blob: 45c16b0a057f27f2d037fc75a2ede36ae222415d [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine43bd07d2022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010024 * SPDX-License-Identifier: Apache-2.0
25 *
26 * Licensed under the Apache License, Version 2.0 (the "License"); you may
27 * not use this file except in compliance with the License.
28 * You may obtain a copy of the License at
29 *
30 * http://www.apache.org/licenses/LICENSE-2.0
31 *
32 * Unless required by applicable law or agreed to in writing, software
33 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
34 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
35 * See the License for the specific language governing permissions and
36 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037 */
38
39#ifndef PSA_CRYPTO_VALUES_H
40#define PSA_CRYPTO_VALUES_H
41
42/** \defgroup error Error codes
43 * @{
44 */
45
David Saadab4ecc272019-02-14 13:48:10 +020046/* PSA error codes */
47
Gilles Peskine43bd07d2022-06-20 18:41:20 +020048/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskinebe059e42022-06-29 14:37:17 +020049 * etc.). Do not change the values in this section or even the expansions
50 * of each macro: it must be possible to `#include` both this header
51 * and some other PSA component's headers in the same C source,
52 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
53 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
54 * to the same sequence of tokens.
55 *
56 * If you must add a new
Gilles Peskine43bd07d2022-06-20 18:41:20 +020057 * value, check with the Arm PSA framework group to pick one that other
58 * domains aren't already using. */
59
Gilles Peskined3ce75c2023-01-04 19:50:27 +010060/* Tell uncrustify not to touch the constant definitions, otherwise
61 * it might change the spacing to something that is not PSA-compliant
62 * (e.g. adding a space after casts).
63 *
64 * *INDENT-OFF*
65 */
66
Gilles Peskinef3b731e2018-12-12 13:38:31 +010067/** The action was completed successfully. */
68#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010069
70/** An error occurred that does not correspond to any defined
71 * failure cause.
72 *
73 * Implementations may use this error code if none of the other standard
74 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020075#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010076
77/** The requested operation or a parameter is not supported
78 * by this implementation.
79 *
80 * Implementations should return this error code when an enumeration
81 * parameter such as a key type, algorithm, etc. is not recognized.
82 * If a combination of parameters is recognized and identified as
83 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020084#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010085
86/** The requested action is denied by a policy.
87 *
88 * Implementations should return this error code when the parameters
89 * are recognized as valid and supported, and a policy explicitly
90 * denies the requested operation.
91 *
92 * If a subset of the parameters of a function call identify a
93 * forbidden operation, and another subset of the parameters are
94 * not valid or not supported, it is unspecified whether the function
95 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
96 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020097#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** An output buffer is too small.
100 *
101 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
102 * description to determine a sufficient buffer size.
103 *
104 * Implementations should preferably return this error code only
105 * in cases when performing the operation with a larger output
106 * buffer would succeed. However implementations may return this
107 * error if a function has invalid or unsupported parameters in addition
108 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +0200109#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100110
David Saadab4ecc272019-02-14 13:48:10 +0200111/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100112 *
David Saadab4ecc272019-02-14 13:48:10 +0200113 * Implementations should return this error, when attempting
114 * to write an item (like a key) that already exists. */
115#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100116
David Saadab4ecc272019-02-14 13:48:10 +0200117/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100118 *
David Saadab4ecc272019-02-14 13:48:10 +0200119 * Implementations should return this error, if a requested item (like
120 * a key) does not exist. */
121#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122
123/** The requested action cannot be performed in the current state.
124 *
125 * Multipart operations return this error when one of the
126 * functions is called out of sequence. Refer to the function
127 * descriptions for permitted sequencing of functions.
128 *
129 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100130 * that a key either exists or not,
131 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100132 * as applicable.
133 *
134 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200135 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100136 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200137#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100138
139/** The parameters passed to the function are invalid.
140 *
141 * Implementations may return this error any time a parameter or
142 * combination of parameters are recognized as invalid.
143 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100144 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200145 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100146 * instead.
147 */
David Saadab4ecc272019-02-14 13:48:10 +0200148#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100149
150/** There is not enough runtime memory.
151 *
152 * If the action is carried out across multiple security realms, this
153 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200154#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100155
156/** There is not enough persistent storage.
157 *
158 * Functions that modify the key storage return this error code if
159 * there is insufficient storage space on the host media. In addition,
160 * many functions that do not otherwise access storage may return this
161 * error code if the implementation requires a mandatory log entry for
162 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200163#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164
165/** There was a communication failure inside the implementation.
166 *
167 * This can indicate a communication failure between the application
168 * and an external cryptoprocessor or between the cryptoprocessor and
169 * an external volatile or persistent memory. A communication failure
170 * may be transient or permanent depending on the cause.
171 *
172 * \warning If a function returns this error, it is undetermined
173 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200174 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100175 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
176 * if the requested action was completed successfully in an external
177 * cryptoprocessor but there was a breakdown of communication before
178 * the cryptoprocessor could report the status to the application.
179 */
David Saadab4ecc272019-02-14 13:48:10 +0200180#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100181
182/** There was a storage failure that may have led to data loss.
183 *
184 * This error indicates that some persistent storage is corrupted.
185 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200186 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100187 * between the cryptoprocessor and its external storage (use
188 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
189 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
190 *
191 * Note that a storage failure does not indicate that any data that was
192 * previously read is invalid. However this previously read data may no
193 * longer be readable from storage.
194 *
195 * When a storage failure occurs, it is no longer possible to ensure
196 * the global integrity of the keystore. Depending on the global
197 * integrity guarantees offered by the implementation, access to other
198 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100199 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100200 *
201 * Implementations should only use this error code to report a
202 * permanent storage corruption. However application writers should
203 * keep in mind that transient errors while reading the storage may be
204 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200205#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100206
207/** A hardware failure was detected.
208 *
209 * A hardware failure may be transient or permanent depending on the
210 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200211#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100212
213/** A tampering attempt was detected.
214 *
215 * If an application receives this error code, there is no guarantee
216 * that previously accessed or computed data was correct and remains
217 * confidential. Applications should not perform any security function
218 * and should enter a safe failure state.
219 *
220 * Implementations may return this error code if they detect an invalid
221 * state that cannot happen during normal operation and that indicates
222 * that the implementation's security guarantees no longer hold. Depending
223 * on the implementation architecture and on its security and safety goals,
224 * the implementation may forcibly terminate the application.
225 *
226 * This error code is intended as a last resort when a security breach
227 * is detected and it is unsure whether the keystore data is still
228 * protected. Implementations shall only return this error code
229 * to report an alarm from a tampering detector, to indicate that
230 * the confidentiality of stored data can no longer be guaranteed,
231 * or to indicate that the integrity of previously returned data is now
232 * considered compromised. Implementations shall not use this error code
233 * to indicate a hardware failure that merely makes it impossible to
234 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
235 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
236 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
237 * instead).
238 *
239 * This error indicates an attack against the application. Implementations
240 * shall not return this error code as a consequence of the behavior of
241 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200242#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100243
244/** There is not enough entropy to generate random data needed
245 * for the requested action.
246 *
247 * This error indicates a failure of a hardware random generator.
248 * Application writers should note that this error can be returned not
249 * only by functions whose purpose is to generate random data, such
250 * as key, IV or nonce generation, but also by functions that execute
251 * an algorithm with a randomized result, as well as functions that
252 * use randomization of intermediate computations as a countermeasure
253 * to certain attacks.
254 *
255 * Implementations should avoid returning this error after psa_crypto_init()
256 * has succeeded. Implementations should generate sufficient
257 * entropy during initialization and subsequently use a cryptographically
258 * secure pseudorandom generator (PRNG). However implementations may return
259 * this error at any time if a policy requires the PRNG to be reseeded
260 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200261#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100262
263/** The signature, MAC or hash is incorrect.
264 *
265 * Verification functions return this error if the verification
266 * calculations completed successfully, and the value to be verified
267 * was determined to be incorrect.
