blob: 773c01e0ef8b0c3aa14ebdbbb82daa448edbaf5e [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine43bd07d2022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Dave Rodgman0f2971a2023-11-03 12:04:52 +000024 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Gilles Peskinef3b731e2018-12-12 13:38:31 +010025 */
26
27#ifndef PSA_CRYPTO_VALUES_H
28#define PSA_CRYPTO_VALUES_H
29
30/** \defgroup error Error codes
31 * @{
32 */
33
David Saadab4ecc272019-02-14 13:48:10 +020034/* PSA error codes */
35
Gilles Peskine43bd07d2022-06-20 18:41:20 +020036/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskinebe059e42022-06-29 14:37:17 +020037 * etc.). Do not change the values in this section or even the expansions
38 * of each macro: it must be possible to `#include` both this header
39 * and some other PSA component's headers in the same C source,
40 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
41 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
42 * to the same sequence of tokens.
43 *
44 * If you must add a new
Gilles Peskine43bd07d2022-06-20 18:41:20 +020045 * value, check with the Arm PSA framework group to pick one that other
46 * domains aren't already using. */
47
Gilles Peskined3ce75c2023-01-04 19:50:27 +010048/* Tell uncrustify not to touch the constant definitions, otherwise
49 * it might change the spacing to something that is not PSA-compliant
50 * (e.g. adding a space after casts).
51 *
52 * *INDENT-OFF*
53 */
54
Gilles Peskinef3b731e2018-12-12 13:38:31 +010055/** The action was completed successfully. */
56#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010057
58/** An error occurred that does not correspond to any defined
59 * failure cause.
60 *
61 * Implementations may use this error code if none of the other standard
62 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020063#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010064
65/** The requested operation or a parameter is not supported
66 * by this implementation.
67 *
68 * Implementations should return this error code when an enumeration
69 * parameter such as a key type, algorithm, etc. is not recognized.
70 * If a combination of parameters is recognized and identified as
71 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020072#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010073
74/** The requested action is denied by a policy.
75 *
76 * Implementations should return this error code when the parameters
77 * are recognized as valid and supported, and a policy explicitly
78 * denies the requested operation.
79 *
80 * If a subset of the parameters of a function call identify a
81 * forbidden operation, and another subset of the parameters are
82 * not valid or not supported, it is unspecified whether the function
83 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
84 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
87/** An output buffer is too small.
88 *
89 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
90 * description to determine a sufficient buffer size.
91 *
92 * Implementations should preferably return this error code only
93 * in cases when performing the operation with a larger output
94 * buffer would succeed. However implementations may return this
95 * error if a function has invalid or unsupported parameters in addition
96 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020097#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
David Saadab4ecc272019-02-14 13:48:10 +020099/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100100 *
David Saadab4ecc272019-02-14 13:48:10 +0200101 * Implementations should return this error, when attempting
102 * to write an item (like a key) that already exists. */
103#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100104
David Saadab4ecc272019-02-14 13:48:10 +0200105/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100106 *
David Saadab4ecc272019-02-14 13:48:10 +0200107 * Implementations should return this error, if a requested item (like
108 * a key) does not exist. */
109#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100110
111/** The requested action cannot be performed in the current state.
112 *
113 * Multipart operations return this error when one of the
114 * functions is called out of sequence. Refer to the function
115 * descriptions for permitted sequencing of functions.
116 *
117 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100118 * that a key either exists or not,
119 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * as applicable.
121 *
122 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200123 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100124 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** The parameters passed to the function are invalid.
128 *
129 * Implementations may return this error any time a parameter or
130 * combination of parameters are recognized as invalid.
131 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100132 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200133 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100134 * instead.
135 */
David Saadab4ecc272019-02-14 13:48:10 +0200136#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100137
138/** There is not enough runtime memory.
139 *
140 * If the action is carried out across multiple security realms, this
141 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200142#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100143
144/** There is not enough persistent storage.
145 *
146 * Functions that modify the key storage return this error code if
147 * there is insufficient storage space on the host media. In addition,
148 * many functions that do not otherwise access storage may return this
149 * error code if the implementation requires a mandatory log entry for
150 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200151#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152
153/** There was a communication failure inside the implementation.
154 *
155 * This can indicate a communication failure between the application
156 * and an external cryptoprocessor or between the cryptoprocessor and
157 * an external volatile or persistent memory. A communication failure
158 * may be transient or permanent depending on the cause.
159 *
160 * \warning If a function returns this error, it is undetermined
161 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200162 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
164 * if the requested action was completed successfully in an external
165 * cryptoprocessor but there was a breakdown of communication before
166 * the cryptoprocessor could report the status to the application.
167 */
David Saadab4ecc272019-02-14 13:48:10 +0200168#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100169
170/** There was a storage failure that may have led to data loss.
171 *
172 * This error indicates that some persistent storage is corrupted.
173 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200174 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100175 * between the cryptoprocessor and its external storage (use
176 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
177 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
178 *
179 * Note that a storage failure does not indicate that any data that was
180 * previously read is invalid. However this previously read data may no
181 * longer be readable from storage.
182 *
183 * When a storage failure occurs, it is no longer possible to ensure
184 * the global integrity of the keystore. Depending on the global
185 * integrity guarantees offered by the implementation, access to other
186 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100187 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188 *
189 * Implementations should only use this error code to report a
190 * permanent storage corruption. However application writers should
191 * keep in mind that transient errors while reading the storage may be
192 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200193#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100194
195/** A hardware failure was detected.
196 *
197 * A hardware failure may be transient or permanent depending on the
198 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200199#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100200
201/** A tampering attempt was detected.
202 *
203 * If an application receives this error code, there is no guarantee
204 * that previously accessed or computed data was correct and remains
205 * confidential. Applications should not perform any security function
206 * and should enter a safe failure state.
207 *
208 * Implementations may return this error code if they detect an invalid
209 * state that cannot happen during normal operation and that indicates
210 * that the implementation's security guarantees no longer hold. Depending
211 * on the implementation architecture and on its security and safety goals,
212 * the implementation may forcibly terminate the application.
213 *
214 * This error code is intended as a last resort when a security breach
215 * is detected and it is unsure whether the keystore data is still
216 * protected. Implementations shall only return this error code
217 * to report an alarm from a tampering detector, to indicate that
218 * the confidentiality of stored data can no longer be guaranteed,
219 * or to indicate that the integrity of previously returned data is now
220 * considered compromised. Implementations shall not use this error code
221 * to indicate a hardware failure that merely makes it impossible to
222 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
223 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
224 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
225 * instead).
226 *
227 * This error indicates an attack against the application. Implementations
228 * shall not return this error code as a consequence of the behavior of
229 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200230#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100231
232/** There is not enough entropy to generate random data needed
233 * for the requested action.
234 *
235 * This error indicates a failure of a hardware random generator.
236 * Application writers should note that this error can be returned not
237 * only by functions whose purpose is to generate random data, such
238 * as key, IV or nonce generation, but also by functions that execute
239 * an algorithm with a randomized result, as well as functions that
240 * use randomization of intermediate computations as a countermeasure
241 * to certain attacks.
242 *
243 * Implementations should avoid returning this error after psa_crypto_init()
244 * has succeeded. Implementations should generate sufficient
245 * entropy during initialization and subsequently use a cryptographically
246 * secure pseudorandom generator (PRNG). However implementations may return
247 * this error at any time if a policy requires the PRNG to be reseeded
248 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200249#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100250
251/** The signature, MAC or hash is incorrect.
252 *
253 * Verification functions return this error if the verification
254 * calculations completed successfully, and the value to be verified
255 * was determined to be incorrect.
256 *
257 * If the value to verify has an invalid size, implementations may return
258 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200259#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100260
261/** The decrypted padding is incorrect.
262 *
263 * \warning In some protocols, when decrypting data, it is essential that
264 * the behavior of the application does not depend on whether the padding
265 * is correct, down to precise timing. Applications should prefer
266 * protocols that use authenticated encryption rather than plain
267 * encryption. If the application must perform a decryption of
268 * unauthenticated data, the application writer should take care not
269 * to reveal whether the padding is invalid.
270 *
271 * Implementations should strive to make valid and invalid padding
272 * as close as possible to indistinguishable to an external observer.
