/** The CFB stream cipher mode.
986 *
987 * The underlying block cipher is determined by the key type.
988 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100989#define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002)
990
Adrian L. Shawfd2aed42019-07-11 15:47:40 +0100991/** The OFB stream cipher mode.
992 *
993 * The underlying block cipher is determined by the key type.
994 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100995#define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003)
996
997/** The XTS cipher mode.
998 *
999 * XTS is a cipher mode which is built from a block cipher. It requires at
1000 * least one full block of input, but beyond this minimum the input
1001 * does not need to be a whole number of blocks.
1002 */
1003#define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff)
1004
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001005/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1006 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001007 * \warning ECB mode does not protect the confidentiality of the encrypted data
1008 * except in extremely narrow circumstances. It is recommended that applications
1009 * only use ECB if they need to construct an operating mode that the
1010 * implementation does not provide. Implementations are encouraged to provide
1011 * the modes that applications need in preference to supporting direct access
1012 * to ECB.
1013 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001014 * The underlying block cipher is determined by the key type.
1015 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001016 * This symmetric cipher mode can only be used with messages whose lengths are a
1017 * multiple of the block size of the chosen block cipher.
1018 *
1019 * ECB mode does not accept an initialization vector (IV). When using a
1020 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1021 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001022 */
1023#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1024
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001025/** The CBC block cipher chaining mode, with no padding.
1026 *
1027 * The underlying block cipher is determined by the key type.
1028 *
1029 * This symmetric cipher mode can only be used with messages whose lengths
1030 * are whole number of blocks for the chosen block cipher.
1031 */
1032#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100)
1033
1034/** The CBC block cipher chaining mode with PKCS#7 padding.
1035 *
1036 * The underlying block cipher is determined by the key type.
1037 *
1038 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1039 */
1040#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101)
1041
Gilles Peskine679693e2019-05-06 15:10:16 +02001042#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1043
1044/** Whether the specified algorithm is an AEAD mode on a block cipher.
1045 *
1046 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1047 *
1048 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1049 * a block cipher, 0 otherwise.
1050 * This macro may return either 0 or 1 if \p alg is not a supported
1051 * algorithm identifier.
1052 */
1053#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1054 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1055 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1056
Gilles Peskine9153ec02019-02-15 13:02:02 +01001057/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001058 *
1059 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001060 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001061#define PSA_ALG_CCM ((psa_algorithm_t)0x06401001)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001062
1063/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001064 *
1065 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001066 */
Gilles Peskine679693e2019-05-06 15:10:16 +02001067#define PSA_ALG_GCM ((psa_algorithm_t)0x06401002)
1068
1069/** The Chacha20-Poly1305 AEAD algorithm.
1070 *
1071 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001072 *
1073 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1074 * and should reject other sizes.
1075 *
1076 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001077 */
1078#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x06001005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001079
1080/* In the encoding of a AEAD algorithm, the bits corresponding to
1081 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1082 * The constants for default lengths follow this encoding.
1083 */
1084#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00)
1085#define PSA_AEAD_TAG_LENGTH_OFFSET 8
1086
1087/** Macro to build a shortened AEAD algorithm.
1088 *
1089 * A shortened AEAD algorithm is similar to the corresponding AEAD
1090 * algorithm, but has an authentication tag that consists of fewer bytes.
1091 * Depending on the algorithm, the tag length may affect the calculation
1092 * of the ciphertext.
1093 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001094 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001095 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg)
1096 * is true).
1097 * \param tag_length Desired length of the authentication tag in bytes.
1098 *
1099 * \return The corresponding AEAD algorithm with the specified
1100 * length.
1101 * \return Unspecified if \p alg is not a supported
1102 * AEAD algorithm or if \p tag_length is not valid
1103 * for the specified AEAD algorithm.
1104 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001105#define PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, tag_length) \
1106 (((aead_alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001107 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1108 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1109
1110/** Calculate the corresponding AEAD algorithm with the default tag length.