268 *
269 * If the value to verify has an invalid size, implementations may return
270 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
273/** The decrypted padding is incorrect.
274 *
275 * \warning In some protocols, when decrypting data, it is essential that
276 * the behavior of the application does not depend on whether the padding
277 * is correct, down to precise timing. Applications should prefer
278 * protocols that use authenticated encryption rather than plain
279 * encryption. If the application must perform a decryption of
280 * unauthenticated data, the application writer should take care not
281 * to reveal whether the padding is invalid.
282 *
283 * Implementations should strive to make valid and invalid padding
284 * as close as possible to indistinguishable to an external observer.
285 * In particular, the timing of a decryption operation should not
286 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200287#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100288
David Saadab4ecc272019-02-14 13:48:10 +0200289/** Return this error when there's insufficient data when attempting
290 * to read from a resource. */
291#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100292
Ronald Croncf56a0a2020-08-04 09:51:30 +0200293/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100294 */
David Saadab4ecc272019-02-14 13:48:10 +0200295#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100296
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100297/** Stored data has been corrupted.
298 *
299 * This error indicates that some persistent storage has suffered corruption.
300 * It does not indicate the following situations, which have specific error
301 * codes:
302 *
303 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
304 * - A communication error between the cryptoprocessor and its external
305 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
306 * - When the storage is in a valid state but is full - use
307 * #PSA_ERROR_INSUFFICIENT_STORAGE.
308 * - When the storage fails for other reasons - use
309 * #PSA_ERROR_STORAGE_FAILURE.
310 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
311 *
312 * \note A storage corruption does not indicate that any data that was
313 * previously read is invalid. However this previously read data might no
314 * longer be readable from storage.
315 *
316 * When a storage failure occurs, it is no longer possible to ensure the
317 * global integrity of the keystore.
318 */
319#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
320
gabor-mezei-armfe309242020-11-09 17:39:56 +0100321/** Data read from storage is not valid for the implementation.
322 *
323 * This error indicates that some data read from storage does not have a valid
324 * format. It does not indicate the following situations, which have specific
325 * error codes:
326 *
327 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
328 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
329 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
330 *
331 * This error is typically a result of either storage corruption on a
332 * cleartext storage backend, or an attempt to read data that was
333 * written by an incompatible version of the library.
334 */
335#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
336
Gilles Peskined3ce75c2023-01-04 19:50:27 +0100337/* *INDENT-ON* */
338
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339/**@}*/
340
341/** \defgroup crypto_types Key and algorithm types
342 * @{
343 */
344
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200345/* Note that key type values, including ECC family and DH group values, are
346 * embedded in the persistent key store, as part of key metadata. As a
347 * consequence, they must not be changed (unless the storage format version
348 * changes).
349 */
350
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100351/** An invalid key type value.
352 *
353 * Zero is not the encoding of any key type.
354 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100355#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100357/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100358 *
359 * Key types defined by this standard will never have the
360 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
361 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
362 * respect the bitwise structure used by standard encodings whenever practical.
363 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100364#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100365
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100366#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100367#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
368#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
369#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100370#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100371
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100372#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100373
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100374/** Whether a key type is vendor-defined.
375 *
376 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
377 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100378#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
379 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
380
381/** Whether a key type is an unstructured array of bytes.
382 *
383 * This encompasses both symmetric keys and non-key data.
384 */
385#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100386 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
387 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100388
389/** Whether a key type is asymmetric: either a key pair or a public key. */
390#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
391 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
392 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
393 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
394/** Whether a key type is the public part of a key pair. */
395#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
396 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
397/** Whether a key type is a key pair containing a private part and a public
398 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200399#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
401/** The key pair type corresponding to a public key type.
402 *
403 * You may also pass a key pair type as \p type, it will be left unchanged.
404 *
405 * \param type A public key type or key pair type.
406 *
407 * \return The corresponding key pair type.
408 * If \p type is not a public key or a key pair,
409 * the return value is undefined.
410 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200411#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100412 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
413/** The public key type corresponding to a key pair type.
414 *
415 * You may also pass a key pair type as \p type, it will be left unchanged.
416 *
417 * \param type A public key type or key pair type.
418 *
419 * \return The corresponding public key type.
420 * If \p type is not a public key or a key pair,
421 * the return value is undefined.
422 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200423#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100424 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
425
426/** Raw data.
427 *
428 * A "key" of this type cannot be used for any cryptographic operation.
429 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100430#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100431
432/** HMAC key.
433 *
434 * The key policy determines which underlying hash algorithm the key can be
435 * used for.
436 *
437 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100438 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100439 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100440#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100441
442/** A secret for key derivation.
443 *
444 * The key policy determines which key derivation algorithm the key
445 * can be used for.
446 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100447#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448
Gilles Peskine737c6be2019-05-21 16:01:06 +0200449/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100450 *
451 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
452 * 32 bytes (AES-256).
453 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100454#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100455
Gilles Peskine8890f642021-09-21 11:59:39 +0200456/** Key for a cipher, AEAD or MAC algorithm based on the
457 * ARIA block cipher. */
458#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
459
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100460/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
461 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100462 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
463 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100464 *
465 * Note that single DES and 2-key 3DES are weak and strongly
466 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
467 * is weak and deprecated and should only be used in legacy protocols.
468 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100469#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100470
Gilles Peskine737c6be2019-05-21 16:01:06 +0200471/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100472 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100473#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100474
Gilles Peskine500e48f2022-04-22 16:49:30 +0200475/** Key for the ARC4 stream cipher (also known as RC4 or ARCFOUR).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100476 *
Gilles Peskine500e48f2022-04-22 16:49:30 +0200477 * Note that ARC4 is weak and deprecated and should only be used in
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100478 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100479#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100480
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200481/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
482 *
483 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
484 *
485 * Implementations must support 12-byte nonces, may support 8-byte nonces,
486 * and should reject other sizes.
487 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100488#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200489
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100490/** RSA public key.
491 *
492 * The size of an RSA key is the bit size of the modulus.
493 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100494#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100495/** RSA key pair (private and public key).
496 *
497 * The size of an RSA key is the bit size of the modulus.
498 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100499#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500/** Whether a key type is an RSA key (pair or public-only). */
501#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200502 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100503
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100504#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100505#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
506#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100507/** Elliptic curve key pair.
508 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100509 * The size of an elliptic curve key is the bit size associated with the curve,
510 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
511 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
512 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100513 * \param curve A value of type ::psa_ecc_family_t that
514 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100515 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200516#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
517 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100518/** Elliptic curve public key.
519 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100520 * The size of an elliptic curve public key is the same as the corresponding
521 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
522 * `PSA_ECC_FAMILY_xxx` curve families).
523 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100524 * \param curve A value of type ::psa_ecc_family_t that
525 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100526 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100527#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
528 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
529
530/** Whether a key type is an elliptic curve key (pair or public-only). */
531#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200532 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100533 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100534/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200535#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100536 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200537 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100538/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100539#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
540 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
541 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
542
543/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100544#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
545 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100546 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
547 0))
548
Gilles Peskine228abc52019-12-03 17:24:19 +0100549/** SEC Koblitz curves over prime fields.
550 *
551 * This family comprises the following curves:
552 * secp192k1, secp224k1, secp256k1.
553 * They are defined in _Standards for Efficient Cryptography_,
554 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
555 * https://www.secg.org/sec2-v2.pdf
556 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100557#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100558
559/** SEC random curves over prime fields.
560 *
561 * This family comprises the following curves:
562 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
563 * They are defined in _Standards for Efficient Cryptography_,
564 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
565 * https://www.secg.org/sec2-v2.pdf
566 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100568/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100569#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100570
571/** SEC Koblitz curves over binary fields.
572 *
573 * This family comprises the following curves:
574 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
575 * They are defined in _Standards for Efficient Cryptography_,
576 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
577 * https://www.secg.org/sec2-v2.pdf
578 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100579#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100580
581/** SEC random curves over binary fields.
