blob: af27253220ce481d66dc0944a32b3f5a08458d1f [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine43bd07d2022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010024 * SPDX-License-Identifier: Apache-2.0
25 *
26 * Licensed under the Apache License, Version 2.0 (the "License"); you may
27 * not use this file except in compliance with the License.
28 * You may obtain a copy of the License at
29 *
30 * http://www.apache.org/licenses/LICENSE-2.0
31 *
32 * Unless required by applicable law or agreed to in writing, software
33 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
34 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
35 * See the License for the specific language governing permissions and
36 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037 */
38
39#ifndef PSA_CRYPTO_VALUES_H
40#define PSA_CRYPTO_VALUES_H
41
42/** \defgroup error Error codes
43 * @{
44 */
45
David Saadab4ecc272019-02-14 13:48:10 +020046/* PSA error codes */
47
Gilles Peskine43bd07d2022-06-20 18:41:20 +020048/* Error codes are standardized across PSA domains (framework, crypto, storage,
49 * etc.). Do not change the values in this section. If you must add a new
50 * value, check with the Arm PSA framework group to pick one that other
51 * domains aren't already using. */
52
Gilles Peskinef3b731e2018-12-12 13:38:31 +010053/** The action was completed successfully. */
54#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010055
56/** An error occurred that does not correspond to any defined
57 * failure cause.
58 *
59 * Implementations may use this error code if none of the other standard
60 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020061#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** The requested operation or a parameter is not supported
64 * by this implementation.
65 *
66 * Implementations should return this error code when an enumeration
67 * parameter such as a key type, algorithm, etc. is not recognized.
68 * If a combination of parameters is recognized and identified as
69 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020070#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010071
72/** The requested action is denied by a policy.
73 *
74 * Implementations should return this error code when the parameters
75 * are recognized as valid and supported, and a policy explicitly
76 * denies the requested operation.
77 *
78 * If a subset of the parameters of a function call identify a
79 * forbidden operation, and another subset of the parameters are
80 * not valid or not supported, it is unspecified whether the function
81 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
82 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020083#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010084
85/** An output buffer is too small.
86 *
87 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
88 * description to determine a sufficient buffer size.
89 *
90 * Implementations should preferably return this error code only
91 * in cases when performing the operation with a larger output
92 * buffer would succeed. However implementations may return this
93 * error if a function has invalid or unsupported parameters in addition
94 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020095#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010096
David Saadab4ecc272019-02-14 13:48:10 +020097/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098 *
David Saadab4ecc272019-02-14 13:48:10 +020099 * Implementations should return this error, when attempting
100 * to write an item (like a key) that already exists. */
101#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100102
David Saadab4ecc272019-02-14 13:48:10 +0200103/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100104 *
David Saadab4ecc272019-02-14 13:48:10 +0200105 * Implementations should return this error, if a requested item (like
106 * a key) does not exist. */
107#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100108
109/** The requested action cannot be performed in the current state.
110 *
111 * Multipart operations return this error when one of the
112 * functions is called out of sequence. Refer to the function
113 * descriptions for permitted sequencing of functions.
114 *
115 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100116 * that a key either exists or not,
117 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100118 * as applicable.
119 *
120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100122 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200123#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100124
125/** The parameters passed to the function are invalid.
126 *
127 * Implementations may return this error any time a parameter or
128 * combination of parameters are recognized as invalid.
129 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100130 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200131 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100132 * instead.
133 */
David Saadab4ecc272019-02-14 13:48:10 +0200134#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100135
136/** There is not enough runtime memory.
137 *
138 * If the action is carried out across multiple security realms, this
139 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200140#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100141
142/** There is not enough persistent storage.
143 *
144 * Functions that modify the key storage return this error code if
145 * there is insufficient storage space on the host media. In addition,
146 * many functions that do not otherwise access storage may return this
147 * error code if the implementation requires a mandatory log entry for
148 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200149#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100150
151/** There was a communication failure inside the implementation.
152 *
153 * This can indicate a communication failure between the application
154 * and an external cryptoprocessor or between the cryptoprocessor and
155 * an external volatile or persistent memory. A communication failure
156 * may be transient or permanent depending on the cause.
157 *
158 * \warning If a function returns this error, it is undetermined
159 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200160 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100161 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
162 * if the requested action was completed successfully in an external
163 * cryptoprocessor but there was a breakdown of communication before
164 * the cryptoprocessor could report the status to the application.
165 */
David Saadab4ecc272019-02-14 13:48:10 +0200166#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100167
168/** There was a storage failure that may have led to data loss.
169 *
170 * This error indicates that some persistent storage is corrupted.
171 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200172 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100173 * between the cryptoprocessor and its external storage (use
174 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
175 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
176 *
177 * Note that a storage failure does not indicate that any data that was
178 * previously read is invalid. However this previously read data may no
179 * longer be readable from storage.
180 *
181 * When a storage failure occurs, it is no longer possible to ensure
182 * the global integrity of the keystore. Depending on the global
183 * integrity guarantees offered by the implementation, access to other
184 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100185 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100186 *
187 * Implementations should only use this error code to report a
188 * permanent storage corruption. However application writers should
189 * keep in mind that transient errors while reading the storage may be
190 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200191#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100192
193/** A hardware failure was detected.
194 *
195 * A hardware failure may be transient or permanent depending on the
196 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200197#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100198
199/** A tampering attempt was detected.
200 *
201 * If an application receives this error code, there is no guarantee
202 * that previously accessed or computed data was correct and remains
203 * confidential. Applications should not perform any security function
204 * and should enter a safe failure state.
205 *
206 * Implementations may return this error code if they detect an invalid
207 * state that cannot happen during normal operation and that indicates
208 * that the implementation's security guarantees no longer hold. Depending
209 * on the implementation architecture and on its security and safety goals,
210 * the implementation may forcibly terminate the application.
211 *
212 * This error code is intended as a last resort when a security breach
213 * is detected and it is unsure whether the keystore data is still
214 * protected. Implementations shall only return this error code
215 * to report an alarm from a tampering detector, to indicate that
216 * the confidentiality of stored data can no longer be guaranteed,
217 * or to indicate that the integrity of previously returned data is now
218 * considered compromised. Implementations shall not use this error code
219 * to indicate a hardware failure that merely makes it impossible to
220 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
221 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
222 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
223 * instead).
224 *
225 * This error indicates an attack against the application. Implementations
226 * shall not return this error code as a consequence of the behavior of
227 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200228#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100229
230/** There is not enough entropy to generate random data needed
231 * for the requested action.
232 *
233 * This error indicates a failure of a hardware random generator.
234 * Application writers should note that this error can be returned not
235 * only by functions whose purpose is to generate random data, such
236 * as key, IV or nonce generation, but also by functions that execute
237 * an algorithm with a randomized result, as well as functions that
238 * use randomization of intermediate computations as a countermeasure
239 * to certain attacks.
240 *
241 * Implementations should avoid returning this error after psa_crypto_init()
242 * has succeeded. Implementations should generate sufficient
243 * entropy during initialization and subsequently use a cryptographically
244 * secure pseudorandom generator (PRNG). However implementations may return
245 * this error at any time if a policy requires the PRNG to be reseeded
246 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The signature, MAC or hash is incorrect.
250 *
251 * Verification functions return this error if the verification
252 * calculations completed successfully, and the value to be verified
253 * was determined to be incorrect.
254 *
255 * If the value to verify has an invalid size, implementations may return
256 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200257#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100258
259/** The decrypted padding is incorrect.
260 *
261 * \warning In some protocols, when decrypting data, it is essential that
262 * the behavior of the application does not depend on whether the padding
263 * is correct, down to precise timing. Applications should prefer
264 * protocols that use authenticated encryption rather than plain
265 * encryption. If the application must perform a decryption of
266 * unauthenticated data, the application writer should take care not
267 * to reveal whether the padding is invalid.
