blob: 12358a1e77cfed3a30fcd54fc58bcebe50281afe [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
412 * The key policy determines which key derivation algorithm the key
413 * can be used for.
414 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100415#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100416
Gilles Peskine737c6be2019-05-21 16:01:06 +0200417/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 *
419 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
420 * 32 bytes (AES-256).
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Gilles Peskine8890f642021-09-21 11:59:39 +0200424/** Key for a cipher, AEAD or MAC algorithm based on the
425 * ARIA block cipher. */
426#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
427
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100428/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
429 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100430 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
431 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100432 *
433 * Note that single DES and 2-key 3DES are weak and strongly
434 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
435 * is weak and deprecated and should only be used in legacy protocols.
436 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100437#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438
Gilles Peskine737c6be2019-05-21 16:01:06 +0200439/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100441#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100442
443/** Key for the RC4 stream cipher.
444 *
445 * Note that RC4 is weak and deprecated and should only be used in
446 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100447#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200449/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
450 *
451 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
452 *
453 * Implementations must support 12-byte nonces, may support 8-byte nonces,
454 * and should reject other sizes.
455 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100456#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200457
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100458/** RSA public key.
459 *
460 * The size of an RSA key is the bit size of the modulus.
461 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100462#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100463/** RSA key pair (private and public key).
464 *
465 * The size of an RSA key is the bit size of the modulus.
466 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100467#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468/** Whether a key type is an RSA key (pair or public-only). */
469#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200470 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100471
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100472#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100473#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
474#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100475/** Elliptic curve key pair.
476 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100477 * The size of an elliptic curve key is the bit size associated with the curve,
478 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
479 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
480 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100481 * \param curve A value of type ::psa_ecc_family_t that
482 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100483 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200484#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
485 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100486/** Elliptic curve public key.
487 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100488 * The size of an elliptic curve public key is the same as the corresponding
489 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
490 * `PSA_ECC_FAMILY_xxx` curve families).
491 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100492 * \param curve A value of type ::psa_ecc_family_t that
493 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100494 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100495#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
496 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
497
498/** Whether a key type is an elliptic curve key (pair or public-only). */
499#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200500 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100501 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100502/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200503#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100504 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200505 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100506/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100507#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
508 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
509 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
510
511/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100512#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
513 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100514 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
515 0))
516
Gilles Peskine228abc52019-12-03 17:24:19 +0100517/** SEC Koblitz curves over prime fields.
518 *
519 * This family comprises the following curves:
520 * secp192k1, secp224k1, secp256k1.
521 * They are defined in _Standards for Efficient Cryptography_,
522 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
523 * https://www.secg.org/sec2-v2.pdf
524 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100525#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100526
527/** SEC random curves over prime fields.
528 *
529 * This family comprises the following curves:
530 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
531 * They are defined in _Standards for Efficient Cryptography_,
532 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
533 * https://www.secg.org/sec2-v2.pdf
534 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100535#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100536/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100537#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100538
539/** SEC Koblitz curves over binary fields.
540 *
541 * This family comprises the following curves:
542 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
543 * They are defined in _Standards for Efficient Cryptography_,
544 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
545 * https://www.secg.org/sec2-v2.pdf
546 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100547#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100548
549/** SEC random curves over binary fields.
550 *
551 * This family comprises the following curves:
552 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
553 * They are defined in _Standards for Efficient Cryptography_,
554 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
555 * https://www.secg.org/sec2-v2.pdf
556 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100557#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100558
559/** SEC additional random curves over binary fields.
560 *
561 * This family comprises the following curve:
562 * sect163r2.
563 * It is defined in _Standards for Efficient Cryptography_,
564 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
565 * https://www.secg.org/sec2-v2.pdf
566 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100568
569/** Brainpool P random curves.
570 *
571 * This family comprises the following curves:
572 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
573 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
574 * It is defined in RFC 5639.
575 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100576#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100577
578/** Curve25519 and Curve448.
579 *
580 * This family comprises the following Montgomery curves:
581 * - 255-bit: Bernstein et al.,
582 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
583 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
584 * - 448-bit: Hamburg,
585 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
586 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
587 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100588#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100589
Gilles Peskine67546802021-02-24 21:49:40 +0100590/** The twisted Edwards curves Ed25519 and Ed448.
591 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100592 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100593 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100594 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100595 *
596 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100597 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100598 * to Curve25519.
599 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
600 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
601 * to Curve448.
602 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
603 */
604#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
605
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100606#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100607#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
608#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100609/** Diffie-Hellman key pair.
610 *
Paul Elliott75e27032020-06-03 15:17:39 +0100611 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100612 * Diffie-Hellman group to be used.
613 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200614#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
615 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100616/** Diffie-Hellman public key.
617 *
Paul Elliott75e27032020-06-03 15:17:39 +0100618 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100619 * Diffie-Hellman group to be used.
620 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200621#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
622 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
623
624/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
625#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200626 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200627 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
628/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200629#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200630 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200631 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200632/** Whether a key type is a Diffie-Hellman public key. */
633#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
634 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
635 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
636
637/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100638#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
639 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200640 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
641 0))
642
Gilles Peskine228abc52019-12-03 17:24:19 +0100643/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
644 *
645 * This family includes groups with the following key sizes (in bits):
646 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
647 * all of these sizes or only a subset.
648 */
Paul Elliott75e27032020-06-03 15:17:39 +0100649#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100650
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100651#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100652 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100653/** The block size of a block cipher.
654 *
655 * \param type A cipher key type (value of type #psa_key_type_t).
656 *
657 * \return The block size for a block cipher, or 1 for a stream cipher.
658 * The return value is undefined if \p type is not a supported
659 * cipher key type.
660 *
661 * \note It is possible to build stream cipher algorithms on top of a block
662 * cipher, for example CTR mode (#PSA_ALG_CTR).
663 * This macro only takes the key type into account, so it cannot be
664 * used to determine the size of the data that #psa_cipher_update()
665 * might buffer for future processing in general.
666 *
667 * \note This macro returns a compile-time constant if its argument is one.
668 *
669 * \warning This macro may evaluate its argument multiple times.
670 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100671#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100672 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100673 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100674 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100675
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100676/** Vendor-defined algorithm flag.