1111 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001112 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
1113 * #PSA_ALG_IS_AEAD(\p alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001114 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001115 * \return The corresponding AEAD algorithm with the default
1116 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001117 */
Unknowne2e19952019-08-21 03:33:04 -04001118#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(aead_alg) \
1119 ( \
1120 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CCM) \
1121 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_GCM) \
1122 PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001123 0)
Unknowne2e19952019-08-21 03:33:04 -04001124#define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH_CASE(aead_alg, ref) \
1125 PSA_ALG_AEAD_WITH_TAG_LENGTH(aead_alg, 0) == \
1126 PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001127 ref :
1128
1129#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000)
1130/** RSA PKCS#1 v1.5 signature with hashing.
1131 *
1132 * This is the signature scheme defined by RFC 8017
1133 * (PKCS#1: RSA Cryptography Specifications) under the name
1134 * RSASSA-PKCS1-v1_5.
1135 *
1136 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1137 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001138 * This includes #PSA_ALG_ANY_HASH
1139 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001140 *
1141 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001142 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001143 * hash algorithm.
1144 */
1145#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1146 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1147/** Raw PKCS#1 v1.5 signature.
1148 *
1149 * The input to this algorithm is the DigestInfo structure used by
1150 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1151 * steps 3&ndash;6.
1152 */
1153#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1154#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1155 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1156
1157#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000)
1158/** RSA PSS signature with hashing.
1159 *
1160 * This is the signature scheme defined by RFC 8017
1161 * (PKCS#1: RSA Cryptography Specifications) under the name
1162 * RSASSA-PSS, with the message generation function MGF1, and with
1163 * a salt length equal to the length of the hash. The specified
1164 * hash algorithm is used to hash the input message, to create the
1165 * salted hash, and for the mask generation.
1166 *
1167 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1168 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001169 * This includes #PSA_ALG_ANY_HASH
1170 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001171 *
1172 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001173 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001174 * hash algorithm.
1175 */
1176#define PSA_ALG_RSA_PSS(hash_alg) \
1177 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1178#define PSA_ALG_IS_RSA_PSS(alg) \
1179 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1180
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001181#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000)
1182/** ECDSA signature with hashing.
1183 *
1184 * This is the ECDSA signature scheme defined by ANSI X9.62,
1185 * with a random per-message secret number (*k*).
1186 *
1187 * The representation of the signature as a byte string consists of
1188 * the concatentation of the signature values *r* and *s*. Each of
1189 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1190 * of the base point of the curve in octets. Each value is represented
1191 * in big-endian order (most significant octet first).
1192 *
1193 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1194 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001195 * This includes #PSA_ALG_ANY_HASH
1196 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001197 *
1198 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001199 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001200 * hash algorithm.
1201 */
1202#define PSA_ALG_ECDSA(hash_alg) \
1203 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1204/** ECDSA signature without hashing.
1205 *
1206 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1207 * without specifying a hash algorithm. This algorithm may only be
1208 * used to sign or verify a sequence of bytes that should be an
1209 * already-calculated hash. Note that the input is padded with
1210 * zeros on the left or truncated on the left as required to fit
1211 * the curve size.
1212 */
1213#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1214#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000)
1215/** Deterministic ECDSA signature with hashing.
1216 *
1217 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1218 *
1219 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1220 *
1221 * Note that when this algorithm is used for verification, signatures
1222 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1223 * same private key are accepted. In other words,
1224 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1225 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1226 *
1227 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1228 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001229 * This includes #PSA_ALG_ANY_HASH
1230 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001231 *
1232 * \return The corresponding deterministic ECDSA signature
1233 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001234 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001235 * hash algorithm.
1236 */
1237#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1238 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine972630e2019-11-29 11:55:48 +01001239#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001240#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001241 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001242 PSA_ALG_ECDSA_BASE)
1243#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001244 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001245#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1246 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1247#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1248 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1249
Gilles Peskined35b4892019-01-14 16:02:15 +01001250/** Whether the specified algorithm is a hash-and-sign algorithm.
1251 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001252 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1253 * structured in two parts: first the calculation of a hash in a way that
1254 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001255 * hash value and the key.
1256 *
1257 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1258 *
1259 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1260 * This macro may return either 0 or 1 if \p alg is not a supported
1261 * algorithm identifier.
1262 */
1263#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1264 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskinee38ab1a2019-05-16 13:51:50 +02001265 PSA_ALG_IS_ECDSA(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001266
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001267/** Get the hash used by a hash-and-sign signature algorithm.