582 *
583 * This family comprises the following curves:
584 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
585 * They are defined in _Standards for Efficient Cryptography_,
586 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
587 * https://www.secg.org/sec2-v2.pdf
588 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100589#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100590
591/** SEC additional random curves over binary fields.
592 *
593 * This family comprises the following curve:
594 * sect163r2.
595 * It is defined in _Standards for Efficient Cryptography_,
596 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
597 * https://www.secg.org/sec2-v2.pdf
598 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100599#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100600
601/** Brainpool P random curves.
602 *
603 * This family comprises the following curves:
604 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
605 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
606 * It is defined in RFC 5639.
607 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100608#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100609
610/** Curve25519 and Curve448.
611 *
612 * This family comprises the following Montgomery curves:
613 * - 255-bit: Bernstein et al.,
614 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
615 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
616 * - 448-bit: Hamburg,
617 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
618 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
619 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100620#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100621
Gilles Peskine67546802021-02-24 21:49:40 +0100622/** The twisted Edwards curves Ed25519 and Ed448.
623 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100624 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100625 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100626 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100627 *
628 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100629 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100630 * to Curve25519.
631 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
632 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
633 * to Curve448.
634 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
635 */
636#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
637
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100638#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100639#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
640#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100641/** Diffie-Hellman key pair.
642 *
Paul Elliott75e27032020-06-03 15:17:39 +0100643 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100644 * Diffie-Hellman group to be used.
645 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200646#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
647 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100648/** Diffie-Hellman public key.
649 *
Paul Elliott75e27032020-06-03 15:17:39 +0100650 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100651 * Diffie-Hellman group to be used.
652 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200653#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
654 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
655
656/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
657#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200658 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200659 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
660/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200661#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200662 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200663 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200664/** Whether a key type is a Diffie-Hellman public key. */
665#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
666 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
667 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
668
669/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100670#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
671 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200672 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
673 0))
674
Gilles Peskine228abc52019-12-03 17:24:19 +0100675/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
676 *
677 * This family includes groups with the following key sizes (in bits):
678 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
679 * all of these sizes or only a subset.
680 */
Paul Elliott75e27032020-06-03 15:17:39 +0100681#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100682
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100683#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100684 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100685/** The block size of a block cipher.
686 *
687 * \param type A cipher key type (value of type #psa_key_type_t).
688 *
689 * \return The block size for a block cipher, or 1 for a stream cipher.
690 * The return value is undefined if \p type is not a supported
691 * cipher key type.
692 *
693 * \note It is possible to build stream cipher algorithms on top of a block
694 * cipher, for example CTR mode (#PSA_ALG_CTR).
695 * This macro only takes the key type into account, so it cannot be
696 * used to determine the size of the data that #psa_cipher_update()
697 * might buffer for future processing in general.
698 *
699 * \note This macro returns a compile-time constant if its argument is one.
700 *
701 * \warning This macro may evaluate its argument multiple times.
702 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100703#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100704 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100705 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100706 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100707
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200708/* Note that algorithm values are embedded in the persistent key store,
709 * as part of key metadata. As a consequence, they must not be changed
710 * (unless the storage format version changes).
711 */
712
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100713/** Vendor-defined algorithm flag.
714 *
715 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
716 * bit set. Vendors who define additional algorithms must use an encoding with
717 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
718 * used by standard encodings whenever practical.
719 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100720#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100721
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100722#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100723#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
724#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100725#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100726#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
727#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
728#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
729#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
730#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100732/** Whether an algorithm is vendor-defined.
733 *
734 * See also #PSA_ALG_VENDOR_FLAG.
735 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100736#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
737 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
738
739/** Whether the specified algorithm is a hash algorithm.
740 *
741 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
742 *
743 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
744 * This macro may return either 0 or 1 if \p alg is not a supported
745 * algorithm identifier.
746 */
747#define PSA_ALG_IS_HASH(alg) \
748 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
749
750/** Whether the specified algorithm is a MAC algorithm.
751 *
752 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
753 *
754 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
755 * This macro may return either 0 or 1 if \p alg is not a supported
756 * algorithm identifier.
757 */
758#define PSA_ALG_IS_MAC(alg) \
759 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
760
761/** Whether the specified algorithm is a symmetric cipher algorithm.
762 *
763 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
764 *
765 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
766 * This macro may return either 0 or 1 if \p alg is not a supported
767 * algorithm identifier.
768 */
769#define PSA_ALG_IS_CIPHER(alg) \
770 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
771
772/** Whether the specified algorithm is an authenticated encryption
773 * with associated data (AEAD) algorithm.
774 *
775 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
776 *
777 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
778 * This macro may return either 0 or 1 if \p alg is not a supported
779 * algorithm identifier.
780 */
781#define PSA_ALG_IS_AEAD(alg) \
782 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
783
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200784/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200785 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100786 *
787 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
788 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200789 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100790 * This macro may return either 0 or 1 if \p alg is not a supported
791 * algorithm identifier.
792 */
793#define PSA_ALG_IS_SIGN(alg) \
794 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
795
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200796/** Whether the specified algorithm is an asymmetric encryption algorithm,
797 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100798 *
799 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
800 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200801 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100802 * This macro may return either 0 or 1 if \p alg is not a supported
803 * algorithm identifier.
804 */
805#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
806 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
807
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100808/** Whether the specified algorithm is a key agreement algorithm.
809 *
810 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
811 *
812 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
813 * This macro may return either 0 or 1 if \p alg is not a supported
814 * algorithm identifier.
815 */
816#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100817 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100818
819/** Whether the specified algorithm is a key derivation algorithm.
820 *
821 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
822 *
823 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
824 * This macro may return either 0 or 1 if \p alg is not a supported
825 * algorithm identifier.
826 */
827#define PSA_ALG_IS_KEY_DERIVATION(alg) \
828 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
829
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200830/** An invalid algorithm identifier value. */
831#define PSA_ALG_NONE ((psa_algorithm_t)0)
832
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100833#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100834/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100835#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100836/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100837#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100838/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100839#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100840/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100841#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100842/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100843#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100844/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100845#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100846/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100847#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100848/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100849#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100850/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100851#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100852/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100853#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100854/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100855#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100856/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100857#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100858/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100859#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100860/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100861#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100862/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100863#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100864/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100865 *
866 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
867 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
868 * has the same output size and a (theoretically) higher security strength.
869 */
Gilles Peskine27354692021-03-03 17:45:06 +0100870#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100872/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100873 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100874 * This value may be used to form the algorithm usage field of a policy
875 * for a signature algorithm that is parametrized by a hash. The key
876 * may then be used to perform operations using the same signature
877 * algorithm parametrized with any supported hash.
878 *
879 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine35115f92021-10-04 18:10:38 +0200880 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100881 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100882 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100883 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
884 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100885 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200886 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100887 * ```
888 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100889 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100890 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
891 * call to sign or verify a message may use a different hash.
892 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200893 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
894 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
895 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100896 * ```
897 *
898 * This value may not be used to build other algorithms that are
899 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100900 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100901 *
902 * This value may not be used to build an algorithm specification to
903 * perform an operation. It is only valid to build policies.
904 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100905#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100906
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100907#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100908#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100909/** Macro to build an HMAC algorithm.
910 *
911 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
912 *
913 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
914 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
915 *
916 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100917 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100918 * hash algorithm.
919 */
920#define PSA_ALG_HMAC(hash_alg) \
921 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
922
923#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
924 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
925
926/** Whether the specified algorithm is an HMAC algorithm.
927 *
928 * HMAC is a family of MAC algorithms that are based on a hash function.
929 *
930 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
931 *
932 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
933 * This macro may return either 0 or 1 if \p alg is not a supported
934 * algorithm identifier.
