blob: 8b3a815ac19a8cc2908a9022946504fd320dd92b [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine43bd07d2022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010024 * SPDX-License-Identifier: Apache-2.0
25 *
26 * Licensed under the Apache License, Version 2.0 (the "License"); you may
27 * not use this file except in compliance with the License.
28 * You may obtain a copy of the License at
29 *
30 * http://www.apache.org/licenses/LICENSE-2.0
31 *
32 * Unless required by applicable law or agreed to in writing, software
33 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
34 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
35 * See the License for the specific language governing permissions and
36 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037 */
38
39#ifndef PSA_CRYPTO_VALUES_H
40#define PSA_CRYPTO_VALUES_H
41
42/** \defgroup error Error codes
43 * @{
44 */
45
David Saadab4ecc272019-02-14 13:48:10 +020046/* PSA error codes */
47
Gilles Peskine43bd07d2022-06-20 18:41:20 +020048/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskinebe059e42022-06-29 14:37:17 +020049 * etc.). Do not change the values in this section or even the expansions
50 * of each macro: it must be possible to `#include` both this header
51 * and some other PSA component's headers in the same C source,
52 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
53 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
54 * to the same sequence of tokens.
55 *
56 * If you must add a new
Gilles Peskine43bd07d2022-06-20 18:41:20 +020057 * value, check with the Arm PSA framework group to pick one that other
58 * domains aren't already using. */
59
Gilles Peskinef3b731e2018-12-12 13:38:31 +010060/** The action was completed successfully. */
61#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** An error occurred that does not correspond to any defined
64 * failure cause.
65 *
66 * Implementations may use this error code if none of the other standard
67 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020068#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010069
70/** The requested operation or a parameter is not supported
71 * by this implementation.
72 *
73 * Implementations should return this error code when an enumeration
74 * parameter such as a key type, algorithm, etc. is not recognized.
75 * If a combination of parameters is recognized and identified as
76 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020077#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010078
79/** The requested action is denied by a policy.
80 *
81 * Implementations should return this error code when the parameters
82 * are recognized as valid and supported, and a policy explicitly
83 * denies the requested operation.
84 *
85 * If a subset of the parameters of a function call identify a
86 * forbidden operation, and another subset of the parameters are
87 * not valid or not supported, it is unspecified whether the function
88 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
89 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020090#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010091
92/** An output buffer is too small.
93 *
94 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
95 * description to determine a sufficient buffer size.
96 *
97 * Implementations should preferably return this error code only
98 * in cases when performing the operation with a larger output
99 * buffer would succeed. However implementations may return this
100 * error if a function has invalid or unsupported parameters in addition
101 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +0200102#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100103
David Saadab4ecc272019-02-14 13:48:10 +0200104/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100105 *
David Saadab4ecc272019-02-14 13:48:10 +0200106 * Implementations should return this error, when attempting
107 * to write an item (like a key) that already exists. */
108#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100109
David Saadab4ecc272019-02-14 13:48:10 +0200110/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100111 *
David Saadab4ecc272019-02-14 13:48:10 +0200112 * Implementations should return this error, if a requested item (like
113 * a key) does not exist. */
114#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100115
116/** The requested action cannot be performed in the current state.
117 *
118 * Multipart operations return this error when one of the
119 * functions is called out of sequence. Refer to the function
120 * descriptions for permitted sequencing of functions.
121 *
122 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100123 * that a key either exists or not,
124 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100125 * as applicable.
126 *
127 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200128 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100129 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** The parameters passed to the function are invalid.
133 *
134 * Implementations may return this error any time a parameter or
135 * combination of parameters are recognized as invalid.
136 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100137 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200138 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100139 * instead.
140 */
David Saadab4ecc272019-02-14 13:48:10 +0200141#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100142
143/** There is not enough runtime memory.
144 *
145 * If the action is carried out across multiple security realms, this
146 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200147#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100148
149/** There is not enough persistent storage.
150 *
151 * Functions that modify the key storage return this error code if
152 * there is insufficient storage space on the host media. In addition,
153 * many functions that do not otherwise access storage may return this
154 * error code if the implementation requires a mandatory log entry for
155 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a communication failure inside the implementation.
159 *
160 * This can indicate a communication failure between the application
161 * and an external cryptoprocessor or between the cryptoprocessor and
162 * an external volatile or persistent memory. A communication failure
163 * may be transient or permanent depending on the cause.
164 *
165 * \warning If a function returns this error, it is undetermined
166 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200167 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100168 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
169 * if the requested action was completed successfully in an external
170 * cryptoprocessor but there was a breakdown of communication before
171 * the cryptoprocessor could report the status to the application.
172 */
David Saadab4ecc272019-02-14 13:48:10 +0200173#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100174
175/** There was a storage failure that may have led to data loss.
176 *
177 * This error indicates that some persistent storage is corrupted.
178 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200179 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100180 * between the cryptoprocessor and its external storage (use
181 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
182 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
183 *
184 * Note that a storage failure does not indicate that any data that was
185 * previously read is invalid. However this previously read data may no
186 * longer be readable from storage.
187 *
188 * When a storage failure occurs, it is no longer possible to ensure
189 * the global integrity of the keystore. Depending on the global
190 * integrity guarantees offered by the implementation, access to other
191 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100192 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100193 *
194 * Implementations should only use this error code to report a
195 * permanent storage corruption. However application writers should
196 * keep in mind that transient errors while reading the storage may be
197 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200198#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100199
200/** A hardware failure was detected.
201 *
202 * A hardware failure may be transient or permanent depending on the
203 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200204#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100205
206/** A tampering attempt was detected.
207 *
208 * If an application receives this error code, there is no guarantee
209 * that previously accessed or computed data was correct and remains
210 * confidential. Applications should not perform any security function
211 * and should enter a safe failure state.
212 *
213 * Implementations may return this error code if they detect an invalid
214 * state that cannot happen during normal operation and that indicates
215 * that the implementation's security guarantees no longer hold. Depending
216 * on the implementation architecture and on its security and safety goals,
217 * the implementation may forcibly terminate the application.
218 *
219 * This error code is intended as a last resort when a security breach
220 * is detected and it is unsure whether the keystore data is still
221 * protected. Implementations shall only return this error code
222 * to report an alarm from a tampering detector, to indicate that
223 * the confidentiality of stored data can no longer be guaranteed,
224 * or to indicate that the integrity of previously returned data is now
225 * considered compromised. Implementations shall not use this error code
226 * to indicate a hardware failure that merely makes it impossible to
227 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
228 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
229 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
230 * instead).
231 *
232 * This error indicates an attack against the application. Implementations
233 * shall not return this error code as a consequence of the behavior of
234 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200235#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100236
237/** There is not enough entropy to generate random data needed
238 * for the requested action.
239 *
240 * This error indicates a failure of a hardware random generator.
241 * Application writers should note that this error can be returned not
242 * only by functions whose purpose is to generate random data, such
243 * as key, IV or nonce generation, but also by functions that execute
244 * an algorithm with a randomized result, as well as functions that
245 * use randomization of intermediate computations as a countermeasure
246 * to certain attacks.
247 *
248 * Implementations should avoid returning this error after psa_crypto_init()
249 * has succeeded. Implementations should generate sufficient
250 * entropy during initialization and subsequently use a cryptographically
251 * secure pseudorandom generator (PRNG). However implementations may return
252 * this error at any time if a policy requires the PRNG to be reseeded
253 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200254#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100255
256/** The signature, MAC or hash is incorrect.
257 *
258 * Verification functions return this error if the verification
259 * calculations completed successfully, and the value to be verified
260 * was determined to be incorrect.
261 *
262 * If the value to verify has an invalid size, implementations may return
263 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200264#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100265
266/** The decrypted padding is incorrect.