273 * In particular, the timing of a decryption operation should not
274 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200275#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100276
David Saadab4ecc272019-02-14 13:48:10 +0200277/** Return this error when there's insufficient data when attempting
278 * to read from a resource. */
279#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100280
Ronald Croncf56a0a2020-08-04 09:51:30 +0200281/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100282 */
David Saadab4ecc272019-02-14 13:48:10 +0200283#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100284
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100285/** Stored data has been corrupted.
286 *
287 * This error indicates that some persistent storage has suffered corruption.
288 * It does not indicate the following situations, which have specific error
289 * codes:
290 *
291 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
292 * - A communication error between the cryptoprocessor and its external
293 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
294 * - When the storage is in a valid state but is full - use
295 * #PSA_ERROR_INSUFFICIENT_STORAGE.
296 * - When the storage fails for other reasons - use
297 * #PSA_ERROR_STORAGE_FAILURE.
298 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
299 *
300 * \note A storage corruption does not indicate that any data that was
301 * previously read is invalid. However this previously read data might no
302 * longer be readable from storage.
303 *
304 * When a storage failure occurs, it is no longer possible to ensure the
305 * global integrity of the keystore.
306 */
307#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
308
gabor-mezei-armfe309242020-11-09 17:39:56 +0100309/** Data read from storage is not valid for the implementation.
310 *
311 * This error indicates that some data read from storage does not have a valid
312 * format. It does not indicate the following situations, which have specific
313 * error codes:
314 *
315 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
316 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
317 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
318 *
319 * This error is typically a result of either storage corruption on a
320 * cleartext storage backend, or an attempt to read data that was
321 * written by an incompatible version of the library.
322 */
323#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
324
Gilles Peskined3ce75c2023-01-04 19:50:27 +0100325/* *INDENT-ON* */
326
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327/**@}*/
328
329/** \defgroup crypto_types Key and algorithm types
330 * @{
331 */
332
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200333/* Note that key type values, including ECC family and DH group values, are
334 * embedded in the persistent key store, as part of key metadata. As a
335 * consequence, they must not be changed (unless the storage format version
336 * changes).
337 */
338
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339/** An invalid key type value.
340 *
341 * Zero is not the encoding of any key type.
342 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100343#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100344
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100345/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346 *
347 * Key types defined by this standard will never have the
348 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
349 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
350 * respect the bitwise structure used by standard encodings whenever practical.
351 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100352#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100353
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100354#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
355#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
356#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
357#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
358#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100359
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100360#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100362/** Whether a key type is vendor-defined.
363 *
364 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
365 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100366#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
367 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
368
369/** Whether a key type is an unstructured array of bytes.
370 *
371 * This encompasses both symmetric keys and non-key data.
372 */
373#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100374 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
375 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100376
377/** Whether a key type is asymmetric: either a key pair or a public key. */
378#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
379 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
380 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
381 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
382/** Whether a key type is the public part of a key pair. */
383#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
384 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
385/** Whether a key type is a key pair containing a private part and a public
386 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200387#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100388 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
389/** The key pair type corresponding to a public key type.
390 *
391 * You may also pass a key pair type as \p type, it will be left unchanged.
392 *
393 * \param type A public key type or key pair type.
394 *
395 * \return The corresponding key pair type.
396 * If \p type is not a public key or a key pair,
397 * the return value is undefined.
398 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200399#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
401/** The public key type corresponding to a key pair type.
402 *
Gilles Peskine049ea322024-02-15 15:32:12 +0100403 * You may also pass a public key type as \p type, it will be left unchanged.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100404 *
405 * \param type A public key type or key pair type.
406 *
407 * \return The corresponding public key type.
408 * If \p type is not a public key or a key pair,
409 * the return value is undefined.
410 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200411#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100412 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
413
414/** Raw data.
415 *
416 * A "key" of this type cannot be used for any cryptographic operation.
417 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100418#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419
420/** HMAC key.
421 *
422 * The key policy determines which underlying hash algorithm the key can be
423 * used for.
424 *
425 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100426 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100428#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100429
430/** A secret for key derivation.
431 *
432 * The key policy determines which key derivation algorithm the key
433 * can be used for.
434 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100435#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100436
Gilles Peskine737c6be2019-05-21 16:01:06 +0200437/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100438 *
439 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
440 * 32 bytes (AES-256).
441 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100442#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100443
Gilles Peskine8890f642021-09-21 11:59:39 +0200444/** Key for a cipher, AEAD or MAC algorithm based on the
445 * ARIA block cipher. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100446#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
Gilles Peskine8890f642021-09-21 11:59:39 +0200447
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100448/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
449 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100450 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
451 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100452 *
453 * Note that single DES and 2-key 3DES are weak and strongly
454 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
455 * is weak and deprecated and should only be used in legacy protocols.
456 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100457#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100458
Gilles Peskine737c6be2019-05-21 16:01:06 +0200459/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100460 * Camellia block cipher. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100461#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100462
Gilles Peskine500e48f2022-04-22 16:49:30 +0200463/** Key for the ARC4 stream cipher (also known as RC4 or ARCFOUR).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100464 *
Gilles Peskine500e48f2022-04-22 16:49:30 +0200465 * Note that ARC4 is weak and deprecated and should only be used in
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100466 * legacy protocols. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100467#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t) 0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200469/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
470 *
471 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
472 *
473 * Implementations must support 12-byte nonces, may support 8-byte nonces,
474 * and should reject other sizes.
475 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100476#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200477
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100478/** RSA public key.
479 *
480 * The size of an RSA key is the bit size of the modulus.
481 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100482#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100483/** RSA key pair (private and public key).
484 *
485 * The size of an RSA key is the bit size of the modulus.
486 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100487#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100488/** Whether a key type is an RSA key (pair or public-only). */
489#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200490 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100491
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100492#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
493#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
494#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100495/** Elliptic curve key pair.
496 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100497 * The size of an elliptic curve key is the bit size associated with the curve,
498 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
499 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
500 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100501 * \param curve A value of type ::psa_ecc_family_t that
502 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100503 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200504#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
505 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100506/** Elliptic curve public key.
507 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100508 * The size of an elliptic curve public key is the same as the corresponding
509 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
510 * `PSA_ECC_FAMILY_xxx` curve families).
511 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100512 * \param curve A value of type ::psa_ecc_family_t that
513 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100514 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100515#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
516 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
517
518/** Whether a key type is an elliptic curve key (pair or public-only). */
519#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200520 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100521 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100522/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200523#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100524 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200525 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100526/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100527#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
528 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
529 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
530
531/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100532#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
533 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100534 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
535 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100536
Gilles Peskine228abc52019-12-03 17:24:19 +0100537/** SEC Koblitz curves over prime fields.
538 *
539 * This family comprises the following curves:
540 * secp192k1, secp224k1, secp256k1.
541 * They are defined in _Standards for Efficient Cryptography_,
542 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
543 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine4bc4a2d2024-01-03 20:59:03 +0100544 *
545 * \note For secp224k1, the bit-size is 225 (size of a private value).
Gilles Peskine1bc43482024-01-03 20:59:38 +0100546 *
547 * \note Mbed TLS only supports secp192k1 and secp256k1.
Gilles Peskine228abc52019-12-03 17:24:19 +0100548 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100549#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100550
551/** SEC random curves over prime fields.
552 *
553 * This family comprises the following curves:
Gilles Peskine6bf4dfc2024-01-03 20:58:55 +0100554 * secp192r1, secp224r1, secp256r1, secp384r1, secp521r1.
Gilles Peskine228abc52019-12-03 17:24:19 +0100555 * They are defined in _Standards for Efficient Cryptography_,
556 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
557 * https://www.secg.org/sec2-v2.pdf
558 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100559#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine1bc43482024-01-03 20:59:38 +0100560/* SECP160R2 (SEC2 v1, obsolete, not supported in Mbed TLS) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100561#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100562
563/** SEC Koblitz curves over binary fields.
564 *
565 * This family comprises the following curves:
566 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
567 * They are defined in _Standards for Efficient Cryptography_,
568 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
569 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine1bc43482024-01-03 20:59:38 +0100570 *
571 * \note Mbed TLS does not support any curve in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100572 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100573#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100574
575/** SEC random curves over binary fields.
