blob: 51867e8258e50cff387c52da966e59b17381139d [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine43bd07d2022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Dave Rodgman7ff79652023-11-03 12:04:52 +000024 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Gilles Peskinef3b731e2018-12-12 13:38:31 +010025 */
26
27#ifndef PSA_CRYPTO_VALUES_H
28#define PSA_CRYPTO_VALUES_H
29
30/** \defgroup error Error codes
31 * @{
32 */
33
David Saadab4ecc272019-02-14 13:48:10 +020034/* PSA error codes */
35
Gilles Peskine43bd07d2022-06-20 18:41:20 +020036/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskinebe059e42022-06-29 14:37:17 +020037 * etc.). Do not change the values in this section or even the expansions
38 * of each macro: it must be possible to `#include` both this header
39 * and some other PSA component's headers in the same C source,
40 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
41 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
42 * to the same sequence of tokens.
43 *
44 * If you must add a new
Gilles Peskine43bd07d2022-06-20 18:41:20 +020045 * value, check with the Arm PSA framework group to pick one that other
46 * domains aren't already using. */
47
Gilles Peskined3ce75c2023-01-04 19:50:27 +010048/* Tell uncrustify not to touch the constant definitions, otherwise
49 * it might change the spacing to something that is not PSA-compliant
50 * (e.g. adding a space after casts).
51 *
52 * *INDENT-OFF*
53 */
54
Gilles Peskinef3b731e2018-12-12 13:38:31 +010055/** The action was completed successfully. */
56#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010057
58/** An error occurred that does not correspond to any defined
59 * failure cause.
60 *
61 * Implementations may use this error code if none of the other standard
62 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020063#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010064
65/** The requested operation or a parameter is not supported
66 * by this implementation.
67 *
68 * Implementations should return this error code when an enumeration
69 * parameter such as a key type, algorithm, etc. is not recognized.
70 * If a combination of parameters is recognized and identified as
71 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020072#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010073
74/** The requested action is denied by a policy.
75 *
76 * Implementations should return this error code when the parameters
77 * are recognized as valid and supported, and a policy explicitly
78 * denies the requested operation.
79 *
80 * If a subset of the parameters of a function call identify a
81 * forbidden operation, and another subset of the parameters are
82 * not valid or not supported, it is unspecified whether the function
83 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
84 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
87/** An output buffer is too small.
88 *
89 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
90 * description to determine a sufficient buffer size.
91 *
92 * Implementations should preferably return this error code only
93 * in cases when performing the operation with a larger output
94 * buffer would succeed. However implementations may return this
95 * error if a function has invalid or unsupported parameters in addition
96 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020097#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
David Saadab4ecc272019-02-14 13:48:10 +020099/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100 *
David Saadab4ecc272019-02-14 13:48:10 +0200101 * Implementations should return this error, when attempting
102 * to write an item (like a key) that already exists. */
103#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100104
David Saadab4ecc272019-02-14 13:48:10 +0200105/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100106 *
David Saadab4ecc272019-02-14 13:48:10 +0200107 * Implementations should return this error, if a requested item (like
108 * a key) does not exist. */
109#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100110
111/** The requested action cannot be performed in the current state.
112 *
113 * Multipart operations return this error when one of the
114 * functions is called out of sequence. Refer to the function
115 * descriptions for permitted sequencing of functions.
116 *
117 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100118 * that a key either exists or not,
119 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * as applicable.
121 *
122 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200123 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100124 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** The parameters passed to the function are invalid.
128 *
129 * Implementations may return this error any time a parameter or
130 * combination of parameters are recognized as invalid.
131 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100132 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200133 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100134 * instead.
135 */
David Saadab4ecc272019-02-14 13:48:10 +0200136#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100137
138/** There is not enough runtime memory.
139 *
140 * If the action is carried out across multiple security realms, this
141 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200142#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100143
144/** There is not enough persistent storage.
145 *
146 * Functions that modify the key storage return this error code if
147 * there is insufficient storage space on the host media. In addition,
148 * many functions that do not otherwise access storage may return this
149 * error code if the implementation requires a mandatory log entry for
150 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200151#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152
153/** There was a communication failure inside the implementation.
154 *
155 * This can indicate a communication failure between the application
156 * and an external cryptoprocessor or between the cryptoprocessor and
157 * an external volatile or persistent memory. A communication failure
158 * may be transient or permanent depending on the cause.
159 *
160 * \warning If a function returns this error, it is undetermined
161 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200162 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
164 * if the requested action was completed successfully in an external
165 * cryptoprocessor but there was a breakdown of communication before
166 * the cryptoprocessor could report the status to the application.
167 */
David Saadab4ecc272019-02-14 13:48:10 +0200168#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100169
170/** There was a storage failure that may have led to data loss.
171 *
172 * This error indicates that some persistent storage is corrupted.
173 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200174 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100175 * between the cryptoprocessor and its external storage (use
176 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
177 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
178 *
179 * Note that a storage failure does not indicate that any data that was
180 * previously read is invalid. However this previously read data may no
181 * longer be readable from storage.
182 *
183 * When a storage failure occurs, it is no longer possible to ensure
184 * the global integrity of the keystore. Depending on the global
185 * integrity guarantees offered by the implementation, access to other
186 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100187 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188 *
189 * Implementations should only use this error code to report a
190 * permanent storage corruption. However application writers should
191 * keep in mind that transient errors while reading the storage may be
192 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200193#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100194
195/** A hardware failure was detected.
196 *
197 * A hardware failure may be transient or permanent depending on the
198 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200199#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100200
201/** A tampering attempt was detected.
202 *
203 * If an application receives this error code, there is no guarantee
204 * that previously accessed or computed data was correct and remains
205 * confidential. Applications should not perform any security function
206 * and should enter a safe failure state.
207 *
208 * Implementations may return this error code if they detect an invalid
209 * state that cannot happen during normal operation and that indicates
210 * that the implementation's security guarantees no longer hold. Depending
211 * on the implementation architecture and on its security and safety goals,
212 * the implementation may forcibly terminate the application.
213 *
214 * This error code is intended as a last resort when a security breach
215 * is detected and it is unsure whether the keystore data is still
216 * protected. Implementations shall only return this error code
217 * to report an alarm from a tampering detector, to indicate that
218 * the confidentiality of stored data can no longer be guaranteed,
219 * or to indicate that the integrity of previously returned data is now
220 * considered compromised. Implementations shall not use this error code
221 * to indicate a hardware failure that merely makes it impossible to
222 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
223 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
224 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
225 * instead).
226 *
227 * This error indicates an attack against the application. Implementations
228 * shall not return this error code as a consequence of the behavior of
229 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200230#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100231
232/** There is not enough entropy to generate random data needed
233 * for the requested action.
234 *
235 * This error indicates a failure of a hardware random generator.
236 * Application writers should note that this error can be returned not
237 * only by functions whose purpose is to generate random data, such
238 * as key, IV or nonce generation, but also by functions that execute
239 * an algorithm with a randomized result, as well as functions that
240 * use randomization of intermediate computations as a countermeasure
241 * to certain attacks.
242 *
243 * Implementations should avoid returning this error after psa_crypto_init()
244 * has succeeded. Implementations should generate sufficient
245 * entropy during initialization and subsequently use a cryptographically
246 * secure pseudorandom generator (PRNG). However implementations may return
247 * this error at any time if a policy requires the PRNG to be reseeded
248 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The signature, MAC or hash is incorrect.
252 *
253 * Verification functions return this error if the verification
254 * calculations completed successfully, and the value to be verified
255 * was determined to be incorrect.
256 *
257 * If the value to verify has an invalid size, implementations may return
258 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200259#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100260
261/** The decrypted padding is incorrect.
262 *
263 * \warning In some protocols, when decrypting data, it is essential that
264 * the behavior of the application does not depend on whether the padding
265 * is correct, down to precise timing. Applications should prefer
266 * protocols that use authenticated encryption rather than plain
267 * encryption. If the application must perform a decryption of
268 * unauthenticated data, the application writer should take care not
269 * to reveal whether the padding is invalid.