267 *
268 * \warning In some protocols, when decrypting data, it is essential that
269 * the behavior of the application does not depend on whether the padding
270 * is correct, down to precise timing. Applications should prefer
271 * protocols that use authenticated encryption rather than plain
272 * encryption. If the application must perform a decryption of
273 * unauthenticated data, the application writer should take care not
274 * to reveal whether the padding is invalid.
275 *
276 * Implementations should strive to make valid and invalid padding
277 * as close as possible to indistinguishable to an external observer.
278 * In particular, the timing of a decryption operation should not
279 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200280#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100281
David Saadab4ecc272019-02-14 13:48:10 +0200282/** Return this error when there's insufficient data when attempting
283 * to read from a resource. */
284#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100285
Ronald Croncf56a0a2020-08-04 09:51:30 +0200286/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100287 */
David Saadab4ecc272019-02-14 13:48:10 +0200288#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100289
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100290/** Stored data has been corrupted.
291 *
292 * This error indicates that some persistent storage has suffered corruption.
293 * It does not indicate the following situations, which have specific error
294 * codes:
295 *
296 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
297 * - A communication error between the cryptoprocessor and its external
298 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
299 * - When the storage is in a valid state but is full - use
300 * #PSA_ERROR_INSUFFICIENT_STORAGE.
301 * - When the storage fails for other reasons - use
302 * #PSA_ERROR_STORAGE_FAILURE.
303 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
304 *
305 * \note A storage corruption does not indicate that any data that was
306 * previously read is invalid. However this previously read data might no
307 * longer be readable from storage.
308 *
309 * When a storage failure occurs, it is no longer possible to ensure the
310 * global integrity of the keystore.
311 */
312#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
313
gabor-mezei-armfe309242020-11-09 17:39:56 +0100314/** Data read from storage is not valid for the implementation.
315 *
316 * This error indicates that some data read from storage does not have a valid
317 * format. It does not indicate the following situations, which have specific
318 * error codes:
319 *
320 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
321 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
322 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
323 *
324 * This error is typically a result of either storage corruption on a
325 * cleartext storage backend, or an attempt to read data that was
326 * written by an incompatible version of the library.
327 */
328#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
329
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100330/**@}*/
331
332/** \defgroup crypto_types Key and algorithm types
333 * @{
334 */
335
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200336/* Note that key type values, including ECC family and DH group values, are
337 * embedded in the persistent key store, as part of key metadata. As a
338 * consequence, they must not be changed (unless the storage format version
339 * changes).
340 */
341
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342/** An invalid key type value.
343 *
344 * Zero is not the encoding of any key type.
345 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100346#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100348/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100349 *
350 * Key types defined by this standard will never have the
351 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
352 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
353 * respect the bitwise structure used by standard encodings whenever practical.
354 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100355#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100357#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100358#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
359#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
360#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100361#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100362
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100363#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100364
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100365/** Whether a key type is vendor-defined.
366 *
367 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
368 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
370 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
371
372/** Whether a key type is an unstructured array of bytes.
373 *
374 * This encompasses both symmetric keys and non-key data.
375 */
376#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100377 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
378 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100379
380/** Whether a key type is asymmetric: either a key pair or a public key. */
381#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
382 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
383 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
384 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
385/** Whether a key type is the public part of a key pair. */
386#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
387 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
388/** Whether a key type is a key pair containing a private part and a public
389 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200390#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100391 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
392/** The key pair type corresponding to a public key type.
393 *
394 * You may also pass a key pair type as \p type, it will be left unchanged.
395 *
396 * \param type A public key type or key pair type.
397 *
398 * \return The corresponding key pair type.
399 * If \p type is not a public key or a key pair,
400 * the return value is undefined.
401 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200402#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100403 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
404/** The public key type corresponding to a key pair type.
405 *
406 * You may also pass a key pair type as \p type, it will be left unchanged.
407 *
408 * \param type A public key type or key pair type.
409 *
410 * \return The corresponding public key type.
411 * If \p type is not a public key or a key pair,
412 * the return value is undefined.
413 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200414#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100415 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
416
417/** Raw data.
418 *
419 * A "key" of this type cannot be used for any cryptographic operation.
420 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100421#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100422
423/** HMAC key.
424 *
425 * The key policy determines which underlying hash algorithm the key can be
426 * used for.
427 *
428 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100429 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100430 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100431#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100432
433/** A secret for key derivation.
434 *
435 * The key policy determines which key derivation algorithm the key
436 * can be used for.
437 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100438#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100439
Gilles Peskine737c6be2019-05-21 16:01:06 +0200440/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100441 *
442 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
443 * 32 bytes (AES-256).
444 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100445#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100446
Gilles Peskine8890f642021-09-21 11:59:39 +0200447/** Key for a cipher, AEAD or MAC algorithm based on the
448 * ARIA block cipher. */
449#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
450
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100451/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
452 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100453 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
454 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100455 *
456 * Note that single DES and 2-key 3DES are weak and strongly
457 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
458 * is weak and deprecated and should only be used in legacy protocols.
459 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100460#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100461
Gilles Peskine737c6be2019-05-21 16:01:06 +0200462/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100463 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100464#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100465
Gilles Peskine500e48f2022-04-22 16:49:30 +0200466/** Key for the ARC4 stream cipher (also known as RC4 or ARCFOUR).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100467 *
Gilles Peskine500e48f2022-04-22 16:49:30 +0200468 * Note that ARC4 is weak and deprecated and should only be used in
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100469 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100470#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100471
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200472/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
473 *
474 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
475 *
476 * Implementations must support 12-byte nonces, may support 8-byte nonces,
477 * and should reject other sizes.
478 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100479#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200480
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100481/** RSA public key.
482 *
483 * The size of an RSA key is the bit size of the modulus.
484 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100485#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100486/** RSA key pair (private and public key).
487 *
488 * The size of an RSA key is the bit size of the modulus.
489 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100490#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100491/** Whether a key type is an RSA key (pair or public-only). */
492#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200493 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100494
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100495#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100496#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
497#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100498/** Elliptic curve key pair.
499 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100500 * The size of an elliptic curve key is the bit size associated with the curve,
501 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
502 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
503 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100504 * \param curve A value of type ::psa_ecc_family_t that
505 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100506 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200507#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
508 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100509/** Elliptic curve public key.
510 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100511 * The size of an elliptic curve public key is the same as the corresponding
512 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
513 * `PSA_ECC_FAMILY_xxx` curve families).
514 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100515 * \param curve A value of type ::psa_ecc_family_t that
516 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100517 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100518#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
519 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
520
521/** Whether a key type is an elliptic curve key (pair or public-only). */
522#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200523 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100524 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100525/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200526#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100527 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200528 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100529/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100530#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
531 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
532 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
533
534/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100535#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
536 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100537 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
538 0))
539
Gilles Peskine228abc52019-12-03 17:24:19 +0100540/** SEC Koblitz curves over prime fields.
541 *
542 * This family comprises the following curves:
543 * secp192k1, secp224k1, secp256k1.
544 * They are defined in _Standards for Efficient Cryptography_,
545 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
546 * https://www.secg.org/sec2-v2.pdf
547 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100548#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100549
550/** SEC random curves over prime fields.
551 *
552 * This family comprises the following curves:
553 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
554 * They are defined in _Standards for Efficient Cryptography_,
555 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
556 * https://www.secg.org/sec2-v2.pdf
557 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100558#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100559/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100560#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100561
562/** SEC Koblitz curves over binary fields.
563 *
564 * This family comprises the following curves:
565 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
566 * They are defined in _Standards for Efficient Cryptography_,
567 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
568 * https://www.secg.org/sec2-v2.pdf
569 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100570#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100571
572/** SEC random curves over binary fields.
573 *
574 * This family comprises the following curves:
575 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
576 * They are defined in _Standards for Efficient Cryptography_,
577 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
578 * https://www.secg.org/sec2-v2.pdf
579 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100580#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100581
582/** SEC additional random curves over binary fields.