268 *
269 * Implementations should strive to make valid and invalid padding
270 * as close as possible to indistinguishable to an external observer.
271 * In particular, the timing of a decryption operation should not
272 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200273#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100274
David Saadab4ecc272019-02-14 13:48:10 +0200275/** Return this error when there's insufficient data when attempting
276 * to read from a resource. */
277#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100278
Ronald Croncf56a0a2020-08-04 09:51:30 +0200279/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100280 */
David Saadab4ecc272019-02-14 13:48:10 +0200281#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100282
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100283/** Stored data has been corrupted.
284 *
285 * This error indicates that some persistent storage has suffered corruption.
286 * It does not indicate the following situations, which have specific error
287 * codes:
288 *
289 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
290 * - A communication error between the cryptoprocessor and its external
291 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
292 * - When the storage is in a valid state but is full - use
293 * #PSA_ERROR_INSUFFICIENT_STORAGE.
294 * - When the storage fails for other reasons - use
295 * #PSA_ERROR_STORAGE_FAILURE.
296 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
297 *
298 * \note A storage corruption does not indicate that any data that was
299 * previously read is invalid. However this previously read data might no
300 * longer be readable from storage.
301 *
302 * When a storage failure occurs, it is no longer possible to ensure the
303 * global integrity of the keystore.
304 */
305#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
306
gabor-mezei-armfe309242020-11-09 17:39:56 +0100307/** Data read from storage is not valid for the implementation.
308 *
309 * This error indicates that some data read from storage does not have a valid
310 * format. It does not indicate the following situations, which have specific
311 * error codes:
312 *
313 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
314 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
315 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
316 *
317 * This error is typically a result of either storage corruption on a
318 * cleartext storage backend, or an attempt to read data that was
319 * written by an incompatible version of the library.
320 */
321#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
322
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100323/**@}*/
324
325/** \defgroup crypto_types Key and algorithm types
326 * @{
327 */
328
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200329/* Note that key type values, including ECC family and DH group values, are
330 * embedded in the persistent key store, as part of key metadata. As a
331 * consequence, they must not be changed (unless the storage format version
332 * changes).
333 */
334
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100335/** An invalid key type value.
336 *
337 * Zero is not the encoding of any key type.
338 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100339#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100341/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342 *
343 * Key types defined by this standard will never have the
344 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
345 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
346 * respect the bitwise structure used by standard encodings whenever practical.
347 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100348#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100349
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100350#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100351#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
352#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
353#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100354#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100355
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100356#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100358/** Whether a key type is vendor-defined.
359 *
360 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
361 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100362#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
363 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
364
365/** Whether a key type is an unstructured array of bytes.
366 *
367 * This encompasses both symmetric keys and non-key data.
368 */
369#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100370 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
371 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100372
373/** Whether a key type is asymmetric: either a key pair or a public key. */
374#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
375 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
376 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
377 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
378/** Whether a key type is the public part of a key pair. */
379#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
380 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
381/** Whether a key type is a key pair containing a private part and a public
382 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200383#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100384 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
385/** The key pair type corresponding to a public key type.
386 *
387 * You may also pass a key pair type as \p type, it will be left unchanged.
388 *
389 * \param type A public key type or key pair type.
390 *
391 * \return The corresponding key pair type.
392 * If \p type is not a public key or a key pair,
393 * the return value is undefined.
394 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200395#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100396 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
397/** The public key type corresponding to a key pair type.
398 *
399 * You may also pass a key pair type as \p type, it will be left unchanged.
400 *
401 * \param type A public key type or key pair type.
402 *
403 * \return The corresponding public key type.
404 * If \p type is not a public key or a key pair,
405 * the return value is undefined.
406 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200407#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
409
410/** Raw data.
411 *
412 * A "key" of this type cannot be used for any cryptographic operation.
413 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100414#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100415
416/** HMAC key.
417 *
418 * The key policy determines which underlying hash algorithm the key can be
419 * used for.
420 *
421 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100422 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100424#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100425
426/** A secret for key derivation.
427 *
428 * The key policy determines which key derivation algorithm the key
429 * can be used for.
430 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100431#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100432
Gilles Peskine737c6be2019-05-21 16:01:06 +0200433/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100434 *
435 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
436 * 32 bytes (AES-256).
437 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100438#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100439
Gilles Peskine8890f642021-09-21 11:59:39 +0200440/** Key for a cipher, AEAD or MAC algorithm based on the
441 * ARIA block cipher. */
442#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
443
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100444/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
445 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100446 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
447 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448 *
449 * Note that single DES and 2-key 3DES are weak and strongly
450 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
451 * is weak and deprecated and should only be used in legacy protocols.
452 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100453#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100454
Gilles Peskine737c6be2019-05-21 16:01:06 +0200455/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100456 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100457#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100458
Gilles Peskine500e48f2022-04-22 16:49:30 +0200459/** Key for the ARC4 stream cipher (also known as RC4 or ARCFOUR).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100460 *
Gilles Peskine500e48f2022-04-22 16:49:30 +0200461 * Note that ARC4 is weak and deprecated and should only be used in
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100462 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100463#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100464
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200465/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
466 *
467 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
468 *
469 * Implementations must support 12-byte nonces, may support 8-byte nonces,
470 * and should reject other sizes.
471 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100472#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200473
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100474/** RSA public key.
475 *
476 * The size of an RSA key is the bit size of the modulus.
477 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100478#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100479/** RSA key pair (private and public key).
480 *
481 * The size of an RSA key is the bit size of the modulus.
482 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100483#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100484/** Whether a key type is an RSA key (pair or public-only). */
485#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200486 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100487
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100488#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100489#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
490#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100491/** Elliptic curve key pair.
492 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100493 * The size of an elliptic curve key is the bit size associated with the curve,
494 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
495 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
496 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100497 * \param curve A value of type ::psa_ecc_family_t that
498 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100499 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200500#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
501 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100502/** Elliptic curve public key.
503 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100504 * The size of an elliptic curve public key is the same as the corresponding
505 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
506 * `PSA_ECC_FAMILY_xxx` curve families).
507 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100508 * \param curve A value of type ::psa_ecc_family_t that
509 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100510 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100511#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
512 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
513
514/** Whether a key type is an elliptic curve key (pair or public-only). */
515#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200516 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100517 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100518/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200519#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100520 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200521 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100522/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100523#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
524 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
525 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
526
527/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100528#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
529 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100530 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
531 0))
532
Gilles Peskine228abc52019-12-03 17:24:19 +0100533/** SEC Koblitz curves over prime fields.
534 *
535 * This family comprises the following curves:
536 * secp192k1, secp224k1, secp256k1.
537 * They are defined in _Standards for Efficient Cryptography_,
538 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
539 * https://www.secg.org/sec2-v2.pdf
540 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100541#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100542
543/** SEC random curves over prime fields.
544 *
545 * This family comprises the following curves:
546 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
547 * They are defined in _Standards for Efficient Cryptography_,
548 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
549 * https://www.secg.org/sec2-v2.pdf
550 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100551#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100552/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100553#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100554
555/** SEC Koblitz curves over binary fields.
556 *
557 * This family comprises the following curves:
558 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
559 * They are defined in _Standards for Efficient Cryptography_,
560 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
561 * https://www.secg.org/sec2-v2.pdf
562 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100563#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100564
565/** SEC random curves over binary fields.
566 *
567 * This family comprises the following curves:
568 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
569 * They are defined in _Standards for Efficient Cryptography_,
570 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
571 * https://www.secg.org/sec2-v2.pdf
572 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100573#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100574
575/** SEC additional random curves over binary fields.
576 *
577 * This family comprises the following curve:
578 * sect163r2.
579 * It is defined in _Standards for Efficient Cryptography_,
580 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
581 * https://www.secg.org/sec2-v2.pdf
582 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100583#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100584
585/** Brainpool P random curves.