270 *
271 * Implementations should strive to make valid and invalid padding
272 * as close as possible to indistinguishable to an external observer.
273 * In particular, the timing of a decryption operation should not
274 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200275#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100276
David Saadab4ecc272019-02-14 13:48:10 +0200277/** Return this error when there's insufficient data when attempting
278 * to read from a resource. */
279#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100280
Ronald Croncf56a0a2020-08-04 09:51:30 +0200281/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100282 */
David Saadab4ecc272019-02-14 13:48:10 +0200283#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100284
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100285/** Stored data has been corrupted.
286 *
287 * This error indicates that some persistent storage has suffered corruption.
288 * It does not indicate the following situations, which have specific error
289 * codes:
290 *
291 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
292 * - A communication error between the cryptoprocessor and its external
293 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
294 * - When the storage is in a valid state but is full - use
295 * #PSA_ERROR_INSUFFICIENT_STORAGE.
296 * - When the storage fails for other reasons - use
297 * #PSA_ERROR_STORAGE_FAILURE.
298 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
299 *
300 * \note A storage corruption does not indicate that any data that was
301 * previously read is invalid. However this previously read data might no
302 * longer be readable from storage.
303 *
304 * When a storage failure occurs, it is no longer possible to ensure the
305 * global integrity of the keystore.
306 */
307#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
308
gabor-mezei-armfe309242020-11-09 17:39:56 +0100309/** Data read from storage is not valid for the implementation.
310 *
311 * This error indicates that some data read from storage does not have a valid
312 * format. It does not indicate the following situations, which have specific
313 * error codes:
314 *
315 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
316 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
317 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
318 *
319 * This error is typically a result of either storage corruption on a
320 * cleartext storage backend, or an attempt to read data that was
321 * written by an incompatible version of the library.
322 */
323#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
324
Gilles Peskined3ce75c2023-01-04 19:50:27 +0100325/* *INDENT-ON* */
326
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327/**@}*/
328
329/** \defgroup crypto_types Key and algorithm types
330 * @{
331 */
332
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200333/* Note that key type values, including ECC family and DH group values, are
334 * embedded in the persistent key store, as part of key metadata. As a
335 * consequence, they must not be changed (unless the storage format version
336 * changes).
337 */
338
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339/** An invalid key type value.
340 *
341 * Zero is not the encoding of any key type.
342 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100343#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100344
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100345/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346 *
347 * Key types defined by this standard will never have the
348 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
349 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
350 * respect the bitwise structure used by standard encodings whenever practical.
351 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100352#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100353
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100354#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
355#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
356#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
357#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
358#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100359
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100360#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100362/** Whether a key type is vendor-defined.
363 *
364 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
365 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100366#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
367 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
368
369/** Whether a key type is an unstructured array of bytes.
370 *
371 * This encompasses both symmetric keys and non-key data.
372 */
373#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100374 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
375 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100376
377/** Whether a key type is asymmetric: either a key pair or a public key. */
378#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
379 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
380 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
381 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
382/** Whether a key type is the public part of a key pair. */
383#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
384 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
385/** Whether a key type is a key pair containing a private part and a public
386 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200387#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100388 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
389/** The key pair type corresponding to a public key type.
390 *
391 * You may also pass a key pair type as \p type, it will be left unchanged.
392 *
393 * \param type A public key type or key pair type.
394 *
395 * \return The corresponding key pair type.
396 * If \p type is not a public key or a key pair,
397 * the return value is undefined.
398 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200399#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
401/** The public key type corresponding to a key pair type.
402 *
403 * You may also pass a key pair type as \p type, it will be left unchanged.
404 *
405 * \param type A public key type or key pair type.
406 *
407 * \return The corresponding public key type.
408 * If \p type is not a public key or a key pair,
409 * the return value is undefined.
410 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200411#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100412 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
413
414/** Raw data.
415 *
416 * A "key" of this type cannot be used for any cryptographic operation.
417 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100418#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419
420/** HMAC key.
421 *
422 * The key policy determines which underlying hash algorithm the key can be
423 * used for.
424 *
425 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100426 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100428#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100429
430/** A secret for key derivation.
431 *
432 * The key policy determines which key derivation algorithm the key
433 * can be used for.
434 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100435#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100436
Gilles Peskine737c6be2019-05-21 16:01:06 +0200437/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438 *
439 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
440 * 32 bytes (AES-256).
441 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100442#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100443
Gilles Peskine8890f642021-09-21 11:59:39 +0200444/** Key for a cipher, AEAD or MAC algorithm based on the
445 * ARIA block cipher. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100446#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
Gilles Peskine8890f642021-09-21 11:59:39 +0200447
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
449 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100450 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
451 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100452 *
453 * Note that single DES and 2-key 3DES are weak and strongly
454 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
455 * is weak and deprecated and should only be used in legacy protocols.
456 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100457#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100458
Gilles Peskine737c6be2019-05-21 16:01:06 +0200459/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100460 * Camellia block cipher. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100461#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100462
Gilles Peskine500e48f2022-04-22 16:49:30 +0200463/** Key for the ARC4 stream cipher (also known as RC4 or ARCFOUR).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100464 *
Gilles Peskine500e48f2022-04-22 16:49:30 +0200465 * Note that ARC4 is weak and deprecated and should only be used in
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100466 * legacy protocols. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100467#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t) 0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200469/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
470 *
471 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
472 *
473 * Implementations must support 12-byte nonces, may support 8-byte nonces,
474 * and should reject other sizes.
475 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100476#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200477
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100478/** RSA public key.
479 *
480 * The size of an RSA key is the bit size of the modulus.
481 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100482#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100483/** RSA key pair (private and public key).
484 *
485 * The size of an RSA key is the bit size of the modulus.
486 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100487#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100488/** Whether a key type is an RSA key (pair or public-only). */
489#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200490 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100491
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100492#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
493#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
494#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100495/** Elliptic curve key pair.
496 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100497 * The size of an elliptic curve key is the bit size associated with the curve,
498 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
499 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
500 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100501 * \param curve A value of type ::psa_ecc_family_t that
502 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100503 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200504#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
505 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100506/** Elliptic curve public key.
507 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100508 * The size of an elliptic curve public key is the same as the corresponding
509 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
510 * `PSA_ECC_FAMILY_xxx` curve families).
511 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100512 * \param curve A value of type ::psa_ecc_family_t that
513 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100514 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100515#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
516 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
517
518/** Whether a key type is an elliptic curve key (pair or public-only). */
519#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200520 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100521 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100522/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200523#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100524 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200525 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100526/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100527#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
528 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
529 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
530
531/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100532#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
533 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100534 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
535 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100536
Gilles Peskine228abc52019-12-03 17:24:19 +0100537/** SEC Koblitz curves over prime fields.
538 *
539 * This family comprises the following curves:
540 * secp192k1, secp224k1, secp256k1.
541 * They are defined in _Standards for Efficient Cryptography_,
542 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
543 * https://www.secg.org/sec2-v2.pdf
544 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100545#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100546
547/** SEC random curves over prime fields.
548 *
549 * This family comprises the following curves:
Gilles Peskine6bf4dfc2024-01-03 20:58:55 +0100550 * secp192r1, secp224r1, secp256r1, secp384r1, secp521r1.
Gilles Peskine228abc52019-12-03 17:24:19 +0100551 * They are defined in _Standards for Efficient Cryptography_,
552 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
553 * https://www.secg.org/sec2-v2.pdf
554 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100555#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100556/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100557#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100558
559/** SEC Koblitz curves over binary fields.
560 *
561 * This family comprises the following curves:
562 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
563 * They are defined in _Standards for Efficient Cryptography_,
564 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
565 * https://www.secg.org/sec2-v2.pdf
566 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100568
569/** SEC random curves over binary fields.