677 *
678 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
679 * bit set. Vendors who define additional algorithms must use an encoding with
680 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
681 * used by standard encodings whenever practical.
682 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100683#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100684
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100685#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100686#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
687#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100688#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100689#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
690#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
691#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
692#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
693#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100694
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100695/** Whether an algorithm is vendor-defined.
696 *
697 * See also #PSA_ALG_VENDOR_FLAG.
698 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100699#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
700 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
701
702/** Whether the specified algorithm is a hash algorithm.
703 *
704 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
705 *
706 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
707 * This macro may return either 0 or 1 if \p alg is not a supported
708 * algorithm identifier.
709 */
710#define PSA_ALG_IS_HASH(alg) \
711 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
712
713/** Whether the specified algorithm is a MAC algorithm.
714 *
715 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
716 *
717 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
718 * This macro may return either 0 or 1 if \p alg is not a supported
719 * algorithm identifier.
720 */
721#define PSA_ALG_IS_MAC(alg) \
722 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
723
724/** Whether the specified algorithm is a symmetric cipher algorithm.
725 *
726 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
727 *
728 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
729 * This macro may return either 0 or 1 if \p alg is not a supported
730 * algorithm identifier.
731 */
732#define PSA_ALG_IS_CIPHER(alg) \
733 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
734
735/** Whether the specified algorithm is an authenticated encryption
736 * with associated data (AEAD) algorithm.
737 *
738 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
739 *
740 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
741 * This macro may return either 0 or 1 if \p alg is not a supported
742 * algorithm identifier.
743 */
744#define PSA_ALG_IS_AEAD(alg) \
745 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
746
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200747/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200748 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100749 *
750 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
751 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200752 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100753 * This macro may return either 0 or 1 if \p alg is not a supported
754 * algorithm identifier.
755 */
756#define PSA_ALG_IS_SIGN(alg) \
757 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
758
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200759/** Whether the specified algorithm is an asymmetric encryption algorithm,
760 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100761 *
762 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
763 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200764 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100765 * This macro may return either 0 or 1 if \p alg is not a supported
766 * algorithm identifier.
767 */
768#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
769 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
770
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100771/** Whether the specified algorithm is a key agreement algorithm.
772 *
773 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
774 *
775 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
776 * This macro may return either 0 or 1 if \p alg is not a supported
777 * algorithm identifier.
778 */
779#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100780 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100781
782/** Whether the specified algorithm is a key derivation algorithm.
783 *
784 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
785 *
786 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
787 * This macro may return either 0 or 1 if \p alg is not a supported
788 * algorithm identifier.
789 */
790#define PSA_ALG_IS_KEY_DERIVATION(alg) \
791 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
792
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100793#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100794/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100795#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100796/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100797#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100798/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100799#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100800/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100801#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100802/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100803#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100804/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100805#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100806/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100807#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100808/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100809#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100810/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100811#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100812/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100813#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100814/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100815#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100816/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100817#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100818/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100819#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100820/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100821#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100822/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100823#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100824/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100825 *
826 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
827 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
828 * has the same output size and a (theoretically) higher security strength.
829 */
Gilles Peskine27354692021-03-03 17:45:06 +0100830#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100831
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100832/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100833 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100834 * This value may be used to form the algorithm usage field of a policy
835 * for a signature algorithm that is parametrized by a hash. The key
836 * may then be used to perform operations using the same signature
837 * algorithm parametrized with any supported hash.
838 *
839 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine35115f92021-10-04 18:10:38 +0200840 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100841 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100842 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100843 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
844 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100845 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200846 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100847 * ```
848 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100849 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100850 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
851 * call to sign or verify a message may use a different hash.
852 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200853 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
854 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
855 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100856 * ```
857 *
858 * This value may not be used to build other algorithms that are
859 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100860 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100861 *
862 * This value may not be used to build an algorithm specification to
863 * perform an operation. It is only valid to build policies.
864 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100865#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100866
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100867#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100868#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100869/** Macro to build an HMAC algorithm.
870 *
871 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
872 *
873 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
874 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
875 *
876 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100877 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100878 * hash algorithm.
879 */
880#define PSA_ALG_HMAC(hash_alg) \
881 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
882
883#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
884 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
885
886/** Whether the specified algorithm is an HMAC algorithm.
887 *
888 * HMAC is a family of MAC algorithms that are based on a hash function.
889 *
890 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
891 *
892 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
893 * This macro may return either 0 or 1 if \p alg is not a supported
894 * algorithm identifier.
895 */
896#define PSA_ALG_IS_HMAC(alg) \
897 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
898 PSA_ALG_HMAC_BASE)
899
900/* In the encoding of a MAC algorithm, the bits corresponding to
901 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
902 * truncated. As an exception, the value 0 means the untruncated algorithm,
903 * whatever its length is. The length is encoded in 6 bits, so it can
904 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
905 * to full length is correctly encoded as 0 and any non-trivial truncation
906 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100907#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
908#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100909
Steven Cooremand927ed72021-02-22 19:59:35 +0100910/* In the encoding of a MAC algorithm, the bit corresponding to
911 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100912 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
913 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100914 * same base class and having a (potentially truncated) MAC length greater or
915 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
916#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
917
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100918/** Macro to build a truncated MAC algorithm.
919 *
920 * A truncated MAC algorithm is identical to the corresponding MAC
921 * algorithm except that the MAC value for the truncated algorithm
922 * consists of only the first \p mac_length bytes of the MAC value
923 * for the untruncated algorithm.
924 *
925 * \note This macro may allow constructing algorithm identifiers that
926 * are not valid, either because the specified length is larger
927 * than the untruncated MAC or because the specified length is
928 * smaller than permitted by the implementation.
929 *
930 * \note It is implementation-defined whether a truncated MAC that
931 * is truncated to the same length as the MAC of the untruncated
932 * algorithm is considered identical to the untruncated algorithm
933 * for policy comparison purposes.
934 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200935 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100936 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100937 * is true). This may be a truncated or untruncated
938 * MAC algorithm.
939 * \param mac_length Desired length of the truncated MAC in bytes.
940 * This must be at most the full length of the MAC
941 * and must be at least an implementation-specified
942 * minimum. The implementation-specified minimum
943 * shall not be zero.