935 */
936#define PSA_ALG_IS_HMAC(alg) \
937 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
938 PSA_ALG_HMAC_BASE)
939
940/* In the encoding of a MAC algorithm, the bits corresponding to
941 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
942 * truncated. As an exception, the value 0 means the untruncated algorithm,
943 * whatever its length is. The length is encoded in 6 bits, so it can
944 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
945 * to full length is correctly encoded as 0 and any non-trivial truncation
946 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100947#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
948#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100949
Steven Cooremand927ed72021-02-22 19:59:35 +0100950/* In the encoding of a MAC algorithm, the bit corresponding to
951 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100952 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
953 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100954 * same base class and having a (potentially truncated) MAC length greater or
955 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
956#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
957
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100958/** Macro to build a truncated MAC algorithm.
959 *
960 * A truncated MAC algorithm is identical to the corresponding MAC
961 * algorithm except that the MAC value for the truncated algorithm
962 * consists of only the first \p mac_length bytes of the MAC value
963 * for the untruncated algorithm.
964 *
965 * \note This macro may allow constructing algorithm identifiers that
966 * are not valid, either because the specified length is larger
967 * than the untruncated MAC or because the specified length is
968 * smaller than permitted by the implementation.
969 *
970 * \note It is implementation-defined whether a truncated MAC that
971 * is truncated to the same length as the MAC of the untruncated
972 * algorithm is considered identical to the untruncated algorithm
973 * for policy comparison purposes.
974 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200975 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100976 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100977 * is true). This may be a truncated or untruncated
978 * MAC algorithm.
979 * \param mac_length Desired length of the truncated MAC in bytes.
980 * This must be at most the full length of the MAC
981 * and must be at least an implementation-specified
982 * minimum. The implementation-specified minimum
983 * shall not be zero.
984 *
985 * \return The corresponding MAC algorithm with the specified
986 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100987 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100988 * MAC algorithm or if \p mac_length is too small or
989 * too large for the specified MAC algorithm.
990 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100991#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
992 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
993 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100994 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
995
996/** Macro to build the base MAC algorithm corresponding to a truncated
997 * MAC algorithm.
998 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200999 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001000 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001001 * is true). This may be a truncated or untruncated
1002 * MAC algorithm.
1003 *
1004 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001005 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001006 * MAC algorithm.
1007 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001008#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1009 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1010 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001011
1012/** Length to which a MAC algorithm is truncated.
1013 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001014 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001015 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001016 * is true).
1017 *
1018 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001019 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1020 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001021 * MAC algorithm.
1022 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001023#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1024 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001025
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001026/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001027 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001028 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001029 * sharing the same base algorithm, and where the (potentially truncated) MAC
1030 * length of the specific algorithm is equal to or larger then the wildcard
1031 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001032 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001033 * \note When setting the minimum required MAC length to less than the
1034 * smallest MAC length allowed by the base algorithm, this effectively
1035 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001036 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001037 * \param mac_alg A MAC algorithm identifier (value of type
1038 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1039 * is true).
1040 * \param min_mac_length Desired minimum length of the message authentication
1041 * code in bytes. This must be at most the untruncated
1042 * length of the MAC and must be at least 1.
1043 *
1044 * \return The corresponding MAC wildcard algorithm with the
1045 * specified minimum length.
1046 * \return Unspecified if \p mac_alg is not a supported MAC
1047 * algorithm or if \p min_mac_length is less than 1 or
1048 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001049 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001050#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1051 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1052 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001053
Bence Szépkútia2945512020-12-03 21:40:17 +01001054#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001055/** The CBC-MAC construction over a block cipher
1056 *
1057 * \warning CBC-MAC is insecure in many cases.
1058 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1059 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001060#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001061/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001062#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001063
1064/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1065 *
1066 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1067 *
1068 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1069 * This macro may return either 0 or 1 if \p alg is not a supported
1070 * algorithm identifier.
1071 */
1072#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1073 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1074 PSA_ALG_CIPHER_MAC_BASE)
1075
1076#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1077#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1078
1079/** Whether the specified algorithm is a stream cipher.
1080 *
1081 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1082 * by applying a bitwise-xor with a stream of bytes that is generated
1083 * from a key.
1084 *
1085 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1086 *
1087 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1088 * This macro may return either 0 or 1 if \p alg is not a supported
1089 * algorithm identifier or if it is not a symmetric cipher algorithm.
1090 */
1091#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1092 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1093 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1094
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001095/** The stream cipher mode of a stream cipher algorithm.
1096 *
1097 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001098 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1099 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001100 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001101#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001102
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001103/** The CTR stream cipher mode.
1104 *
1105 * CTR is a stream cipher which is built from a block cipher.
1106 * The underlying block cipher is determined by the key type.
1107 * For example, to use AES-128-CTR, use this algorithm with
1108 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1109 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001110#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001111
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001112/** The CFB stream cipher mode.
1113 *
1114 * The underlying block cipher is determined by the key type.
1115 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001116#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001117
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001118/** The OFB stream cipher mode.
1119 *
1120 * The underlying block cipher is determined by the key type.
1121 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001122#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001123
1124/** The XTS cipher mode.
1125 *
1126 * XTS is a cipher mode which is built from a block cipher. It requires at
1127 * least one full block of input, but beyond this minimum the input
1128 * does not need to be a whole number of blocks.
1129 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001130#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001131
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001132/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1133 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001134 * \warning ECB mode does not protect the confidentiality of the encrypted data
1135 * except in extremely narrow circumstances. It is recommended that applications
1136 * only use ECB if they need to construct an operating mode that the
1137 * implementation does not provide. Implementations are encouraged to provide
1138 * the modes that applications need in preference to supporting direct access
1139 * to ECB.
1140 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001141 * The underlying block cipher is determined by the key type.
1142 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001143 * This symmetric cipher mode can only be used with messages whose lengths are a
1144 * multiple of the block size of the chosen block cipher.
1145 *
1146 * ECB mode does not accept an initialization vector (IV). When using a
1147 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1148 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001149 */
1150#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1151
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001152/** The CBC block cipher chaining mode, with no padding.
1153 *
1154 * The underlying block cipher is determined by the key type.
1155 *
1156 * This symmetric cipher mode can only be used with messages whose lengths
1157 * are whole number of blocks for the chosen block cipher.
1158 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001159#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001160
1161/** The CBC block cipher chaining mode with PKCS#7 padding.
1162 *
1163 * The underlying block cipher is determined by the key type.
1164 *
1165 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1166 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001167#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001168
Gilles Peskine679693e2019-05-06 15:10:16 +02001169#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1170
1171/** Whether the specified algorithm is an AEAD mode on a block cipher.
1172 *
1173 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1174 *
1175 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1176 * a block cipher, 0 otherwise.
1177 * This macro may return either 0 or 1 if \p alg is not a supported
1178 * algorithm identifier.
1179 */
1180#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1181 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1182 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1183
Gilles Peskine9153ec02019-02-15 13:02:02 +01001184/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001185 *
1186 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001187 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001188#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001189
1190/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001191 *
1192 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001193 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001194#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001195
1196/** The Chacha20-Poly1305 AEAD algorithm.
1197 *
1198 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001199 *
1200 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1201 * and should reject other sizes.
1202 *
1203 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001204 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001205#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001206
Tom Cosgrove5205c972022-07-28 06:12:08 +01001207/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001208 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1209 * The constants for default lengths follow this encoding.
1210 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001211#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1212#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001213
Steven Cooremand927ed72021-02-22 19:59:35 +01001214/* In the encoding of an AEAD algorithm, the bit corresponding to
1215 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001216 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1217 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001218 * same base class and having a tag length greater than or equal to the one
1219 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1220#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1221
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001222/** Macro to build a shortened AEAD algorithm.
1223 *
1224 * A shortened AEAD algorithm is similar to the corresponding AEAD
1225 * algorithm, but has an authentication tag that consists of fewer bytes.
1226 * Depending on the algorithm, the tag length may affect the calculation
1227 * of the ciphertext.