586 *
587 * This family comprises the following curves:
588 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
589 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
590 * It is defined in RFC 5639.
591 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100592#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100593
594/** Curve25519 and Curve448.
595 *
596 * This family comprises the following Montgomery curves:
597 * - 255-bit: Bernstein et al.,
598 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
599 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
600 * - 448-bit: Hamburg,
601 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
602 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
603 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100604#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100605
Gilles Peskine67546802021-02-24 21:49:40 +0100606/** The twisted Edwards curves Ed25519 and Ed448.
607 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100608 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100609 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100610 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100611 *
612 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100613 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100614 * to Curve25519.
615 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
616 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
617 * to Curve448.
618 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
619 */
620#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
621
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100622#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100623#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
624#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100625/** Diffie-Hellman key pair.
626 *
Paul Elliott75e27032020-06-03 15:17:39 +0100627 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100628 * Diffie-Hellman group to be used.
629 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200630#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
631 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100632/** Diffie-Hellman public key.
633 *
Paul Elliott75e27032020-06-03 15:17:39 +0100634 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100635 * Diffie-Hellman group to be used.
636 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200637#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
638 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
639
640/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
641#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200642 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200643 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
644/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200645#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200646 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200647 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200648/** Whether a key type is a Diffie-Hellman public key. */
649#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
650 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
651 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
652
653/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100654#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
655 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200656 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
657 0))
658
Gilles Peskine228abc52019-12-03 17:24:19 +0100659/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
660 *
661 * This family includes groups with the following key sizes (in bits):
662 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
663 * all of these sizes or only a subset.
664 */
Paul Elliott75e27032020-06-03 15:17:39 +0100665#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100666
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100667#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100668 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100669/** The block size of a block cipher.
670 *
671 * \param type A cipher key type (value of type #psa_key_type_t).
672 *
673 * \return The block size for a block cipher, or 1 for a stream cipher.
674 * The return value is undefined if \p type is not a supported
675 * cipher key type.
676 *
677 * \note It is possible to build stream cipher algorithms on top of a block
678 * cipher, for example CTR mode (#PSA_ALG_CTR).
679 * This macro only takes the key type into account, so it cannot be
680 * used to determine the size of the data that #psa_cipher_update()
681 * might buffer for future processing in general.
682 *
683 * \note This macro returns a compile-time constant if its argument is one.
684 *
685 * \warning This macro may evaluate its argument multiple times.
686 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100687#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100688 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100689 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100690 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100691
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200692/* Note that algorithm values are embedded in the persistent key store,
693 * as part of key metadata. As a consequence, they must not be changed
694 * (unless the storage format version changes).
695 */
696
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100697/** Vendor-defined algorithm flag.
698 *
699 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
700 * bit set. Vendors who define additional algorithms must use an encoding with
701 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
702 * used by standard encodings whenever practical.
703 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100704#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100705
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100706#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100707#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
708#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100709#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100710#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
711#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
712#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
713#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
714#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100715
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100716/** Whether an algorithm is vendor-defined.
717 *
718 * See also #PSA_ALG_VENDOR_FLAG.
719 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100720#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
721 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
722
723/** Whether the specified algorithm is a hash algorithm.
724 *
725 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
726 *
727 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
728 * This macro may return either 0 or 1 if \p alg is not a supported
729 * algorithm identifier.
730 */
731#define PSA_ALG_IS_HASH(alg) \
732 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
733
734/** Whether the specified algorithm is a MAC algorithm.
735 *
736 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
737 *
738 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
739 * This macro may return either 0 or 1 if \p alg is not a supported
740 * algorithm identifier.
741 */
742#define PSA_ALG_IS_MAC(alg) \
743 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
744
745/** Whether the specified algorithm is a symmetric cipher algorithm.
746 *
747 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
748 *
749 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
750 * This macro may return either 0 or 1 if \p alg is not a supported
751 * algorithm identifier.
752 */
753#define PSA_ALG_IS_CIPHER(alg) \
754 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
755
756/** Whether the specified algorithm is an authenticated encryption
757 * with associated data (AEAD) algorithm.
758 *
759 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
760 *
761 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
762 * This macro may return either 0 or 1 if \p alg is not a supported
763 * algorithm identifier.
764 */
765#define PSA_ALG_IS_AEAD(alg) \
766 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
767
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200768/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200769 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100770 *
771 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
772 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200773 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100774 * This macro may return either 0 or 1 if \p alg is not a supported
775 * algorithm identifier.
776 */
777#define PSA_ALG_IS_SIGN(alg) \
778 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
779
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200780/** Whether the specified algorithm is an asymmetric encryption algorithm,
781 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100782 *
783 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
784 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200785 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100786 * This macro may return either 0 or 1 if \p alg is not a supported
787 * algorithm identifier.
788 */
789#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
790 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
791
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100792/** Whether the specified algorithm is a key agreement algorithm.
793 *
794 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
795 *
796 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
797 * This macro may return either 0 or 1 if \p alg is not a supported
798 * algorithm identifier.
799 */
800#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100801 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100802
803/** Whether the specified algorithm is a key derivation algorithm.
804 *
805 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
806 *
807 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
808 * This macro may return either 0 or 1 if \p alg is not a supported
809 * algorithm identifier.
810 */
811#define PSA_ALG_IS_KEY_DERIVATION(alg) \
812 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
813
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200814/** An invalid algorithm identifier value. */
815#define PSA_ALG_NONE ((psa_algorithm_t)0)
816
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100817#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100818/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100819#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100820/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100821#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100822/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100823#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100824/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100825#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100826/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100827#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100828/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100829#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100830/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100831#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100832/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100833#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100834/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100835#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100836/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100837#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100838/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100839#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100840/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100841#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100842/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100843#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100844/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100845#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100846/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100847#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100848/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100849 *
850 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
851 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
852 * has the same output size and a (theoretically) higher security strength.
853 */
Gilles Peskine27354692021-03-03 17:45:06 +0100854#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100855
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100856/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100857 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100858 * This value may be used to form the algorithm usage field of a policy
859 * for a signature algorithm that is parametrized by a hash. The key
860 * may then be used to perform operations using the same signature
861 * algorithm parametrized with any supported hash.
862 *
863 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine35115f92021-10-04 18:10:38 +0200864 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100865 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100866 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100867 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
868 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100869 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200870 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100871 * ```
872 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100873 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100874 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
875 * call to sign or verify a message may use a different hash.
876 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200877 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
878 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
879 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100880 * ```
881 *
882 * This value may not be used to build other algorithms that are
883 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100884 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100885 *
886 * This value may not be used to build an algorithm specification to
887 * perform an operation. It is only valid to build policies.
888 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100889#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100890
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100891#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100892#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100893/** Macro to build an HMAC algorithm.
894 *
895 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
896 *
897 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
898 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
899 *
900 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100901 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100902 * hash algorithm.
903 */
904#define PSA_ALG_HMAC(hash_alg) \
905 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
906
907#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
908 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
909
910/** Whether the specified algorithm is an HMAC algorithm.
911 *
912 * HMAC is a family of MAC algorithms that are based on a hash function.
913 *
914 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
915 *
916 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
917 * This macro may return either 0 or 1 if \p alg is not a supported
918 * algorithm identifier.
919 */
920#define PSA_ALG_IS_HMAC(alg) \
921 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
922 PSA_ALG_HMAC_BASE)
923
924/* In the encoding of a MAC algorithm, the bits corresponding to
925 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
926 * truncated. As an exception, the value 0 means the untruncated algorithm,
927 * whatever its length is. The length is encoded in 6 bits, so it can
928 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
929 * to full length is correctly encoded as 0 and any non-trivial truncation
930 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100931#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
932#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100933
Steven Cooremand927ed72021-02-22 19:59:35 +0100934/* In the encoding of a MAC algorithm, the bit corresponding to
935 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100936 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
937 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100938 * same base class and having a (potentially truncated) MAC length greater or
939 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
940#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
941
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100942/** Macro to build a truncated MAC algorithm.