570 *
571 * This family comprises the following curves:
572 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
573 * They are defined in _Standards for Efficient Cryptography_,
574 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
575 * https://www.secg.org/sec2-v2.pdf
576 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100577#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100578
579/** SEC additional random curves over binary fields.
580 *
581 * This family comprises the following curve:
582 * sect163r2.
583 * It is defined in _Standards for Efficient Cryptography_,
584 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
585 * https://www.secg.org/sec2-v2.pdf
586 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100587#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100588
589/** Brainpool P random curves.
590 *
591 * This family comprises the following curves:
592 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
593 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
594 * It is defined in RFC 5639.
595 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100596#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100597
598/** Curve25519 and Curve448.
599 *
600 * This family comprises the following Montgomery curves:
601 * - 255-bit: Bernstein et al.,
602 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
603 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
604 * - 448-bit: Hamburg,
605 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
606 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
607 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100608#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100609
Gilles Peskine67546802021-02-24 21:49:40 +0100610/** The twisted Edwards curves Ed25519 and Ed448.
611 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100612 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100613 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100614 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100615 *
616 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100617 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100618 * to Curve25519.
619 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
620 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
621 * to Curve448.
622 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
623 */
624#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
625
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100626#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
627#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
628#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100629/** Diffie-Hellman key pair.
630 *
Paul Elliott75e27032020-06-03 15:17:39 +0100631 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100632 * Diffie-Hellman group to be used.
633 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200634#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
635 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100636/** Diffie-Hellman public key.
637 *
Paul Elliott75e27032020-06-03 15:17:39 +0100638 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100639 * Diffie-Hellman group to be used.
640 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200641#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
642 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
643
644/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
645#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200646 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200647 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
648/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200649#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200650 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200651 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200652/** Whether a key type is a Diffie-Hellman public key. */
653#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
654 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
655 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
656
657/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100658#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
659 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100660 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
661 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200662
Gilles Peskine228abc52019-12-03 17:24:19 +0100663/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
664 *
665 * This family includes groups with the following key sizes (in bits):
666 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
667 * all of these sizes or only a subset.
668 */
Paul Elliott75e27032020-06-03 15:17:39 +0100669#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100670
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100671#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100672 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100673/** The block size of a block cipher.
674 *
675 * \param type A cipher key type (value of type #psa_key_type_t).
676 *
677 * \return The block size for a block cipher, or 1 for a stream cipher.
678 * The return value is undefined if \p type is not a supported
679 * cipher key type.
680 *
681 * \note It is possible to build stream cipher algorithms on top of a block
682 * cipher, for example CTR mode (#PSA_ALG_CTR).
683 * This macro only takes the key type into account, so it cannot be
684 * used to determine the size of the data that #psa_cipher_update()
685 * might buffer for future processing in general.
686 *
687 * \note This macro returns a compile-time constant if its argument is one.
688 *
689 * \warning This macro may evaluate its argument multiple times.
690 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100691#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100692 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100693 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100694 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100695
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200696/* Note that algorithm values are embedded in the persistent key store,
697 * as part of key metadata. As a consequence, they must not be changed
698 * (unless the storage format version changes).
699 */
700
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100701/** Vendor-defined algorithm flag.
702 *
703 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
704 * bit set. Vendors who define additional algorithms must use an encoding with
705 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
706 * used by standard encodings whenever practical.
707 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100708#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100709
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100710#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
711#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
712#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
713#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
714#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
715#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
716#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
717#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
718#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100719
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100720/** Whether an algorithm is vendor-defined.
721 *
722 * See also #PSA_ALG_VENDOR_FLAG.
723 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100724#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
725 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
726
727/** Whether the specified algorithm is a hash algorithm.
728 *
729 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
730 *
731 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
732 * This macro may return either 0 or 1 if \p alg is not a supported
733 * algorithm identifier.
734 */
735#define PSA_ALG_IS_HASH(alg) \
736 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
737
738/** Whether the specified algorithm is a MAC algorithm.
739 *
740 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
741 *
742 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
743 * This macro may return either 0 or 1 if \p alg is not a supported
744 * algorithm identifier.
745 */
746#define PSA_ALG_IS_MAC(alg) \
747 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
748
749/** Whether the specified algorithm is a symmetric cipher algorithm.
750 *
751 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
752 *
753 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
754 * This macro may return either 0 or 1 if \p alg is not a supported
755 * algorithm identifier.
756 */
757#define PSA_ALG_IS_CIPHER(alg) \
758 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
759
760/** Whether the specified algorithm is an authenticated encryption
761 * with associated data (AEAD) algorithm.
762 *
763 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
764 *
765 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
766 * This macro may return either 0 or 1 if \p alg is not a supported
767 * algorithm identifier.
768 */
769#define PSA_ALG_IS_AEAD(alg) \
770 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
771
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200772/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200773 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100774 *
775 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
776 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200777 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100778 * This macro may return either 0 or 1 if \p alg is not a supported
779 * algorithm identifier.
780 */
781#define PSA_ALG_IS_SIGN(alg) \
782 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
783
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200784/** Whether the specified algorithm is an asymmetric encryption algorithm,
785 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100786 *
787 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
788 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200789 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100790 * This macro may return either 0 or 1 if \p alg is not a supported
791 * algorithm identifier.
792 */
793#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
794 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
795
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100796/** Whether the specified algorithm is a key agreement algorithm.
797 *
798 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
799 *
800 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
801 * This macro may return either 0 or 1 if \p alg is not a supported
802 * algorithm identifier.
803 */
804#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100805 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100806
807/** Whether the specified algorithm is a key derivation algorithm.
808 *
809 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
810 *
811 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
812 * This macro may return either 0 or 1 if \p alg is not a supported
813 * algorithm identifier.
814 */
815#define PSA_ALG_IS_KEY_DERIVATION(alg) \
816 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
817
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200818/** An invalid algorithm identifier value. */
Gilles Peskine7f3659a2023-01-04 19:52:38 +0100819/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200820#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskine7f3659a2023-01-04 19:52:38 +0100821/* *INDENT-ON* */
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200822
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100823#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100824/** MD2 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100825#define PSA_ALG_MD2 ((psa_algorithm_t) 0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100826/** MD4 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100827#define PSA_ALG_MD4 ((psa_algorithm_t) 0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100828/** MD5 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100829#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100830/** PSA_ALG_RIPEMD160 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100831#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100832/** SHA1 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100833#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100834/** SHA2-224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100835#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100836/** SHA2-256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100837#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100838/** SHA2-384 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100839#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100840/** SHA2-512 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100841#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100842/** SHA2-512/224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100843#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100844/** SHA2-512/256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100845#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100846/** SHA3-224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100847#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100848/** SHA3-256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100849#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100850/** SHA3-384 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100851#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100852/** SHA3-512 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100853#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100854/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100855 *
856 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
857 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
858 * has the same output size and a (theoretically) higher security strength.
859 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100860#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100861
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100862/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100863 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100864 * This value may be used to form the algorithm usage field of a policy
865 * for a signature algorithm that is parametrized by a hash. The key
866 * may then be used to perform operations using the same signature
867 * algorithm parametrized with any supported hash.
868 *
869 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine35115f92021-10-04 18:10:38 +0200870 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100871 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100872 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100873 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
874 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100875 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200876 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100877 * ```
878 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100879 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100880 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
881 * call to sign or verify a message may use a different hash.
882 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200883 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
884 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
885 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100886 * ```
887 *
888 * This value may not be used to build other algorithms that are
889 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100890 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100891 *
892 * This value may not be used to build an algorithm specification to
893 * perform an operation. It is only valid to build policies.
894 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100895#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100896
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100897#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
898#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100899/** Macro to build an HMAC algorithm.
900 *
901 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
902 *
903 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
904 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
905 *
906 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100907 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100908 * hash algorithm.
