blob: ff50f7e4bf24ec76ba111ccd374017ab58d4ecfc [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine79733992022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010024 * SPDX-License-Identifier: Apache-2.0
25 *
26 * Licensed under the Apache License, Version 2.0 (the "License"); you may
27 * not use this file except in compliance with the License.
28 * You may obtain a copy of the License at
29 *
30 * http://www.apache.org/licenses/LICENSE-2.0
31 *
32 * Unless required by applicable law or agreed to in writing, software
33 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
34 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
35 * See the License for the specific language governing permissions and
36 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037 */
38
39#ifndef PSA_CRYPTO_VALUES_H
40#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020041#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010042
43/** \defgroup error Error codes
44 * @{
45 */
46
David Saadab4ecc272019-02-14 13:48:10 +020047/* PSA error codes */
48
Gilles Peskine79733992022-06-20 18:41:20 +020049/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskine955993c2022-06-29 14:37:17 +020050 * etc.). Do not change the values in this section or even the expansions
51 * of each macro: it must be possible to `#include` both this header
52 * and some other PSA component's headers in the same C source,
53 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
54 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
55 * to the same sequence of tokens.
56 *
57 * If you must add a new
Gilles Peskine79733992022-06-20 18:41:20 +020058 * value, check with the Arm PSA framework group to pick one that other
59 * domains aren't already using. */
60
Gilles Peskine45873ce2023-01-04 19:50:27 +010061/* Tell uncrustify not to touch the constant definitions, otherwise
62 * it might change the spacing to something that is not PSA-compliant
63 * (e.g. adding a space after casts).
64 *
65 * *INDENT-OFF*
66 */
67
Gilles Peskinef3b731e2018-12-12 13:38:31 +010068/** The action was completed successfully. */
69#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010070
71/** An error occurred that does not correspond to any defined
72 * failure cause.
73 *
74 * Implementations may use this error code if none of the other standard
75 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020076#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010077
78/** The requested operation or a parameter is not supported
79 * by this implementation.
80 *
81 * Implementations should return this error code when an enumeration
82 * parameter such as a key type, algorithm, etc. is not recognized.
83 * If a combination of parameters is recognized and identified as
84 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
87/** The requested action is denied by a policy.
88 *
89 * Implementations should return this error code when the parameters
90 * are recognized as valid and supported, and a policy explicitly
91 * denies the requested operation.
92 *
93 * If a subset of the parameters of a function call identify a
94 * forbidden operation, and another subset of the parameters are
95 * not valid or not supported, it is unspecified whether the function
96 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
97 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020098#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** An output buffer is too small.
101 *
102 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
103 * description to determine a sufficient buffer size.
104 *
105 * Implementations should preferably return this error code only
106 * in cases when performing the operation with a larger output
107 * buffer would succeed. However implementations may return this
108 * error if a function has invalid or unsupported parameters in addition
109 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +0200110#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100111
David Saadab4ecc272019-02-14 13:48:10 +0200112/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100113 *
David Saadab4ecc272019-02-14 13:48:10 +0200114 * Implementations should return this error, when attempting
115 * to write an item (like a key) that already exists. */
116#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100117
David Saadab4ecc272019-02-14 13:48:10 +0200118/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100119 *
David Saadab4ecc272019-02-14 13:48:10 +0200120 * Implementations should return this error, if a requested item (like
121 * a key) does not exist. */
122#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123
124/** The requested action cannot be performed in the current state.
125 *
126 * Multipart operations return this error when one of the
127 * functions is called out of sequence. Refer to the function
128 * descriptions for permitted sequencing of functions.
129 *
130 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100131 * that a key either exists or not,
132 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100133 * as applicable.
134 *
135 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200136 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100137 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200138#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100139
140/** The parameters passed to the function are invalid.
141 *
142 * Implementations may return this error any time a parameter or
143 * combination of parameters are recognized as invalid.
144 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100145 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200146 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100147 * instead.
148 */
David Saadab4ecc272019-02-14 13:48:10 +0200149#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100150
151/** There is not enough runtime memory.
152 *
153 * If the action is carried out across multiple security realms, this
154 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200155#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100156
157/** There is not enough persistent storage.