943 *
944 * A truncated MAC algorithm is identical to the corresponding MAC
945 * algorithm except that the MAC value for the truncated algorithm
946 * consists of only the first \p mac_length bytes of the MAC value
947 * for the untruncated algorithm.
948 *
949 * \note This macro may allow constructing algorithm identifiers that
950 * are not valid, either because the specified length is larger
951 * than the untruncated MAC or because the specified length is
952 * smaller than permitted by the implementation.
953 *
954 * \note It is implementation-defined whether a truncated MAC that
955 * is truncated to the same length as the MAC of the untruncated
956 * algorithm is considered identical to the untruncated algorithm
957 * for policy comparison purposes.
958 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200959 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100960 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100961 * is true). This may be a truncated or untruncated
962 * MAC algorithm.
963 * \param mac_length Desired length of the truncated MAC in bytes.
964 * This must be at most the full length of the MAC
965 * and must be at least an implementation-specified
966 * minimum. The implementation-specified minimum
967 * shall not be zero.
968 *
969 * \return The corresponding MAC algorithm with the specified
970 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100971 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100972 * MAC algorithm or if \p mac_length is too small or
973 * too large for the specified MAC algorithm.
974 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100975#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
976 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
977 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100978 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
979
980/** Macro to build the base MAC algorithm corresponding to a truncated
981 * MAC algorithm.
982 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200983 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100984 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100985 * is true). This may be a truncated or untruncated
986 * MAC algorithm.
987 *
988 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100989 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100990 * MAC algorithm.
991 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100992#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
993 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
994 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100995
996/** Length to which a MAC algorithm is truncated.
997 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200998 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100999 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001000 * is true).
1001 *
1002 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001003 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1004 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001005 * MAC algorithm.
1006 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001007#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1008 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001009
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001010/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001011 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001012 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001013 * sharing the same base algorithm, and where the (potentially truncated) MAC
1014 * length of the specific algorithm is equal to or larger then the wildcard
1015 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001016 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001017 * \note When setting the minimum required MAC length to less than the
1018 * smallest MAC length allowed by the base algorithm, this effectively
1019 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001020 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001021 * \param mac_alg A MAC algorithm identifier (value of type
1022 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1023 * is true).
1024 * \param min_mac_length Desired minimum length of the message authentication
1025 * code in bytes. This must be at most the untruncated
1026 * length of the MAC and must be at least 1.
1027 *
1028 * \return The corresponding MAC wildcard algorithm with the
1029 * specified minimum length.
1030 * \return Unspecified if \p mac_alg is not a supported MAC
1031 * algorithm or if \p min_mac_length is less than 1 or
1032 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001033 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001034#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1035 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1036 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001037
Bence Szépkútia2945512020-12-03 21:40:17 +01001038#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001039/** The CBC-MAC construction over a block cipher
1040 *
1041 * \warning CBC-MAC is insecure in many cases.
1042 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1043 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001044#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001045/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001046#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001047
1048/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1049 *
1050 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1051 *
1052 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1053 * This macro may return either 0 or 1 if \p alg is not a supported
1054 * algorithm identifier.
1055 */
1056#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1057 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1058 PSA_ALG_CIPHER_MAC_BASE)
1059
1060#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1061#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1062
1063/** Whether the specified algorithm is a stream cipher.
1064 *
1065 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1066 * by applying a bitwise-xor with a stream of bytes that is generated
1067 * from a key.
1068 *
1069 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1070 *
1071 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1072 * This macro may return either 0 or 1 if \p alg is not a supported
1073 * algorithm identifier or if it is not a symmetric cipher algorithm.
1074 */
1075#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1076 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1077 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1078
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001079/** The stream cipher mode of a stream cipher algorithm.
1080 *
1081 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001082 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1083 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001084 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001085#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001086
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001087/** The CTR stream cipher mode.
1088 *
1089 * CTR is a stream cipher which is built from a block cipher.
1090 * The underlying block cipher is determined by the key type.
1091 * For example, to use AES-128-CTR, use this algorithm with
1092 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1093 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001094#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001095
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001096/** The CFB stream cipher mode.
1097 *
1098 * The underlying block cipher is determined by the key type.
1099 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001100#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001101
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001102/** The OFB stream cipher mode.
1103 *
1104 * The underlying block cipher is determined by the key type.
1105 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001106#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001107
1108/** The XTS cipher mode.
1109 *
1110 * XTS is a cipher mode which is built from a block cipher. It requires at
1111 * least one full block of input, but beyond this minimum the input
1112 * does not need to be a whole number of blocks.
1113 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001114#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001115
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001116/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1117 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001118 * \warning ECB mode does not protect the confidentiality of the encrypted data
1119 * except in extremely narrow circumstances. It is recommended that applications
1120 * only use ECB if they need to construct an operating mode that the
1121 * implementation does not provide. Implementations are encouraged to provide
1122 * the modes that applications need in preference to supporting direct access
1123 * to ECB.
1124 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001125 * The underlying block cipher is determined by the key type.
1126 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001127 * This symmetric cipher mode can only be used with messages whose lengths are a
1128 * multiple of the block size of the chosen block cipher.
1129 *
1130 * ECB mode does not accept an initialization vector (IV). When using a
1131 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1132 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001133 */
1134#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1135
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001136/** The CBC block cipher chaining mode, with no padding.
1137 *
1138 * The underlying block cipher is determined by the key type.
1139 *
1140 * This symmetric cipher mode can only be used with messages whose lengths
1141 * are whole number of blocks for the chosen block cipher.
1142 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001143#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001144
1145/** The CBC block cipher chaining mode with PKCS#7 padding.
1146 *
1147 * The underlying block cipher is determined by the key type.
1148 *
1149 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1150 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001151#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001152
Gilles Peskine679693e2019-05-06 15:10:16 +02001153#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1154
1155/** Whether the specified algorithm is an AEAD mode on a block cipher.
1156 *
1157 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1158 *
1159 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1160 * a block cipher, 0 otherwise.
1161 * This macro may return either 0 or 1 if \p alg is not a supported
1162 * algorithm identifier.
1163 */
1164#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1165 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1166 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1167
Gilles Peskine9153ec02019-02-15 13:02:02 +01001168/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001169 *
1170 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001171 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001172#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001173
1174/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001175 *
1176 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001177 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001178#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001179
1180/** The Chacha20-Poly1305 AEAD algorithm.
1181 *
1182 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001183 *
1184 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1185 * and should reject other sizes.
1186 *
1187 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001188 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001189#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001190
1191/* In the encoding of a AEAD algorithm, the bits corresponding to
1192 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1193 * The constants for default lengths follow this encoding.
1194 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001195#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1196#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001197
Steven Cooremand927ed72021-02-22 19:59:35 +01001198/* In the encoding of an AEAD algorithm, the bit corresponding to
1199 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001200 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1201 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001202 * same base class and having a tag length greater than or equal to the one
1203 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1204#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1205
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001206/** Macro to build a shortened AEAD algorithm.
1207 *
1208 * A shortened AEAD algorithm is similar to the corresponding AEAD
1209 * algorithm, but has an authentication tag that consists of fewer bytes.
1210 * Depending on the algorithm, the tag length may affect the calculation
1211 * of the ciphertext.
1212 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001213 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001214 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001215 * is true).
1216 * \param tag_length Desired length of the authentication tag in bytes.
1217 *
1218 * \return The corresponding AEAD algorithm with the specified
1219 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001220 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001221 * AEAD algorithm or if \p tag_length is not valid
1222 * for the specified AEAD algorithm.