1268 *
1269 * A hash-and-sign algorithm is a signature algorithm which is
1270 * composed of two phases: first a hashing phase which does not use
1271 * the key and produces a hash of the input message, then a signing
1272 * phase which only uses the hash and the key and not the message
1273 * itself.
1274 *
1275 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1276 * #PSA_ALG_IS_SIGN(\p alg) is true).
1277 *
1278 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1279 * algorithm.
1280 * \return 0 if \p alg is a signature algorithm that does not
1281 * follow the hash-and-sign structure.
1282 * \return Unspecified if \p alg is not a signature algorithm or
1283 * if it is not supported by the implementation.
1284 */
1285#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001286 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001287 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1288 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1289 0)
1290
1291/** RSA PKCS#1 v1.5 encryption.
1292 */
1293#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000)
1294
1295#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000)
1296/** RSA OAEP encryption.
1297 *
1298 * This is the encryption scheme defined by RFC 8017
1299 * (PKCS#1: RSA Cryptography Specifications) under the name
1300 * RSAES-OAEP, with the message generation function MGF1.
1301 *
1302 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1303 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1304 * for MGF1.
1305 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001306 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001307 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001308 * hash algorithm.
1309 */
1310#define PSA_ALG_RSA_OAEP(hash_alg) \
1311 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1312#define PSA_ALG_IS_RSA_OAEP(alg) \
1313 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1314#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1315 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1316 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1317 0)
1318
Gilles Peskine6843c292019-01-18 16:44:49 +01001319#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x20000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001320/** Macro to build an HKDF algorithm.
1321 *
1322 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1323 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001324 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001325 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001326 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001327 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1328 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1329 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1330 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001331 * starting to generate output.
1332 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001333 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1334 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1335 *
1336 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001337 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001338 * hash algorithm.
1339 */
1340#define PSA_ALG_HKDF(hash_alg) \
1341 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1342/** Whether the specified algorithm is an HKDF algorithm.
1343 *
1344 * HKDF is a family of key derivation algorithms that are based on a hash
1345 * function and the HMAC construction.
1346 *
1347 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1348 *
1349 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1350 * This macro may return either 0 or 1 if \c alg is not a supported
1351 * key derivation algorithm identifier.
1352 */
1353#define PSA_ALG_IS_HKDF(alg) \
1354 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1355#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1356 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1357
Gilles Peskine6843c292019-01-18 16:44:49 +01001358#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x20000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001359/** Macro to build a TLS-1.2 PRF algorithm.
1360 *
1361 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1362 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1363 * used with either SHA-256 or SHA-384.
1364 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001365 * This key derivation algorithm uses the following inputs, which must be
1366 * passed in the order given here:
1367 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001368 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1369 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001370 *
1371 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001372 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001373 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001374 *
1375 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1376 * TLS 1.2 PRF using HMAC-SHA-256.
1377 *
1378 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1379 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1380 *
1381 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001382 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001383 * hash algorithm.
1384 */
1385#define PSA_ALG_TLS12_PRF(hash_alg) \
1386 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1387
1388/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1389 *
1390 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1391 *
1392 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1393 * This macro may return either 0 or 1 if \c alg is not a supported
1394 * key derivation algorithm identifier.
1395 */
1396#define PSA_ALG_IS_TLS12_PRF(alg) \
1397 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1398#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1399 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1400
Gilles Peskine6843c292019-01-18 16:44:49 +01001401#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x20000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001402/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1403 *
1404 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1405 * from the PreSharedKey (PSK) through the application of padding
1406 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1407 * The latter is based on HMAC and can be used with either SHA-256
1408 * or SHA-384.
1409 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001410 * This key derivation algorithm uses the following inputs, which must be
1411 * passed in the order given here:
1412 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001413 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1414 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001415 *
1416 * For the application to TLS-1.2, the seed (which is
1417 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1418 * ClientHello.Random + ServerHello.Random,
1419 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001420 *
1421 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1422 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1423 *
1424 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1425 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1426 *
1427 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001428 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001429 * hash algorithm.
1430 */
1431#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1432 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1433
1434/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1435 *
1436 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1437 *
1438 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1439 * This macro may return either 0 or 1 if \c alg is not a supported
1440 * key derivation algorithm identifier.