576 *
577 * This family comprises the following curves:
578 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
579 * They are defined in _Standards for Efficient Cryptography_,
580 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
581 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine1bc43482024-01-03 20:59:38 +0100582 *
583 * \note Mbed TLS does not support any curve in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100584 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100585#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100586
587/** SEC additional random curves over binary fields.
588 *
589 * This family comprises the following curve:
590 * sect163r2.
591 * It is defined in _Standards for Efficient Cryptography_,
592 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
593 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine1bc43482024-01-03 20:59:38 +0100594 *
595 * \note Mbed TLS does not support any curve in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100596 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100597#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100598
599/** Brainpool P random curves.
600 *
601 * This family comprises the following curves:
602 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
603 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
604 * It is defined in RFC 5639.
Gilles Peskine1bc43482024-01-03 20:59:38 +0100605 *
606 * \note Mbed TLS only supports the 256-bit, 384-bit and 512-bit curves
607 * in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100608 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100609#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100610
611/** Curve25519 and Curve448.
612 *
613 * This family comprises the following Montgomery curves:
614 * - 255-bit: Bernstein et al.,
615 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
616 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
617 * - 448-bit: Hamburg,
618 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
619 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
620 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100621#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100622
Gilles Peskine67546802021-02-24 21:49:40 +0100623/** The twisted Edwards curves Ed25519 and Ed448.
624 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100625 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100626 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100627 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100628 *
629 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100630 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100631 * to Curve25519.
632 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
633 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
634 * to Curve448.
635 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
Gilles Peskine1bc43482024-01-03 20:59:38 +0100636 *
637 * \note Mbed TLS does not support Edwards curves yet.
Gilles Peskine67546802021-02-24 21:49:40 +0100638 */
639#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
640
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100641#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
642#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
643#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100644/** Diffie-Hellman key pair.
645 *
Paul Elliott75e27032020-06-03 15:17:39 +0100646 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100647 * Diffie-Hellman group to be used.
648 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200649#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
650 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100651/** Diffie-Hellman public key.
652 *
Paul Elliott75e27032020-06-03 15:17:39 +0100653 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100654 * Diffie-Hellman group to be used.
655 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200656#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
657 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
658
659/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
660#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200661 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200662 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
663/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200664#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200665 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200666 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200667/** Whether a key type is a Diffie-Hellman public key. */
668#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
669 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
670 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
671
672/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100673#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
674 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100675 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
676 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200677
Gilles Peskine228abc52019-12-03 17:24:19 +0100678/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
679 *
680 * This family includes groups with the following key sizes (in bits):
681 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
682 * all of these sizes or only a subset.
683 */
Paul Elliott75e27032020-06-03 15:17:39 +0100684#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100685
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100686#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100687 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100688/** The block size of a block cipher.
689 *
690 * \param type A cipher key type (value of type #psa_key_type_t).
691 *
692 * \return The block size for a block cipher, or 1 for a stream cipher.
693 * The return value is undefined if \p type is not a supported
694 * cipher key type.
695 *
696 * \note It is possible to build stream cipher algorithms on top of a block
697 * cipher, for example CTR mode (#PSA_ALG_CTR).
698 * This macro only takes the key type into account, so it cannot be
699 * used to determine the size of the data that #psa_cipher_update()
700 * might buffer for future processing in general.
701 *
702 * \note This macro returns a compile-time constant if its argument is one.
703 *
704 * \warning This macro may evaluate its argument multiple times.
705 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100706#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100707 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100708 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100709 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100710
Gilles Peskine43bd07d2022-06-20 18:41:20 +0200711/* Note that algorithm values are embedded in the persistent key store,
712 * as part of key metadata. As a consequence, they must not be changed
713 * (unless the storage format version changes).
714 */
715
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100716/** Vendor-defined algorithm flag.
717 *
718 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
719 * bit set. Vendors who define additional algorithms must use an encoding with
720 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
721 * used by standard encodings whenever practical.
722 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100723#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100724
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100725#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
726#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
727#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
728#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
729#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
730#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
731#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
732#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
733#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100734
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100735/** Whether an algorithm is vendor-defined.
736 *
737 * See also #PSA_ALG_VENDOR_FLAG.
738 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100739#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
740 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
741
742/** Whether the specified algorithm is a hash algorithm.
743 *
744 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
745 *
746 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
747 * This macro may return either 0 or 1 if \p alg is not a supported
748 * algorithm identifier.
749 */
750#define PSA_ALG_IS_HASH(alg) \
751 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
752
753/** Whether the specified algorithm is a MAC algorithm.
754 *
755 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
756 *
757 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
758 * This macro may return either 0 or 1 if \p alg is not a supported
759 * algorithm identifier.
760 */
761#define PSA_ALG_IS_MAC(alg) \
762 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
763
764/** Whether the specified algorithm is a symmetric cipher algorithm.
765 *
766 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
767 *
768 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
769 * This macro may return either 0 or 1 if \p alg is not a supported
770 * algorithm identifier.
771 */
772#define PSA_ALG_IS_CIPHER(alg) \
773 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
774
775/** Whether the specified algorithm is an authenticated encryption
776 * with associated data (AEAD) algorithm.
777 *
778 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
779 *
780 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
781 * This macro may return either 0 or 1 if \p alg is not a supported
782 * algorithm identifier.
783 */
784#define PSA_ALG_IS_AEAD(alg) \
785 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
786
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200787/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200788 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100789 *
790 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
791 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200792 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100793 * This macro may return either 0 or 1 if \p alg is not a supported
794 * algorithm identifier.
795 */
796#define PSA_ALG_IS_SIGN(alg) \
797 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
798
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200799/** Whether the specified algorithm is an asymmetric encryption algorithm,
800 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100801 *
802 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
803 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200804 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100805 * This macro may return either 0 or 1 if \p alg is not a supported
806 * algorithm identifier.
807 */
808#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
809 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
810
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100811/** Whether the specified algorithm is a key agreement algorithm.
812 *
813 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
814 *
815 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
816 * This macro may return either 0 or 1 if \p alg is not a supported
817 * algorithm identifier.
818 */
819#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100820 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100821
822/** Whether the specified algorithm is a key derivation algorithm.
823 *
824 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
825 *
826 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
827 * This macro may return either 0 or 1 if \p alg is not a supported
828 * algorithm identifier.
829 */
830#define PSA_ALG_IS_KEY_DERIVATION(alg) \
831 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
832
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200833/** An invalid algorithm identifier value. */
Gilles Peskine7f3659a2023-01-04 19:52:38 +0100834/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200835#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskine7f3659a2023-01-04 19:52:38 +0100836/* *INDENT-ON* */
Mateusz Starzyk294ca302021-08-26 12:52:56 +0200837
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100838#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100839/** MD2 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100840#define PSA_ALG_MD2 ((psa_algorithm_t) 0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100841/** MD4 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100842#define PSA_ALG_MD4 ((psa_algorithm_t) 0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100843/** MD5 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100844#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100845/** PSA_ALG_RIPEMD160 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100846#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100847/** SHA1 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100848#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100849/** SHA2-224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100850#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100851/** SHA2-256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100852#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100853/** SHA2-384 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100854#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100855/** SHA2-512 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100856#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100857/** SHA2-512/224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100858#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100859/** SHA2-512/256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100860#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100861/** SHA3-224 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100862#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863/** SHA3-256 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100864#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100865/** SHA3-384 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100866#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100867/** SHA3-512 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100868#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100869/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100870 *
871 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
872 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
873 * has the same output size and a (theoretically) higher security strength.
874 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100875#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100876
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100877/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100878 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100879 * This value may be used to form the algorithm usage field of a policy
880 * for a signature algorithm that is parametrized by a hash. The key
881 * may then be used to perform operations using the same signature
882 * algorithm parametrized with any supported hash.
883 *
884 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine35115f92021-10-04 18:10:38 +0200885 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100886 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100887 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100888 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
889 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100890 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200891 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100892 * ```
893 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100894 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100895 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
896 * call to sign or verify a message may use a different hash.