944 *
945 * \return The corresponding MAC algorithm with the specified
946 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100947 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100948 * MAC algorithm or if \p mac_length is too small or
949 * too large for the specified MAC algorithm.
950 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100951#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
952 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
953 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100954 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
955
956/** Macro to build the base MAC algorithm corresponding to a truncated
957 * MAC algorithm.
958 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200959 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100960 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100961 * is true). This may be a truncated or untruncated
962 * MAC algorithm.
963 *
964 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100965 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100966 * MAC algorithm.
967 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100968#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
969 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
970 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100971
972/** Length to which a MAC algorithm is truncated.
973 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200974 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100975 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100976 * is true).
977 *
978 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100979 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
980 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100981 * MAC algorithm.
982 */
Gilles Peskine434899f2018-10-19 11:30:26 +0200983#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
984 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100985
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100986/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100987 *
Steven Cooremana1d83222021-02-25 10:20:29 +0100988 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +0100989 * sharing the same base algorithm, and where the (potentially truncated) MAC
990 * length of the specific algorithm is equal to or larger then the wildcard
991 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100992 *
Steven Cooreman37389c72021-02-18 12:08:41 +0100993 * \note When setting the minimum required MAC length to less than the
994 * smallest MAC length allowed by the base algorithm, this effectively
995 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +0100996 *
Steven Cooreman37389c72021-02-18 12:08:41 +0100997 * \param mac_alg A MAC algorithm identifier (value of type
998 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
999 * is true).
1000 * \param min_mac_length Desired minimum length of the message authentication
1001 * code in bytes. This must be at most the untruncated
1002 * length of the MAC and must be at least 1.
1003 *
1004 * \return The corresponding MAC wildcard algorithm with the
1005 * specified minimum length.
1006 * \return Unspecified if \p mac_alg is not a supported MAC
1007 * algorithm or if \p min_mac_length is less than 1 or
1008 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001009 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001010#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1011 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1012 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001013
Bence Szépkútia2945512020-12-03 21:40:17 +01001014#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001015/** The CBC-MAC construction over a block cipher
1016 *
1017 * \warning CBC-MAC is insecure in many cases.
1018 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1019 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001020#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001021/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001022#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001023
1024/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1025 *
1026 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1027 *
1028 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1029 * This macro may return either 0 or 1 if \p alg is not a supported
1030 * algorithm identifier.
1031 */
1032#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1033 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1034 PSA_ALG_CIPHER_MAC_BASE)
1035
1036#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1037#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1038
1039/** Whether the specified algorithm is a stream cipher.
1040 *
1041 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1042 * by applying a bitwise-xor with a stream of bytes that is generated
1043 * from a key.
1044 *
1045 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1046 *
1047 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1048 * This macro may return either 0 or 1 if \p alg is not a supported
1049 * algorithm identifier or if it is not a symmetric cipher algorithm.
1050 */
1051#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1052 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1053 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1054
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001055/** The stream cipher mode of a stream cipher algorithm.
1056 *
1057 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001058 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1059 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001060 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001061#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001062
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001063/** The CTR stream cipher mode.
1064 *
1065 * CTR is a stream cipher which is built from a block cipher.
1066 * The underlying block cipher is determined by the key type.
1067 * For example, to use AES-128-CTR, use this algorithm with
1068 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1069 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001070#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001071
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001072/** The CFB stream cipher mode.
1073 *
1074 * The underlying block cipher is determined by the key type.
1075 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001076#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001077
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001078/** The OFB stream cipher mode.
1079 *
1080 * The underlying block cipher is determined by the key type.
1081 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001082#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001083
1084/** The XTS cipher mode.
1085 *
1086 * XTS is a cipher mode which is built from a block cipher. It requires at
1087 * least one full block of input, but beyond this minimum the input
1088 * does not need to be a whole number of blocks.
1089 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001090#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001091
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001092/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1093 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001094 * \warning ECB mode does not protect the confidentiality of the encrypted data
1095 * except in extremely narrow circumstances. It is recommended that applications
1096 * only use ECB if they need to construct an operating mode that the
1097 * implementation does not provide. Implementations are encouraged to provide
1098 * the modes that applications need in preference to supporting direct access
1099 * to ECB.
1100 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001101 * The underlying block cipher is determined by the key type.
1102 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001103 * This symmetric cipher mode can only be used with messages whose lengths are a
1104 * multiple of the block size of the chosen block cipher.
1105 *
1106 * ECB mode does not accept an initialization vector (IV). When using a
1107 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1108 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001109 */
1110#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1111
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001112/** The CBC block cipher chaining mode, with no padding.
1113 *
1114 * The underlying block cipher is determined by the key type.
1115 *
1116 * This symmetric cipher mode can only be used with messages whose lengths
1117 * are whole number of blocks for the chosen block cipher.
1118 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001119#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001120
1121/** The CBC block cipher chaining mode with PKCS#7 padding.
1122 *
1123 * The underlying block cipher is determined by the key type.
1124 *
1125 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1126 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001127#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001128
Gilles Peskine679693e2019-05-06 15:10:16 +02001129#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1130
1131/** Whether the specified algorithm is an AEAD mode on a block cipher.
1132 *
1133 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1134 *
1135 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1136 * a block cipher, 0 otherwise.
1137 * This macro may return either 0 or 1 if \p alg is not a supported
1138 * algorithm identifier.
1139 */
1140#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1141 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1142 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1143
Gilles Peskine9153ec02019-02-15 13:02:02 +01001144/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001145 *
1146 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001147 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001148#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001149
1150/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001151 *
1152 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001153 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001154#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001155
1156/** The Chacha20-Poly1305 AEAD algorithm.
1157 *
1158 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001159 *
1160 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1161 * and should reject other sizes.
1162 *
1163 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001164 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001165#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001166
1167/* In the encoding of a AEAD algorithm, the bits corresponding to
1168 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1169 * The constants for default lengths follow this encoding.
1170 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001171#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1172#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001173
Steven Cooremand927ed72021-02-22 19:59:35 +01001174/* In the encoding of an AEAD algorithm, the bit corresponding to
1175 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001176 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1177 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001178 * same base class and having a tag length greater than or equal to the one
1179 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1180#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1181
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001182/** Macro to build a shortened AEAD algorithm.