909 */
910#define PSA_ALG_HMAC(hash_alg) \
911 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
912
913#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
914 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
915
916/** Whether the specified algorithm is an HMAC algorithm.
917 *
918 * HMAC is a family of MAC algorithms that are based on a hash function.
919 *
920 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
921 *
922 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
923 * This macro may return either 0 or 1 if \p alg is not a supported
924 * algorithm identifier.
925 */
926#define PSA_ALG_IS_HMAC(alg) \
927 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
928 PSA_ALG_HMAC_BASE)
929
930/* In the encoding of a MAC algorithm, the bits corresponding to
931 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
932 * truncated. As an exception, the value 0 means the untruncated algorithm,
933 * whatever its length is. The length is encoded in 6 bits, so it can
934 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
935 * to full length is correctly encoded as 0 and any non-trivial truncation
936 * is correctly encoded as a value between 1 and 63. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100937#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100938#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100939
Steven Cooremand927ed72021-02-22 19:59:35 +0100940/* In the encoding of a MAC algorithm, the bit corresponding to
941 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100942 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
943 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100944 * same base class and having a (potentially truncated) MAC length greater or
945 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100946#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +0100947
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100948/** Macro to build a truncated MAC algorithm.
949 *
950 * A truncated MAC algorithm is identical to the corresponding MAC
951 * algorithm except that the MAC value for the truncated algorithm
952 * consists of only the first \p mac_length bytes of the MAC value
953 * for the untruncated algorithm.
954 *
955 * \note This macro may allow constructing algorithm identifiers that
956 * are not valid, either because the specified length is larger
957 * than the untruncated MAC or because the specified length is
958 * smaller than permitted by the implementation.
959 *
960 * \note It is implementation-defined whether a truncated MAC that
961 * is truncated to the same length as the MAC of the untruncated
962 * algorithm is considered identical to the untruncated algorithm
963 * for policy comparison purposes.
964 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200965 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100966 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100967 * is true). This may be a truncated or untruncated
968 * MAC algorithm.
969 * \param mac_length Desired length of the truncated MAC in bytes.
970 * This must be at most the full length of the MAC
971 * and must be at least an implementation-specified
972 * minimum. The implementation-specified minimum
973 * shall not be zero.
974 *
975 * \return The corresponding MAC algorithm with the specified
976 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100977 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100978 * MAC algorithm or if \p mac_length is too small or
979 * too large for the specified MAC algorithm.
980 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100981#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
982 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
983 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100984 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
985
986/** Macro to build the base MAC algorithm corresponding to a truncated
987 * MAC algorithm.
988 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200989 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100990 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100991 * is true). This may be a truncated or untruncated
992 * MAC algorithm.
993 *
994 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100995 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100996 * MAC algorithm.
997 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100998#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
999 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1000 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001001
1002/** Length to which a MAC algorithm is truncated.
1003 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001004 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001005 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001006 * is true).
1007 *
1008 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001009 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1010 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001011 * MAC algorithm.
1012 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001013#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1014 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001015
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001016/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001017 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001018 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001019 * sharing the same base algorithm, and where the (potentially truncated) MAC
1020 * length of the specific algorithm is equal to or larger then the wildcard
1021 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001022 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001023 * \note When setting the minimum required MAC length to less than the
1024 * smallest MAC length allowed by the base algorithm, this effectively
1025 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001026 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001027 * \param mac_alg A MAC algorithm identifier (value of type
1028 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1029 * is true).
1030 * \param min_mac_length Desired minimum length of the message authentication
1031 * code in bytes. This must be at most the untruncated
1032 * length of the MAC and must be at least 1.
1033 *
1034 * \return The corresponding MAC wildcard algorithm with the
1035 * specified minimum length.
1036 * \return Unspecified if \p mac_alg is not a supported MAC
1037 * algorithm or if \p min_mac_length is less than 1 or
1038 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001039 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001040#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001041 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1042 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001043
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001044#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001045/** The CBC-MAC construction over a block cipher
1046 *
1047 * \warning CBC-MAC is insecure in many cases.
1048 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1049 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001050#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001051/** The CMAC construction over a block cipher */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001052#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001053
1054/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1055 *
1056 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1057 *
1058 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1059 * This macro may return either 0 or 1 if \p alg is not a supported
1060 * algorithm identifier.
1061 */
1062#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1063 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1064 PSA_ALG_CIPHER_MAC_BASE)
1065
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001066#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1067#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001068
1069/** Whether the specified algorithm is a stream cipher.
1070 *
1071 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1072 * by applying a bitwise-xor with a stream of bytes that is generated
1073 * from a key.
1074 *
1075 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1076 *
1077 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1078 * This macro may return either 0 or 1 if \p alg is not a supported
1079 * algorithm identifier or if it is not a symmetric cipher algorithm.
1080 */
1081#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1082 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001083 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001084
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001085/** The stream cipher mode of a stream cipher algorithm.
1086 *
1087 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001088 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1089 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001090 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001091#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001092
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001093/** The CTR stream cipher mode.
1094 *
1095 * CTR is a stream cipher which is built from a block cipher.
1096 * The underlying block cipher is determined by the key type.
1097 * For example, to use AES-128-CTR, use this algorithm with
1098 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1099 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001100#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001101
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001102/** The CFB stream cipher mode.
1103 *
1104 * The underlying block cipher is determined by the key type.
1105 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001106#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001107
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001108/** The OFB stream cipher mode.
1109 *
1110 * The underlying block cipher is determined by the key type.
1111 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001112#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001113
1114/** The XTS cipher mode.
1115 *
1116 * XTS is a cipher mode which is built from a block cipher. It requires at
1117 * least one full block of input, but beyond this minimum the input
1118 * does not need to be a whole number of blocks.
1119 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001120#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001121
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001122/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1123 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001124 * \warning ECB mode does not protect the confidentiality of the encrypted data
1125 * except in extremely narrow circumstances. It is recommended that applications
1126 * only use ECB if they need to construct an operating mode that the
1127 * implementation does not provide. Implementations are encouraged to provide
1128 * the modes that applications need in preference to supporting direct access
1129 * to ECB.
1130 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001131 * The underlying block cipher is determined by the key type.
1132 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001133 * This symmetric cipher mode can only be used with messages whose lengths are a
1134 * multiple of the block size of the chosen block cipher.
1135 *
1136 * ECB mode does not accept an initialization vector (IV). When using a
1137 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1138 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001139 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001140#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001141
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001142/** The CBC block cipher chaining mode, with no padding.
1143 *
1144 * The underlying block cipher is determined by the key type.
1145 *
1146 * This symmetric cipher mode can only be used with messages whose lengths
1147 * are whole number of blocks for the chosen block cipher.
1148 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001149#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001150
1151/** The CBC block cipher chaining mode with PKCS#7 padding.
1152 *
1153 * The underlying block cipher is determined by the key type.
1154 *
1155 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1156 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001157#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001158
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001159#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001160
1161/** Whether the specified algorithm is an AEAD mode on a block cipher.
1162 *
1163 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1164 *
1165 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1166 * a block cipher, 0 otherwise.
1167 * This macro may return either 0 or 1 if \p alg is not a supported
1168 * algorithm identifier.
1169 */
1170#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1171 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1172 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1173
Gilles Peskine9153ec02019-02-15 13:02:02 +01001174/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001175 *
1176 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001177 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001178#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001179
1180/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001181 *
1182 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001183 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001184#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001185
1186/** The Chacha20-Poly1305 AEAD algorithm.
1187 *
1188 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001189 *
1190 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1191 * and should reject other sizes.
1192 *
1193 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001194 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001195#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001196
Tom Cosgrove5205c972022-07-28 06:12:08 +01001197/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001198 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1199 * The constants for default lengths follow this encoding.
1200 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001201#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001202#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001203
Steven Cooremand927ed72021-02-22 19:59:35 +01001204/* In the encoding of an AEAD algorithm, the bit corresponding to
1205 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001206 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1207 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001208 * same base class and having a tag length greater than or equal to the one
1209 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001210#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001211
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001212/** Macro to build a shortened AEAD algorithm.