1228 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001229 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001230 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001231 * is true).
1232 * \param tag_length Desired length of the authentication tag in bytes.
1233 *
1234 * \return The corresponding AEAD algorithm with the specified
1235 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001236 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001237 * AEAD algorithm or if \p tag_length is not valid
1238 * for the specified AEAD algorithm.
1239 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001240#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001241 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1242 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001243 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1244 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1245
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001246/** Retrieve the tag length of a specified AEAD algorithm
1247 *
1248 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001249 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001250 * is true).
1251 *
1252 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001253 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001254 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001255 */
1256#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1257 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1258 PSA_AEAD_TAG_LENGTH_OFFSET )
1259
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001260/** Calculate the corresponding AEAD algorithm with the default tag length.
1261 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001262 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001263 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001264 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001265 * \return The corresponding AEAD algorithm with the default
1266 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001267 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001268#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001269 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001270 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1271 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1272 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001273 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001274#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1275 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1276 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001277 ref :
1278
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001279/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001280 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001281 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001282 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001283 * algorithm is equal to or larger then the minimum tag length specified by the
1284 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001285 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001286 * \note When setting the minimum required tag length to less than the
1287 * smallest tag length allowed by the base algorithm, this effectively
1288 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001289 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001290 * \param aead_alg An AEAD algorithm identifier (value of type
1291 * #psa_algorithm_t such that
1292 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1293 * \param min_tag_length Desired minimum length of the authentication tag in
1294 * bytes. This must be at least 1 and at most the largest
1295 * allowed tag length of the algorithm.
1296 *
1297 * \return The corresponding AEAD wildcard algorithm with the
1298 * specified minimum length.
1299 * \return Unspecified if \p aead_alg is not a supported
1300 * AEAD algorithm or if \p min_tag_length is less than 1
1301 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001302 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001303#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001304 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1305 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001306
Bence Szépkútia2945512020-12-03 21:40:17 +01001307#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001308/** RSA PKCS#1 v1.5 signature with hashing.
1309 *
1310 * This is the signature scheme defined by RFC 8017
1311 * (PKCS#1: RSA Cryptography Specifications) under the name
1312 * RSASSA-PKCS1-v1_5.
1313 *
1314 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1315 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001316 * This includes #PSA_ALG_ANY_HASH
1317 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001318 *
1319 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001320 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001321 * hash algorithm.
1322 */
1323#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1324 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1325/** Raw PKCS#1 v1.5 signature.
1326 *
1327 * The input to this algorithm is the DigestInfo structure used by
1328 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1329 * steps 3&ndash;6.
1330 */
1331#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1332#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1333 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1334
Bence Szépkútia2945512020-12-03 21:40:17 +01001335#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskine35115f92021-10-04 18:10:38 +02001336#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001337/** RSA PSS signature with hashing.
1338 *
1339 * This is the signature scheme defined by RFC 8017
1340 * (PKCS#1: RSA Cryptography Specifications) under the name
1341 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu54bc05d2022-06-17 10:25:05 +01001342 * a salt length equal to the length of the hash, or the largest
1343 * possible salt length for the algorithm and key size if that is
1344 * smaller than the hash length. The specified hash algorithm is
1345 * used to hash the input message, to create the salted hash, and
1346 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001347 *
1348 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1349 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001350 * This includes #PSA_ALG_ANY_HASH
1351 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001352 *
1353 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001354 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001355 * hash algorithm.
1356 */
1357#define PSA_ALG_RSA_PSS(hash_alg) \
1358 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine35115f92021-10-04 18:10:38 +02001359
1360/** RSA PSS signature with hashing with relaxed verification.
1361 *
1362 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1363 * but allows an arbitrary salt length (including \c 0) when verifying a
1364 * signature.
1365 *
1366 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1367 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1368 * This includes #PSA_ALG_ANY_HASH
1369 * when specifying the algorithm in a usage policy.
1370 *
1371 * \return The corresponding RSA PSS signature algorithm.
1372 * \return Unspecified if \p hash_alg is not a supported
1373 * hash algorithm.
1374 */
1375#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1376 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1377
1378/** Whether the specified algorithm is RSA PSS with standard salt.
1379 *
1380 * \param alg An algorithm value or an algorithm policy wildcard.
1381 *
1382 * \return 1 if \p alg is of the form
1383 * #PSA_ALG_RSA_PSS(\c hash_alg),
1384 * where \c hash_alg is a hash algorithm or
1385 * #PSA_ALG_ANY_HASH. 0 otherwise.
1386 * This macro may return either 0 or 1 if \p alg is not
1387 * a supported algorithm identifier or policy.
1388 */
1389#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001390 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1391
Gilles Peskine35115f92021-10-04 18:10:38 +02001392/** Whether the specified algorithm is RSA PSS with any salt.
1393 *
1394 * \param alg An algorithm value or an algorithm policy wildcard.
1395 *
1396 * \return 1 if \p alg is of the form
1397 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1398 * where \c hash_alg is a hash algorithm or
1399 * #PSA_ALG_ANY_HASH. 0 otherwise.
1400 * This macro may return either 0 or 1 if \p alg is not
1401 * a supported algorithm identifier or policy.
1402 */
1403#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1404 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1405
1406/** Whether the specified algorithm is RSA PSS.
1407 *
1408 * This includes any of the RSA PSS algorithm variants, regardless of the
1409 * constraints on salt length.
1410 *
1411 * \param alg An algorithm value or an algorithm policy wildcard.
1412 *
1413 * \return 1 if \p alg is of the form
1414 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1415 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1416 * where \c hash_alg is a hash algorithm or
1417 * #PSA_ALG_ANY_HASH. 0 otherwise.
1418 * This macro may return either 0 or 1 if \p alg is not
1419 * a supported algorithm identifier or policy.
1420 */
1421#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef8362ca2021-10-08 16:28:32 +02001422 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1423 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskine35115f92021-10-04 18:10:38 +02001424
Bence Szépkútia2945512020-12-03 21:40:17 +01001425#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001426/** ECDSA signature with hashing.
1427 *
1428 * This is the ECDSA signature scheme defined by ANSI X9.62,
1429 * with a random per-message secret number (*k*).
1430 *
1431 * The representation of the signature as a byte string consists of
Shaun Case0e7791f2021-12-20 21:14:10 -08001432 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001433 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1434 * of the base point of the curve in octets. Each value is represented
1435 * in big-endian order (most significant octet first).
1436 *
1437 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1438 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001439 * This includes #PSA_ALG_ANY_HASH
1440 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001441 *
1442 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001443 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001444 * hash algorithm.
1445 */
1446#define PSA_ALG_ECDSA(hash_alg) \
1447 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1448/** ECDSA signature without hashing.
1449 *
1450 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1451 * without specifying a hash algorithm. This algorithm may only be
1452 * used to sign or verify a sequence of bytes that should be an
1453 * already-calculated hash. Note that the input is padded with
1454 * zeros on the left or truncated on the left as required to fit
1455 * the curve size.
1456 */
1457#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001458#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001459/** Deterministic ECDSA signature with hashing.
1460 *
1461 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1462 *
1463 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1464 *
1465 * Note that when this algorithm is used for verification, signatures
1466 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1467 * same private key are accepted. In other words,
1468 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1469 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1470 *
1471 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1472 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001473 * This includes #PSA_ALG_ANY_HASH
1474 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001475 *
1476 * \return The corresponding deterministic ECDSA signature
1477 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001478 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001479 * hash algorithm.
1480 */
1481#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1482 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001483#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001484#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001485 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001486 PSA_ALG_ECDSA_BASE)
1487#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001488 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001489#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1490 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1491#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1492 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1493
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001494/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1495 * using standard parameters.
1496 *
1497 * Contexts are not supported in the current version of this specification
1498 * because there is no suitable signature interface that can take the
1499 * context as a parameter. A future version of this specification may add
1500 * suitable functions and extend this algorithm to support contexts.