1183 *
1184 * A shortened AEAD algorithm is similar to the corresponding AEAD
1185 * algorithm, but has an authentication tag that consists of fewer bytes.
1186 * Depending on the algorithm, the tag length may affect the calculation
1187 * of the ciphertext.
1188 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001189 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001190 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001191 * is true).
1192 * \param tag_length Desired length of the authentication tag in bytes.
1193 *
1194 * \return The corresponding AEAD algorithm with the specified
1195 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001196 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001197 * AEAD algorithm or if \p tag_length is not valid
1198 * for the specified AEAD algorithm.
1199 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001200#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001201 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1202 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001203 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1204 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1205
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001206/** Retrieve the tag length of a specified AEAD algorithm
1207 *
1208 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001209 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001210 * is true).
1211 *
1212 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001213 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001214 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001215 */
1216#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1217 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1218 PSA_AEAD_TAG_LENGTH_OFFSET )
1219
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001220/** Calculate the corresponding AEAD algorithm with the default tag length.
1221 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001222 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001223 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001224 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001225 * \return The corresponding AEAD algorithm with the default
1226 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001227 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001228#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001229 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001230 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1231 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1232 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001233 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001234#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1235 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1236 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001237 ref :
1238
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001239/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001240 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001241 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001242 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001243 * algorithm is equal to or larger then the minimum tag length specified by the
1244 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001245 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001246 * \note When setting the minimum required tag length to less than the
1247 * smallest tag length allowed by the base algorithm, this effectively
1248 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001249 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001250 * \param aead_alg An AEAD algorithm identifier (value of type
1251 * #psa_algorithm_t such that
1252 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1253 * \param min_tag_length Desired minimum length of the authentication tag in
1254 * bytes. This must be at least 1 and at most the largest
1255 * allowed tag length of the algorithm.
1256 *
1257 * \return The corresponding AEAD wildcard algorithm with the
1258 * specified minimum length.
1259 * \return Unspecified if \p aead_alg is not a supported
1260 * AEAD algorithm or if \p min_tag_length is less than 1
1261 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001262 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001263#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001264 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1265 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001266
Bence Szépkútia2945512020-12-03 21:40:17 +01001267#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001268/** RSA PKCS#1 v1.5 signature with hashing.
1269 *
1270 * This is the signature scheme defined by RFC 8017
1271 * (PKCS#1: RSA Cryptography Specifications) under the name
1272 * RSASSA-PKCS1-v1_5.
1273 *
1274 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1275 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001276 * This includes #PSA_ALG_ANY_HASH
1277 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001278 *
1279 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001280 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001281 * hash algorithm.
1282 */
1283#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1284 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1285/** Raw PKCS#1 v1.5 signature.
1286 *
1287 * The input to this algorithm is the DigestInfo structure used by
1288 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1289 * steps 3&ndash;6.
1290 */
1291#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1292#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1293 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1294
Bence Szépkútia2945512020-12-03 21:40:17 +01001295#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskine35115f92021-10-04 18:10:38 +02001296#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001297/** RSA PSS signature with hashing.
1298 *
1299 * This is the signature scheme defined by RFC 8017
1300 * (PKCS#1: RSA Cryptography Specifications) under the name
1301 * RSASSA-PSS, with the message generation function MGF1, and with
1302 * a salt length equal to the length of the hash. The specified
1303 * hash algorithm is used to hash the input message, to create the
1304 * salted hash, and for the mask generation.
1305 *
1306 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1307 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001308 * This includes #PSA_ALG_ANY_HASH
1309 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001310 *
1311 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001312 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001313 * hash algorithm.
1314 */
1315#define PSA_ALG_RSA_PSS(hash_alg) \
1316 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine35115f92021-10-04 18:10:38 +02001317
1318/** RSA PSS signature with hashing with relaxed verification.
1319 *
1320 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1321 * but allows an arbitrary salt length (including \c 0) when verifying a
1322 * signature.
1323 *
1324 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1325 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1326 * This includes #PSA_ALG_ANY_HASH
1327 * when specifying the algorithm in a usage policy.
1328 *
1329 * \return The corresponding RSA PSS signature algorithm.
1330 * \return Unspecified if \p hash_alg is not a supported
1331 * hash algorithm.
1332 */
1333#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1334 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1335
1336/** Whether the specified algorithm is RSA PSS with standard salt.
1337 *
1338 * \param alg An algorithm value or an algorithm policy wildcard.
1339 *
1340 * \return 1 if \p alg is of the form
1341 * #PSA_ALG_RSA_PSS(\c hash_alg),
1342 * where \c hash_alg is a hash algorithm or
1343 * #PSA_ALG_ANY_HASH. 0 otherwise.
1344 * This macro may return either 0 or 1 if \p alg is not
1345 * a supported algorithm identifier or policy.
1346 */
1347#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001348 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1349
Gilles Peskine35115f92021-10-04 18:10:38 +02001350/** Whether the specified algorithm is RSA PSS with any salt.
1351 *
1352 * \param alg An algorithm value or an algorithm policy wildcard.
1353 *
1354 * \return 1 if \p alg is of the form
1355 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1356 * where \c hash_alg is a hash algorithm or
1357 * #PSA_ALG_ANY_HASH. 0 otherwise.
1358 * This macro may return either 0 or 1 if \p alg is not
1359 * a supported algorithm identifier or policy.
1360 */
1361#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1362 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1363
1364/** Whether the specified algorithm is RSA PSS.
1365 *
1366 * This includes any of the RSA PSS algorithm variants, regardless of the
1367 * constraints on salt length.
1368 *
1369 * \param alg An algorithm value or an algorithm policy wildcard.
1370 *
1371 * \return 1 if \p alg is of the form
1372 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1373 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1374 * where \c hash_alg is a hash algorithm or
1375 * #PSA_ALG_ANY_HASH. 0 otherwise.
1376 * This macro may return either 0 or 1 if \p alg is not
1377 * a supported algorithm identifier or policy.
1378 */
1379#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef8362ca2021-10-08 16:28:32 +02001380 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1381 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskine35115f92021-10-04 18:10:38 +02001382
Bence Szépkútia2945512020-12-03 21:40:17 +01001383#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001384/** ECDSA signature with hashing.
1385 *
1386 * This is the ECDSA signature scheme defined by ANSI X9.62,
1387 * with a random per-message secret number (*k*).