1213 *
1214 * A shortened AEAD algorithm is similar to the corresponding AEAD
1215 * algorithm, but has an authentication tag that consists of fewer bytes.
1216 * Depending on the algorithm, the tag length may affect the calculation
1217 * of the ciphertext.
1218 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001219 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001220 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001221 * is true).
1222 * \param tag_length Desired length of the authentication tag in bytes.
1223 *
1224 * \return The corresponding AEAD algorithm with the specified
1225 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001226 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001227 * AEAD algorithm or if \p tag_length is not valid
1228 * for the specified AEAD algorithm.
1229 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001230#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001231 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1232 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001233 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001234 PSA_ALG_AEAD_TAG_LENGTH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001235
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001236/** Retrieve the tag length of a specified AEAD algorithm
1237 *
1238 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001239 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001240 * is true).
1241 *
1242 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001243 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001244 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001245 */
1246#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1247 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001248 PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001249
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001250/** Calculate the corresponding AEAD algorithm with the default tag length.
1251 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001252 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001253 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001254 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001255 * \return The corresponding AEAD algorithm with the default
1256 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001257 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001258#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001259 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001260 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1261 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1262 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001263 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001264#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1265 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1266 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001267 ref :
1268
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001269/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001270 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001271 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001272 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001273 * algorithm is equal to or larger then the minimum tag length specified by the
1274 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001275 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001276 * \note When setting the minimum required tag length to less than the
1277 * smallest tag length allowed by the base algorithm, this effectively
1278 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001279 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001280 * \param aead_alg An AEAD algorithm identifier (value of type
1281 * #psa_algorithm_t such that
1282 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1283 * \param min_tag_length Desired minimum length of the authentication tag in
1284 * bytes. This must be at least 1 and at most the largest
1285 * allowed tag length of the algorithm.
1286 *
1287 * \return The corresponding AEAD wildcard algorithm with the
1288 * specified minimum length.
1289 * \return Unspecified if \p aead_alg is not a supported
1290 * AEAD algorithm or if \p min_tag_length is less than 1
1291 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001292 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001293#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001294 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1295 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001296
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001297#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001298/** RSA PKCS#1 v1.5 signature with hashing.
1299 *
1300 * This is the signature scheme defined by RFC 8017
1301 * (PKCS#1: RSA Cryptography Specifications) under the name
1302 * RSASSA-PKCS1-v1_5.
1303 *
1304 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1305 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001306 * This includes #PSA_ALG_ANY_HASH
1307 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001308 *
1309 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001310 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001311 * hash algorithm.
1312 */
1313#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1314 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1315/** Raw PKCS#1 v1.5 signature.
1316 *
1317 * The input to this algorithm is the DigestInfo structure used by
1318 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1319 * steps 3&ndash;6.
1320 */
1321#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1322#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1323 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1324
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001325#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1326#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001327/** RSA PSS signature with hashing.
1328 *
1329 * This is the signature scheme defined by RFC 8017
1330 * (PKCS#1: RSA Cryptography Specifications) under the name
1331 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu54bc05d2022-06-17 10:25:05 +01001332 * a salt length equal to the length of the hash, or the largest
1333 * possible salt length for the algorithm and key size if that is
1334 * smaller than the hash length. The specified hash algorithm is
1335 * used to hash the input message, to create the salted hash, and
1336 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001337 *
1338 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1339 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001340 * This includes #PSA_ALG_ANY_HASH
1341 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001342 *
1343 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001344 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001345 * hash algorithm.
1346 */
1347#define PSA_ALG_RSA_PSS(hash_alg) \
1348 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine35115f92021-10-04 18:10:38 +02001349
1350/** RSA PSS signature with hashing with relaxed verification.
1351 *
1352 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1353 * but allows an arbitrary salt length (including \c 0) when verifying a
1354 * signature.
1355 *
1356 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1357 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1358 * This includes #PSA_ALG_ANY_HASH
1359 * when specifying the algorithm in a usage policy.
1360 *
1361 * \return The corresponding RSA PSS signature algorithm.
1362 * \return Unspecified if \p hash_alg is not a supported
1363 * hash algorithm.
1364 */
1365#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1366 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1367
1368/** Whether the specified algorithm is RSA PSS with standard salt.
1369 *
1370 * \param alg An algorithm value or an algorithm policy wildcard.
1371 *
1372 * \return 1 if \p alg is of the form
1373 * #PSA_ALG_RSA_PSS(\c hash_alg),
1374 * where \c hash_alg is a hash algorithm or
1375 * #PSA_ALG_ANY_HASH. 0 otherwise.
1376 * This macro may return either 0 or 1 if \p alg is not
1377 * a supported algorithm identifier or policy.
1378 */
1379#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1381
Gilles Peskine35115f92021-10-04 18:10:38 +02001382/** Whether the specified algorithm is RSA PSS with any salt.
1383 *
1384 * \param alg An algorithm value or an algorithm policy wildcard.
1385 *
1386 * \return 1 if \p alg is of the form
1387 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1388 * where \c hash_alg is a hash algorithm or
1389 * #PSA_ALG_ANY_HASH. 0 otherwise.
1390 * This macro may return either 0 or 1 if \p alg is not
1391 * a supported algorithm identifier or policy.
1392 */
1393#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1394 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1395
1396/** Whether the specified algorithm is RSA PSS.
1397 *
1398 * This includes any of the RSA PSS algorithm variants, regardless of the
1399 * constraints on salt length.
1400 *
1401 * \param alg An algorithm value or an algorithm policy wildcard.
1402 *
1403 * \return 1 if \p alg is of the form
1404 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1405 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1406 * where \c hash_alg is a hash algorithm or
1407 * #PSA_ALG_ANY_HASH. 0 otherwise.
1408 * This macro may return either 0 or 1 if \p alg is not
1409 * a supported algorithm identifier or policy.
1410 */
1411#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef8362ca2021-10-08 16:28:32 +02001412 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1413 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskine35115f92021-10-04 18:10:38 +02001414
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001415#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001416/** ECDSA signature with hashing.
1417 *
1418 * This is the ECDSA signature scheme defined by ANSI X9.62,
1419 * with a random per-message secret number (*k*).
1420 *
1421 * The representation of the signature as a byte string consists of
Shaun Case0e7791f2021-12-20 21:14:10 -08001422 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001423 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1424 * of the base point of the curve in octets. Each value is represented
1425 * in big-endian order (most significant octet first).
1426 *
1427 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1428 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001429 * This includes #PSA_ALG_ANY_HASH
1430 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001431 *
1432 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001433 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001434 * hash algorithm.
1435 */
1436#define PSA_ALG_ECDSA(hash_alg) \
1437 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1438/** ECDSA signature without hashing.
1439 *
1440 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1441 * without specifying a hash algorithm. This algorithm may only be
1442 * used to sign or verify a sequence of bytes that should be an
1443 * already-calculated hash. Note that the input is padded with
1444 * zeros on the left or truncated on the left as required to fit
1445 * the curve size.
1446 */
1447#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001448#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001449/** Deterministic ECDSA signature with hashing.
1450 *
1451 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1452 *
1453 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1454 *
1455 * Note that when this algorithm is used for verification, signatures
1456 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1457 * same private key are accepted. In other words,
1458 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1459 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1460 *
1461 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1462 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001463 * This includes #PSA_ALG_ANY_HASH
1464 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001465 *
1466 * \return The corresponding deterministic ECDSA signature
1467 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001468 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001469 * hash algorithm.
1470 */
1471#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1472 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001473#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001474#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001475 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001476 PSA_ALG_ECDSA_BASE)
1477#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001478 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001479#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1480 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1481#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1482 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1483
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001484/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1485 * using standard parameters.
1486 *
1487 * Contexts are not supported in the current version of this specification
1488 * because there is no suitable signature interface that can take the
1489 * context as a parameter. A future version of this specification may add
1490 * suitable functions and extend this algorithm to support contexts.