1441 */
1442#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1443 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1444#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1445 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1446
Gilles Peskinea52460c2019-04-12 00:11:21 +02001447#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x0803ffff)
1448#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0x10fc0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001449
Gilles Peskine6843c292019-01-18 16:44:49 +01001450/** Macro to build a combined algorithm that chains a key agreement with
1451 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001452 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001453 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1454 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1455 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1456 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001457 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001458 * \return The corresponding key agreement and derivation
1459 * algorithm.
1460 * \return Unspecified if \p ka_alg is not a supported
1461 * key agreement algorithm or \p kdf_alg is not a
1462 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001463 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001464#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1465 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001466
1467#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1468 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1469
Gilles Peskine6843c292019-01-18 16:44:49 +01001470#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1471 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001472
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001473/** Whether the specified algorithm is a raw key agreement algorithm.
1474 *
1475 * A raw key agreement algorithm is one that does not specify
1476 * a key derivation function.
1477 * Usually, raw key agreement algorithms are constructed directly with
1478 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001479 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001480 *
1481 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1482 *
1483 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1484 * This macro may return either 0 or 1 if \p alg is not a supported
1485 * algorithm identifier.
1486 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001487#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001488 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1489 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001490
1491#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1492 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1493
1494/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001495 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001496 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001497 * `g^{ab}` in big-endian format.
1498 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1499 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001500 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001501#define PSA_ALG_FFDH ((psa_algorithm_t)0x30100000)
1502
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001503/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1504 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001505 * This includes the raw finite field Diffie-Hellman algorithm as well as
1506 * finite-field Diffie-Hellman followed by any supporter key derivation
1507 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001508 *
1509 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1510 *
1511 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1512 * This macro may return either 0 or 1 if \c alg is not a supported
1513 * key agreement algorithm identifier.
1514 */
1515#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001516 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001517
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001518/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1519 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001520 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001521 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1522 * `m` is the bit size associated with the curve, i.e. the bit size of the
1523 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1524 * the byte containing the most significant bit of the shared secret
1525 * is padded with zero bits. The byte order is either little-endian
1526 * or big-endian depending on the curve type.
1527 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001528 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001529 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1530 * in little-endian byte order.
1531 * The bit size is 448 for Curve448 and 255 for Curve25519.
1532 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001533 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001534 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1535 * in big-endian byte order.
1536 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1537 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001538 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001539 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1540 * in big-endian byte order.
1541 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001542 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001543#define PSA_ALG_ECDH ((psa_algorithm_t)0x30200000)
1544
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001545/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1546 * algorithm.
1547 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001548 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1549 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1550 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001551 *
1552 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1553 *
1554 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1555 * 0 otherwise.
1556 * This macro may return either 0 or 1 if \c alg is not a supported
1557 * key agreement algorithm identifier.
1558 */
1559#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001560 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001561
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001562/** Whether the specified algorithm encoding is a wildcard.
1563 *
1564 * Wildcard values may only be used to set the usage algorithm field in
1565 * a policy, not to perform an operation.
1566 *
1567 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1568 *
1569 * \return 1 if \c alg is a wildcard algorithm encoding.
1570 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1571 * an operation).
1572 * \return This macro may return either 0 or 1 if \c alg is not a supported
1573 * algorithm identifier.
1574 */
1575#define PSA_ALG_IS_WILDCARD(alg) \
1576 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1577 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1578 (alg) == PSA_ALG_ANY_HASH)
1579
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001580/**@}*/
1581
1582/** \defgroup key_lifetimes Key lifetimes
1583 * @{
1584 */
1585
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001586/** The default lifetime for volatile keys.
1587 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001588 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001589 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001590 *
1591 * A key with this lifetime is typically stored in the RAM area of the
1592 * PSA Crypto subsystem. However this is an implementation choice.
1593 * If an implementation stores data about the key in a non-volatile memory,
1594 * it must release all the resources associated with the key and erase the
1595 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001596 */
1597#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1598
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001599/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001600 *
1601 * A persistent key remains in storage until it is explicitly destroyed or
1602 * until the corresponding storage area is wiped. This specification does
1603 * not define any mechanism to wipe a storage area, but implementations may
1604 * provide their own mechanism (for example to perform a factory reset,
1605 * to prepare for device refurbishment, or to uninstall an application).