1223 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001224#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001225 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1226 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001227 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1228 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1229
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001230/** Retrieve the tag length of a specified AEAD algorithm
1231 *
1232 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001233 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001234 * is true).
1235 *
1236 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001237 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001238 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001239 */
1240#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1241 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1242 PSA_AEAD_TAG_LENGTH_OFFSET )
1243
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001244/** Calculate the corresponding AEAD algorithm with the default tag length.
1245 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001246 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001247 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001248 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001249 * \return The corresponding AEAD algorithm with the default
1250 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001251 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001252#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001253 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001254 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1255 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1256 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001257 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001258#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1259 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1260 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001261 ref :
1262
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001263/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001264 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001265 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001266 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001267 * algorithm is equal to or larger then the minimum tag length specified by the
1268 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001269 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001270 * \note When setting the minimum required tag length to less than the
1271 * smallest tag length allowed by the base algorithm, this effectively
1272 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001273 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001274 * \param aead_alg An AEAD algorithm identifier (value of type
1275 * #psa_algorithm_t such that
1276 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1277 * \param min_tag_length Desired minimum length of the authentication tag in
1278 * bytes. This must be at least 1 and at most the largest
1279 * allowed tag length of the algorithm.
1280 *
1281 * \return The corresponding AEAD wildcard algorithm with the
1282 * specified minimum length.
1283 * \return Unspecified if \p aead_alg is not a supported
1284 * AEAD algorithm or if \p min_tag_length is less than 1
1285 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001286 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001287#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001288 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1289 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001290
Bence Szépkútia2945512020-12-03 21:40:17 +01001291#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001292/** RSA PKCS#1 v1.5 signature with hashing.
1293 *
1294 * This is the signature scheme defined by RFC 8017
1295 * (PKCS#1: RSA Cryptography Specifications) under the name
1296 * RSASSA-PKCS1-v1_5.
1297 *
1298 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1299 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001300 * This includes #PSA_ALG_ANY_HASH
1301 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001302 *
1303 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001304 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001305 * hash algorithm.
1306 */
1307#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1308 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1309/** Raw PKCS#1 v1.5 signature.
1310 *
1311 * The input to this algorithm is the DigestInfo structure used by
1312 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1313 * steps 3&ndash;6.
1314 */
1315#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1316#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1317 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1318
Bence Szépkútia2945512020-12-03 21:40:17 +01001319#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskine35115f92021-10-04 18:10:38 +02001320#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001321/** RSA PSS signature with hashing.
1322 *
1323 * This is the signature scheme defined by RFC 8017
1324 * (PKCS#1: RSA Cryptography Specifications) under the name
1325 * RSASSA-PSS, with the message generation function MGF1, and with
1326 * a salt length equal to the length of the hash. The specified
1327 * hash algorithm is used to hash the input message, to create the
1328 * salted hash, and for the mask generation.
1329 *
1330 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1331 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001332 * This includes #PSA_ALG_ANY_HASH
1333 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001334 *
1335 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001336 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001337 * hash algorithm.
1338 */
1339#define PSA_ALG_RSA_PSS(hash_alg) \
1340 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine35115f92021-10-04 18:10:38 +02001341
1342/** RSA PSS signature with hashing with relaxed verification.
1343 *
1344 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1345 * but allows an arbitrary salt length (including \c 0) when verifying a
1346 * signature.
1347 *
1348 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1349 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1350 * This includes #PSA_ALG_ANY_HASH
1351 * when specifying the algorithm in a usage policy.
1352 *
1353 * \return The corresponding RSA PSS signature algorithm.
1354 * \return Unspecified if \p hash_alg is not a supported
1355 * hash algorithm.
1356 */
1357#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1358 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1359
1360/** Whether the specified algorithm is RSA PSS with standard salt.
1361 *
1362 * \param alg An algorithm value or an algorithm policy wildcard.
1363 *
1364 * \return 1 if \p alg is of the form
1365 * #PSA_ALG_RSA_PSS(\c hash_alg),
1366 * where \c hash_alg is a hash algorithm or
1367 * #PSA_ALG_ANY_HASH. 0 otherwise.
1368 * This macro may return either 0 or 1 if \p alg is not
1369 * a supported algorithm identifier or policy.
1370 */
1371#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001372 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1373
Gilles Peskine35115f92021-10-04 18:10:38 +02001374/** Whether the specified algorithm is RSA PSS with any salt.
1375 *
1376 * \param alg An algorithm value or an algorithm policy wildcard.
1377 *
1378 * \return 1 if \p alg is of the form
1379 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1380 * where \c hash_alg is a hash algorithm or
1381 * #PSA_ALG_ANY_HASH. 0 otherwise.
1382 * This macro may return either 0 or 1 if \p alg is not
1383 * a supported algorithm identifier or policy.
1384 */
1385#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1386 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1387
1388/** Whether the specified algorithm is RSA PSS.
1389 *
1390 * This includes any of the RSA PSS algorithm variants, regardless of the
1391 * constraints on salt length.
1392 *
1393 * \param alg An algorithm value or an algorithm policy wildcard.
1394 *
1395 * \return 1 if \p alg is of the form
1396 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1397 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1398 * where \c hash_alg is a hash algorithm or
1399 * #PSA_ALG_ANY_HASH. 0 otherwise.
1400 * This macro may return either 0 or 1 if \p alg is not
1401 * a supported algorithm identifier or policy.
1402 */
1403#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef8362ca2021-10-08 16:28:32 +02001404 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1405 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskine35115f92021-10-04 18:10:38 +02001406
Bence Szépkútia2945512020-12-03 21:40:17 +01001407#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001408/** ECDSA signature with hashing.
1409 *
1410 * This is the ECDSA signature scheme defined by ANSI X9.62,
1411 * with a random per-message secret number (*k*).
1412 *
1413 * The representation of the signature as a byte string consists of
Shaun Case0e7791f2021-12-20 21:14:10 -08001414 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001415 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1416 * of the base point of the curve in octets. Each value is represented
1417 * in big-endian order (most significant octet first).
1418 *
1419 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1420 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001421 * This includes #PSA_ALG_ANY_HASH
1422 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001423 *
1424 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001425 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001426 * hash algorithm.
1427 */
1428#define PSA_ALG_ECDSA(hash_alg) \
1429 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1430/** ECDSA signature without hashing.
1431 *
1432 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1433 * without specifying a hash algorithm. This algorithm may only be
1434 * used to sign or verify a sequence of bytes that should be an
1435 * already-calculated hash. Note that the input is padded with
1436 * zeros on the left or truncated on the left as required to fit
1437 * the curve size.
1438 */
1439#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001440#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001441/** Deterministic ECDSA signature with hashing.
1442 *
1443 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1444 *
1445 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1446 *
1447 * Note that when this algorithm is used for verification, signatures
1448 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1449 * same private key are accepted. In other words,
1450 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1451 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1452 *
1453 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1454 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001455 * This includes #PSA_ALG_ANY_HASH
1456 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001457 *
1458 * \return The corresponding deterministic ECDSA signature
1459 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001460 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001461 * hash algorithm.
1462 */
1463#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1464 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001465#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001466#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001467 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001468 PSA_ALG_ECDSA_BASE)
1469#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001470 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001471#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1472 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1473#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1474 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1475
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001476/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1477 * using standard parameters.
1478 *
1479 * Contexts are not supported in the current version of this specification
1480 * because there is no suitable signature interface that can take the
1481 * context as a parameter. A future version of this specification may add
1482 * suitable functions and extend this algorithm to support contexts.
1483 *
1484 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1485 * In this specification, the following curves are supported:
1486 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1487 * in RFC 8032.
1488 * The curve is Edwards25519.
1489 * The hash function used internally is SHA-512.
1490 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1491 * in RFC 8032.
1492 * The curve is Edwards448.