1388 *
1389 * The representation of the signature as a byte string consists of
1390 * the concatentation of the signature values *r* and *s*. Each of
1391 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1392 * of the base point of the curve in octets. Each value is represented
1393 * in big-endian order (most significant octet first).
1394 *
1395 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1396 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001397 * This includes #PSA_ALG_ANY_HASH
1398 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001399 *
1400 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001401 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001402 * hash algorithm.
1403 */
1404#define PSA_ALG_ECDSA(hash_alg) \
1405 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1406/** ECDSA signature without hashing.
1407 *
1408 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1409 * without specifying a hash algorithm. This algorithm may only be
1410 * used to sign or verify a sequence of bytes that should be an
1411 * already-calculated hash. Note that the input is padded with
1412 * zeros on the left or truncated on the left as required to fit
1413 * the curve size.
1414 */
1415#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001416#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001417/** Deterministic ECDSA signature with hashing.
1418 *
1419 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1420 *
1421 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1422 *
1423 * Note that when this algorithm is used for verification, signatures
1424 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1425 * same private key are accepted. In other words,
1426 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1427 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1428 *
1429 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1430 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001431 * This includes #PSA_ALG_ANY_HASH
1432 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001433 *
1434 * \return The corresponding deterministic ECDSA signature
1435 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001436 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001437 * hash algorithm.
1438 */
1439#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1440 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001441#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001442#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001443 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001444 PSA_ALG_ECDSA_BASE)
1445#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001446 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001447#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1448 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1449#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1450 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1451
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001452/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1453 * using standard parameters.
1454 *
1455 * Contexts are not supported in the current version of this specification
1456 * because there is no suitable signature interface that can take the
1457 * context as a parameter. A future version of this specification may add
1458 * suitable functions and extend this algorithm to support contexts.
1459 *
1460 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1461 * In this specification, the following curves are supported:
1462 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1463 * in RFC 8032.
1464 * The curve is Edwards25519.
1465 * The hash function used internally is SHA-512.
1466 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1467 * in RFC 8032.
1468 * The curve is Edwards448.
1469 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001470 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001471 *
1472 * This algorithm can be used with psa_sign_message() and
1473 * psa_verify_message(). Since there is no prehashing, it cannot be used
1474 * with psa_sign_hash() or psa_verify_hash().
1475 *
1476 * The signature format is the concatenation of R and S as defined by
1477 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1478 * string for Ed448).
1479 */
1480#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1481
1482#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1483#define PSA_ALG_IS_HASH_EDDSA(alg) \
1484 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1485
1486/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001487 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001488 *
1489 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1490 *
1491 * This algorithm is Ed25519 as specified in RFC 8032.
1492 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001493 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001494 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001495 *
1496 * This is a hash-and-sign algorithm: to calculate a signature,
1497 * you can either:
1498 * - call psa_sign_message() on the message;
1499 * - or calculate the SHA-512 hash of the message
1500 * with psa_hash_compute()
1501 * or with a multi-part hash operation started with psa_hash_setup(),
1502 * using the hash algorithm #PSA_ALG_SHA_512,
1503 * then sign the calculated hash with psa_sign_hash().
1504 * Verifying a signature is similar, using psa_verify_message() or
1505 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001506 */
1507#define PSA_ALG_ED25519PH \
1508 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1509
1510/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1511 * using SHAKE256 and the Edwards448 curve.
1512 *
1513 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1514 *
1515 * This algorithm is Ed448 as specified in RFC 8032.
1516 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001517 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001518 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001519 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001520 *
1521 * This is a hash-and-sign algorithm: to calculate a signature,
1522 * you can either:
1523 * - call psa_sign_message() on the message;
1524 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1525 * with psa_hash_compute()
1526 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001527 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001528 * then sign the calculated hash with psa_sign_hash().
1529 * Verifying a signature is similar, using psa_verify_message() or
1530 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001531 */
1532#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001533 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001534
Gilles Peskine6d400852021-02-24 21:39:52 +01001535/* Default definition, to be overridden if the library is extended with
1536 * more hash-and-sign algorithms that we want to keep out of this header
1537 * file. */
1538#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1539
Gilles Peskined35b4892019-01-14 16:02:15 +01001540/** Whether the specified algorithm is a hash-and-sign algorithm.
1541 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001542 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1543 * structured in two parts: first the calculation of a hash in a way that
1544 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001545 * hash value and the key.
1546 *
1547 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1548 *
1549 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1550 * This macro may return either 0 or 1 if \p alg is not a supported
1551 * algorithm identifier.
1552 */
1553#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1554 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001555 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001556 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001557
gabor-mezei-arme8efa392021-04-14 21:14:28 +02001558/** Whether the specified algorithm is a signature algorithm that can be used
1559 * with psa_sign_message() and psa_verify_message().
1560 *
1561 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1562 *
1563 * \return 1 if alg is a signature algorithm that can be used to sign a
gabor-mezei-arm1f8036b2021-04-20 12:08:36 +02001564 * message. 0 if \p alg is a signature algorithm that can only be used
1565 * to sign an already-calculated hash. 0 if \p alg is not a signature
1566 * algorithm. This macro can return either 0 or 1 if \p alg is not a
gabor-mezei-arme8efa392021-04-14 21:14:28 +02001567 * supported algorithm identifier.
1568 */
1569#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
gabor-mezei-arm1f8036b2021-04-20 12:08:36 +02001570 (PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_PURE_EDDSA )
gabor-mezei-arme8efa392021-04-14 21:14:28 +02001571
Mateusz Starzykd22362c2021-08-26 11:46:14 +02001572/** Whether the specified algorithm is a signature algorithm that can be used
1573 * with psa_sign_hash() and psa_verify_hash().
1574 *
1575 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1576 *
1577 * \return 1 if alg is a signature algorithm that can be used to sign a
1578 * hash. 0 if alg is a signature algorithm that can only be used
1579 * to sign a message. 0 if alg is not a signature algorithm.
1580 * This macro can return either 0 or 1 if alg is not a
1581 * supported algorithm identifier.
1582 */
1583#define PSA_ALG_IS_SIGN_HASH(alg) \
1584 (PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_ED25519PH || \
1585 (alg) == PSA_ALG_ED448PH)
1586
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001587/** Get the hash used by a hash-and-sign signature algorithm.