897 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200898 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
899 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
900 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100901 * ```
902 *
903 * This value may not be used to build other algorithms that are
904 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100905 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100906 *
907 * This value may not be used to build an algorithm specification to
908 * perform an operation. It is only valid to build policies.
909 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100910#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100911
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100912#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
913#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100914/** Macro to build an HMAC algorithm.
915 *
916 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
917 *
918 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
919 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
920 *
921 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100922 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100923 * hash algorithm.
924 */
925#define PSA_ALG_HMAC(hash_alg) \
926 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
927
928#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
929 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
930
931/** Whether the specified algorithm is an HMAC algorithm.
932 *
933 * HMAC is a family of MAC algorithms that are based on a hash function.
934 *
935 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
936 *
937 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
938 * This macro may return either 0 or 1 if \p alg is not a supported
939 * algorithm identifier.
940 */
941#define PSA_ALG_IS_HMAC(alg) \
942 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
943 PSA_ALG_HMAC_BASE)
944
945/* In the encoding of a MAC algorithm, the bits corresponding to
946 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
947 * truncated. As an exception, the value 0 means the untruncated algorithm,
948 * whatever its length is. The length is encoded in 6 bits, so it can
949 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
950 * to full length is correctly encoded as 0 and any non-trivial truncation
951 * is correctly encoded as a value between 1 and 63. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100952#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100953#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100954
Steven Cooremand927ed72021-02-22 19:59:35 +0100955/* In the encoding of a MAC algorithm, the bit corresponding to
956 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100957 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
958 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100959 * same base class and having a (potentially truncated) MAC length greater or
960 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +0100961#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +0100962
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100963/** Macro to build a truncated MAC algorithm.
964 *
965 * A truncated MAC algorithm is identical to the corresponding MAC
966 * algorithm except that the MAC value for the truncated algorithm
967 * consists of only the first \p mac_length bytes of the MAC value
968 * for the untruncated algorithm.
969 *
970 * \note This macro may allow constructing algorithm identifiers that
971 * are not valid, either because the specified length is larger
972 * than the untruncated MAC or because the specified length is
973 * smaller than permitted by the implementation.
974 *
975 * \note It is implementation-defined whether a truncated MAC that
976 * is truncated to the same length as the MAC of the untruncated
977 * algorithm is considered identical to the untruncated algorithm
978 * for policy comparison purposes.
979 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200980 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100981 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100982 * is true). This may be a truncated or untruncated
983 * MAC algorithm.
984 * \param mac_length Desired length of the truncated MAC in bytes.
985 * This must be at most the full length of the MAC
986 * and must be at least an implementation-specified
987 * minimum. The implementation-specified minimum
988 * shall not be zero.
989 *
990 * \return The corresponding MAC algorithm with the specified
991 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100992 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100993 * MAC algorithm or if \p mac_length is too small or
994 * too large for the specified MAC algorithm.
995 */
Steven Cooreman328f11c2021-03-02 11:44:51 +0100996#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
997 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
998 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100999 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1000
1001/** Macro to build the base MAC algorithm corresponding to a truncated
1002 * MAC algorithm.
1003 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001004 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001005 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001006 * is true). This may be a truncated or untruncated
1007 * MAC algorithm.
1008 *
1009 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001010 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001011 * MAC algorithm.
1012 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001013#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1014 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1015 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001016
1017/** Length to which a MAC algorithm is truncated.
1018 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001019 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001020 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001021 * is true).
1022 *
1023 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001024 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1025 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001026 * MAC algorithm.
1027 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001028#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1029 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001030
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001031/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001032 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001033 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001034 * sharing the same base algorithm, and where the (potentially truncated) MAC
1035 * length of the specific algorithm is equal to or larger then the wildcard
1036 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001037 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001038 * \note When setting the minimum required MAC length to less than the
1039 * smallest MAC length allowed by the base algorithm, this effectively
1040 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001041 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001042 * \param mac_alg A MAC algorithm identifier (value of type
1043 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1044 * is true).
1045 * \param min_mac_length Desired minimum length of the message authentication
1046 * code in bytes. This must be at most the untruncated
1047 * length of the MAC and must be at least 1.
1048 *
1049 * \return The corresponding MAC wildcard algorithm with the
1050 * specified minimum length.
1051 * \return Unspecified if \p mac_alg is not a supported MAC
1052 * algorithm or if \p min_mac_length is less than 1 or
1053 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001054 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001055#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001056 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1057 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001058
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001059#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001060/** The CBC-MAC construction over a block cipher
1061 *
1062 * \warning CBC-MAC is insecure in many cases.
1063 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1064 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001065#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001066/** The CMAC construction over a block cipher */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001067#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001068
1069/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1070 *
1071 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1072 *
1073 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1074 * This macro may return either 0 or 1 if \p alg is not a supported
1075 * algorithm identifier.
1076 */
1077#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1078 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1079 PSA_ALG_CIPHER_MAC_BASE)
1080
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001081#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1082#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001083
1084/** Whether the specified algorithm is a stream cipher.
1085 *
1086 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1087 * by applying a bitwise-xor with a stream of bytes that is generated
1088 * from a key.
1089 *
1090 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1091 *
1092 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1093 * This macro may return either 0 or 1 if \p alg is not a supported
1094 * algorithm identifier or if it is not a symmetric cipher algorithm.
1095 */
1096#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1097 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001098 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001099
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001100/** The stream cipher mode of a stream cipher algorithm.
1101 *
1102 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001103 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1104 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001105 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001106#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001107
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001108/** The CTR stream cipher mode.
1109 *
1110 * CTR is a stream cipher which is built from a block cipher.
1111 * The underlying block cipher is determined by the key type.
1112 * For example, to use AES-128-CTR, use this algorithm with
1113 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1114 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001115#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001116
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001117/** The CFB stream cipher mode.
1118 *
1119 * The underlying block cipher is determined by the key type.
1120 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001121#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001122
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001123/** The OFB stream cipher mode.
1124 *
1125 * The underlying block cipher is determined by the key type.
1126 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001127#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001128
1129/** The XTS cipher mode.
1130 *
1131 * XTS is a cipher mode which is built from a block cipher. It requires at
1132 * least one full block of input, but beyond this minimum the input
1133 * does not need to be a whole number of blocks.
1134 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001135#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001136
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001137/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1138 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001139 * \warning ECB mode does not protect the confidentiality of the encrypted data
1140 * except in extremely narrow circumstances. It is recommended that applications
1141 * only use ECB if they need to construct an operating mode that the
1142 * implementation does not provide. Implementations are encouraged to provide
1143 * the modes that applications need in preference to supporting direct access
1144 * to ECB.
1145 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001146 * The underlying block cipher is determined by the key type.
1147 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001148 * This symmetric cipher mode can only be used with messages whose lengths are a
1149 * multiple of the block size of the chosen block cipher.
1150 *
1151 * ECB mode does not accept an initialization vector (IV). When using a
1152 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1153 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001154 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001155#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001156
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001157/** The CBC block cipher chaining mode, with no padding.
1158 *
1159 * The underlying block cipher is determined by the key type.
1160 *
1161 * This symmetric cipher mode can only be used with messages whose lengths
1162 * are whole number of blocks for the chosen block cipher.
1163 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001164#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001165
1166/** The CBC block cipher chaining mode with PKCS#7 padding.
1167 *
1168 * The underlying block cipher is determined by the key type.
1169 *
1170 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1171 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001172#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001173
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001174#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001175
1176/** Whether the specified algorithm is an AEAD mode on a block cipher.
1177 *
1178 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1179 *
1180 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1181 * a block cipher, 0 otherwise.
1182 * This macro may return either 0 or 1 if \p alg is not a supported
1183 * algorithm identifier.
1184 */
1185#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1186 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1187 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1188
Gilles Peskine9153ec02019-02-15 13:02:02 +01001189/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001190 *
1191 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001192 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001193#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001194
1195/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001196 *
1197 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001198 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001199#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001200
1201/** The Chacha20-Poly1305 AEAD algorithm.
1202 *
1203 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001204 *
1205 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1206 * and should reject other sizes.
1207 *
1208 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001209 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001210#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001211
Tom Cosgrove5205c972022-07-28 06:12:08 +01001212/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001213 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1214 * The constants for default lengths follow this encoding.