1491 *
1492 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1493 * In this specification, the following curves are supported:
1494 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1495 * in RFC 8032.
1496 * The curve is Edwards25519.
1497 * The hash function used internally is SHA-512.
1498 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1499 * in RFC 8032.
1500 * The curve is Edwards448.
1501 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001502 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001503 *
1504 * This algorithm can be used with psa_sign_message() and
1505 * psa_verify_message(). Since there is no prehashing, it cannot be used
1506 * with psa_sign_hash() or psa_verify_hash().
1507 *
1508 * The signature format is the concatenation of R and S as defined by
1509 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1510 * string for Ed448).
1511 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001512#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001513
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001514#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001515#define PSA_ALG_IS_HASH_EDDSA(alg) \
1516 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1517
1518/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001519 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001520 *
1521 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1522 *
1523 * This algorithm is Ed25519 as specified in RFC 8032.
1524 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001525 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001526 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001527 *
1528 * This is a hash-and-sign algorithm: to calculate a signature,
1529 * you can either:
1530 * - call psa_sign_message() on the message;
1531 * - or calculate the SHA-512 hash of the message
1532 * with psa_hash_compute()
1533 * or with a multi-part hash operation started with psa_hash_setup(),
1534 * using the hash algorithm #PSA_ALG_SHA_512,
1535 * then sign the calculated hash with psa_sign_hash().
1536 * Verifying a signature is similar, using psa_verify_message() or
1537 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001538 */
1539#define PSA_ALG_ED25519PH \
1540 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1541
1542/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1543 * using SHAKE256 and the Edwards448 curve.
1544 *
1545 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1546 *
1547 * This algorithm is Ed448 as specified in RFC 8032.
1548 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001549 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001550 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001551 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001552 *
1553 * This is a hash-and-sign algorithm: to calculate a signature,
1554 * you can either:
1555 * - call psa_sign_message() on the message;
1556 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1557 * with psa_hash_compute()
1558 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001559 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001560 * then sign the calculated hash with psa_sign_hash().
1561 * Verifying a signature is similar, using psa_verify_message() or
1562 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001563 */
1564#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001565 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001566
Gilles Peskine6d400852021-02-24 21:39:52 +01001567/* Default definition, to be overridden if the library is extended with
1568 * more hash-and-sign algorithms that we want to keep out of this header
1569 * file. */
1570#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1571
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001572/** Whether the specified algorithm is a signature algorithm that can be used
1573 * with psa_sign_hash() and psa_verify_hash().
1574 *
1575 * This encompasses all strict hash-and-sign algorithms categorized by
1576 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1577 * paradigm more loosely:
1578 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1579 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1580 *
1581 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1582 *
1583 * \return 1 if alg is a signature algorithm that can be used to sign a
1584 * hash. 0 if alg is a signature algorithm that can only be used
1585 * to sign a message. 0 if alg is not a signature algorithm.
1586 * This macro can return either 0 or 1 if alg is not a
1587 * supported algorithm identifier.
1588 */
1589#define PSA_ALG_IS_SIGN_HASH(alg) \
1590 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1591 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1592 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1593
1594/** Whether the specified algorithm is a signature algorithm that can be used
1595 * with psa_sign_message() and psa_verify_message().
1596 *
1597 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1598 *
1599 * \return 1 if alg is a signature algorithm that can be used to sign a
1600 * message. 0 if \p alg is a signature algorithm that can only be used
1601 * to sign an already-calculated hash. 0 if \p alg is not a signature
1602 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1603 * supported algorithm identifier.
1604 */
1605#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001606 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001607
Gilles Peskined35b4892019-01-14 16:02:15 +01001608/** Whether the specified algorithm is a hash-and-sign algorithm.
1609 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001610 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1611 * structured in two parts: first the calculation of a hash in a way that
1612 * does not depend on the key, then the calculation of a signature from the
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001613 * hash value and the key. Hash-and-sign algorithms encode the hash
1614 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1615 * to extract this algorithm.
1616 *
1617 * Thus, for a hash-and-sign algorithm,
1618 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1619 * ```
1620 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1621 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1622 * ```
1623 * Most usefully, separating the hash from the signature allows the hash
1624 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1625 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1626 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001627 *
1628 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1629 *
1630 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1631 * This macro may return either 0 or 1 if \p alg is not a supported
1632 * algorithm identifier.
1633 */
1634#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001635 (PSA_ALG_IS_SIGN_HASH(alg) && \
1636 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001637
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001638/** Get the hash used by a hash-and-sign signature algorithm.
1639 *
1640 * A hash-and-sign algorithm is a signature algorithm which is
1641 * composed of two phases: first a hashing phase which does not use
1642 * the key and produces a hash of the input message, then a signing
1643 * phase which only uses the hash and the key and not the message
1644 * itself.
1645 *
1646 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1647 * #PSA_ALG_IS_SIGN(\p alg) is true).
1648 *
1649 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1650 * algorithm.
1651 * \return 0 if \p alg is a signature algorithm that does not
1652 * follow the hash-and-sign structure.
1653 * \return Unspecified if \p alg is not a signature algorithm or
1654 * if it is not supported by the implementation.
1655 */
1656#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001657 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001658 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1659 0)
1660
1661/** RSA PKCS#1 v1.5 encryption.
1662 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001663#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001664
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001665#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001666/** RSA OAEP encryption.
1667 *
1668 * This is the encryption scheme defined by RFC 8017
1669 * (PKCS#1: RSA Cryptography Specifications) under the name
1670 * RSAES-OAEP, with the message generation function MGF1.
1671 *
1672 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1673 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1674 * for MGF1.
1675 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001676 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001677 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001678 * hash algorithm.
1679 */
1680#define PSA_ALG_RSA_OAEP(hash_alg) \
1681 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1682#define PSA_ALG_IS_RSA_OAEP(alg) \
1683 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1684#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1685 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1686 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1687 0)
1688
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001689#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001690/** Macro to build an HKDF algorithm.
1691 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001692 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001693 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001694 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001695 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001696 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001697 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1698 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1699 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1700 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001701 * starting to generate output.
1702 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001703 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1704 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1705 *
1706 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001707 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001708 * hash algorithm.
1709 */
1710#define PSA_ALG_HKDF(hash_alg) \
1711 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1712/** Whether the specified algorithm is an HKDF algorithm.
1713 *
1714 * HKDF is a family of key derivation algorithms that are based on a hash
1715 * function and the HMAC construction.
1716 *
1717 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1718 *
1719 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1720 * This macro may return either 0 or 1 if \c alg is not a supported
1721 * key derivation algorithm identifier.
1722 */
1723#define PSA_ALG_IS_HKDF(alg) \
1724 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1725#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1726 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1727
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001728#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001729/** Macro to build a TLS-1.2 PRF algorithm.
1730 *
1731 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1732 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1733 * used with either SHA-256 or SHA-384.
1734 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001735 * This key derivation algorithm uses the following inputs, which must be
1736 * passed in the order given here:
1737 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001738 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1739 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001740 *
1741 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001742 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001743 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001744 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001745 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001746 * TLS 1.2 PRF using HMAC-SHA-256.
1747 *
1748 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1749 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1750 *
1751 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001752 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001753 * hash algorithm.
1754 */
1755#define PSA_ALG_TLS12_PRF(hash_alg) \
1756 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1757
1758/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1759 *
1760 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1761 *
1762 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1763 * This macro may return either 0 or 1 if \c alg is not a supported
1764 * key derivation algorithm identifier.
1765 */
1766#define PSA_ALG_IS_TLS12_PRF(alg) \
1767 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1768#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1769 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1770
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001771#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001772/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1773 *
1774 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1775 * from the PreSharedKey (PSK) through the application of padding
1776 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1777 * The latter is based on HMAC and can be used with either SHA-256
1778 * or SHA-384.