1588 *
1589 * A hash-and-sign algorithm is a signature algorithm which is
1590 * composed of two phases: first a hashing phase which does not use
1591 * the key and produces a hash of the input message, then a signing
1592 * phase which only uses the hash and the key and not the message
1593 * itself.
1594 *
1595 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1596 * #PSA_ALG_IS_SIGN(\p alg) is true).
1597 *
1598 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1599 * algorithm.
1600 * \return 0 if \p alg is a signature algorithm that does not
1601 * follow the hash-and-sign structure.
1602 * \return Unspecified if \p alg is not a signature algorithm or
1603 * if it is not supported by the implementation.
1604 */
1605#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001606 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001607 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1608 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1609 0)
1610
1611/** RSA PKCS#1 v1.5 encryption.
1612 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001613#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001614
Bence Szépkútia2945512020-12-03 21:40:17 +01001615#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001616/** RSA OAEP encryption.
1617 *
1618 * This is the encryption scheme defined by RFC 8017
1619 * (PKCS#1: RSA Cryptography Specifications) under the name
1620 * RSAES-OAEP, with the message generation function MGF1.
1621 *
1622 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1623 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1624 * for MGF1.
1625 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001626 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001627 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001628 * hash algorithm.
1629 */
1630#define PSA_ALG_RSA_OAEP(hash_alg) \
1631 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1632#define PSA_ALG_IS_RSA_OAEP(alg) \
1633 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1634#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1635 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1636 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1637 0)
1638
Bence Szépkútia2945512020-12-03 21:40:17 +01001639#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001640/** Macro to build an HKDF algorithm.
1641 *
1642 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1643 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001644 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001645 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001646 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001647 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1648 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1649 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1650 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001651 * starting to generate output.
1652 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001653 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1654 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1655 *
1656 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001657 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001658 * hash algorithm.
1659 */
1660#define PSA_ALG_HKDF(hash_alg) \
1661 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1662/** Whether the specified algorithm is an HKDF algorithm.
1663 *
1664 * HKDF is a family of key derivation algorithms that are based on a hash
1665 * function and the HMAC construction.
1666 *
1667 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1668 *
1669 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1670 * This macro may return either 0 or 1 if \c alg is not a supported
1671 * key derivation algorithm identifier.
1672 */
1673#define PSA_ALG_IS_HKDF(alg) \
1674 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1675#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1676 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1677
Bence Szépkútia2945512020-12-03 21:40:17 +01001678#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001679/** Macro to build a TLS-1.2 PRF algorithm.
1680 *
1681 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1682 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1683 * used with either SHA-256 or SHA-384.
1684 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001685 * This key derivation algorithm uses the following inputs, which must be
1686 * passed in the order given here:
1687 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001688 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1689 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001690 *
1691 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001692 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001693 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001694 *
1695 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1696 * TLS 1.2 PRF using HMAC-SHA-256.
1697 *
1698 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1699 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1700 *
1701 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001702 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001703 * hash algorithm.
1704 */
1705#define PSA_ALG_TLS12_PRF(hash_alg) \
1706 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1707
1708/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1709 *
1710 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1711 *
1712 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1713 * This macro may return either 0 or 1 if \c alg is not a supported
1714 * key derivation algorithm identifier.
1715 */
1716#define PSA_ALG_IS_TLS12_PRF(alg) \
1717 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1718#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1719 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1720
Bence Szépkútia2945512020-12-03 21:40:17 +01001721#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001722/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1723 *
1724 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1725 * from the PreSharedKey (PSK) through the application of padding
1726 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1727 * The latter is based on HMAC and can be used with either SHA-256
1728 * or SHA-384.
1729 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001730 * This key derivation algorithm uses the following inputs, which must be
1731 * passed in the order given here:
1732 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001733 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1734 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001735 *
1736 * For the application to TLS-1.2, the seed (which is
1737 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1738 * ClientHello.Random + ServerHello.Random,
1739 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001740 *
1741 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1742 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1743 *
1744 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1745 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1746 *
1747 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001748 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001749 * hash algorithm.
1750 */
1751#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1752 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1753
1754/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1755 *
1756 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1757 *
1758 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1759 * This macro may return either 0 or 1 if \c alg is not a supported
1760 * key derivation algorithm identifier.
1761 */
1762#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1763 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1764#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1765 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1766
Bence Szépkútia2945512020-12-03 21:40:17 +01001767#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1768#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001769
Gilles Peskine6843c292019-01-18 16:44:49 +01001770/** Macro to build a combined algorithm that chains a key agreement with
1771 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001772 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001773 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1774 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1775 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1776 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001777 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001778 * \return The corresponding key agreement and derivation
1779 * algorithm.
1780 * \return Unspecified if \p ka_alg is not a supported
1781 * key agreement algorithm or \p kdf_alg is not a
1782 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001783 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001784#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1785 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001786
1787#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1788 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1789
Gilles Peskine6843c292019-01-18 16:44:49 +01001790#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1791 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001792
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001793/** Whether the specified algorithm is a raw key agreement algorithm.
1794 *
1795 * A raw key agreement algorithm is one that does not specify
1796 * a key derivation function.
1797 * Usually, raw key agreement algorithms are constructed directly with
1798 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001799 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001800 *
1801 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1802 *
1803 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1804 * This macro may return either 0 or 1 if \p alg is not a supported
1805 * algorithm identifier.
1806 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001807#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001808 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1809 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001810
1811#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1812 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1813
1814/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001815 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001816 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001817 * `g^{ab}` in big-endian format.
1818 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1819 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001820 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001821#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001822
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001823/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1824 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001825 * This includes the raw finite field Diffie-Hellman algorithm as well as
1826 * finite-field Diffie-Hellman followed by any supporter key derivation
1827 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001828 *
1829 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1830 *
1831 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1832 * This macro may return either 0 or 1 if \c alg is not a supported
1833 * key agreement algorithm identifier.
1834 */
1835#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001836 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001837
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001838/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1839 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001840 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001841 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1842 * `m` is the bit size associated with the curve, i.e. the bit size of the
1843 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1844 * the byte containing the most significant bit of the shared secret
1845 * is padded with zero bits. The byte order is either little-endian
1846 * or big-endian depending on the curve type.