1215 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001216#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001217#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001218
Steven Cooremand927ed72021-02-22 19:59:35 +01001219/* In the encoding of an AEAD algorithm, the bit corresponding to
1220 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001221 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1222 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001223 * same base class and having a tag length greater than or equal to the one
1224 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001225#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001226
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001227/** Macro to build a shortened AEAD algorithm.
1228 *
1229 * A shortened AEAD algorithm is similar to the corresponding AEAD
1230 * algorithm, but has an authentication tag that consists of fewer bytes.
1231 * Depending on the algorithm, the tag length may affect the calculation
1232 * of the ciphertext.
1233 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001234 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001235 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001236 * is true).
1237 * \param tag_length Desired length of the authentication tag in bytes.
1238 *
1239 * \return The corresponding AEAD algorithm with the specified
1240 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001241 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001242 * AEAD algorithm or if \p tag_length is not valid
1243 * for the specified AEAD algorithm.
1244 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001245#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001246 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1247 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001248 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001249 PSA_ALG_AEAD_TAG_LENGTH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001250
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001251/** Retrieve the tag length of a specified AEAD algorithm
1252 *
1253 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001254 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001255 * is true).
1256 *
1257 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001258 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001259 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001260 */
1261#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1262 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001263 PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001264
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001265/** Calculate the corresponding AEAD algorithm with the default tag length.
1266 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001267 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001268 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001269 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001270 * \return The corresponding AEAD algorithm with the default
1271 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001272 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001273#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001274 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001275 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1276 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1277 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001278 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001279#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1280 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1281 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001282 ref :
1283
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001284/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001285 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001286 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001287 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001288 * algorithm is equal to or larger then the minimum tag length specified by the
1289 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001290 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001291 * \note When setting the minimum required tag length to less than the
1292 * smallest tag length allowed by the base algorithm, this effectively
1293 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001294 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001295 * \param aead_alg An AEAD algorithm identifier (value of type
1296 * #psa_algorithm_t such that
1297 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1298 * \param min_tag_length Desired minimum length of the authentication tag in
1299 * bytes. This must be at least 1 and at most the largest
1300 * allowed tag length of the algorithm.
1301 *
1302 * \return The corresponding AEAD wildcard algorithm with the
1303 * specified minimum length.
1304 * \return Unspecified if \p aead_alg is not a supported
1305 * AEAD algorithm or if \p min_tag_length is less than 1
1306 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001307 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001308#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001309 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1310 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001311
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001312#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001313/** RSA PKCS#1 v1.5 signature with hashing.
1314 *
1315 * This is the signature scheme defined by RFC 8017
1316 * (PKCS#1: RSA Cryptography Specifications) under the name
1317 * RSASSA-PKCS1-v1_5.
1318 *
1319 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1320 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001321 * This includes #PSA_ALG_ANY_HASH
1322 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001323 *
1324 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001325 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001326 * hash algorithm.
1327 */
1328#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1329 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1330/** Raw PKCS#1 v1.5 signature.
1331 *
1332 * The input to this algorithm is the DigestInfo structure used by
1333 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1334 * steps 3&ndash;6.
1335 */
1336#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1337#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1338 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1339
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001340#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1341#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001342/** RSA PSS signature with hashing.
1343 *
1344 * This is the signature scheme defined by RFC 8017
1345 * (PKCS#1: RSA Cryptography Specifications) under the name
1346 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu54bc05d2022-06-17 10:25:05 +01001347 * a salt length equal to the length of the hash, or the largest
1348 * possible salt length for the algorithm and key size if that is
1349 * smaller than the hash length. The specified hash algorithm is
1350 * used to hash the input message, to create the salted hash, and
1351 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001352 *
1353 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1354 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001355 * This includes #PSA_ALG_ANY_HASH
1356 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001357 *
1358 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001359 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001360 * hash algorithm.
1361 */
1362#define PSA_ALG_RSA_PSS(hash_alg) \
1363 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine35115f92021-10-04 18:10:38 +02001364
1365/** RSA PSS signature with hashing with relaxed verification.
1366 *
1367 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1368 * but allows an arbitrary salt length (including \c 0) when verifying a
1369 * signature.
1370 *
1371 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1372 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1373 * This includes #PSA_ALG_ANY_HASH
1374 * when specifying the algorithm in a usage policy.
1375 *
1376 * \return The corresponding RSA PSS signature algorithm.
1377 * \return Unspecified if \p hash_alg is not a supported
1378 * hash algorithm.
1379 */
1380#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1381 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1382
1383/** Whether the specified algorithm is RSA PSS with standard salt.
1384 *
1385 * \param alg An algorithm value or an algorithm policy wildcard.
1386 *
1387 * \return 1 if \p alg is of the form
1388 * #PSA_ALG_RSA_PSS(\c hash_alg),
1389 * where \c hash_alg is a hash algorithm or
1390 * #PSA_ALG_ANY_HASH. 0 otherwise.
1391 * This macro may return either 0 or 1 if \p alg is not
1392 * a supported algorithm identifier or policy.
1393 */
1394#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001395 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1396
Gilles Peskine35115f92021-10-04 18:10:38 +02001397/** Whether the specified algorithm is RSA PSS with any salt.
1398 *
1399 * \param alg An algorithm value or an algorithm policy wildcard.
1400 *
1401 * \return 1 if \p alg is of the form
1402 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1403 * where \c hash_alg is a hash algorithm or
1404 * #PSA_ALG_ANY_HASH. 0 otherwise.
1405 * This macro may return either 0 or 1 if \p alg is not
1406 * a supported algorithm identifier or policy.
1407 */
1408#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1409 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1410
1411/** Whether the specified algorithm is RSA PSS.
1412 *
1413 * This includes any of the RSA PSS algorithm variants, regardless of the
1414 * constraints on salt length.
1415 *
1416 * \param alg An algorithm value or an algorithm policy wildcard.
1417 *
1418 * \return 1 if \p alg is of the form
1419 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1420 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1421 * where \c hash_alg is a hash algorithm or
1422 * #PSA_ALG_ANY_HASH. 0 otherwise.
1423 * This macro may return either 0 or 1 if \p alg is not
1424 * a supported algorithm identifier or policy.
1425 */
1426#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef8362ca2021-10-08 16:28:32 +02001427 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1428 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskine35115f92021-10-04 18:10:38 +02001429
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001430#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001431/** ECDSA signature with hashing.
1432 *
1433 * This is the ECDSA signature scheme defined by ANSI X9.62,
1434 * with a random per-message secret number (*k*).
1435 *
1436 * The representation of the signature as a byte string consists of
Shaun Case0e7791f2021-12-20 21:14:10 -08001437 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001438 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1439 * of the base point of the curve in octets. Each value is represented
1440 * in big-endian order (most significant octet first).
1441 *
1442 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1443 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001444 * This includes #PSA_ALG_ANY_HASH
1445 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001446 *
1447 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001448 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001449 * hash algorithm.
1450 */
1451#define PSA_ALG_ECDSA(hash_alg) \
1452 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1453/** ECDSA signature without hashing.
1454 *
1455 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1456 * without specifying a hash algorithm. This algorithm may only be
1457 * used to sign or verify a sequence of bytes that should be an
1458 * already-calculated hash. Note that the input is padded with
1459 * zeros on the left or truncated on the left as required to fit
1460 * the curve size.
1461 */
1462#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001463#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001464/** Deterministic ECDSA signature with hashing.
1465 *
1466 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1467 *
1468 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1469 *
1470 * Note that when this algorithm is used for verification, signatures
1471 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1472 * same private key are accepted. In other words,
1473 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1474 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1475 *
1476 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1477 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001478 * This includes #PSA_ALG_ANY_HASH
1479 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001480 *
1481 * \return The corresponding deterministic ECDSA signature
1482 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001483 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001484 * hash algorithm.
1485 */
1486#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1487 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001488#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001489#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001490 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001491 PSA_ALG_ECDSA_BASE)
1492#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001493 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001494#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1495 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1496#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1497 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1498
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001499/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1500 * using standard parameters.
1501 *
1502 * Contexts are not supported in the current version of this specification
1503 * because there is no suitable signature interface that can take the
1504 * context as a parameter. A future version of this specification may add
1505 * suitable functions and extend this algorithm to support contexts.