1606 *
1607 * This lifetime value is the default storage area for the calling
1608 * application. Implementations may offer other storage areas designated
1609 * by other lifetime values as implementation-specific extensions.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001610 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001611 */
1612#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1613
Gilles Peskineaff11812020-05-04 19:03:10 +02001614/** The persistence level of volatile keys.
1615 *
1616 * See ::psa_key_persistence_t for more information.
1617 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001618#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001619
1620/** The default persistence level for persistent keys.
1621 *
1622 * See ::psa_key_persistence_t for more information.
1623 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001624#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001625
1626/** A persistence level indicating that a key is never destroyed.
1627 *
1628 * See ::psa_key_persistence_t for more information.
1629 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001630#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001631
1632#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001633 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001634
1635#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001636 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001637
1638/** Whether a key lifetime indicates that the key is volatile.
1639 *
1640 * A volatile key is automatically destroyed by the implementation when
1641 * the application instance terminates. In particular, a volatile key
1642 * is automatically destroyed on a power reset of the device.
1643 *
1644 * A key that is not volatile is persistent. Persistent keys are
1645 * preserved until the application explicitly destroys them or until an
1646 * implementation-specific device management event occurs (for example,
1647 * a factory reset).
1648 *
1649 * \param lifetime The lifetime value to query (value of type
1650 * ::psa_key_lifetime_t).
1651 *
1652 * \return \c 1 if the key is volatile, otherwise \c 0.
1653 */
1654#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1655 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001656 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001657
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02001658/** Construct a lifetime from a persistence level and a location.
1659 *
1660 * \param persistence The persistence level
1661 * (value of type ::psa_key_persistence_t).
1662 * \param location The location indicator
1663 * (value of type ::psa_key_location_t).
1664 *
1665 * \return The constructed lifetime value.
1666 */
1667#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
1668 ((location) << 8 | (persistence))
1669
Gilles Peskineaff11812020-05-04 19:03:10 +02001670/** The local storage area for persistent keys.
1671 *
1672 * This storage area is available on all systems that can store persistent
1673 * keys without delegating the storage to a third-party cryptoprocessor.
1674 *
1675 * See ::psa_key_location_t for more information.
1676 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001677#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02001678
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001679#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001680
Gilles Peskine4a231b82019-05-06 18:56:14 +02001681/** The minimum value for a key identifier chosen by the application.
1682 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001683#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02001684/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001685 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001686#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02001687/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001688 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001689#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02001690/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02001691 */
Ronald Cron039a98b2020-07-23 16:07:42 +02001692#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02001693
Ronald Cron7424f0d2020-09-14 16:17:41 +02001694
1695#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
1696
1697#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
1698#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
1699#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
1700
1701/** Utility to initialize a key identifier at runtime.
1702 *
1703 * \param unused Unused parameter.
1704 * \param key_id Identifier of the key.
1705 */
1706static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1707 unsigned int unused, psa_key_id_t key_id )
1708{
1709 (void)unused;
1710
1711 return( key_id );
1712}
1713
1714/** Compare two key identifiers.
1715 *
1716 * \param id1 First key identifier.
1717 * \param id2 Second key identifier.
1718 *
1719 * \return Non-zero if the two key identifier are equal, zero otherwise.
1720 */
1721static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1722 mbedtls_svc_key_id_t id2 )
1723{
1724 return( id1 == id2 );
1725}
1726
Ronald Cronc4d1b512020-07-31 11:26:37 +02001727/** Check whether a key identifier is null.
1728 *
1729 * \param key Key identifier.
1730 *
1731 * \return Non-zero if the key identifier is null, zero otherwise.
1732 */
1733static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1734{
1735 return( key == 0 );
1736}
1737
Ronald Cron7424f0d2020-09-14 16:17:41 +02001738#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
1739
1740#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
1741#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
1742#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
1743
1744/** Utility to initialize a key identifier at runtime.
1745 *
1746 * \param owner_id Identifier of the key owner.
1747 * \param key_id Identifier of the key.
1748 */
1749static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
1750 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
1751{
1752 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
1753 .owner = owner_id } );
1754}
1755
1756/** Compare two key identifiers.
1757 *
1758 * \param id1 First key identifier.
1759 * \param id2 Second key identifier.
1760 *
1761 * \return Non-zero if the two key identifier are equal, zero otherwise.