1847 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001848 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001849 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1850 * in little-endian byte order.
1851 * The bit size is 448 for Curve448 and 255 for Curve25519.
1852 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001853 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001854 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1855 * in big-endian byte order.
1856 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1857 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001858 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001859 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1860 * in big-endian byte order.
1861 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001862 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001863#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001864
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001865/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1866 * algorithm.
1867 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001868 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1869 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1870 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001871 *
1872 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1873 *
1874 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1875 * 0 otherwise.
1876 * This macro may return either 0 or 1 if \c alg is not a supported
1877 * key agreement algorithm identifier.
1878 */
1879#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001880 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001881
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001882/** Whether the specified algorithm encoding is a wildcard.
1883 *
1884 * Wildcard values may only be used to set the usage algorithm field in
1885 * a policy, not to perform an operation.
1886 *
1887 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1888 *
1889 * \return 1 if \c alg is a wildcard algorithm encoding.
1890 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1891 * an operation).
1892 * \return This macro may return either 0 or 1 if \c alg is not a supported
1893 * algorithm identifier.
1894 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001895#define PSA_ALG_IS_WILDCARD(alg) \
1896 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1897 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1898 PSA_ALG_IS_MAC(alg) ? \
1899 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1900 PSA_ALG_IS_AEAD(alg) ? \
1901 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001902 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001903
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001904/**@}*/
1905
1906/** \defgroup key_lifetimes Key lifetimes
1907 * @{
1908 */
1909
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001910/** The default lifetime for volatile keys.
1911 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001912 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001913 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001914 *
1915 * A key with this lifetime is typically stored in the RAM area of the
1916 * PSA Crypto subsystem. However this is an implementation choice.
1917 * If an implementation stores data about the key in a non-volatile memory,
1918 * it must release all the resources associated with the key and erase the
1919 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001920 */
1921#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1922
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001923/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001924 *
1925 * A persistent key remains in storage until it is explicitly destroyed or
1926 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001927 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001928 * provide their own mechanism (for example to perform a factory reset,
1929 * to prepare for device refurbishment, or to uninstall an application).
1930 *
1931 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001932 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001933 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001934 */
1935#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1936
Gilles Peskineaff11812020-05-04 19:03:10 +02001937/** The persistence level of volatile keys.
1938 *
1939 * See ::psa_key_persistence_t for more information.
1940 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001941#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001942
1943/** The default persistence level for persistent keys.
1944 *
1945 * See ::psa_key_persistence_t for more information.
1946 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001947#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001948
1949/** A persistence level indicating that a key is never destroyed.
1950 *
1951 * See ::psa_key_persistence_t for more information.
1952 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001953#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001954
1955#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001956 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001957
1958#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001959 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001960
1961/** Whether a key lifetime indicates that the key is volatile.
1962 *
1963 * A volatile key is automatically destroyed by the implementation when
1964 * the application instance terminates. In particular, a volatile key
1965 * is automatically destroyed on a power reset of the device.
1966 *
1967 * A key that is not volatile is persistent. Persistent keys are
1968 * preserved until the application explicitly destroys them or until an
1969 * implementation-specific device management event occurs (for example,
1970 * a factory reset).
1971 *
1972 * \param lifetime The lifetime value to query (value of type
1973 * ::psa_key_lifetime_t).
1974 *
1975 * \return \c 1 if the key is volatile, otherwise \c 0.
1976 */
1977#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1978 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001979 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001980
Gilles Peskine7aa260d2021-04-21 20:05:59 +02001981/** Whether a key lifetime indicates that the key is read-only.
1982 *
1983 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
1984 * They must be created through platform-specific means that bypass the API.
1985 *
1986 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine11794b32021-06-07 23:21:50 +02001987 * consider a platform with multiple levels of privilege, where a
1988 * low-privilege application can use a key but is not allowed to destroy
1989 * it, and the platform exposes the key to the application with a read-only
1990 * lifetime. High-privilege code can destroy the key even though the
1991 * application sees the key as read-only.
Gilles Peskine7aa260d2021-04-21 20:05:59 +02001992 *
1993 * \param lifetime The lifetime value to query (value of type
1994 * ::psa_key_lifetime_t).
1995 *
1996 * \return \c 1 if the key is read-only, otherwise \c 0.
1997 */
1998#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
1999 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2000 PSA_KEY_PERSISTENCE_READ_ONLY)
2001
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002002/** Construct a lifetime from a persistence level and a location.
2003 *
2004 * \param persistence The persistence level
2005 * (value of type ::psa_key_persistence_t).
2006 * \param location The location indicator
2007 * (value of type ::psa_key_location_t).
2008 *
2009 * \return The constructed lifetime value.
2010 */
2011#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2012 ((location) << 8 | (persistence))
2013
Gilles Peskineaff11812020-05-04 19:03:10 +02002014/** The local storage area for persistent keys.
2015 *
2016 * This storage area is available on all systems that can store persistent
2017 * keys without delegating the storage to a third-party cryptoprocessor.
2018 *
2019 * See ::psa_key_location_t for more information.
2020 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002021#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002022
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002023#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002024
Gilles Peskine4a231b82019-05-06 18:56:14 +02002025/** The minimum value for a key identifier chosen by the application.
2026 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002027#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002028/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002029 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002030#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002031/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002032 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002033#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002034/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002035 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002036#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002037
Ronald Cron7424f0d2020-09-14 16:17:41 +02002038
2039#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2040
2041#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2042#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2043#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2044
2045/** Utility to initialize a key identifier at runtime.
2046 *
2047 * \param unused Unused parameter.
2048 * \param key_id Identifier of the key.
2049 */
2050static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2051 unsigned int unused, psa_key_id_t key_id )
2052{
2053 (void)unused;
2054
2055 return( key_id );
2056}
2057
2058/** Compare two key identifiers.
2059 *
2060 * \param id1 First key identifier.
2061 * \param id2 Second key identifier.
2062 *
2063 * \return Non-zero if the two key identifier are equal, zero otherwise.
2064 */
2065static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2066 mbedtls_svc_key_id_t id2 )
2067{
2068 return( id1 == id2 );
2069}
2070
Ronald Cronc4d1b512020-07-31 11:26:37 +02002071/** Check whether a key identifier is null.