583 *
584 * This family comprises the following curve:
585 * sect163r2.
586 * It is defined in _Standards for Efficient Cryptography_,
587 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
588 * https://www.secg.org/sec2-v2.pdf
589 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100590#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100591
592/** Brainpool P random curves.
593 *
594 * This family comprises the following curves:
595 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
596 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
597 * It is defined in RFC 5639.
598 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100599#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100600
601/** Curve25519 and Curve448.
602 *
603 * This family comprises the following Montgomery curves:
604 * - 255-bit: Bernstein et al.,
605 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
606 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
607 * - 448-bit: Hamburg,
608 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
609 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
610 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100611#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100612
Gilles Peskine67546802021-02-24 21:49:40 +0100613/** The twisted Edwards curves Ed25519 and Ed448.
614 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100615 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100616 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100617 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100618 *
619 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100620 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100621 * to Curve25519.
622 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
623 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
624 * to Curve448.
625 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
626 */
627#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
628
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100629#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100630#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
631#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100632/** Diffie-Hellman key pair.
633 *
Paul Elliott75e27032020-06-03 15:17:39 +0100634 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100635 * Diffie-Hellman group to be used.
636 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200637#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
638 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100639/** Diffie-Hellman public key.
640 *
Paul Elliott75e27032020-06-03 15:17:39 +0100641 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100642 * Diffie-Hellman group to be used.
643 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200644#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
645 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
646
647/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
648#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200649 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200650 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
651/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200652#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200653 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200654 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200655/** Whether a key type is a Diffie-Hellman public key. */
656#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
657 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
658 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
659
660/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100661#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
662 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200663 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
664 0))
665
Gilles Peskine228abc52019-12-03 17:24:19 +0100666/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
667 *
668 * This family includes groups with the following key sizes (in bits):
669 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
670 * all of these sizes or only a subset.
671 */
Paul Elliott75e27032020-06-03 15:17:39 +0100672#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100673
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100674#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100675 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100676/** The block size of a block cipher.
677 *
678 * \param type A cipher key type (value of type #psa_key_type_t).
679 *
680 * \return The block size for a block cipher, or 1 for a stream cipher.
681 * The return value is undefined if \p type is not a supported
682 * cipher key type.
683 *
684 * \note It is possible to build stream cipher algorithms on top of a block
685 * cipher, for example CTR mode (#PSA_ALG_CTR).
686 * This macro only takes the key type into account, so it cannot be
687 * used to determine the size of the data that #psa_cipher_update()
688 * might buffer for future processing in general.
689 *
690 * \note This macro returns a compile-time constant if its argument is one.
691 *
692 * \warning This macro may evaluate its argument multiple times.
693 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100694#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100695 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100696 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100697 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100698
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200699/* Note that algorithm values are embedded in the persistent key store,
700 * as part of key metadata. As a consequence, they must not be changed
701 * (unless the storage format version changes).
702 */
703
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100704/** Vendor-defined algorithm flag.
705 *
706 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
707 * bit set. Vendors who define additional algorithms must use an encoding with
708 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
709 * used by standard encodings whenever practical.
710 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100711#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100712
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100713#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100714#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
715#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100716#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100717#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
718#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
719#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
720#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
721#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100722
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100723/** Whether an algorithm is vendor-defined.
724 *
725 * See also #PSA_ALG_VENDOR_FLAG.
726 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100727#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
728 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
729
730/** Whether the specified algorithm is a hash algorithm.
731 *
732 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
733 *
734 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
735 * This macro may return either 0 or 1 if \p alg is not a supported
736 * algorithm identifier.
737 */
738#define PSA_ALG_IS_HASH(alg) \
739 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
740
741/** Whether the specified algorithm is a MAC algorithm.
742 *
743 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
744 *
745 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
746 * This macro may return either 0 or 1 if \p alg is not a supported
747 * algorithm identifier.
748 */
749#define PSA_ALG_IS_MAC(alg) \
750 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
751
752/** Whether the specified algorithm is a symmetric cipher algorithm.
753 *
754 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
755 *
756 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
757 * This macro may return either 0 or 1 if \p alg is not a supported
758 * algorithm identifier.
759 */
760#define PSA_ALG_IS_CIPHER(alg) \
761 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
762
763/** Whether the specified algorithm is an authenticated encryption
764 * with associated data (AEAD) algorithm.
765 *
766 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
767 *
768 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
769 * This macro may return either 0 or 1 if \p alg is not a supported
770 * algorithm identifier.
771 */
772#define PSA_ALG_IS_AEAD(alg) \
773 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
774
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200775/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200776 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100777 *
778 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
779 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200780 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100781 * This macro may return either 0 or 1 if \p alg is not a supported
782 * algorithm identifier.
783 */
784#define PSA_ALG_IS_SIGN(alg) \
785 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
786
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200787/** Whether the specified algorithm is an asymmetric encryption algorithm,
788 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100789 *
790 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
791 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200792 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100793 * This macro may return either 0 or 1 if \p alg is not a supported
794 * algorithm identifier.
795 */
796#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
797 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
798
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100799/** Whether the specified algorithm is a key agreement algorithm.
800 *
801 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
802 *
803 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
804 * This macro may return either 0 or 1 if \p alg is not a supported
805 * algorithm identifier.
806 */
807#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100808 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100809
810/** Whether the specified algorithm is a key derivation algorithm.
811 *
812 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
813 *
814 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
815 * This macro may return either 0 or 1 if \p alg is not a supported
816 * algorithm identifier.
817 */
818#define PSA_ALG_IS_KEY_DERIVATION(alg) \
819 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
820
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200821/** An invalid algorithm identifier value. */
822#define PSA_ALG_NONE ((psa_algorithm_t)0)
823
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100824#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100825/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100826#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100827/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100828#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100829/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100830#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100831/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100832#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100833/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100834#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100835/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100836#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100837/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100838#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100839/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100840#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100841/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100842#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100843/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100844#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100845/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100846#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100847/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100848#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100849/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100850#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100851/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100852#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100853/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100854#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100855/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100856 *
857 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
858 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
859 * has the same output size and a (theoretically) higher security strength.
860 */
Gilles Peskine27354692021-03-03 17:45:06 +0100861#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100862
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100863/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100864 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100865 * This value may be used to form the algorithm usage field of a policy
866 * for a signature algorithm that is parametrized by a hash. The key
867 * may then be used to perform operations using the same signature
868 * algorithm parametrized with any supported hash.
869 *
870 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine35115f92021-10-04 18:10:38 +0200871 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100872 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100873 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100874 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
875 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100876 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200877 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100878 * ```
879 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100880 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100881 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
882 * call to sign or verify a message may use a different hash.
883 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200884 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
885 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
886 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100887 * ```
888 *
889 * This value may not be used to build other algorithms that are
890 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100891 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100892 *
893 * This value may not be used to build an algorithm specification to
894 * perform an operation. It is only valid to build policies.
895 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100896#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100897
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100898#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100899#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100900/** Macro to build an HMAC algorithm.
901 *
902 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
903 *
904 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
905 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
906 *
907 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100908 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100909 * hash algorithm.
910 */
911#define PSA_ALG_HMAC(hash_alg) \
912 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
913
914#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
915 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
916
917/** Whether the specified algorithm is an HMAC algorithm.
918 *
919 * HMAC is a family of MAC algorithms that are based on a hash function.
920 *
921 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
922 *
923 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
924 * This macro may return either 0 or 1 if \p alg is not a supported
925 * algorithm identifier.