1501 *
1502 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1503 * In this specification, the following curves are supported:
1504 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1505 * in RFC 8032.
1506 * The curve is Edwards25519.
1507 * The hash function used internally is SHA-512.
1508 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1509 * in RFC 8032.
1510 * The curve is Edwards448.
1511 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001512 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001513 *
1514 * This algorithm can be used with psa_sign_message() and
1515 * psa_verify_message(). Since there is no prehashing, it cannot be used
1516 * with psa_sign_hash() or psa_verify_hash().
1517 *
1518 * The signature format is the concatenation of R and S as defined by
1519 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1520 * string for Ed448).
1521 */
1522#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1523
1524#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1525#define PSA_ALG_IS_HASH_EDDSA(alg) \
1526 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1527
1528/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001529 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001530 *
1531 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1532 *
1533 * This algorithm is Ed25519 as specified in RFC 8032.
1534 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001535 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001536 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001537 *
1538 * This is a hash-and-sign algorithm: to calculate a signature,
1539 * you can either:
1540 * - call psa_sign_message() on the message;
1541 * - or calculate the SHA-512 hash of the message
1542 * with psa_hash_compute()
1543 * or with a multi-part hash operation started with psa_hash_setup(),
1544 * using the hash algorithm #PSA_ALG_SHA_512,
1545 * then sign the calculated hash with psa_sign_hash().
1546 * Verifying a signature is similar, using psa_verify_message() or
1547 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001548 */
1549#define PSA_ALG_ED25519PH \
1550 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1551
1552/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1553 * using SHAKE256 and the Edwards448 curve.
1554 *
1555 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1556 *
1557 * This algorithm is Ed448 as specified in RFC 8032.
1558 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001559 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001560 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001561 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001562 *
1563 * This is a hash-and-sign algorithm: to calculate a signature,
1564 * you can either:
1565 * - call psa_sign_message() on the message;
1566 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1567 * with psa_hash_compute()
1568 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001569 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001570 * then sign the calculated hash with psa_sign_hash().
1571 * Verifying a signature is similar, using psa_verify_message() or
1572 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001573 */
1574#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001575 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001576
Gilles Peskine6d400852021-02-24 21:39:52 +01001577/* Default definition, to be overridden if the library is extended with
1578 * more hash-and-sign algorithms that we want to keep out of this header
1579 * file. */
1580#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1581
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001582/** Whether the specified algorithm is a signature algorithm that can be used
1583 * with psa_sign_hash() and psa_verify_hash().
1584 *
1585 * This encompasses all strict hash-and-sign algorithms categorized by
1586 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1587 * paradigm more loosely:
1588 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1589 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1590 *
1591 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1592 *
1593 * \return 1 if alg is a signature algorithm that can be used to sign a
1594 * hash. 0 if alg is a signature algorithm that can only be used
1595 * to sign a message. 0 if alg is not a signature algorithm.
1596 * This macro can return either 0 or 1 if alg is not a
1597 * supported algorithm identifier.
1598 */
1599#define PSA_ALG_IS_SIGN_HASH(alg) \
1600 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1601 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1602 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1603
1604/** Whether the specified algorithm is a signature algorithm that can be used
1605 * with psa_sign_message() and psa_verify_message().
1606 *
1607 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1608 *
1609 * \return 1 if alg is a signature algorithm that can be used to sign a
1610 * message. 0 if \p alg is a signature algorithm that can only be used
1611 * to sign an already-calculated hash. 0 if \p alg is not a signature
1612 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1613 * supported algorithm identifier.
1614 */
1615#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1616 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1617
Gilles Peskined35b4892019-01-14 16:02:15 +01001618/** Whether the specified algorithm is a hash-and-sign algorithm.
1619 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001620 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1621 * structured in two parts: first the calculation of a hash in a way that
1622 * does not depend on the key, then the calculation of a signature from the
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001623 * hash value and the key. Hash-and-sign algorithms encode the hash
1624 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1625 * to extract this algorithm.
1626 *
1627 * Thus, for a hash-and-sign algorithm,
1628 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1629 * ```
1630 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1631 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1632 * ```
1633 * Most usefully, separating the hash from the signature allows the hash
1634 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1635 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1636 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001637 *
1638 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1639 *
1640 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1641 * This macro may return either 0 or 1 if \p alg is not a supported
1642 * algorithm identifier.
1643 */
1644#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001645 (PSA_ALG_IS_SIGN_HASH(alg) && \
1646 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001647
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001648/** Get the hash used by a hash-and-sign signature algorithm.
1649 *
1650 * A hash-and-sign algorithm is a signature algorithm which is
1651 * composed of two phases: first a hashing phase which does not use
1652 * the key and produces a hash of the input message, then a signing
1653 * phase which only uses the hash and the key and not the message
1654 * itself.
1655 *
1656 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1657 * #PSA_ALG_IS_SIGN(\p alg) is true).
1658 *
1659 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1660 * algorithm.
1661 * \return 0 if \p alg is a signature algorithm that does not
1662 * follow the hash-and-sign structure.
1663 * \return Unspecified if \p alg is not a signature algorithm or
1664 * if it is not supported by the implementation.
1665 */
1666#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001667 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001668 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1669 0)
1670
1671/** RSA PKCS#1 v1.5 encryption.
1672 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001673#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001674
Bence Szépkútia2945512020-12-03 21:40:17 +01001675#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001676/** RSA OAEP encryption.
1677 *
1678 * This is the encryption scheme defined by RFC 8017
1679 * (PKCS#1: RSA Cryptography Specifications) under the name
1680 * RSAES-OAEP, with the message generation function MGF1.
1681 *
1682 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1683 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1684 * for MGF1.
1685 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001686 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001687 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001688 * hash algorithm.
1689 */
1690#define PSA_ALG_RSA_OAEP(hash_alg) \
1691 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1692#define PSA_ALG_IS_RSA_OAEP(alg) \
1693 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1694#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1695 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1696 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1697 0)
1698
Bence Szépkútia2945512020-12-03 21:40:17 +01001699#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001700/** Macro to build an HKDF algorithm.
1701 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001702 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001703 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001704 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001705 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001706 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001707 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1708 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1709 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1710 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001711 * starting to generate output.
1712 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001713 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1714 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1715 *
1716 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001717 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001718 * hash algorithm.
1719 */
1720#define PSA_ALG_HKDF(hash_alg) \
1721 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1722/** Whether the specified algorithm is an HKDF algorithm.
1723 *
1724 * HKDF is a family of key derivation algorithms that are based on a hash
1725 * function and the HMAC construction.
1726 *
1727 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1728 *
1729 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1730 * This macro may return either 0 or 1 if \c alg is not a supported
1731 * key derivation algorithm identifier.
1732 */
1733#define PSA_ALG_IS_HKDF(alg) \
1734 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1735#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1736 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1737
Bence Szépkútia2945512020-12-03 21:40:17 +01001738#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001739/** Macro to build a TLS-1.2 PRF algorithm.
1740 *
1741 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1742 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1743 * used with either SHA-256 or SHA-384.
1744 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001745 * This key derivation algorithm uses the following inputs, which must be
1746 * passed in the order given here:
1747 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001748 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1749 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001750 *
1751 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001752 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001753 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001754 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001755 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001756 * TLS 1.2 PRF using HMAC-SHA-256.
1757 *
1758 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1759 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1760 *
1761 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001762 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001763 * hash algorithm.
1764 */
1765#define PSA_ALG_TLS12_PRF(hash_alg) \
1766 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1767
1768/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1769 *
1770 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1771 *
1772 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1773 * This macro may return either 0 or 1 if \c alg is not a supported
1774 * key derivation algorithm identifier.
1775 */
1776#define PSA_ALG_IS_TLS12_PRF(alg) \
1777 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1778#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1779 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1780
Bence Szépkútia2945512020-12-03 21:40:17 +01001781#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001782/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1783 *
1784 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1785 * from the PreSharedKey (PSK) through the application of padding
1786 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1787 * The latter is based on HMAC and can be used with either SHA-256
1788 * or SHA-384.