1506 *
1507 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1508 * In this specification, the following curves are supported:
1509 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1510 * in RFC 8032.
1511 * The curve is Edwards25519.
1512 * The hash function used internally is SHA-512.
1513 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1514 * in RFC 8032.
1515 * The curve is Edwards448.
1516 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001517 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001518 *
1519 * This algorithm can be used with psa_sign_message() and
1520 * psa_verify_message(). Since there is no prehashing, it cannot be used
1521 * with psa_sign_hash() or psa_verify_hash().
1522 *
1523 * The signature format is the concatenation of R and S as defined by
1524 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1525 * string for Ed448).
1526 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001527#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001528
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001529#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001530#define PSA_ALG_IS_HASH_EDDSA(alg) \
1531 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1532
1533/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001534 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001535 *
1536 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1537 *
1538 * This algorithm is Ed25519 as specified in RFC 8032.
1539 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001540 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001541 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001542 *
1543 * This is a hash-and-sign algorithm: to calculate a signature,
1544 * you can either:
1545 * - call psa_sign_message() on the message;
1546 * - or calculate the SHA-512 hash of the message
1547 * with psa_hash_compute()
1548 * or with a multi-part hash operation started with psa_hash_setup(),
1549 * using the hash algorithm #PSA_ALG_SHA_512,
1550 * then sign the calculated hash with psa_sign_hash().
1551 * Verifying a signature is similar, using psa_verify_message() or
1552 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001553 */
1554#define PSA_ALG_ED25519PH \
1555 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1556
1557/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1558 * using SHAKE256 and the Edwards448 curve.
1559 *
1560 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1561 *
1562 * This algorithm is Ed448 as specified in RFC 8032.
1563 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001564 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001565 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001566 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001567 *
1568 * This is a hash-and-sign algorithm: to calculate a signature,
1569 * you can either:
1570 * - call psa_sign_message() on the message;
1571 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1572 * with psa_hash_compute()
1573 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001574 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001575 * then sign the calculated hash with psa_sign_hash().
1576 * Verifying a signature is similar, using psa_verify_message() or
1577 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001578 */
1579#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001580 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001581
Gilles Peskine6d400852021-02-24 21:39:52 +01001582/* Default definition, to be overridden if the library is extended with
1583 * more hash-and-sign algorithms that we want to keep out of this header
1584 * file. */
1585#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1586
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001587/** Whether the specified algorithm is a signature algorithm that can be used
1588 * with psa_sign_hash() and psa_verify_hash().
1589 *
1590 * This encompasses all strict hash-and-sign algorithms categorized by
1591 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1592 * paradigm more loosely:
1593 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1594 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1595 *
1596 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1597 *
1598 * \return 1 if alg is a signature algorithm that can be used to sign a
1599 * hash. 0 if alg is a signature algorithm that can only be used
1600 * to sign a message. 0 if alg is not a signature algorithm.
1601 * This macro can return either 0 or 1 if alg is not a
1602 * supported algorithm identifier.
1603 */
1604#define PSA_ALG_IS_SIGN_HASH(alg) \
1605 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1606 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1607 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1608
1609/** Whether the specified algorithm is a signature algorithm that can be used
1610 * with psa_sign_message() and psa_verify_message().
1611 *
1612 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1613 *
1614 * \return 1 if alg is a signature algorithm that can be used to sign a
1615 * message. 0 if \p alg is a signature algorithm that can only be used
1616 * to sign an already-calculated hash. 0 if \p alg is not a signature
1617 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1618 * supported algorithm identifier.
1619 */
1620#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001621 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
Gilles Peskine4bdcf9a2021-09-22 16:42:02 +02001622
Gilles Peskined35b4892019-01-14 16:02:15 +01001623/** Whether the specified algorithm is a hash-and-sign algorithm.
1624 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001625 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1626 * structured in two parts: first the calculation of a hash in a way that
1627 * does not depend on the key, then the calculation of a signature from the
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001628 * hash value and the key. Hash-and-sign algorithms encode the hash
1629 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1630 * to extract this algorithm.
1631 *
1632 * Thus, for a hash-and-sign algorithm,
1633 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1634 * ```
1635 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1636 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1637 * ```
1638 * Most usefully, separating the hash from the signature allows the hash
1639 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1640 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1641 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001642 *
1643 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1644 *
1645 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1646 * This macro may return either 0 or 1 if \p alg is not a supported
1647 * algorithm identifier.
1648 */
1649#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskine8cb22c82021-09-22 16:15:05 +02001650 (PSA_ALG_IS_SIGN_HASH(alg) && \
1651 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001652
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001653/** Get the hash used by a hash-and-sign signature algorithm.
1654 *
1655 * A hash-and-sign algorithm is a signature algorithm which is
1656 * composed of two phases: first a hashing phase which does not use
1657 * the key and produces a hash of the input message, then a signing
1658 * phase which only uses the hash and the key and not the message
1659 * itself.
1660 *
1661 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1662 * #PSA_ALG_IS_SIGN(\p alg) is true).
1663 *
1664 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1665 * algorithm.
1666 * \return 0 if \p alg is a signature algorithm that does not
1667 * follow the hash-and-sign structure.
1668 * \return Unspecified if \p alg is not a signature algorithm or
1669 * if it is not supported by the implementation.
1670 */
1671#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001672 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001673 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1674 0)
1675
1676/** RSA PKCS#1 v1.5 encryption.
Janos Follatheaeff5b2023-12-29 11:14:58 +00001677 *
1678 * \warning Calling psa_asymmetric_decrypt() with this algorithm as a
1679 * parameter is considered an inherently dangerous function
1680 * (CWE-242). Unless it is used in a side channel free and safe
1681 * way (eg. implementing the TLS protocol as per 7.4.7.1 of
1682 * RFC 5246), the calling code is vulnerable.
1683 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001684 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001685#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001686
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001687#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001688/** RSA OAEP encryption.
1689 *
1690 * This is the encryption scheme defined by RFC 8017
1691 * (PKCS#1: RSA Cryptography Specifications) under the name
1692 * RSAES-OAEP, with the message generation function MGF1.
1693 *
1694 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1695 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1696 * for MGF1.
1697 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001698 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001699 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001700 * hash algorithm.
1701 */
1702#define PSA_ALG_RSA_OAEP(hash_alg) \
1703 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1704#define PSA_ALG_IS_RSA_OAEP(alg) \
1705 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1706#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1707 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1708 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1709 0)
1710
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001711#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001712/** Macro to build an HKDF algorithm.
1713 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001714 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001715 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001716 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001717 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001718 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001719 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1720 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1721 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1722 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001723 * starting to generate output.
1724 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001725 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1726 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1727 *
1728 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001729 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001730 * hash algorithm.
1731 */
1732#define PSA_ALG_HKDF(hash_alg) \
1733 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1734/** Whether the specified algorithm is an HKDF algorithm.
1735 *
1736 * HKDF is a family of key derivation algorithms that are based on a hash
1737 * function and the HMAC construction.
1738 *
1739 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1740 *
1741 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1742 * This macro may return either 0 or 1 if \c alg is not a supported
1743 * key derivation algorithm identifier.
1744 */
1745#define PSA_ALG_IS_HKDF(alg) \
1746 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1747#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1748 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1749
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001750#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001751/** Macro to build a TLS-1.2 PRF algorithm.
1752 *
1753 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1754 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1755 * used with either SHA-256 or SHA-384.
1756 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001757 * This key derivation algorithm uses the following inputs, which must be
1758 * passed in the order given here:
1759 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001760 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1761 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001762 *
1763 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001764 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001765 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001766 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001767 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001768 * TLS 1.2 PRF using HMAC-SHA-256.
1769 *
1770 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1771 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1772 *
1773 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001774 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001775 * hash algorithm.
1776 */
1777#define PSA_ALG_TLS12_PRF(hash_alg) \
1778 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1779
1780/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1781 *
1782 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1783 *
1784 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1785 * This macro may return either 0 or 1 if \c alg is not a supported
1786 * key derivation algorithm identifier.