926 */
927#define PSA_ALG_IS_HMAC(alg) \
928 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
929 PSA_ALG_HMAC_BASE)
930
931/* In the encoding of a MAC algorithm, the bits corresponding to
932 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
933 * truncated. As an exception, the value 0 means the untruncated algorithm,
934 * whatever its length is. The length is encoded in 6 bits, so it can
935 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
936 * to full length is correctly encoded as 0 and any non-trivial truncation
937 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100938#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
939#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100940
Steven Cooremand927ed72021-02-22 19:59:35 +0100941/* In the encoding of a MAC algorithm, the bit corresponding to
942 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100943 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
944 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100945 * same base class and having a (potentially truncated) MAC length greater or
946 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
947#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
948
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100949/** Macro to build a truncated MAC algorithm.
950 *
951 * A truncated MAC algorithm is identical to the corresponding MAC
952 * algorithm except that the MAC value for the truncated algorithm
953 * consists of only the first \p mac_length bytes of the MAC value
954 * for the untruncated algorithm.
955 *
956 * \note This macro may allow constructing algorithm identifiers that
957 * are not valid, either because the specified length is larger
958 * than the untruncated MAC or because the specified length is
959 * smaller than permitted by the implementation.
960 *
961 * \note It is implementation-defined whether a truncated MAC that
962 * is truncated to the same length as the MAC of the untruncated
963 * algorithm is considered identical to the untruncated algorithm
964 * for policy comparison purposes.
965 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200966 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100967 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100968 * is true). This may be a truncated or untruncated
969 * MAC algorithm.
970 * \param mac_length Desired length of the truncated MAC in bytes.
971 * This must be at most the full length of the MAC
972 * and must be at least an implementation-specified
973 * minimum. The implementation-specified minimum
974 * shall not be zero.
975 *
976 * \return The corresponding MAC algorithm with the specified
977 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100978 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100979 * MAC algorithm or if \p mac_length is too small or
980 * too large for the specified MAC algorithm.
981 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100982#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
983 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
984 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100985 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
986
987/** Macro to build the base MAC algorithm corresponding to a truncated
988 * MAC algorithm.
989 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200990 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100991 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100992 * is true). This may be a truncated or untruncated
993 * MAC algorithm.
994 *
995 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100996 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100997 * MAC algorithm.
998 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100999#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1000 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1001 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001002
1003/** Length to which a MAC algorithm is truncated.
1004 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001005 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001006 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001007 * is true).
1008 *
1009 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001010 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1011 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001012 * MAC algorithm.
1013 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001014#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1015 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001016
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001017/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001018 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001019 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001020 * sharing the same base algorithm, and where the (potentially truncated) MAC
1021 * length of the specific algorithm is equal to or larger then the wildcard
1022 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001023 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001024 * \note When setting the minimum required MAC length to less than the
1025 * smallest MAC length allowed by the base algorithm, this effectively
1026 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001027 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001028 * \param mac_alg A MAC algorithm identifier (value of type
1029 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1030 * is true).
1031 * \param min_mac_length Desired minimum length of the message authentication
1032 * code in bytes. This must be at most the untruncated
1033 * length of the MAC and must be at least 1.
1034 *
1035 * \return The corresponding MAC wildcard algorithm with the
1036 * specified minimum length.
1037 * \return Unspecified if \p mac_alg is not a supported MAC
1038 * algorithm or if \p min_mac_length is less than 1 or
1039 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001040 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001041#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1042 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1043 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001044
Bence Szépkútia2945512020-12-03 21:40:17 +01001045#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001046/** The CBC-MAC construction over a block cipher
1047 *
1048 * \warning CBC-MAC is insecure in many cases.
1049 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1050 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001051#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001052/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001053#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001054
1055/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1056 *
1057 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1058 *
1059 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1060 * This macro may return either 0 or 1 if \p alg is not a supported
1061 * algorithm identifier.
1062 */
1063#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1064 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1065 PSA_ALG_CIPHER_MAC_BASE)
1066
1067#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1068#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1069
1070/** Whether the specified algorithm is a stream cipher.
1071 *
1072 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1073 * by applying a bitwise-xor with a stream of bytes that is generated
1074 * from a key.
1075 *
1076 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1077 *
1078 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1079 * This macro may return either 0 or 1 if \p alg is not a supported
1080 * algorithm identifier or if it is not a symmetric cipher algorithm.
1081 */
1082#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1083 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1084 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1085
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001086/** The stream cipher mode of a stream cipher algorithm.
1087 *
1088 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001089 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1090 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001091 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001092#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001093
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001094/** The CTR stream cipher mode.
1095 *
1096 * CTR is a stream cipher which is built from a block cipher.
1097 * The underlying block cipher is determined by the key type.
1098 * For example, to use AES-128-CTR, use this algorithm with
1099 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1100 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001101#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001102
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001103/** The CFB stream cipher mode.
1104 *
1105 * The underlying block cipher is determined by the key type.
1106 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001107#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001108
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001109/** The OFB stream cipher mode.
1110 *
1111 * The underlying block cipher is determined by the key type.
1112 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001113#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001114
1115/** The XTS cipher mode.
1116 *
1117 * XTS is a cipher mode which is built from a block cipher. It requires at
1118 * least one full block of input, but beyond this minimum the input
1119 * does not need to be a whole number of blocks.
1120 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001121#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001122
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001123/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1124 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001125 * \warning ECB mode does not protect the confidentiality of the encrypted data
1126 * except in extremely narrow circumstances. It is recommended that applications
1127 * only use ECB if they need to construct an operating mode that the
1128 * implementation does not provide. Implementations are encouraged to provide
1129 * the modes that applications need in preference to supporting direct access
1130 * to ECB.
1131 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001132 * The underlying block cipher is determined by the key type.
1133 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001134 * This symmetric cipher mode can only be used with messages whose lengths are a
1135 * multiple of the block size of the chosen block cipher.
1136 *
1137 * ECB mode does not accept an initialization vector (IV). When using a
1138 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1139 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001140 */
1141#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1142
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001143/** The CBC block cipher chaining mode, with no padding.
1144 *
1145 * The underlying block cipher is determined by the key type.
1146 *
1147 * This symmetric cipher mode can only be used with messages whose lengths
1148 * are whole number of blocks for the chosen block cipher.
1149 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001150#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001151
1152/** The CBC block cipher chaining mode with PKCS#7 padding.
1153 *
1154 * The underlying block cipher is determined by the key type.
1155 *
1156 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1157 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001158#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001159
Gilles Peskine679693e2019-05-06 15:10:16 +02001160#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1161
1162/** Whether the specified algorithm is an AEAD mode on a block cipher.
1163 *
1164 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1165 *
1166 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1167 * a block cipher, 0 otherwise.
1168 * This macro may return either 0 or 1 if \p alg is not a supported
1169 * algorithm identifier.
1170 */
1171#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1172 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1173 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1174
Gilles Peskine9153ec02019-02-15 13:02:02 +01001175/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001176 *
1177 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001178 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001179#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001180
1181/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001182 *
1183 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001184 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001185#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001186
1187/** The Chacha20-Poly1305 AEAD algorithm.
1188 *
1189 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001190 *
1191 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1192 * and should reject other sizes.
1193 *
1194 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001195 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001196#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001197
1198/* In the encoding of a AEAD algorithm, the bits corresponding to
1199 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1200 * The constants for default lengths follow this encoding.
1201 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001202#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1203#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001204
Steven Cooremand927ed72021-02-22 19:59:35 +01001205/* In the encoding of an AEAD algorithm, the bit corresponding to
1206 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001207 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1208 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001209 * same base class and having a tag length greater than or equal to the one
1210 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1211#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1212
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001213/** Macro to build a shortened AEAD algorithm.
1214 *
1215 * A shortened AEAD algorithm is similar to the corresponding AEAD
1216 * algorithm, but has an authentication tag that consists of fewer bytes.
1217 * Depending on the algorithm, the tag length may affect the calculation
1218 * of the ciphertext.
1219 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001220 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001221 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001222 * is true).
1223 * \param tag_length Desired length of the authentication tag in bytes.