1789 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001790 * This key derivation algorithm uses the following inputs, which must be
1791 * passed in the order given here:
1792 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001793 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1794 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001795 *
1796 * For the application to TLS-1.2, the seed (which is
1797 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1798 * ClientHello.Random + ServerHello.Random,
1799 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001800 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001801 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001802 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1803 *
1804 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1805 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1806 *
1807 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001808 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001809 * hash algorithm.
1810 */
1811#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1812 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1813
1814/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1815 *
1816 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1817 *
1818 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1819 * This macro may return either 0 or 1 if \c alg is not a supported
1820 * key derivation algorithm identifier.
1821 */
1822#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1823 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1824#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1825 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1826
Bence Szépkútia2945512020-12-03 21:40:17 +01001827#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1828#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001829
Gilles Peskine6843c292019-01-18 16:44:49 +01001830/** Macro to build a combined algorithm that chains a key agreement with
1831 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001832 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001833 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1834 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1835 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1836 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001837 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001838 * \return The corresponding key agreement and derivation
1839 * algorithm.
1840 * \return Unspecified if \p ka_alg is not a supported
1841 * key agreement algorithm or \p kdf_alg is not a
1842 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001843 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001844#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1845 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001846
1847#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1848 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1849
Gilles Peskine6843c292019-01-18 16:44:49 +01001850#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1851 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001852
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001853/** Whether the specified algorithm is a raw key agreement algorithm.
1854 *
1855 * A raw key agreement algorithm is one that does not specify
1856 * a key derivation function.
1857 * Usually, raw key agreement algorithms are constructed directly with
1858 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001859 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001860 *
1861 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1862 *
1863 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1864 * This macro may return either 0 or 1 if \p alg is not a supported
1865 * algorithm identifier.
1866 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001867#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001868 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1869 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001870
1871#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1872 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1873
1874/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001875 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001876 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001877 * `g^{ab}` in big-endian format.
1878 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1879 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001880 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001881#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001882
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001883/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1884 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001885 * This includes the raw finite field Diffie-Hellman algorithm as well as
1886 * finite-field Diffie-Hellman followed by any supporter key derivation
1887 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001888 *
1889 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1890 *
1891 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1892 * This macro may return either 0 or 1 if \c alg is not a supported
1893 * key agreement algorithm identifier.
1894 */
1895#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001896 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001897
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001898/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1899 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001900 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001901 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1902 * `m` is the bit size associated with the curve, i.e. the bit size of the
1903 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1904 * the byte containing the most significant bit of the shared secret
1905 * is padded with zero bits. The byte order is either little-endian
1906 * or big-endian depending on the curve type.
1907 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001908 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001909 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1910 * in little-endian byte order.
1911 * The bit size is 448 for Curve448 and 255 for Curve25519.
1912 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001913 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001914 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1915 * in big-endian byte order.
1916 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1917 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001918 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001919 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1920 * in big-endian byte order.
1921 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001922 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001923#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001924
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001925/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1926 * algorithm.
1927 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001928 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1929 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1930 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001931 *
1932 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1933 *
1934 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1935 * 0 otherwise.
1936 * This macro may return either 0 or 1 if \c alg is not a supported
1937 * key agreement algorithm identifier.
1938 */
1939#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001940 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001941
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001942/** Whether the specified algorithm encoding is a wildcard.
1943 *
1944 * Wildcard values may only be used to set the usage algorithm field in
1945 * a policy, not to perform an operation.
1946 *
1947 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1948 *
1949 * \return 1 if \c alg is a wildcard algorithm encoding.
1950 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1951 * an operation).
1952 * \return This macro may return either 0 or 1 if \c alg is not a supported
1953 * algorithm identifier.
1954 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001955#define PSA_ALG_IS_WILDCARD(alg) \
1956 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1957 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1958 PSA_ALG_IS_MAC(alg) ? \
1959 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1960 PSA_ALG_IS_AEAD(alg) ? \
1961 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001962 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001963
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001964/**@}*/
1965
1966/** \defgroup key_lifetimes Key lifetimes
1967 * @{
1968 */
1969
Gilles Peskine43bd07d2022-06-20 18:41:20 +02001970/* Note that location and persistence level values are embedded in the
1971 * persistent key store, as part of key metadata. As a consequence, they
1972 * must not be changed (unless the storage format version changes).
1973 */
1974
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001975/** The default lifetime for volatile keys.
1976 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001977 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001978 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001979 *
1980 * A key with this lifetime is typically stored in the RAM area of the
1981 * PSA Crypto subsystem. However this is an implementation choice.
1982 * If an implementation stores data about the key in a non-volatile memory,
1983 * it must release all the resources associated with the key and erase the
1984 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001985 */
1986#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1987
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001988/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001989 *
1990 * A persistent key remains in storage until it is explicitly destroyed or
1991 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001992 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001993 * provide their own mechanism (for example to perform a factory reset,
1994 * to prepare for device refurbishment, or to uninstall an application).
1995 *
1996 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001997 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001998 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001999 */
2000#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
2001
Gilles Peskineaff11812020-05-04 19:03:10 +02002002/** The persistence level of volatile keys.
2003 *
2004 * See ::psa_key_persistence_t for more information.
2005 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002006#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002007
2008/** The default persistence level for persistent keys.
2009 *
2010 * See ::psa_key_persistence_t for more information.
2011 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002012#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002013
2014/** A persistence level indicating that a key is never destroyed.
2015 *
2016 * See ::psa_key_persistence_t for more information.
2017 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002018#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002019
2020#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002021 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002022
2023#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002024 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002025
2026/** Whether a key lifetime indicates that the key is volatile.
2027 *
2028 * A volatile key is automatically destroyed by the implementation when
2029 * the application instance terminates. In particular, a volatile key
2030 * is automatically destroyed on a power reset of the device.
2031 *
2032 * A key that is not volatile is persistent. Persistent keys are
2033 * preserved until the application explicitly destroys them or until an
2034 * implementation-specific device management event occurs (for example,
2035 * a factory reset).
2036 *
2037 * \param lifetime The lifetime value to query (value of type
2038 * ::psa_key_lifetime_t).
2039 *
2040 * \return \c 1 if the key is volatile, otherwise \c 0.
2041 */
2042#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2043 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002044 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002045
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002046/** Whether a key lifetime indicates that the key is read-only.
2047 *
2048 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2049 * They must be created through platform-specific means that bypass the API.
2050 *
2051 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine11794b32021-06-07 23:21:50 +02002052 * consider a platform with multiple levels of privilege, where a
2053 * low-privilege application can use a key but is not allowed to destroy
2054 * it, and the platform exposes the key to the application with a read-only
2055 * lifetime. High-privilege code can destroy the key even though the
2056 * application sees the key as read-only.
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002057 *
2058 * \param lifetime The lifetime value to query (value of type
2059 * ::psa_key_lifetime_t).
2060 *
2061 * \return \c 1 if the key is read-only, otherwise \c 0.
2062 */
2063#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2064 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2065 PSA_KEY_PERSISTENCE_READ_ONLY)
2066
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002067/** Construct a lifetime from a persistence level and a location.
2068 *
2069 * \param persistence The persistence level
2070 * (value of type ::psa_key_persistence_t).
2071 * \param location The location indicator
2072 * (value of type ::psa_key_location_t).
2073 *
2074 * \return The constructed lifetime value.
2075 */
2076#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2077 ((location) << 8 | (persistence))
2078
Gilles Peskineaff11812020-05-04 19:03:10 +02002079/** The local storage area for persistent keys.
2080 *
2081 * This storage area is available on all systems that can store persistent
2082 * keys without delegating the storage to a third-party cryptoprocessor.
2083 *
2084 * See ::psa_key_location_t for more information.