1762 */
1763static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
1764 mbedtls_svc_key_id_t id2 )
1765{
1766 return( ( id1.key_id == id2.key_id ) &&
1767 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
1768}
1769
Ronald Cronc4d1b512020-07-31 11:26:37 +02001770/** Check whether a key identifier is null.
1771 *
1772 * \param key Key identifier.
1773 *
1774 * \return Non-zero if the key identifier is null, zero otherwise.
1775 */
1776static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
1777{
1778 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
1779}
1780
Ronald Cron7424f0d2020-09-14 16:17:41 +02001781#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001782
1783/**@}*/
1784
1785/** \defgroup policy Key policies
1786 * @{
1787 */
1788
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001789/** Whether the key may be exported.
1790 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001791 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001792 * regardless of the value of this permission flag.
1793 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02001794 * If a key does not have export permission, implementations shall not
1795 * allow the key to be exported in plain form from the cryptoprocessor,
1796 * whether through psa_export_key() or through a proprietary interface.
1797 * The key may however be exportable in a wrapped form, i.e. in a form
1798 * where it is encrypted by another key.
1799 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02001800#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
1801
1802/** Whether the key may be copied.
1803 *
1804 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001805 * with the same policy or a more restrictive policy.
1806 *
1807 * For lifetimes for which the key is located in a secure element which
1808 * enforce the non-exportability of keys, copying a key outside the secure
1809 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
1810 * Copying the key inside the secure element is permitted with just
1811 * #PSA_KEY_USAGE_COPY if the secure element supports it.
1812 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
1813 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
1814 * is sufficient to permit the copy.
1815 */
1816#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
1817
1818/** Whether the key may be used to encrypt a message.
1819 *
1820 * This flag allows the key to be used for a symmetric encryption operation,
1821 * for an AEAD encryption-and-authentication operation,
1822 * or for an asymmetric encryption operation,
1823 * if otherwise permitted by the key's type and policy.
1824 *
1825 * For a key pair, this concerns the public key.
1826 */
1827#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
1828
1829/** Whether the key may be used to decrypt a message.
1830 *
1831 * This flag allows the key to be used for a symmetric decryption operation,
1832 * for an AEAD decryption-and-verification operation,
1833 * or for an asymmetric decryption operation,
1834 * if otherwise permitted by the key's type and policy.
1835 *
1836 * For a key pair, this concerns the private key.
1837 */
1838#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
1839
1840/** Whether the key may be used to sign a message.
1841 *
1842 * This flag allows the key to be used for a MAC calculation operation
1843 * or for an asymmetric signature operation,
1844 * if otherwise permitted by the key's type and policy.
1845 *
1846 * For a key pair, this concerns the private key.
1847 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001848#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00000400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001849
1850/** Whether the key may be used to verify a message signature.
1851 *
1852 * This flag allows the key to be used for a MAC verification operation
1853 * or for an asymmetric signature verification operation,
1854 * if otherwise permitted by by the key's type and policy.
1855 *
1856 * For a key pair, this concerns the public key.
1857 */
Gilles Peskine89d8c5c2019-11-26 17:01:59 +01001858#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00000800)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001859
1860/** Whether the key may be used to derive other keys.
1861 */
1862#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000)
1863
1864/**@}*/
1865
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001866/** \defgroup derivation Key derivation
1867 * @{
1868 */
1869
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001870/** A secret input for key derivation.
1871 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001872 * This should be a key of type #PSA_KEY_TYPE_DERIVE
1873 * (passed to psa_key_derivation_input_key())
1874 * or the shared secret resulting from a key agreement
1875 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02001876 *
1877 * The secret can also be a direct input (passed to
1878 * key_derivation_input_bytes()). In this case, the derivation operation
1879 * may not be used to derive keys: the operation will only allow
1880 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001881 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001882#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001883
1884/** A label for key derivation.
1885 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001886 * This should be a direct input.
1887 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001888 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001889#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001890
1891/** A salt for key derivation.
1892 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001893 * This should be a direct input.
1894 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001895 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001896#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001897
1898/** An information string for key derivation.
1899 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001900 * This should be a direct input.
1901 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001902 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02001903#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001904
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001905/** A seed for key derivation.
1906 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02001907 * This should be a direct input.
1908 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001909 */
1910#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
1911
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01001912/**@}*/
1913
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001914#endif /* PSA_CRYPTO_VALUES_H */