1493 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001494 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001495 *
1496 * This algorithm can be used with psa_sign_message() and
1497 * psa_verify_message(). Since there is no prehashing, it cannot be used
1498 * with psa_sign_hash() or psa_verify_hash().
1499 *
1500 * The signature format is the concatenation of R and S as defined by
1501 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1502 * string for Ed448).
1503 */
1504#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1505
1506#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1507#define PSA_ALG_IS_HASH_EDDSA(alg) \
1508 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1509
1510/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001511 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001512 *
1513 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1514 *
1515 * This algorithm is Ed25519 as specified in RFC 8032.
1516 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001517 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001518 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001519 *
1520 * This is a hash-and-sign algorithm: to calculate a signature,
1521 * you can either:
1522 * - call psa_sign_message() on the message;
1523 * - or calculate the SHA-512 hash of the message
1524 * with psa_hash_compute()
1525 * or with a multi-part hash operation started with psa_hash_setup(),
1526 * using the hash algorithm #PSA_ALG_SHA_512,
1527 * then sign the calculated hash with psa_sign_hash().
1528 * Verifying a signature is similar, using psa_verify_message() or
1529 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001530 */
1531#define PSA_ALG_ED25519PH \
1532 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1533
1534/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1535 * using SHAKE256 and the Edwards448 curve.
1536 *
1537 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1538 *
1539 * This algorithm is Ed448 as specified in RFC 8032.
1540 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001541 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001542 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001543 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001544 *
1545 * This is a hash-and-sign algorithm: to calculate a signature,
1546 * you can either:
1547 * - call psa_sign_message() on the message;
1548 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1549 * with psa_hash_compute()
1550 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001551 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001552 * then sign the calculated hash with psa_sign_hash().
1553 * Verifying a signature is similar, using psa_verify_message() or
1554 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001555 */
1556#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001557 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001558
Gilles Peskine6d400852021-02-24 21:39:52 +01001559/* Default definition, to be overridden if the library is extended with
1560 * more hash-and-sign algorithms that we want to keep out of this header
1561 * file. */
1562#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1563
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001564/** Whether the specified algorithm is a signature algorithm that can be used
1565 * with psa_sign_hash() and psa_verify_hash().
1566 *
1567 * This encompasses all strict hash-and-sign algorithms categorized by
1568 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1569 * paradigm more loosely:
1570 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1571 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1572 *
1573 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1574 *
1575 * \return 1 if alg is a signature algorithm that can be used to sign a
1576 * hash. 0 if alg is a signature algorithm that can only be used
1577 * to sign a message. 0 if alg is not a signature algorithm.
1578 * This macro can return either 0 or 1 if alg is not a
1579 * supported algorithm identifier.
1580 */
1581#define PSA_ALG_IS_SIGN_HASH(alg) \
1582 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1583 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1584 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1585
1586/** Whether the specified algorithm is a signature algorithm that can be used
1587 * with psa_sign_message() and psa_verify_message().
1588 *
1589 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1590 *
1591 * \return 1 if alg is a signature algorithm that can be used to sign a
1592 * message. 0 if \p alg is a signature algorithm that can only be used
1593 * to sign an already-calculated hash. 0 if \p alg is not a signature
1594 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1595 * supported algorithm identifier.
1596 */
1597#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1598 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1599
Gilles Peskined35b4892019-01-14 16:02:15 +01001600/** Whether the specified algorithm is a hash-and-sign algorithm.
1601 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001602 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1603 * structured in two parts: first the calculation of a hash in a way that
1604 * does not depend on the key, then the calculation of a signature from the
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001605 * hash value and the key. Hash-and-sign algorithms encode the hash
1606 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1607 * to extract this algorithm.
1608 *
1609 * Thus, for a hash-and-sign algorithm,
1610 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1611 * ```
1612 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1613 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1614 * ```
1615 * Most usefully, separating the hash from the signature allows the hash
1616 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1617 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1618 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001619 *
1620 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1621 *
1622 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1623 * This macro may return either 0 or 1 if \p alg is not a supported
1624 * algorithm identifier.
1625 */
1626#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001627 (PSA_ALG_IS_SIGN_HASH(alg) && \
1628 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001629
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001630/** Get the hash used by a hash-and-sign signature algorithm.
1631 *
1632 * A hash-and-sign algorithm is a signature algorithm which is
1633 * composed of two phases: first a hashing phase which does not use
1634 * the key and produces a hash of the input message, then a signing
1635 * phase which only uses the hash and the key and not the message
1636 * itself.
1637 *
1638 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1639 * #PSA_ALG_IS_SIGN(\p alg) is true).
1640 *
1641 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1642 * algorithm.
1643 * \return 0 if \p alg is a signature algorithm that does not
1644 * follow the hash-and-sign structure.
1645 * \return Unspecified if \p alg is not a signature algorithm or
1646 * if it is not supported by the implementation.
1647 */
1648#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001649 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001650 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1651 0)
1652
1653/** RSA PKCS#1 v1.5 encryption.
1654 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001655#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001656
Bence Szépkútia2945512020-12-03 21:40:17 +01001657#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001658/** RSA OAEP encryption.
1659 *
1660 * This is the encryption scheme defined by RFC 8017
1661 * (PKCS#1: RSA Cryptography Specifications) under the name
1662 * RSAES-OAEP, with the message generation function MGF1.
1663 *
1664 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1665 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1666 * for MGF1.
1667 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001668 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001669 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001670 * hash algorithm.
1671 */
1672#define PSA_ALG_RSA_OAEP(hash_alg) \
1673 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1674#define PSA_ALG_IS_RSA_OAEP(alg) \
1675 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1676#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1677 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1678 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1679 0)
1680
Bence Szépkútia2945512020-12-03 21:40:17 +01001681#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001682/** Macro to build an HKDF algorithm.
1683 *
1684 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1685 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001686 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001687 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001688 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001689 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1690 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1691 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1692 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001693 * starting to generate output.
1694 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001695 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1696 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1697 *
1698 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001699 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001700 * hash algorithm.
1701 */
1702#define PSA_ALG_HKDF(hash_alg) \
1703 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1704/** Whether the specified algorithm is an HKDF algorithm.
1705 *
1706 * HKDF is a family of key derivation algorithms that are based on a hash
1707 * function and the HMAC construction.
1708 *
1709 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1710 *
1711 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1712 * This macro may return either 0 or 1 if \c alg is not a supported
1713 * key derivation algorithm identifier.
1714 */
1715#define PSA_ALG_IS_HKDF(alg) \
1716 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1717#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1718 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1719
Bence Szépkútia2945512020-12-03 21:40:17 +01001720#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001721/** Macro to build a TLS-1.2 PRF algorithm.
1722 *
1723 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1724 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1725 * used with either SHA-256 or SHA-384.
1726 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001727 * This key derivation algorithm uses the following inputs, which must be
1728 * passed in the order given here:
1729 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001730 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1731 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001732 *
1733 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001734 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001735 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001736 *
1737 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1738 * TLS 1.2 PRF using HMAC-SHA-256.
1739 *
1740 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1741 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1742 *
1743 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001744 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001745 * hash algorithm.
1746 */
1747#define PSA_ALG_TLS12_PRF(hash_alg) \
1748 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1749
1750/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1751 *
1752 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1753 *
1754 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1755 * This macro may return either 0 or 1 if \c alg is not a supported
1756 * key derivation algorithm identifier.
1757 */
1758#define PSA_ALG_IS_TLS12_PRF(alg) \
1759 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1760#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1761 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1762
Bence Szépkútia2945512020-12-03 21:40:17 +01001763#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001764/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1765 *
1766 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1767 * from the PreSharedKey (PSK) through the application of padding
1768 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1769 * The latter is based on HMAC and can be used with either SHA-256
1770 * or SHA-384.