2085 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002086#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002087
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002088#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002089
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002090/* Note that key identifier values are embedded in the
2091 * persistent key store, as part of key metadata. As a consequence, they
2092 * must not be changed (unless the storage format version changes).
2093 */
2094
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002095/** The null key identifier.
2096 */
2097#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002098/** The minimum value for a key identifier chosen by the application.
2099 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002100#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002101/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002102 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002103#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002104/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002105 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002106#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002107/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002108 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002109#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002110
Ronald Cron7424f0d2020-09-14 16:17:41 +02002111
2112#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2113
2114#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2115#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2116#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2117
2118/** Utility to initialize a key identifier at runtime.
2119 *
2120 * \param unused Unused parameter.
2121 * \param key_id Identifier of the key.
2122 */
2123static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2124 unsigned int unused, psa_key_id_t key_id )
2125{
2126 (void)unused;
2127
2128 return( key_id );
2129}
2130
2131/** Compare two key identifiers.
2132 *
2133 * \param id1 First key identifier.
2134 * \param id2 Second key identifier.
2135 *
2136 * \return Non-zero if the two key identifier are equal, zero otherwise.
2137 */
2138static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2139 mbedtls_svc_key_id_t id2 )
2140{
2141 return( id1 == id2 );
2142}
2143
Ronald Cronc4d1b512020-07-31 11:26:37 +02002144/** Check whether a key identifier is null.
2145 *
2146 * \param key Key identifier.
2147 *
2148 * \return Non-zero if the key identifier is null, zero otherwise.
2149 */
2150static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2151{
2152 return( key == 0 );
2153}
2154
Ronald Cron7424f0d2020-09-14 16:17:41 +02002155#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2156
2157#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2158#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2159#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2160
2161/** Utility to initialize a key identifier at runtime.
2162 *
2163 * \param owner_id Identifier of the key owner.
2164 * \param key_id Identifier of the key.
2165 */
2166static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2167 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2168{
2169 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
2170 .owner = owner_id } );
2171}
2172
2173/** Compare two key identifiers.
2174 *
2175 * \param id1 First key identifier.
2176 * \param id2 Second key identifier.
2177 *
2178 * \return Non-zero if the two key identifier are equal, zero otherwise.
2179 */
2180static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2181 mbedtls_svc_key_id_t id2 )
2182{
2183 return( ( id1.key_id == id2.key_id ) &&
2184 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2185}
2186
Ronald Cronc4d1b512020-07-31 11:26:37 +02002187/** Check whether a key identifier is null.
2188 *
2189 * \param key Key identifier.
2190 *
2191 * \return Non-zero if the key identifier is null, zero otherwise.
2192 */
2193static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2194{
Gilles Peskined9b41502021-05-28 12:59:49 +02002195 return( key.key_id == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002196}
2197
Ronald Cron7424f0d2020-09-14 16:17:41 +02002198#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002199
2200/**@}*/
2201
2202/** \defgroup policy Key policies
2203 * @{
2204 */
2205
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002206/* Note that key usage flags are embedded in the
2207 * persistent key store, as part of key metadata. As a consequence, they
2208 * must not be changed (unless the storage format version changes).
2209 */
2210
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002211/** Whether the key may be exported.
2212 *
2213 * A public key or the public part of a key pair may always be exported
2214 * regardless of the value of this permission flag.
2215 *
2216 * If a key does not have export permission, implementations shall not
2217 * allow the key to be exported in plain form from the cryptoprocessor,
2218 * whether through psa_export_key() or through a proprietary interface.
2219 * The key may however be exportable in a wrapped form, i.e. in a form
2220 * where it is encrypted by another key.
2221 */
2222#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2223
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002224/** Whether the key may be copied.
2225 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002226 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002227 * with the same policy or a more restrictive policy.
2228 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002229 * For lifetimes for which the key is located in a secure element which
2230 * enforce the non-exportability of keys, copying a key outside the secure
2231 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2232 * Copying the key inside the secure element is permitted with just
2233 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2234 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002235 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2236 * is sufficient to permit the copy.
2237 */
2238#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2239
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002240/** Whether the key may be used to encrypt a message.
2241 *
2242 * This flag allows the key to be used for a symmetric encryption operation,
2243 * for an AEAD encryption-and-authentication operation,
2244 * or for an asymmetric encryption operation,
2245 * if otherwise permitted by the key's type and policy.
2246 *
2247 * For a key pair, this concerns the public key.
2248 */
2249#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2250
2251/** Whether the key may be used to decrypt a message.
2252 *
2253 * This flag allows the key to be used for a symmetric decryption operation,
2254 * for an AEAD decryption-and-verification operation,
2255 * or for an asymmetric decryption operation,
2256 * if otherwise permitted by the key's type and policy.
2257 *
2258 * For a key pair, this concerns the private key.
2259 */
2260#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2261
2262/** Whether the key may be used to sign a message.
2263 *
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002264 * This flag allows the key to be used for a MAC calculation operation or for
2265 * an asymmetric message signature operation, if otherwise permitted by the
2266 * key’s type and policy.
2267 *
2268 * For a key pair, this concerns the private key.
2269 */
2270#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2271
2272/** Whether the key may be used to verify a message.
2273 *
2274 * This flag allows the key to be used for a MAC verification operation or for
2275 * an asymmetric message signature verification operation, if otherwise
2276 * permitted by the key’s type and policy.
2277 *
2278 * For a key pair, this concerns the public key.
2279 */
2280#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2281
2282/** Whether the key may be used to sign a message.
2283 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002284 * This flag allows the key to be used for a MAC calculation operation
2285 * or for an asymmetric signature operation,
2286 * if otherwise permitted by the key's type and policy.
2287 *
2288 * For a key pair, this concerns the private key.
2289 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002290#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002291
2292/** Whether the key may be used to verify a message signature.
2293 *
2294 * This flag allows the key to be used for a MAC verification operation
2295 * or for an asymmetric signature verification operation,
2296 * if otherwise permitted by by the key's type and policy.
2297 *
2298 * For a key pair, this concerns the public key.
2299 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002300#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002301
2302/** Whether the key may be used to derive other keys.
2303 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002304#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002305
2306/**@}*/
2307
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002308/** \defgroup derivation Key derivation
2309 * @{
2310 */
2311
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002312/* Key input steps are not embedded in the persistent storage, so you can
2313 * change them if needed: it's only an ABI change. */
2314
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002315/** A secret input for key derivation.
2316 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002317 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2318 * (passed to psa_key_derivation_input_key())
2319 * or the shared secret resulting from a key agreement
2320 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002321 *
2322 * The secret can also be a direct input (passed to
2323 * key_derivation_input_bytes()). In this case, the derivation operation
2324 * may not be used to derive keys: the operation will only allow
2325 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002326 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002327#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002328
2329/** A label for key derivation.
2330 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002331 * This should be a direct input.
2332 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002333 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002334#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002335
2336/** A salt for key derivation.
2337 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002338 * This should be a direct input.
2339 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002340 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002341#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002342
2343/** An information string for key derivation.
2344 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002345 * This should be a direct input.
2346 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002347 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002348#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002349
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002350/** A seed for key derivation.
2351 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002352 * This should be a direct input.
2353 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002354 */
2355#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2356
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002357/**@}*/
2358
Bence Szépkútib639d432021-04-21 10:33:54 +02002359/** \defgroup helper_macros Helper macros
2360 * @{
2361 */
2362
2363/* Helper macros */
2364
2365/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2366 * regardless of the tag length they encode.
2367 *
2368 * \param aead_alg_1 An AEAD algorithm identifier.
2369 * \param aead_alg_2 An AEAD algorithm identifier.
2370 *
2371 * \return 1 if both identifiers refer to the same AEAD algorithm,
2372 * 0 otherwise.
2373 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2374 * a supported AEAD algorithm.
2375 */
2376#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2377 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2378 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2379
2380/**@}*/
2381
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002382#endif /* PSA_CRYPTO_VALUES_H */