1224 *
1225 * \return The corresponding AEAD algorithm with the specified
1226 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001227 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001228 * AEAD algorithm or if \p tag_length is not valid
1229 * for the specified AEAD algorithm.
1230 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001231#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001232 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1233 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001234 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1235 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1236
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001237/** Retrieve the tag length of a specified AEAD algorithm
1238 *
1239 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001240 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001241 * is true).
1242 *
1243 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001244 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001245 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001246 */
1247#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1248 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1249 PSA_AEAD_TAG_LENGTH_OFFSET )
1250
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001251/** Calculate the corresponding AEAD algorithm with the default tag length.
1252 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001253 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001254 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001255 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001256 * \return The corresponding AEAD algorithm with the default
1257 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001258 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001259#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001260 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001261 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1262 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1263 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001264 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001265#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1266 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1267 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001268 ref :
1269
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001270/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001271 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001272 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001273 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001274 * algorithm is equal to or larger then the minimum tag length specified by the
1275 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001276 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001277 * \note When setting the minimum required tag length to less than the
1278 * smallest tag length allowed by the base algorithm, this effectively
1279 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001280 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001281 * \param aead_alg An AEAD algorithm identifier (value of type
1282 * #psa_algorithm_t such that
1283 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1284 * \param min_tag_length Desired minimum length of the authentication tag in
1285 * bytes. This must be at least 1 and at most the largest
1286 * allowed tag length of the algorithm.
1287 *
1288 * \return The corresponding AEAD wildcard algorithm with the
1289 * specified minimum length.
1290 * \return Unspecified if \p aead_alg is not a supported
1291 * AEAD algorithm or if \p min_tag_length is less than 1
1292 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001293 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001294#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001295 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1296 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001297
Bence Szépkútia2945512020-12-03 21:40:17 +01001298#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001299/** RSA PKCS#1 v1.5 signature with hashing.
1300 *
1301 * This is the signature scheme defined by RFC 8017
1302 * (PKCS#1: RSA Cryptography Specifications) under the name
1303 * RSASSA-PKCS1-v1_5.
1304 *
1305 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1306 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001307 * This includes #PSA_ALG_ANY_HASH
1308 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001309 *
1310 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001311 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001312 * hash algorithm.
1313 */
1314#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1315 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1316/** Raw PKCS#1 v1.5 signature.
1317 *
1318 * The input to this algorithm is the DigestInfo structure used by
1319 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1320 * steps 3&ndash;6.
1321 */
1322#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1323#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1324 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1325
Bence Szépkútia2945512020-12-03 21:40:17 +01001326#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskine35115f92021-10-04 18:10:38 +02001327#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001328/** RSA PSS signature with hashing.
1329 *
1330 * This is the signature scheme defined by RFC 8017
1331 * (PKCS#1: RSA Cryptography Specifications) under the name
1332 * RSASSA-PSS, with the message generation function MGF1, and with
1333 * a salt length equal to the length of the hash. The specified
1334 * hash algorithm is used to hash the input message, to create the
1335 * salted hash, and for the mask generation.
1336 *
1337 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1338 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001339 * This includes #PSA_ALG_ANY_HASH
1340 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001341 *
1342 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001343 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001344 * hash algorithm.
1345 */
1346#define PSA_ALG_RSA_PSS(hash_alg) \
1347 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine35115f92021-10-04 18:10:38 +02001348
1349/** RSA PSS signature with hashing with relaxed verification.
1350 *
1351 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1352 * but allows an arbitrary salt length (including \c 0) when verifying a
1353 * signature.
1354 *
1355 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1356 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1357 * This includes #PSA_ALG_ANY_HASH
1358 * when specifying the algorithm in a usage policy.
1359 *
1360 * \return The corresponding RSA PSS signature algorithm.
1361 * \return Unspecified if \p hash_alg is not a supported
1362 * hash algorithm.
1363 */
1364#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1365 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1366
1367/** Whether the specified algorithm is RSA PSS with standard salt.
1368 *
1369 * \param alg An algorithm value or an algorithm policy wildcard.
1370 *
1371 * \return 1 if \p alg is of the form
1372 * #PSA_ALG_RSA_PSS(\c hash_alg),
1373 * where \c hash_alg is a hash algorithm or
1374 * #PSA_ALG_ANY_HASH. 0 otherwise.
1375 * This macro may return either 0 or 1 if \p alg is not
1376 * a supported algorithm identifier or policy.
1377 */
1378#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001379 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1380
Gilles Peskine35115f92021-10-04 18:10:38 +02001381/** Whether the specified algorithm is RSA PSS with any salt.
1382 *
1383 * \param alg An algorithm value or an algorithm policy wildcard.
1384 *
1385 * \return 1 if \p alg is of the form
1386 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1387 * where \c hash_alg is a hash algorithm or
1388 * #PSA_ALG_ANY_HASH. 0 otherwise.
1389 * This macro may return either 0 or 1 if \p alg is not
1390 * a supported algorithm identifier or policy.
1391 */
1392#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1393 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1394
1395/** Whether the specified algorithm is RSA PSS.
1396 *
1397 * This includes any of the RSA PSS algorithm variants, regardless of the
1398 * constraints on salt length.
1399 *
1400 * \param alg An algorithm value or an algorithm policy wildcard.
1401 *
1402 * \return 1 if \p alg is of the form
1403 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1404 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1405 * where \c hash_alg is a hash algorithm or
1406 * #PSA_ALG_ANY_HASH. 0 otherwise.
1407 * This macro may return either 0 or 1 if \p alg is not
1408 * a supported algorithm identifier or policy.
1409 */
1410#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef8362ca2021-10-08 16:28:32 +02001411 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1412 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskine35115f92021-10-04 18:10:38 +02001413
Bence Szépkútia2945512020-12-03 21:40:17 +01001414#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001415/** ECDSA signature with hashing.
1416 *
1417 * This is the ECDSA signature scheme defined by ANSI X9.62,
1418 * with a random per-message secret number (*k*).
1419 *
1420 * The representation of the signature as a byte string consists of
Shaun Case0e7791f2021-12-20 21:14:10 -08001421 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001422 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1423 * of the base point of the curve in octets. Each value is represented
1424 * in big-endian order (most significant octet first).
1425 *
1426 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1427 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001428 * This includes #PSA_ALG_ANY_HASH
1429 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001430 *
1431 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001432 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001433 * hash algorithm.
1434 */
1435#define PSA_ALG_ECDSA(hash_alg) \
1436 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1437/** ECDSA signature without hashing.
1438 *
1439 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1440 * without specifying a hash algorithm. This algorithm may only be
1441 * used to sign or verify a sequence of bytes that should be an
1442 * already-calculated hash. Note that the input is padded with
1443 * zeros on the left or truncated on the left as required to fit
1444 * the curve size.
1445 */
1446#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001447#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001448/** Deterministic ECDSA signature with hashing.
1449 *
1450 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1451 *
1452 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1453 *
1454 * Note that when this algorithm is used for verification, signatures
1455 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1456 * same private key are accepted. In other words,
1457 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1458 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1459 *
1460 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1461 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001462 * This includes #PSA_ALG_ANY_HASH
1463 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001464 *
1465 * \return The corresponding deterministic ECDSA signature
1466 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001467 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001468 * hash algorithm.
1469 */
1470#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1471 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001472#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001473#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001474 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001475 PSA_ALG_ECDSA_BASE)
1476#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001477 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001478#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1479 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1480#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1481 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1482
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001483/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1484 * using standard parameters.
1485 *
1486 * Contexts are not supported in the current version of this specification
1487 * because there is no suitable signature interface that can take the
1488 * context as a parameter. A future version of this specification may add
1489 * suitable functions and extend this algorithm to support contexts.
1490 *
1491 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1492 * In this specification, the following curves are supported:
1493 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1494 * in RFC 8032.
1495 * The curve is Edwards25519.
1496 * The hash function used internally is SHA-512.