1771 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001772 * This key derivation algorithm uses the following inputs, which must be
1773 * passed in the order given here:
1774 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001775 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1776 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001777 *
1778 * For the application to TLS-1.2, the seed (which is
1779 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1780 * ClientHello.Random + ServerHello.Random,
1781 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001782 *
1783 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1784 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1785 *
1786 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1787 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1788 *
1789 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001790 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001791 * hash algorithm.
1792 */
1793#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1794 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1795
1796/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1797 *
1798 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1799 *
1800 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1801 * This macro may return either 0 or 1 if \c alg is not a supported
1802 * key derivation algorithm identifier.
1803 */
1804#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1805 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1806#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1807 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1808
Bence Szépkútia2945512020-12-03 21:40:17 +01001809#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1810#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001811
Gilles Peskine6843c292019-01-18 16:44:49 +01001812/** Macro to build a combined algorithm that chains a key agreement with
1813 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001814 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001815 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1816 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1817 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1818 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001819 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001820 * \return The corresponding key agreement and derivation
1821 * algorithm.
1822 * \return Unspecified if \p ka_alg is not a supported
1823 * key agreement algorithm or \p kdf_alg is not a
1824 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001825 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001826#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1827 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001828
1829#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1830 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1831
Gilles Peskine6843c292019-01-18 16:44:49 +01001832#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1833 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001834
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001835/** Whether the specified algorithm is a raw key agreement algorithm.
1836 *
1837 * A raw key agreement algorithm is one that does not specify
1838 * a key derivation function.
1839 * Usually, raw key agreement algorithms are constructed directly with
1840 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001841 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001842 *
1843 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1844 *
1845 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1846 * This macro may return either 0 or 1 if \p alg is not a supported
1847 * algorithm identifier.
1848 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001849#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001850 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1851 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001852
1853#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1854 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1855
1856/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001857 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001858 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001859 * `g^{ab}` in big-endian format.
1860 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1861 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001862 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001863#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001864
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001865/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1866 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001867 * This includes the raw finite field Diffie-Hellman algorithm as well as
1868 * finite-field Diffie-Hellman followed by any supporter key derivation
1869 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001870 *
1871 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1872 *
1873 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1874 * This macro may return either 0 or 1 if \c alg is not a supported
1875 * key agreement algorithm identifier.
1876 */
1877#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001878 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001879
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001880/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1881 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001882 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001883 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1884 * `m` is the bit size associated with the curve, i.e. the bit size of the
1885 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1886 * the byte containing the most significant bit of the shared secret
1887 * is padded with zero bits. The byte order is either little-endian
1888 * or big-endian depending on the curve type.
1889 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001890 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001891 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1892 * in little-endian byte order.
1893 * The bit size is 448 for Curve448 and 255 for Curve25519.
1894 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001895 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001896 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1897 * in big-endian byte order.
1898 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1899 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001900 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001901 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1902 * in big-endian byte order.
1903 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001904 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001905#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001906
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001907/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1908 * algorithm.
1909 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001910 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1911 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1912 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001913 *
1914 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1915 *
1916 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1917 * 0 otherwise.
1918 * This macro may return either 0 or 1 if \c alg is not a supported
1919 * key agreement algorithm identifier.
1920 */
1921#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001922 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001923
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001924/** Whether the specified algorithm encoding is a wildcard.
1925 *
1926 * Wildcard values may only be used to set the usage algorithm field in
1927 * a policy, not to perform an operation.
1928 *
1929 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1930 *
1931 * \return 1 if \c alg is a wildcard algorithm encoding.
1932 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1933 * an operation).
1934 * \return This macro may return either 0 or 1 if \c alg is not a supported
1935 * algorithm identifier.
1936 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001937#define PSA_ALG_IS_WILDCARD(alg) \
1938 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1939 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1940 PSA_ALG_IS_MAC(alg) ? \
1941 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1942 PSA_ALG_IS_AEAD(alg) ? \
1943 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001944 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001945
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001946/**@}*/
1947
1948/** \defgroup key_lifetimes Key lifetimes
1949 * @{
1950 */
1951
Gilles Peskine43bd07d2022-06-20 18:41:20 +02001952/* Note that location and persistence level values are embedded in the
1953 * persistent key store, as part of key metadata. As a consequence, they
1954 * must not be changed (unless the storage format version changes).
1955 */
1956
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001957/** The default lifetime for volatile keys.
1958 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001959 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001960 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001961 *
1962 * A key with this lifetime is typically stored in the RAM area of the
1963 * PSA Crypto subsystem. However this is an implementation choice.
1964 * If an implementation stores data about the key in a non-volatile memory,
1965 * it must release all the resources associated with the key and erase the
1966 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001967 */
1968#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1969
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001970/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001971 *
1972 * A persistent key remains in storage until it is explicitly destroyed or
1973 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001974 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001975 * provide their own mechanism (for example to perform a factory reset,
1976 * to prepare for device refurbishment, or to uninstall an application).
1977 *
1978 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001979 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001980 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001981 */
1982#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1983
Gilles Peskineaff11812020-05-04 19:03:10 +02001984/** The persistence level of volatile keys.
1985 *
1986 * See ::psa_key_persistence_t for more information.
1987 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001988#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001989
1990/** The default persistence level for persistent keys.
1991 *
1992 * See ::psa_key_persistence_t for more information.
1993 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001994#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001995
1996/** A persistence level indicating that a key is never destroyed.
1997 *
1998 * See ::psa_key_persistence_t for more information.
1999 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002000#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002001
2002#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002003 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002004
2005#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002006 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002007
2008/** Whether a key lifetime indicates that the key is volatile.
2009 *
2010 * A volatile key is automatically destroyed by the implementation when
2011 * the application instance terminates. In particular, a volatile key
2012 * is automatically destroyed on a power reset of the device.
2013 *
2014 * A key that is not volatile is persistent. Persistent keys are
2015 * preserved until the application explicitly destroys them or until an
2016 * implementation-specific device management event occurs (for example,
2017 * a factory reset).
2018 *
2019 * \param lifetime The lifetime value to query (value of type
2020 * ::psa_key_lifetime_t).
2021 *
2022 * \return \c 1 if the key is volatile, otherwise \c 0.
2023 */
2024#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2025 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002026 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002027
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002028/** Whether a key lifetime indicates that the key is read-only.
2029 *
2030 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2031 * They must be created through platform-specific means that bypass the API.
2032 *
2033 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine11794b32021-06-07 23:21:50 +02002034 * consider a platform with multiple levels of privilege, where a
2035 * low-privilege application can use a key but is not allowed to destroy
2036 * it, and the platform exposes the key to the application with a read-only
2037 * lifetime. High-privilege code can destroy the key even though the
2038 * application sees the key as read-only.
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002039 *
2040 * \param lifetime The lifetime value to query (value of type
2041 * ::psa_key_lifetime_t).
2042 *
2043 * \return \c 1 if the key is read-only, otherwise \c 0.
2044 */
2045#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2046 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2047 PSA_KEY_PERSISTENCE_READ_ONLY)
2048
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002049/** Construct a lifetime from a persistence level and a location.
2050 *
2051 * \param persistence The persistence level
2052 * (value of type ::psa_key_persistence_t).
2053 * \param location The location indicator
2054 * (value of type ::psa_key_location_t).
2055 *
2056 * \return The constructed lifetime value.
2057 */
2058#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2059 ((location) << 8 | (persistence))
2060
Gilles Peskineaff11812020-05-04 19:03:10 +02002061/** The local storage area for persistent keys.
2062 *
2063 * This storage area is available on all systems that can store persistent
2064 * keys without delegating the storage to a third-party cryptoprocessor.
2065 *
2066 * See ::psa_key_location_t for more information.
2067 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002068#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002069
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002070#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002071
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002072/* Note that key identifier values are embedded in the
2073 * persistent key store, as part of key metadata. As a consequence, they
2074 * must not be changed (unless the storage format version changes).