2072 *
2073 * \param key Key identifier.
2074 *
2075 * \return Non-zero if the key identifier is null, zero otherwise.
2076 */
2077static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2078{
2079 return( key == 0 );
2080}
2081
Ronald Cron7424f0d2020-09-14 16:17:41 +02002082#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2083
2084#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2085#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2086#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2087
2088/** Utility to initialize a key identifier at runtime.
2089 *
2090 * \param owner_id Identifier of the key owner.
2091 * \param key_id Identifier of the key.
2092 */
2093static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2094 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2095{
2096 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
2097 .owner = owner_id } );
2098}
2099
2100/** Compare two key identifiers.
2101 *
2102 * \param id1 First key identifier.
2103 * \param id2 Second key identifier.
2104 *
2105 * \return Non-zero if the two key identifier are equal, zero otherwise.
2106 */
2107static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2108 mbedtls_svc_key_id_t id2 )
2109{
2110 return( ( id1.key_id == id2.key_id ) &&
2111 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2112}
2113
Ronald Cronc4d1b512020-07-31 11:26:37 +02002114/** Check whether a key identifier is null.
2115 *
2116 * \param key Key identifier.
2117 *
2118 * \return Non-zero if the key identifier is null, zero otherwise.
2119 */
2120static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2121{
Gilles Peskined9b41502021-05-28 12:59:49 +02002122 return( key.key_id == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002123}
2124
Ronald Cron7424f0d2020-09-14 16:17:41 +02002125#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002126
2127/**@}*/
2128
2129/** \defgroup policy Key policies
2130 * @{
2131 */
2132
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002133/** Whether the key may be exported.
2134 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002135 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002136 * regardless of the value of this permission flag.
2137 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002138 * If a key does not have export permission, implementations shall not
2139 * allow the key to be exported in plain form from the cryptoprocessor,
2140 * whether through psa_export_key() or through a proprietary interface.
2141 * The key may however be exportable in a wrapped form, i.e. in a form
2142 * where it is encrypted by another key.
2143 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002144#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2145
2146/** Whether the key may be copied.
2147 *
2148 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002149 * with the same policy or a more restrictive policy.
2150 *
2151 * For lifetimes for which the key is located in a secure element which
2152 * enforce the non-exportability of keys, copying a key outside the secure
2153 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2154 * Copying the key inside the secure element is permitted with just
2155 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2156 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2157 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2158 * is sufficient to permit the copy.
2159 */
2160#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2161
2162/** Whether the key may be used to encrypt a message.
2163 *
2164 * This flag allows the key to be used for a symmetric encryption operation,
2165 * for an AEAD encryption-and-authentication operation,
2166 * or for an asymmetric encryption operation,
2167 * if otherwise permitted by the key's type and policy.
2168 *
2169 * For a key pair, this concerns the public key.
2170 */
2171#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2172
2173/** Whether the key may be used to decrypt a message.
2174 *
2175 * This flag allows the key to be used for a symmetric decryption operation,
2176 * for an AEAD decryption-and-verification operation,
2177 * or for an asymmetric decryption operation,
2178 * if otherwise permitted by the key's type and policy.
2179 *
2180 * For a key pair, this concerns the private key.
2181 */
2182#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2183
2184/** Whether the key may be used to sign a message.
2185 *
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002186 * This flag allows the key to be used for a MAC calculation operation or for
2187 * an asymmetric message signature operation, if otherwise permitted by the
2188 * key’s type and policy.
2189 *
2190 * For a key pair, this concerns the private key.
2191 */
2192#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2193
2194/** Whether the key may be used to verify a message.
2195 *
2196 * This flag allows the key to be used for a MAC verification operation or for
2197 * an asymmetric message signature verification operation, if otherwise
2198 * permitted by the key’s type and policy.
2199 *
2200 * For a key pair, this concerns the public key.
2201 */
2202#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2203
2204/** Whether the key may be used to sign a message.
2205 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002206 * This flag allows the key to be used for a MAC calculation operation
2207 * or for an asymmetric signature operation,
2208 * if otherwise permitted by the key's type and policy.
2209 *
2210 * For a key pair, this concerns the private key.
2211 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002212#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002213
2214/** Whether the key may be used to verify a message signature.
2215 *
2216 * This flag allows the key to be used for a MAC verification operation
2217 * or for an asymmetric signature verification operation,
2218 * if otherwise permitted by by the key's type and policy.
2219 *
2220 * For a key pair, this concerns the public key.
2221 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002222#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002223
2224/** Whether the key may be used to derive other keys.
2225 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002226#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002227
2228/**@}*/
2229
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002230/** \defgroup derivation Key derivation
2231 * @{
2232 */
2233
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002234/** A secret input for key derivation.
2235 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002236 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2237 * (passed to psa_key_derivation_input_key())
2238 * or the shared secret resulting from a key agreement
2239 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002240 *
2241 * The secret can also be a direct input (passed to
2242 * key_derivation_input_bytes()). In this case, the derivation operation
2243 * may not be used to derive keys: the operation will only allow
2244 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002245 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002246#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002247
2248/** A label for key derivation.
2249 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002250 * This should be a direct input.
2251 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002252 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002253#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002254
2255/** A salt for key derivation.
2256 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002257 * This should be a direct input.
2258 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002259 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002260#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002261
2262/** An information string for key derivation.
2263 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002264 * This should be a direct input.
2265 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002266 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002267#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002268
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002269/** A seed for key derivation.
2270 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002271 * This should be a direct input.
2272 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002273 */
2274#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2275
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002276/**@}*/
2277
Bence Szépkútib639d432021-04-21 10:33:54 +02002278/** \defgroup helper_macros Helper macros
2279 * @{
2280 */
2281
2282/* Helper macros */
2283
2284/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2285 * regardless of the tag length they encode.
2286 *
2287 * \param aead_alg_1 An AEAD algorithm identifier.
2288 * \param aead_alg_2 An AEAD algorithm identifier.
2289 *
2290 * \return 1 if both identifiers refer to the same AEAD algorithm,
2291 * 0 otherwise.
2292 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2293 * a supported AEAD algorithm.
2294 */
2295#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2296 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2297 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2298
2299/**@}*/
2300
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002301#endif /* PSA_CRYPTO_VALUES_H */