1497 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1498 * in RFC 8032.
1499 * The curve is Edwards448.
1500 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001501 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001502 *
1503 * This algorithm can be used with psa_sign_message() and
1504 * psa_verify_message(). Since there is no prehashing, it cannot be used
1505 * with psa_sign_hash() or psa_verify_hash().
1506 *
1507 * The signature format is the concatenation of R and S as defined by
1508 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1509 * string for Ed448).
1510 */
1511#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1512
1513#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1514#define PSA_ALG_IS_HASH_EDDSA(alg) \
1515 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1516
1517/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001518 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001519 *
1520 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1521 *
1522 * This algorithm is Ed25519 as specified in RFC 8032.
1523 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001524 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001525 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001526 *
1527 * This is a hash-and-sign algorithm: to calculate a signature,
1528 * you can either:
1529 * - call psa_sign_message() on the message;
1530 * - or calculate the SHA-512 hash of the message
1531 * with psa_hash_compute()
1532 * or with a multi-part hash operation started with psa_hash_setup(),
1533 * using the hash algorithm #PSA_ALG_SHA_512,
1534 * then sign the calculated hash with psa_sign_hash().
1535 * Verifying a signature is similar, using psa_verify_message() or
1536 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001537 */
1538#define PSA_ALG_ED25519PH \
1539 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1540
1541/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1542 * using SHAKE256 and the Edwards448 curve.
1543 *
1544 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1545 *
1546 * This algorithm is Ed448 as specified in RFC 8032.
1547 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001548 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001549 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001550 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001551 *
1552 * This is a hash-and-sign algorithm: to calculate a signature,
1553 * you can either:
1554 * - call psa_sign_message() on the message;
1555 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1556 * with psa_hash_compute()
1557 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001558 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001559 * then sign the calculated hash with psa_sign_hash().
1560 * Verifying a signature is similar, using psa_verify_message() or
1561 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001562 */
1563#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001564 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001565
Gilles Peskine6d400852021-02-24 21:39:52 +01001566/* Default definition, to be overridden if the library is extended with
1567 * more hash-and-sign algorithms that we want to keep out of this header
1568 * file. */
1569#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1570
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001571/** Whether the specified algorithm is a signature algorithm that can be used
1572 * with psa_sign_hash() and psa_verify_hash().
1573 *
1574 * This encompasses all strict hash-and-sign algorithms categorized by
1575 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1576 * paradigm more loosely:
1577 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1578 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1579 *
1580 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1581 *
1582 * \return 1 if alg is a signature algorithm that can be used to sign a
1583 * hash. 0 if alg is a signature algorithm that can only be used
1584 * to sign a message. 0 if alg is not a signature algorithm.
1585 * This macro can return either 0 or 1 if alg is not a
1586 * supported algorithm identifier.
1587 */
1588#define PSA_ALG_IS_SIGN_HASH(alg) \
1589 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1590 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1591 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1592
1593/** Whether the specified algorithm is a signature algorithm that can be used
1594 * with psa_sign_message() and psa_verify_message().
1595 *
1596 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1597 *
1598 * \return 1 if alg is a signature algorithm that can be used to sign a
1599 * message. 0 if \p alg is a signature algorithm that can only be used
1600 * to sign an already-calculated hash. 0 if \p alg is not a signature
1601 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1602 * supported algorithm identifier.
1603 */
1604#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1605 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1606
Gilles Peskined35b4892019-01-14 16:02:15 +01001607/** Whether the specified algorithm is a hash-and-sign algorithm.
1608 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001609 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1610 * structured in two parts: first the calculation of a hash in a way that
1611 * does not depend on the key, then the calculation of a signature from the
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001612 * hash value and the key. Hash-and-sign algorithms encode the hash
1613 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1614 * to extract this algorithm.
1615 *
1616 * Thus, for a hash-and-sign algorithm,
1617 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1618 * ```
1619 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1620 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1621 * ```
1622 * Most usefully, separating the hash from the signature allows the hash
1623 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1624 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1625 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001626 *
1627 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1628 *
1629 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1630 * This macro may return either 0 or 1 if \p alg is not a supported
1631 * algorithm identifier.
1632 */
1633#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001634 (PSA_ALG_IS_SIGN_HASH(alg) && \
1635 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001636
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001637/** Get the hash used by a hash-and-sign signature algorithm.
1638 *
1639 * A hash-and-sign algorithm is a signature algorithm which is
1640 * composed of two phases: first a hashing phase which does not use
1641 * the key and produces a hash of the input message, then a signing
1642 * phase which only uses the hash and the key and not the message
1643 * itself.
1644 *
1645 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1646 * #PSA_ALG_IS_SIGN(\p alg) is true).
1647 *
1648 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1649 * algorithm.
1650 * \return 0 if \p alg is a signature algorithm that does not
1651 * follow the hash-and-sign structure.
1652 * \return Unspecified if \p alg is not a signature algorithm or
1653 * if it is not supported by the implementation.
1654 */
1655#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001656 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001657 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1658 0)
1659
1660/** RSA PKCS#1 v1.5 encryption.
1661 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001662#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001663
Bence Szépkútia2945512020-12-03 21:40:17 +01001664#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001665/** RSA OAEP encryption.
1666 *
1667 * This is the encryption scheme defined by RFC 8017
1668 * (PKCS#1: RSA Cryptography Specifications) under the name
1669 * RSAES-OAEP, with the message generation function MGF1.
1670 *
1671 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1672 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1673 * for MGF1.
1674 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001675 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001676 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001677 * hash algorithm.
1678 */
1679#define PSA_ALG_RSA_OAEP(hash_alg) \
1680 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1681#define PSA_ALG_IS_RSA_OAEP(alg) \
1682 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1683#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1684 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1685 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1686 0)
1687
Bence Szépkútia2945512020-12-03 21:40:17 +01001688#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001689/** Macro to build an HKDF algorithm.
1690 *
1691 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1692 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001693 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001694 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001695 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001696 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1697 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1698 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1699 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001700 * starting to generate output.
1701 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001702 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1703 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1704 *
1705 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001706 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001707 * hash algorithm.
1708 */
1709#define PSA_ALG_HKDF(hash_alg) \
1710 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1711/** Whether the specified algorithm is an HKDF algorithm.
1712 *
1713 * HKDF is a family of key derivation algorithms that are based on a hash
1714 * function and the HMAC construction.
1715 *
1716 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1717 *
1718 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1719 * This macro may return either 0 or 1 if \c alg is not a supported
1720 * key derivation algorithm identifier.
1721 */
1722#define PSA_ALG_IS_HKDF(alg) \
1723 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1724#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1725 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1726
Bence Szépkútia2945512020-12-03 21:40:17 +01001727#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001728/** Macro to build a TLS-1.2 PRF algorithm.
1729 *
1730 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1731 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1732 * used with either SHA-256 or SHA-384.
1733 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001734 * This key derivation algorithm uses the following inputs, which must be
1735 * passed in the order given here:
1736 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001737 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1738 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001739 *
1740 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001741 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001742 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001743 *
1744 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1745 * TLS 1.2 PRF using HMAC-SHA-256.
1746 *
1747 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1748 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1749 *
1750 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001751 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001752 * hash algorithm.
1753 */
1754#define PSA_ALG_TLS12_PRF(hash_alg) \
1755 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1756
1757/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1758 *
1759 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1760 *
1761 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1762 * This macro may return either 0 or 1 if \c alg is not a supported
1763 * key derivation algorithm identifier.
1764 */
1765#define PSA_ALG_IS_TLS12_PRF(alg) \
1766 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1767#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1768 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1769
Bence Szépkútia2945512020-12-03 21:40:17 +01001770#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001771/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1772 *
1773 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1774 * from the PreSharedKey (PSK) through the application of padding
1775 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1776 * The latter is based on HMAC and can be used with either SHA-256
1777 * or SHA-384.