2075 */
2076
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002077/** The null key identifier.
2078 */
2079#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002080/** The minimum value for a key identifier chosen by the application.
2081 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002082#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002083/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002084 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002085#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002086/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002087 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002088#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002089/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002090 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002091#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002092
Ronald Cron7424f0d2020-09-14 16:17:41 +02002093
2094#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2095
2096#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2097#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2098#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2099
2100/** Utility to initialize a key identifier at runtime.
2101 *
2102 * \param unused Unused parameter.
2103 * \param key_id Identifier of the key.
2104 */
2105static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2106 unsigned int unused, psa_key_id_t key_id )
2107{
2108 (void)unused;
2109
2110 return( key_id );
2111}
2112
2113/** Compare two key identifiers.
2114 *
2115 * \param id1 First key identifier.
2116 * \param id2 Second key identifier.
2117 *
2118 * \return Non-zero if the two key identifier are equal, zero otherwise.
2119 */
2120static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2121 mbedtls_svc_key_id_t id2 )
2122{
2123 return( id1 == id2 );
2124}
2125
Ronald Cronc4d1b512020-07-31 11:26:37 +02002126/** Check whether a key identifier is null.
2127 *
2128 * \param key Key identifier.
2129 *
2130 * \return Non-zero if the key identifier is null, zero otherwise.
2131 */
2132static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2133{
2134 return( key == 0 );
2135}
2136
Ronald Cron7424f0d2020-09-14 16:17:41 +02002137#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2138
2139#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2140#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2141#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2142
2143/** Utility to initialize a key identifier at runtime.
2144 *
2145 * \param owner_id Identifier of the key owner.
2146 * \param key_id Identifier of the key.
2147 */
2148static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2149 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2150{
2151 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
2152 .owner = owner_id } );
2153}
2154
2155/** Compare two key identifiers.
2156 *
2157 * \param id1 First key identifier.
2158 * \param id2 Second key identifier.
2159 *
2160 * \return Non-zero if the two key identifier are equal, zero otherwise.
2161 */
2162static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2163 mbedtls_svc_key_id_t id2 )
2164{
2165 return( ( id1.key_id == id2.key_id ) &&
2166 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2167}
2168
Ronald Cronc4d1b512020-07-31 11:26:37 +02002169/** Check whether a key identifier is null.
2170 *
2171 * \param key Key identifier.
2172 *
2173 * \return Non-zero if the key identifier is null, zero otherwise.
2174 */
2175static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2176{
Gilles Peskined9b41502021-05-28 12:59:49 +02002177 return( key.key_id == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002178}
2179
Ronald Cron7424f0d2020-09-14 16:17:41 +02002180#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002181
2182/**@}*/
2183
2184/** \defgroup policy Key policies
2185 * @{
2186 */
2187
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002188/* Note that key usage flags are embedded in the
2189 * persistent key store, as part of key metadata. As a consequence, they
2190 * must not be changed (unless the storage format version changes).
2191 */
2192
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002193/** Whether the key may be exported.
2194 *
2195 * A public key or the public part of a key pair may always be exported
2196 * regardless of the value of this permission flag.
2197 *
2198 * If a key does not have export permission, implementations shall not
2199 * allow the key to be exported in plain form from the cryptoprocessor,
2200 * whether through psa_export_key() or through a proprietary interface.
2201 * The key may however be exportable in a wrapped form, i.e. in a form
2202 * where it is encrypted by another key.
2203 */
2204#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2205
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002206/** Whether the key may be copied.
2207 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002208 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002209 * with the same policy or a more restrictive policy.
2210 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002211 * For lifetimes for which the key is located in a secure element which
2212 * enforce the non-exportability of keys, copying a key outside the secure
2213 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2214 * Copying the key inside the secure element is permitted with just
2215 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2216 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002217 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2218 * is sufficient to permit the copy.
2219 */
2220#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2221
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002222/** Whether the key may be used to encrypt a message.
2223 *
2224 * This flag allows the key to be used for a symmetric encryption operation,
2225 * for an AEAD encryption-and-authentication operation,
2226 * or for an asymmetric encryption operation,
2227 * if otherwise permitted by the key's type and policy.
2228 *
2229 * For a key pair, this concerns the public key.
2230 */
2231#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2232
2233/** Whether the key may be used to decrypt a message.
2234 *
2235 * This flag allows the key to be used for a symmetric decryption operation,
2236 * for an AEAD decryption-and-verification operation,
2237 * or for an asymmetric decryption operation,
2238 * if otherwise permitted by the key's type and policy.
2239 *
2240 * For a key pair, this concerns the private key.
2241 */
2242#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2243
2244/** Whether the key may be used to sign a message.
2245 *
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002246 * This flag allows the key to be used for a MAC calculation operation or for
2247 * an asymmetric message signature operation, if otherwise permitted by the
2248 * key’s type and policy.
2249 *
2250 * For a key pair, this concerns the private key.
2251 */
2252#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2253
2254/** Whether the key may be used to verify a message.
2255 *
2256 * This flag allows the key to be used for a MAC verification operation or for
2257 * an asymmetric message signature verification operation, if otherwise
2258 * permitted by the key’s type and policy.
2259 *
2260 * For a key pair, this concerns the public key.
2261 */
2262#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2263
2264/** Whether the key may be used to sign a message.
2265 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002266 * This flag allows the key to be used for a MAC calculation operation
2267 * or for an asymmetric signature operation,
2268 * if otherwise permitted by the key's type and policy.
2269 *
2270 * For a key pair, this concerns the private key.
2271 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002272#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002273
2274/** Whether the key may be used to verify a message signature.
2275 *
2276 * This flag allows the key to be used for a MAC verification operation
2277 * or for an asymmetric signature verification operation,
2278 * if otherwise permitted by by the key's type and policy.
2279 *
2280 * For a key pair, this concerns the public key.
2281 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002282#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002283
2284/** Whether the key may be used to derive other keys.
2285 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002286#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002287
2288/**@}*/
2289
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002290/** \defgroup derivation Key derivation
2291 * @{
2292 */
2293
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002294/* Key input steps are not embedded in the persistent storage, so you can
2295 * change them if needed: it's only an ABI change. */
2296
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002297/** A secret input for key derivation.
2298 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002299 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2300 * (passed to psa_key_derivation_input_key())
2301 * or the shared secret resulting from a key agreement
2302 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002303 *
2304 * The secret can also be a direct input (passed to
2305 * key_derivation_input_bytes()). In this case, the derivation operation
2306 * may not be used to derive keys: the operation will only allow
2307 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002308 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002309#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002310
2311/** A label for key derivation.
2312 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002313 * This should be a direct input.
2314 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002315 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002316#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002317
2318/** A salt for key derivation.
2319 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002320 * This should be a direct input.
2321 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002322 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002323#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002324
2325/** An information string for key derivation.
2326 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002327 * This should be a direct input.
2328 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002329 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002330#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002331
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002332/** A seed for key derivation.
2333 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002334 * This should be a direct input.
2335 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002336 */
2337#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2338
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002339/**@}*/
2340
Bence Szépkútib639d432021-04-21 10:33:54 +02002341/** \defgroup helper_macros Helper macros
2342 * @{
2343 */
2344
2345/* Helper macros */
2346
2347/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2348 * regardless of the tag length they encode.
2349 *
2350 * \param aead_alg_1 An AEAD algorithm identifier.
2351 * \param aead_alg_2 An AEAD algorithm identifier.
2352 *
2353 * \return 1 if both identifiers refer to the same AEAD algorithm,
2354 * 0 otherwise.
2355 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2356 * a supported AEAD algorithm.
2357 */
2358#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2359 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2360 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2361
2362/**@}*/
2363
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002364#endif /* PSA_CRYPTO_VALUES_H */