1779 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001780 * This key derivation algorithm uses the following inputs, which must be
1781 * passed in the order given here:
1782 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001783 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1784 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001785 *
1786 * For the application to TLS-1.2, the seed (which is
1787 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1788 * ClientHello.Random + ServerHello.Random,
1789 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001790 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001791 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001792 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1793 *
1794 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1795 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1796 *
1797 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001798 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001799 * hash algorithm.
1800 */
1801#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1802 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1803
1804/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1805 *
1806 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1807 *
1808 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1809 * This macro may return either 0 or 1 if \c alg is not a supported
1810 * key derivation algorithm identifier.
1811 */
1812#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1813 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1814#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1815 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1816
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001817#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
1818#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001819
Gilles Peskine6843c292019-01-18 16:44:49 +01001820/** Macro to build a combined algorithm that chains a key agreement with
1821 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001822 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001823 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1824 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1825 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1826 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001827 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001828 * \return The corresponding key agreement and derivation
1829 * algorithm.
1830 * \return Unspecified if \p ka_alg is not a supported
1831 * key agreement algorithm or \p kdf_alg is not a
1832 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001833 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001834#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1835 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001836
1837#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1838 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1839
Gilles Peskine6843c292019-01-18 16:44:49 +01001840#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1841 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001842
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001843/** Whether the specified algorithm is a raw key agreement algorithm.
1844 *
1845 * A raw key agreement algorithm is one that does not specify
1846 * a key derivation function.
1847 * Usually, raw key agreement algorithms are constructed directly with
1848 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001849 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001850 *
1851 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1852 *
1853 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1854 * This macro may return either 0 or 1 if \p alg is not a supported
1855 * algorithm identifier.
1856 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001857#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001858 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1859 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001860
1861#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1862 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1863
1864/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001865 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001866 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001867 * `g^{ab}` in big-endian format.
1868 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1869 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001870 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001871#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001872
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001873/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1874 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001875 * This includes the raw finite field Diffie-Hellman algorithm as well as
1876 * finite-field Diffie-Hellman followed by any supporter key derivation
1877 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001878 *
1879 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1880 *
1881 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1882 * This macro may return either 0 or 1 if \c alg is not a supported
1883 * key agreement algorithm identifier.
1884 */
1885#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001886 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001887
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001888/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1889 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001890 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001891 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1892 * `m` is the bit size associated with the curve, i.e. the bit size of the
1893 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1894 * the byte containing the most significant bit of the shared secret
1895 * is padded with zero bits. The byte order is either little-endian
1896 * or big-endian depending on the curve type.
1897 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001898 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001899 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1900 * in little-endian byte order.
1901 * The bit size is 448 for Curve448 and 255 for Curve25519.
1902 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001903 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001904 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1905 * in big-endian byte order.
1906 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1907 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001908 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001909 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1910 * in big-endian byte order.
1911 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001912 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001913#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001914
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001915/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1916 * algorithm.
1917 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001918 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1919 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1920 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001921 *
1922 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1923 *
1924 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1925 * 0 otherwise.
1926 * This macro may return either 0 or 1 if \c alg is not a supported
1927 * key agreement algorithm identifier.
1928 */
1929#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001930 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001931
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001932/** Whether the specified algorithm encoding is a wildcard.
1933 *
1934 * Wildcard values may only be used to set the usage algorithm field in
1935 * a policy, not to perform an operation.
1936 *
1937 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1938 *
1939 * \return 1 if \c alg is a wildcard algorithm encoding.
1940 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1941 * an operation).
1942 * \return This macro may return either 0 or 1 if \c alg is not a supported
1943 * algorithm identifier.
1944 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001945#define PSA_ALG_IS_WILDCARD(alg) \
1946 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1947 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1948 PSA_ALG_IS_MAC(alg) ? \
1949 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1950 PSA_ALG_IS_AEAD(alg) ? \
1951 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001952 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001953
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001954/**@}*/
1955
1956/** \defgroup key_lifetimes Key lifetimes
1957 * @{
1958 */
1959
Gilles Peskine43bd07d2022-06-20 18:41:20 +02001960/* Note that location and persistence level values are embedded in the
1961 * persistent key store, as part of key metadata. As a consequence, they
1962 * must not be changed (unless the storage format version changes).
1963 */
1964
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001965/** The default lifetime for volatile keys.
1966 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001967 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001968 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001969 *
1970 * A key with this lifetime is typically stored in the RAM area of the
1971 * PSA Crypto subsystem. However this is an implementation choice.
1972 * If an implementation stores data about the key in a non-volatile memory,
1973 * it must release all the resources associated with the key and erase the
1974 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001975 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001976#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001977
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001978/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001979 *
1980 * A persistent key remains in storage until it is explicitly destroyed or
1981 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001982 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001983 * provide their own mechanism (for example to perform a factory reset,
1984 * to prepare for device refurbishment, or to uninstall an application).
1985 *
1986 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001987 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001988 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001989 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001990#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001991
Gilles Peskineaff11812020-05-04 19:03:10 +02001992/** The persistence level of volatile keys.
1993 *
1994 * See ::psa_key_persistence_t for more information.
1995 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001996#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001997
1998/** The default persistence level for persistent keys.
1999 *
2000 * See ::psa_key_persistence_t for more information.
2001 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002002#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002003
2004/** A persistence level indicating that a key is never destroyed.
2005 *
2006 * See ::psa_key_persistence_t for more information.
2007 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002008#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002009
2010#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002011 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002012
2013#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002014 ((psa_key_location_t) ((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002015
2016/** Whether a key lifetime indicates that the key is volatile.
2017 *
2018 * A volatile key is automatically destroyed by the implementation when
2019 * the application instance terminates. In particular, a volatile key
2020 * is automatically destroyed on a power reset of the device.
2021 *
2022 * A key that is not volatile is persistent. Persistent keys are
2023 * preserved until the application explicitly destroys them or until an
2024 * implementation-specific device management event occurs (for example,
2025 * a factory reset).
2026 *
2027 * \param lifetime The lifetime value to query (value of type
2028 * ::psa_key_lifetime_t).
2029 *
2030 * \return \c 1 if the key is volatile, otherwise \c 0.
2031 */
2032#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2033 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002034 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002035
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002036/** Whether a key lifetime indicates that the key is read-only.
2037 *
2038 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2039 * They must be created through platform-specific means that bypass the API.
2040 *
2041 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine11794b32021-06-07 23:21:50 +02002042 * consider a platform with multiple levels of privilege, where a
2043 * low-privilege application can use a key but is not allowed to destroy
2044 * it, and the platform exposes the key to the application with a read-only
2045 * lifetime. High-privilege code can destroy the key even though the
2046 * application sees the key as read-only.
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002047 *
2048 * \param lifetime The lifetime value to query (value of type
2049 * ::psa_key_lifetime_t).
2050 *
2051 * \return \c 1 if the key is read-only, otherwise \c 0.
2052 */
2053#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2054 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2055 PSA_KEY_PERSISTENCE_READ_ONLY)
2056
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002057/** Construct a lifetime from a persistence level and a location.
2058 *
2059 * \param persistence The persistence level
2060 * (value of type ::psa_key_persistence_t).
2061 * \param location The location indicator
2062 * (value of type ::psa_key_location_t).
2063 *
2064 * \return The constructed lifetime value.
2065 */
2066#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2067 ((location) << 8 | (persistence))
2068
Gilles Peskineaff11812020-05-04 19:03:10 +02002069/** The local storage area for persistent keys.
2070 *
2071 * This storage area is available on all systems that can store persistent
2072 * keys without delegating the storage to a third-party cryptoprocessor.
2073 *
2074 * See ::psa_key_location_t for more information.
2075 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002076#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002077
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002078#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002079
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002080/* Note that key identifier values are embedded in the
2081 * persistent key store, as part of key metadata. As a consequence, they
2082 * must not be changed (unless the storage format version changes).