1787 */
1788#define PSA_ALG_IS_TLS12_PRF(alg) \
1789 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1790#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1791 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1792
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001793#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001794/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1795 *
1796 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1797 * from the PreSharedKey (PSK) through the application of padding
1798 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1799 * The latter is based on HMAC and can be used with either SHA-256
1800 * or SHA-384.
1801 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001802 * This key derivation algorithm uses the following inputs, which must be
1803 * passed in the order given here:
1804 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001805 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1806 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001807 *
1808 * For the application to TLS-1.2, the seed (which is
1809 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1810 * ClientHello.Random + ServerHello.Random,
1811 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001812 *
Pengyu Lvf5131972022-11-08 18:17:00 +08001813 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001814 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1815 *
1816 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1817 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1818 *
1819 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001820 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001821 * hash algorithm.
1822 */
1823#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1824 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1825
1826/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1827 *
1828 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1829 *
1830 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1831 * This macro may return either 0 or 1 if \c alg is not a supported
1832 * key derivation algorithm identifier.
1833 */
1834#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1835 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1836#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1837 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1838
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001839#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
1840#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001841
Gilles Peskine6843c292019-01-18 16:44:49 +01001842/** Macro to build a combined algorithm that chains a key agreement with
1843 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001844 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001845 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1846 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1847 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1848 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001849 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001850 * \return The corresponding key agreement and derivation
1851 * algorithm.
1852 * \return Unspecified if \p ka_alg is not a supported
1853 * key agreement algorithm or \p kdf_alg is not a
1854 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001855 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001856#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1857 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001858
1859#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1860 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1861
Gilles Peskine6843c292019-01-18 16:44:49 +01001862#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1863 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001864
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001865/** Whether the specified algorithm is a raw key agreement algorithm.
1866 *
1867 * A raw key agreement algorithm is one that does not specify
1868 * a key derivation function.
1869 * Usually, raw key agreement algorithms are constructed directly with
1870 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001871 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001872 *
1873 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1874 *
1875 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1876 * This macro may return either 0 or 1 if \p alg is not a supported
1877 * algorithm identifier.
1878 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001879#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001880 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1881 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001882
1883#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1884 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1885
1886/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001887 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001888 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001889 * `g^{ab}` in big-endian format.
1890 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1891 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001892 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001893#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001894
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001895/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1896 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001897 * This includes the raw finite field Diffie-Hellman algorithm as well as
1898 * finite-field Diffie-Hellman followed by any supporter key derivation
1899 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001900 *
1901 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1902 *
1903 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1904 * This macro may return either 0 or 1 if \c alg is not a supported
1905 * key agreement algorithm identifier.
1906 */
1907#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001908 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001909
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001910/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1911 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001912 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001913 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1914 * `m` is the bit size associated with the curve, i.e. the bit size of the
1915 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1916 * the byte containing the most significant bit of the shared secret
1917 * is padded with zero bits. The byte order is either little-endian
1918 * or big-endian depending on the curve type.
1919 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001920 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001921 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1922 * in little-endian byte order.
1923 * The bit size is 448 for Curve448 and 255 for Curve25519.
1924 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001925 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001926 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1927 * in big-endian byte order.
1928 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1929 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001930 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001931 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1932 * in big-endian byte order.
1933 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001934 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001935#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001936
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001937/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1938 * algorithm.
1939 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001940 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1941 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1942 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001943 *
1944 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1945 *
1946 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1947 * 0 otherwise.
1948 * This macro may return either 0 or 1 if \c alg is not a supported
1949 * key agreement algorithm identifier.
1950 */
1951#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001952 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001953
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001954/** Whether the specified algorithm encoding is a wildcard.
1955 *
1956 * Wildcard values may only be used to set the usage algorithm field in
1957 * a policy, not to perform an operation.
1958 *
1959 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1960 *
1961 * \return 1 if \c alg is a wildcard algorithm encoding.
1962 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1963 * an operation).
1964 * \return This macro may return either 0 or 1 if \c alg is not a supported
1965 * algorithm identifier.
1966 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001967#define PSA_ALG_IS_WILDCARD(alg) \
1968 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1969 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1970 PSA_ALG_IS_MAC(alg) ? \
1971 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1972 PSA_ALG_IS_AEAD(alg) ? \
1973 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001974 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001975
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001976/**@}*/
1977
1978/** \defgroup key_lifetimes Key lifetimes
1979 * @{
1980 */
1981
Gilles Peskine43bd07d2022-06-20 18:41:20 +02001982/* Note that location and persistence level values are embedded in the
1983 * persistent key store, as part of key metadata. As a consequence, they
1984 * must not be changed (unless the storage format version changes).
1985 */
1986
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001987/** The default lifetime for volatile keys.
1988 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001989 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001990 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001991 *
1992 * A key with this lifetime is typically stored in the RAM area of the
1993 * PSA Crypto subsystem. However this is an implementation choice.
1994 * If an implementation stores data about the key in a non-volatile memory,
1995 * it must release all the resources associated with the key and erase the
1996 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001997 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01001998#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001999
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002000/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002001 *
2002 * A persistent key remains in storage until it is explicitly destroyed or
2003 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002004 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002005 * provide their own mechanism (for example to perform a factory reset,
2006 * to prepare for device refurbishment, or to uninstall an application).
2007 *
2008 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002009 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002010 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002011 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002012#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002013
Gilles Peskineaff11812020-05-04 19:03:10 +02002014/** The persistence level of volatile keys.
2015 *
2016 * See ::psa_key_persistence_t for more information.
2017 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002018#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002019
2020/** The default persistence level for persistent keys.
2021 *
2022 * See ::psa_key_persistence_t for more information.
2023 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002024#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002025
2026/** A persistence level indicating that a key is never destroyed.
2027 *
2028 * See ::psa_key_persistence_t for more information.
2029 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002030#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002031
2032#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002033 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002034
2035#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002036 ((psa_key_location_t) ((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002037
2038/** Whether a key lifetime indicates that the key is volatile.
2039 *
2040 * A volatile key is automatically destroyed by the implementation when
2041 * the application instance terminates. In particular, a volatile key
2042 * is automatically destroyed on a power reset of the device.
2043 *
2044 * A key that is not volatile is persistent. Persistent keys are
2045 * preserved until the application explicitly destroys them or until an
2046 * implementation-specific device management event occurs (for example,
2047 * a factory reset).
2048 *
2049 * \param lifetime The lifetime value to query (value of type
2050 * ::psa_key_lifetime_t).
2051 *
2052 * \return \c 1 if the key is volatile, otherwise \c 0.
2053 */
2054#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2055 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002056 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002057
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002058/** Whether a key lifetime indicates that the key is read-only.
2059 *
2060 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2061 * They must be created through platform-specific means that bypass the API.
2062 *
2063 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine11794b32021-06-07 23:21:50 +02002064 * consider a platform with multiple levels of privilege, where a
2065 * low-privilege application can use a key but is not allowed to destroy
2066 * it, and the platform exposes the key to the application with a read-only
2067 * lifetime. High-privilege code can destroy the key even though the
2068 * application sees the key as read-only.
Gilles Peskine7aa260d2021-04-21 20:05:59 +02002069 *
2070 * \param lifetime The lifetime value to query (value of type
2071 * ::psa_key_lifetime_t).
2072 *
2073 * \return \c 1 if the key is read-only, otherwise \c 0.
2074 */
2075#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2076 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2077 PSA_KEY_PERSISTENCE_READ_ONLY)
2078
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002079/** Construct a lifetime from a persistence level and a location.
2080 *
2081 * \param persistence The persistence level
2082 * (value of type ::psa_key_persistence_t).
2083 * \param location The location indicator
2084 * (value of type ::psa_key_location_t).
2085 *
2086 * \return The constructed lifetime value.
2087 */
2088#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2089 ((location) << 8 | (persistence))
2090
Gilles Peskineaff11812020-05-04 19:03:10 +02002091/** The local storage area for persistent keys.
2092 *
2093 * This storage area is available on all systems that can store persistent
2094 * keys without delegating the storage to a third-party cryptoprocessor.
2095 *
2096 * See ::psa_key_location_t for more information.
2097 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002098#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002099
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002100#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002101
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002102/* Note that key identifier values are embedded in the
2103 * persistent key store, as part of key metadata. As a consequence, they
2104 * must not be changed (unless the storage format version changes).