1778 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001779 * This key derivation algorithm uses the following inputs, which must be
1780 * passed in the order given here:
1781 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001782 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1783 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001784 *
1785 * For the application to TLS-1.2, the seed (which is
1786 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1787 * ClientHello.Random + ServerHello.Random,
1788 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001789 *
1790 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1791 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1792 *
1793 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1794 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1795 *
1796 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001797 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001798 * hash algorithm.
1799 */
1800#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1801 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1802
1803/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1804 *
1805 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1806 *
1807 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1808 * This macro may return either 0 or 1 if \c alg is not a supported
1809 * key derivation algorithm identifier.
1810 */
1811#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1812 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1813#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1814 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1815
Bence Szépkútia2945512020-12-03 21:40:17 +01001816#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1817#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001818
Gilles Peskine6843c292019-01-18 16:44:49 +01001819/** Macro to build a combined algorithm that chains a key agreement with
1820 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001821 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001822 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1823 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1824 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1825 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001826 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001827 * \return The corresponding key agreement and derivation
1828 * algorithm.
1829 * \return Unspecified if \p ka_alg is not a supported
1830 * key agreement algorithm or \p kdf_alg is not a
1831 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001832 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001833#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1834 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001835
1836#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1837 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1838
Gilles Peskine6843c292019-01-18 16:44:49 +01001839#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1840 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001841
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001842/** Whether the specified algorithm is a raw key agreement algorithm.
1843 *
1844 * A raw key agreement algorithm is one that does not specify
1845 * a key derivation function.
1846 * Usually, raw key agreement algorithms are constructed directly with
1847 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001848 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001849 *
1850 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1851 *
1852 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1853 * This macro may return either 0 or 1 if \p alg is not a supported
1854 * algorithm identifier.
1855 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001856#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001857 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1858 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001859
1860#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1861 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1862
1863/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001864 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001865 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001866 * `g^{ab}` in big-endian format.
1867 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1868 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001869 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001870#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001871
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001872/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1873 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001874 * This includes the raw finite field Diffie-Hellman algorithm as well as
1875 * finite-field Diffie-Hellman followed by any supporter key derivation
1876 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001877 *
1878 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1879 *
1880 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1881 * This macro may return either 0 or 1 if \c alg is not a supported
1882 * key agreement algorithm identifier.
1883 */
1884#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001885 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001886
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001887/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1888 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001889 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001890 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1891 * `m` is the bit size associated with the curve, i.e. the bit size of the
1892 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1893 * the byte containing the most significant bit of the shared secret
1894 * is padded with zero bits. The byte order is either little-endian
1895 * or big-endian depending on the curve type.
1896 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001897 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001898 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1899 * in little-endian byte order.
1900 * The bit size is 448 for Curve448 and 255 for Curve25519.
1901 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001902 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001903 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1904 * in big-endian byte order.
1905 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1906 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001907 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001908 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1909 * in big-endian byte order.
1910 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001911 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001912#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001913
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001914/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1915 * algorithm.
1916 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001917 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1918 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1919 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001920 *
1921 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1922 *
1923 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1924 * 0 otherwise.
1925 * This macro may return either 0 or 1 if \c alg is not a supported
1926 * key agreement algorithm identifier.
1927 */
1928#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001929 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001930
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001931/** Whether the specified algorithm encoding is a wildcard.
1932 *
1933 * Wildcard values may only be used to set the usage algorithm field in
1934 * a policy, not to perform an operation.
1935 *
1936 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1937 *
1938 * \return 1 if \c alg is a wildcard algorithm encoding.
1939 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1940 * an operation).
1941 * \return This macro may return either 0 or 1 if \c alg is not a supported
1942 * algorithm identifier.
1943 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001944#define PSA_ALG_IS_WILDCARD(alg) \
1945 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1946 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1947 PSA_ALG_IS_MAC(alg) ? \
1948 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1949 PSA_ALG_IS_AEAD(alg) ? \
1950 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001951 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001952
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001953/**@}*/
1954
1955/** \defgroup key_lifetimes Key lifetimes
1956 * @{
1957 */
1958
Gilles Peskine43bd07d2022-06-20 18:41:20 +02001959/* Note that location and persistence level values are embedded in the
1960 * persistent key store, as part of key metadata. As a consequence, they
1961 * must not be changed (unless the storage format version changes).
1962 */
1963
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001964/** The default lifetime for volatile keys.
1965 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001966 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001967 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001968 *
1969 * A key with this lifetime is typically stored in the RAM area of the
1970 * PSA Crypto subsystem. However this is an implementation choice.
1971 * If an implementation stores data about the key in a non-volatile memory,
1972 * it must release all the resources associated with the key and erase the
1973 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001974 */
1975#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1976
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001977/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001978 *
1979 * A persistent key remains in storage until it is explicitly destroyed or
1980 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001981 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001982 * provide their own mechanism (for example to perform a factory reset,
1983 * to prepare for device refurbishment, or to uninstall an application).
1984 *
1985 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001986 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001987 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001988 */
1989#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1990
Gilles Peskineaff11812020-05-04 19:03:10 +02001991/** The persistence level of volatile keys.
1992 *
1993 * See ::psa_key_persistence_t for more information.
1994 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001995#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001996
1997/** The default persistence level for persistent keys.
1998 *
1999 * See ::psa_key_persistence_t for more information.
2000 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002001#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002002
2003/** A persistence level indicating that a key is never destroyed.
2004 *
2005 * See ::psa_key_persistence_t for more information.
2006 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002007#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002008
2009#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002010 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002011
2012#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002013 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002014
2015/** Whether a key lifetime indicates that the key is volatile.
2016 *
2017 * A volatile key is automatically destroyed by the implementation when
2018 * the application instance terminates. In particular, a volatile key
2019 * is automatically destroyed on a power reset of the device.
2020 *
2021 * A key that is not volatile is persistent. Persistent keys are
2022 * preserved until the application explicitly destroys them or until an
2023 * implementation-specific device management event occurs (for example,
2024 * a factory reset).
2025 *
2026 * \param lifetime The lifetime value to query (value of type
2027 * ::psa_key_lifetime_t).
2028 *
2029 * \return \c 1 if the key is volatile, otherwise \c 0.
2030 */
2031#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2032 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002033 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002034
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002035/** Whether a key lifetime indicates that the key is read-only.
2036 *
2037 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2038 * They must be created through platform-specific means that bypass the API.
2039 *
2040 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine11794b32021-06-07 23:21:50 +02002041 * consider a platform with multiple levels of privilege, where a
2042 * low-privilege application can use a key but is not allowed to destroy
2043 * it, and the platform exposes the key to the application with a read-only
2044 * lifetime. High-privilege code can destroy the key even though the
2045 * application sees the key as read-only.
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002046 *
2047 * \param lifetime The lifetime value to query (value of type
2048 * ::psa_key_lifetime_t).
2049 *
2050 * \return \c 1 if the key is read-only, otherwise \c 0.
2051 */
2052#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2053 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2054 PSA_KEY_PERSISTENCE_READ_ONLY)
2055
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002056/** Construct a lifetime from a persistence level and a location.
2057 *
2058 * \param persistence The persistence level
2059 * (value of type ::psa_key_persistence_t).
2060 * \param location The location indicator
2061 * (value of type ::psa_key_location_t).
2062 *
2063 * \return The constructed lifetime value.
2064 */
2065#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2066 ((location) << 8 | (persistence))
2067
Gilles Peskineaff11812020-05-04 19:03:10 +02002068/** The local storage area for persistent keys.
2069 *
2070 * This storage area is available on all systems that can store persistent
2071 * keys without delegating the storage to a third-party cryptoprocessor.
2072 *
2073 * See ::psa_key_location_t for more information.
2074 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002075#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002076
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002077#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002078
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002079/* Note that key identifier values are embedded in the
2080 * persistent key store, as part of key metadata. As a consequence, they
2081 * must not be changed (unless the storage format version changes).