2083 */
2084
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002085/** The null key identifier.
2086 */
Gilles Peskine7f3659a2023-01-04 19:52:38 +01002087/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002088#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine7f3659a2023-01-04 19:52:38 +01002089/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002090/** The minimum value for a key identifier chosen by the application.
2091 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002092#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002093/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002094 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002095#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002096/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002097 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002098#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002099/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002100 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002101#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002102
Ronald Cron7424f0d2020-09-14 16:17:41 +02002103
2104#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2105
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002106#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2107#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2108#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002109
2110/** Utility to initialize a key identifier at runtime.
2111 *
2112 * \param unused Unused parameter.
2113 * \param key_id Identifier of the key.
2114 */
2115static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002116 unsigned int unused, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002117{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002118 (void) unused;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002119
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002120 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002121}
2122
2123/** Compare two key identifiers.
2124 *
2125 * \param id1 First key identifier.
2126 * \param id2 Second key identifier.
2127 *
2128 * \return Non-zero if the two key identifier are equal, zero otherwise.
2129 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002130static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2131 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002132{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002133 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002134}
2135
Ronald Cronc4d1b512020-07-31 11:26:37 +02002136/** Check whether a key identifier is null.
2137 *
2138 * \param key Key identifier.
2139 *
2140 * \return Non-zero if the key identifier is null, zero otherwise.
2141 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002142static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002143{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002144 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002145}
2146
Ronald Cron7424f0d2020-09-14 16:17:41 +02002147#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2148
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002149#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2150#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).key_id)
2151#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).owner)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002152
2153/** Utility to initialize a key identifier at runtime.
2154 *
2155 * \param owner_id Identifier of the key owner.
2156 * \param key_id Identifier of the key.
2157 */
2158static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002159 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002160{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002161 return (mbedtls_svc_key_id_t){ .key_id = key_id,
2162 .owner = owner_id };
Ronald Cron7424f0d2020-09-14 16:17:41 +02002163}
2164
2165/** Compare two key identifiers.
2166 *
2167 * \param id1 First key identifier.
2168 * \param id2 Second key identifier.
2169 *
2170 * \return Non-zero if the two key identifier are equal, zero otherwise.
2171 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002172static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2173 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002174{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002175 return (id1.key_id == id2.key_id) &&
2176 mbedtls_key_owner_id_equal(id1.owner, id2.owner);
Ronald Cron7424f0d2020-09-14 16:17:41 +02002177}
2178
Ronald Cronc4d1b512020-07-31 11:26:37 +02002179/** Check whether a key identifier is null.
2180 *
2181 * \param key Key identifier.
2182 *
2183 * \return Non-zero if the key identifier is null, zero otherwise.
2184 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002185static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002186{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002187 return key.key_id == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002188}
2189
Ronald Cron7424f0d2020-09-14 16:17:41 +02002190#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002191
2192/**@}*/
2193
2194/** \defgroup policy Key policies
2195 * @{
2196 */
2197
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002198/* Note that key usage flags are embedded in the
2199 * persistent key store, as part of key metadata. As a consequence, they
2200 * must not be changed (unless the storage format version changes).
2201 */
2202
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002203/** Whether the key may be exported.
2204 *
2205 * A public key or the public part of a key pair may always be exported
2206 * regardless of the value of this permission flag.
2207 *
2208 * If a key does not have export permission, implementations shall not
2209 * allow the key to be exported in plain form from the cryptoprocessor,
2210 * whether through psa_export_key() or through a proprietary interface.
2211 * The key may however be exportable in a wrapped form, i.e. in a form
2212 * where it is encrypted by another key.
2213 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002214#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002215
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002216/** Whether the key may be copied.
2217 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002218 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002219 * with the same policy or a more restrictive policy.
2220 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002221 * For lifetimes for which the key is located in a secure element which
2222 * enforce the non-exportability of keys, copying a key outside the secure
2223 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2224 * Copying the key inside the secure element is permitted with just
2225 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2226 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002227 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2228 * is sufficient to permit the copy.
2229 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002230#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002231
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002232/** Whether the key may be used to encrypt a message.
2233 *
2234 * This flag allows the key to be used for a symmetric encryption operation,
2235 * for an AEAD encryption-and-authentication operation,
2236 * or for an asymmetric encryption operation,
2237 * if otherwise permitted by the key's type and policy.
2238 *
2239 * For a key pair, this concerns the public key.
2240 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002241#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002242
2243/** Whether the key may be used to decrypt a message.
2244 *
2245 * This flag allows the key to be used for a symmetric decryption operation,
2246 * for an AEAD decryption-and-verification operation,
2247 * or for an asymmetric decryption operation,
2248 * if otherwise permitted by the key's type and policy.
2249 *
2250 * For a key pair, this concerns the private key.
2251 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002252#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002253
2254/** Whether the key may be used to sign a message.
2255 *
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002256 * This flag allows the key to be used for a MAC calculation operation or for
2257 * an asymmetric message signature operation, if otherwise permitted by the
2258 * key’s type and policy.
2259 *
2260 * For a key pair, this concerns the private key.
2261 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002262#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002263
2264/** Whether the key may be used to verify a message.
2265 *
2266 * This flag allows the key to be used for a MAC verification operation or for
2267 * an asymmetric message signature verification operation, if otherwise
2268 * permitted by the key’s type and policy.
2269 *
2270 * For a key pair, this concerns the public key.
2271 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002272#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002273
2274/** Whether the key may be used to sign a message.
2275 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002276 * This flag allows the key to be used for a MAC calculation operation
2277 * or for an asymmetric signature operation,
2278 * if otherwise permitted by the key's type and policy.
2279 *
2280 * For a key pair, this concerns the private key.
2281 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002282#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002283
2284/** Whether the key may be used to verify a message signature.
2285 *
2286 * This flag allows the key to be used for a MAC verification operation
2287 * or for an asymmetric signature verification operation,
2288 * if otherwise permitted by by the key's type and policy.
2289 *
2290 * For a key pair, this concerns the public key.
2291 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002292#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002293
2294/** Whether the key may be used to derive other keys.
2295 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002296#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002297
2298/**@}*/
2299
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002300/** \defgroup derivation Key derivation
2301 * @{
2302 */
2303
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002304/* Key input steps are not embedded in the persistent storage, so you can
2305 * change them if needed: it's only an ABI change. */
2306
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002307/** A secret input for key derivation.
2308 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002309 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2310 * (passed to psa_key_derivation_input_key())
2311 * or the shared secret resulting from a key agreement
2312 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002313 *
2314 * The secret can also be a direct input (passed to
2315 * key_derivation_input_bytes()). In this case, the derivation operation
2316 * may not be used to derive keys: the operation will only allow
2317 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002318 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002319#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002320
2321/** A label for key derivation.
2322 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002323 * This should be a direct input.
2324 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002325 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002326#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002327
2328/** A salt for key derivation.
2329 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002330 * This should be a direct input.
2331 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002332 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002333#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002334
2335/** An information string for key derivation.
2336 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002337 * This should be a direct input.
2338 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002339 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002340#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002341
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002342/** A seed for key derivation.
2343 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002344 * This should be a direct input.
2345 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002346 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002347#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002348
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002349/**@}*/
2350
Bence Szépkútib639d432021-04-21 10:33:54 +02002351/** \defgroup helper_macros Helper macros
2352 * @{
2353 */
2354
2355/* Helper macros */
2356
2357/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2358 * regardless of the tag length they encode.
2359 *
2360 * \param aead_alg_1 An AEAD algorithm identifier.
2361 * \param aead_alg_2 An AEAD algorithm identifier.
2362 *
2363 * \return 1 if both identifiers refer to the same AEAD algorithm,
2364 * 0 otherwise.
2365 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2366 * a supported AEAD algorithm.
2367 */
2368#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2369 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2370 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2371
2372/**@}*/
2373
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002374#endif /* PSA_CRYPTO_VALUES_H */