2105 */
2106
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002107/** The null key identifier.
2108 */
Gilles Peskine7f3659a2023-01-04 19:52:38 +01002109/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk64010dc2021-08-26 13:32:30 +02002110#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskine7f3659a2023-01-04 19:52:38 +01002111/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002112/** The minimum value for a key identifier chosen by the application.
2113 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002114#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002115/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002116 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002117#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002118/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002119 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002120#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002121/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002122 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002123#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002124
Ronald Cron7424f0d2020-09-14 16:17:41 +02002125
2126#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2127
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002128#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2129#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2130#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002131
2132/** Utility to initialize a key identifier at runtime.
2133 *
2134 * \param unused Unused parameter.
2135 * \param key_id Identifier of the key.
2136 */
2137static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002138 unsigned int unused, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002139{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002140 (void) unused;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002141
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002142 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002143}
2144
2145/** Compare two key identifiers.
2146 *
2147 * \param id1 First key identifier.
2148 * \param id2 Second key identifier.
2149 *
2150 * \return Non-zero if the two key identifier are equal, zero otherwise.
2151 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002152static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2153 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002154{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002155 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002156}
2157
Ronald Cronc4d1b512020-07-31 11:26:37 +02002158/** Check whether a key identifier is null.
2159 *
2160 * \param key Key identifier.
2161 *
2162 * \return Non-zero if the key identifier is null, zero otherwise.
2163 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002164static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002165{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002166 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002167}
2168
Ronald Cron7424f0d2020-09-14 16:17:41 +02002169#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2170
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002171#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2172#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).key_id)
2173#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).owner)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002174
2175/** Utility to initialize a key identifier at runtime.
2176 *
2177 * \param owner_id Identifier of the key owner.
2178 * \param key_id Identifier of the key.
2179 */
2180static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002181 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002182{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002183 return (mbedtls_svc_key_id_t){ .key_id = key_id,
2184 .owner = owner_id };
Ronald Cron7424f0d2020-09-14 16:17:41 +02002185}
2186
2187/** Compare two key identifiers.
2188 *
2189 * \param id1 First key identifier.
2190 * \param id2 Second key identifier.
2191 *
2192 * \return Non-zero if the two key identifier are equal, zero otherwise.
2193 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002194static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2195 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002196{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002197 return (id1.key_id == id2.key_id) &&
2198 mbedtls_key_owner_id_equal(id1.owner, id2.owner);
Ronald Cron7424f0d2020-09-14 16:17:41 +02002199}
2200
Ronald Cronc4d1b512020-07-31 11:26:37 +02002201/** Check whether a key identifier is null.
2202 *
2203 * \param key Key identifier.
2204 *
2205 * \return Non-zero if the key identifier is null, zero otherwise.
2206 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002207static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002208{
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002209 return key.key_id == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002210}
2211
Ronald Cron7424f0d2020-09-14 16:17:41 +02002212#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002213
2214/**@}*/
2215
2216/** \defgroup policy Key policies
2217 * @{
2218 */
2219
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002220/* Note that key usage flags are embedded in the
2221 * persistent key store, as part of key metadata. As a consequence, they
2222 * must not be changed (unless the storage format version changes).
2223 */
2224
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002225/** Whether the key may be exported.
2226 *
2227 * A public key or the public part of a key pair may always be exported
2228 * regardless of the value of this permission flag.
2229 *
2230 * If a key does not have export permission, implementations shall not
2231 * allow the key to be exported in plain form from the cryptoprocessor,
2232 * whether through psa_export_key() or through a proprietary interface.
2233 * The key may however be exportable in a wrapped form, i.e. in a form
2234 * where it is encrypted by another key.
2235 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002236#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002237
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002238/** Whether the key may be copied.
2239 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002240 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002241 * with the same policy or a more restrictive policy.
2242 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002243 * For lifetimes for which the key is located in a secure element which
2244 * enforce the non-exportability of keys, copying a key outside the secure
2245 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2246 * Copying the key inside the secure element is permitted with just
2247 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2248 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002249 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2250 * is sufficient to permit the copy.
2251 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002252#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002253
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002254/** Whether the key may be used to encrypt a message.
2255 *
2256 * This flag allows the key to be used for a symmetric encryption operation,
2257 * for an AEAD encryption-and-authentication operation,
2258 * or for an asymmetric encryption operation,
2259 * if otherwise permitted by the key's type and policy.
2260 *
2261 * For a key pair, this concerns the public key.
2262 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002263#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002264
2265/** Whether the key may be used to decrypt a message.
2266 *
2267 * This flag allows the key to be used for a symmetric decryption operation,
2268 * for an AEAD decryption-and-verification operation,
2269 * or for an asymmetric decryption operation,
2270 * if otherwise permitted by the key's type and policy.
2271 *
2272 * For a key pair, this concerns the private key.
2273 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002274#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002275
2276/** Whether the key may be used to sign a message.
2277 *
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002278 * This flag allows the key to be used for a MAC calculation operation or for
2279 * an asymmetric message signature operation, if otherwise permitted by the
2280 * key’s type and policy.
2281 *
2282 * For a key pair, this concerns the private key.
2283 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002284#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002285
2286/** Whether the key may be used to verify a message.
2287 *
2288 * This flag allows the key to be used for a MAC verification operation or for
2289 * an asymmetric message signature verification operation, if otherwise
2290 * permitted by the key’s type and policy.
2291 *
2292 * For a key pair, this concerns the public key.
2293 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002294#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
gabor-mezei-arme8efa392021-04-14 21:14:28 +02002295
2296/** Whether the key may be used to sign a message.
2297 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002298 * This flag allows the key to be used for a MAC calculation operation
2299 * or for an asymmetric signature operation,
2300 * if otherwise permitted by the key's type and policy.
2301 *
2302 * For a key pair, this concerns the private key.
2303 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002304#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002305
2306/** Whether the key may be used to verify a message signature.
2307 *
2308 * This flag allows the key to be used for a MAC verification operation
2309 * or for an asymmetric signature verification operation,
2310 * if otherwise permitted by by the key's type and policy.
2311 *
2312 * For a key pair, this concerns the public key.
2313 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002314#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002315
2316/** Whether the key may be used to derive other keys.
2317 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002318#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002319
2320/**@}*/
2321
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002322/** \defgroup derivation Key derivation
2323 * @{
2324 */
2325
Gilles Peskine43bd07d2022-06-20 18:41:20 +02002326/* Key input steps are not embedded in the persistent storage, so you can
2327 * change them if needed: it's only an ABI change. */
2328
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002329/** A secret input for key derivation.
2330 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002331 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2332 * (passed to psa_key_derivation_input_key())
2333 * or the shared secret resulting from a key agreement
2334 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002335 *
2336 * The secret can also be a direct input (passed to
2337 * key_derivation_input_bytes()). In this case, the derivation operation
2338 * may not be used to derive keys: the operation will only allow
2339 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002340 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002341#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002342
2343/** A label for key derivation.
2344 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002345 * This should be a direct input.
2346 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002347 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002348#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002349
2350/** A salt for key derivation.
2351 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002352 * This should be a direct input.
2353 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002354 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002355#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002356
2357/** An information string for key derivation.
2358 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002359 * This should be a direct input.
2360 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002361 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002362#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002363
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002364/** A seed for key derivation.
2365 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002366 * This should be a direct input.
2367 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002368 */
Gilles Peskine1b6c09a2023-01-11 14:52:35 +01002369#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002370
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002371/**@}*/
2372
Bence Szépkútib639d432021-04-21 10:33:54 +02002373/** \defgroup helper_macros Helper macros
2374 * @{
2375 */
2376
2377/* Helper macros */
2378
2379/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2380 * regardless of the tag length they encode.
2381 *
2382 * \param aead_alg_1 An AEAD algorithm identifier.
2383 * \param aead_alg_2 An AEAD algorithm identifier.
2384 *
2385 * \return 1 if both identifiers refer to the same AEAD algorithm,
2386 * 0 otherwise.
2387 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2388 * a supported AEAD algorithm.
2389 */
2390#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2391 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2392 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2393
2394/**@}*/
2395
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002396#endif /* PSA_CRYPTO_VALUES_H */