2082 */
2083
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002084/** The null key identifier.
2085 */
2086#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002087/** The minimum value for a key identifier chosen by the application.
2088 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002089#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002090/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002091 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002092#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002093/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002094 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002095#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002096/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002097 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002098#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002099
Ronald Cron7424f0d2020-09-14 16:17:41 +02002100
2101#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2102
2103#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2104#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2105#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2106
2107/** Utility to initialize a key identifier at runtime.
2108 *
2109 * \param unused Unused parameter.
2110 * \param key_id Identifier of the key.
2111 */
2112static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2113 unsigned int unused, psa_key_id_t key_id )
2114{
2115 (void)unused;
2116
2117 return( key_id );
2118}
2119
2120/** Compare two key identifiers.
2121 *
2122 * \param id1 First key identifier.
2123 * \param id2 Second key identifier.
2124 *
2125 * \return Non-zero if the two key identifier are equal, zero otherwise.
2126 */
2127static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2128 mbedtls_svc_key_id_t id2 )
2129{
2130 return( id1 == id2 );
2131}
2132
Ronald Cronc4d1b512020-07-31 11:26:37 +02002133/** Check whether a key identifier is null.
2134 *
2135 * \param key Key identifier.
2136 *
2137 * \return Non-zero if the key identifier is null, zero otherwise.
2138 */
2139static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2140{
2141 return( key == 0 );
2142}
2143
Ronald Cron7424f0d2020-09-14 16:17:41 +02002144#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2145
2146#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2147#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2148#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2149
2150/** Utility to initialize a key identifier at runtime.
2151 *
2152 * \param owner_id Identifier of the key owner.
2153 * \param key_id Identifier of the key.
2154 */
2155static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2156 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2157{
2158 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
2159 .owner = owner_id } );
2160}
2161
2162/** Compare two key identifiers.
2163 *
2164 * \param id1 First key identifier.
2165 * \param id2 Second key identifier.
2166 *
2167 * \return Non-zero if the two key identifier are equal, zero otherwise.
2168 */
2169static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2170 mbedtls_svc_key_id_t id2 )
2171{
2172 return( ( id1.key_id == id2.key_id ) &&
2173 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2174}
2175
Ronald Cronc4d1b512020-07-31 11:26:37 +02002176/** Check whether a key identifier is null.
2177 *
2178 * \param key Key identifier.
2179 *
2180 * \return Non-zero if the key identifier is null, zero otherwise.
2181 */
2182static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2183{
Gilles Peskined9b41502021-05-28 12:59:49 +02002184 return( key.key_id == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002185}
2186
Ronald Cron7424f0d2020-09-14 16:17:41 +02002187#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002188
2189/**@}*/
2190
2191/** \defgroup policy Key policies
2192 * @{
2193 */
2194
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002195/* Note that key usage flags are embedded in the
2196 * persistent key store, as part of key metadata. As a consequence, they
2197 * must not be changed (unless the storage format version changes).
2198 */
2199
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002200/** Whether the key may be exported.
2201 *
2202 * A public key or the public part of a key pair may always be exported
2203 * regardless of the value of this permission flag.
2204 *
2205 * If a key does not have export permission, implementations shall not
2206 * allow the key to be exported in plain form from the cryptoprocessor,
2207 * whether through psa_export_key() or through a proprietary interface.
2208 * The key may however be exportable in a wrapped form, i.e. in a form
2209 * where it is encrypted by another key.
2210 */
2211#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2212
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002213/** Whether the key may be copied.
2214 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002215 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002216 * with the same policy or a more restrictive policy.
2217 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002218 * For lifetimes for which the key is located in a secure element which
2219 * enforce the non-exportability of keys, copying a key outside the secure
2220 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2221 * Copying the key inside the secure element is permitted with just
2222 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2223 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002224 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2225 * is sufficient to permit the copy.
2226 */
2227#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2228
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002229/** Whether the key may be used to encrypt a message.
2230 *
2231 * This flag allows the key to be used for a symmetric encryption operation,
2232 * for an AEAD encryption-and-authentication operation,
2233 * or for an asymmetric encryption operation,
2234 * if otherwise permitted by the key's type and policy.
2235 *
2236 * For a key pair, this concerns the public key.
2237 */
2238#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2239
2240/** Whether the key may be used to decrypt a message.
2241 *
2242 * This flag allows the key to be used for a symmetric decryption operation,
2243 * for an AEAD decryption-and-verification operation,
2244 * or for an asymmetric decryption operation,
2245 * if otherwise permitted by the key's type and policy.
2246 *
2247 * For a key pair, this concerns the private key.
2248 */
2249#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2250
2251/** Whether the key may be used to sign a message.
2252 *
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002253 * This flag allows the key to be used for a MAC calculation operation or for
2254 * an asymmetric message signature operation, if otherwise permitted by the
2255 * key’s type and policy.
2256 *
2257 * For a key pair, this concerns the private key.
2258 */
2259#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2260
2261/** Whether the key may be used to verify a message.
2262 *
2263 * This flag allows the key to be used for a MAC verification operation or for
2264 * an asymmetric message signature verification operation, if otherwise
2265 * permitted by the key’s type and policy.
2266 *
2267 * For a key pair, this concerns the public key.
2268 */
2269#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2270
2271/** Whether the key may be used to sign a message.
2272 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002273 * This flag allows the key to be used for a MAC calculation operation
2274 * or for an asymmetric signature operation,
2275 * if otherwise permitted by the key's type and policy.
2276 *
2277 * For a key pair, this concerns the private key.
2278 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002279#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002280
2281/** Whether the key may be used to verify a message signature.
2282 *
2283 * This flag allows the key to be used for a MAC verification operation
2284 * or for an asymmetric signature verification operation,
2285 * if otherwise permitted by by the key's type and policy.
2286 *
2287 * For a key pair, this concerns the public key.
2288 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002289#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002290
2291/** Whether the key may be used to derive other keys.
2292 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002293#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002294
2295/**@}*/
2296
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002297/** \defgroup derivation Key derivation
2298 * @{
2299 */
2300
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002301/* Key input steps are not embedded in the persistent storage, so you can
2302 * change them if needed: it's only an ABI change. */
2303
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002304/** A secret input for key derivation.
2305 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002306 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2307 * (passed to psa_key_derivation_input_key())
2308 * or the shared secret resulting from a key agreement
2309 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002310 *
2311 * The secret can also be a direct input (passed to
2312 * key_derivation_input_bytes()). In this case, the derivation operation
2313 * may not be used to derive keys: the operation will only allow
2314 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002315 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002316#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002317
2318/** A label for key derivation.
2319 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002320 * This should be a direct input.
2321 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002322 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002323#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002324
2325/** A salt for key derivation.
2326 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002327 * This should be a direct input.
2328 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002329 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002330#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002331
2332/** An information string for key derivation.
2333 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002334 * This should be a direct input.
2335 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002336 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002337#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002338
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002339/** A seed for key derivation.
2340 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002341 * This should be a direct input.
2342 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002343 */
2344#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2345
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002346/**@}*/
2347
Bence Szépkútib639d432021-04-21 10:33:54 +02002348/** \defgroup helper_macros Helper macros
2349 * @{
2350 */
2351
2352/* Helper macros */
2353
2354/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2355 * regardless of the tag length they encode.
2356 *
2357 * \param aead_alg_1 An AEAD algorithm identifier.
2358 * \param aead_alg_2 An AEAD algorithm identifier.
2359 *
2360 * \return 1 if both identifiers refer to the same AEAD algorithm,
2361 * 0 otherwise.
2362 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2363 * a supported AEAD algorithm.
2364 */
2365#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2366 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2367 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2368
2369/**@}*/
2370
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002371#endif /* PSA_CRYPTO_VALUES_H */