158 *
159 * Functions that modify the key storage return this error code if
160 * there is insufficient storage space on the host media. In addition,
161 * many functions that do not otherwise access storage may return this
162 * error code if the implementation requires a mandatory log entry for
163 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200164#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100165
166/** There was a communication failure inside the implementation.
167 *
168 * This can indicate a communication failure between the application
169 * and an external cryptoprocessor or between the cryptoprocessor and
170 * an external volatile or persistent memory. A communication failure
171 * may be transient or permanent depending on the cause.
172 *
173 * \warning If a function returns this error, it is undetermined
174 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200175 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
177 * if the requested action was completed successfully in an external
178 * cryptoprocessor but there was a breakdown of communication before
179 * the cryptoprocessor could report the status to the application.
180 */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** There was a storage failure that may have led to data loss.
184 *
185 * This error indicates that some persistent storage is corrupted.
186 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200187 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188 * between the cryptoprocessor and its external storage (use
189 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
190 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
191 *
192 * Note that a storage failure does not indicate that any data that was
193 * previously read is invalid. However this previously read data may no
194 * longer be readable from storage.
195 *
196 * When a storage failure occurs, it is no longer possible to ensure
197 * the global integrity of the keystore. Depending on the global
198 * integrity guarantees offered by the implementation, access to other
199 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100200 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100201 *
202 * Implementations should only use this error code to report a
203 * permanent storage corruption. However application writers should
204 * keep in mind that transient errors while reading the storage may be
205 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200206#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100207
208/** A hardware failure was detected.
209 *
210 * A hardware failure may be transient or permanent depending on the
211 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200212#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100213
214/** A tampering attempt was detected.
215 *
216 * If an application receives this error code, there is no guarantee
217 * that previously accessed or computed data was correct and remains
218 * confidential. Applications should not perform any security function
219 * and should enter a safe failure state.
220 *
221 * Implementations may return this error code if they detect an invalid
222 * state that cannot happen during normal operation and that indicates
223 * that the implementation's security guarantees no longer hold. Depending
224 * on the implementation architecture and on its security and safety goals,
225 * the implementation may forcibly terminate the application.
226 *
227 * This error code is intended as a last resort when a security breach
228 * is detected and it is unsure whether the keystore data is still
229 * protected. Implementations shall only return this error code
230 * to report an alarm from a tampering detector, to indicate that
231 * the confidentiality of stored data can no longer be guaranteed,
232 * or to indicate that the integrity of previously returned data is now
233 * considered compromised. Implementations shall not use this error code
234 * to indicate a hardware failure that merely makes it impossible to
235 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
236 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
237 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
238 * instead).
239 *
240 * This error indicates an attack against the application. Implementations
241 * shall not return this error code as a consequence of the behavior of
242 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200243#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100244
245/** There is not enough entropy to generate random data needed
246 * for the requested action.
247 *
248 * This error indicates a failure of a hardware random generator.
249 * Application writers should note that this error can be returned not
250 * only by functions whose purpose is to generate random data, such
251 * as key, IV or nonce generation, but also by functions that execute
252 * an algorithm with a randomized result, as well as functions that
253 * use randomization of intermediate computations as a countermeasure
254 * to certain attacks.
255 *
256 * Implementations should avoid returning this error after psa_crypto_init()
257 * has succeeded. Implementations should generate sufficient
258 * entropy during initialization and subsequently use a cryptographically
259 * secure pseudorandom generator (PRNG). However implementations may return
260 * this error at any time if a policy requires the PRNG to be reseeded
261 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200262#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100263
264/** The signature, MAC or hash is incorrect.
265 *
266 * Verification functions return this error if the verification
267 * calculations completed successfully, and the value to be verified
268 * was determined to be incorrect.
269 *
270 * If the value to verify has an invalid size, implementations may return
271 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
274/** The decrypted padding is incorrect.
275 *
276 * \warning In some protocols, when decrypting data, it is essential that
277 * the behavior of the application does not depend on whether the padding
278 * is correct, down to precise timing. Applications should prefer
279 * protocols that use authenticated encryption rather than plain
280 * encryption. If the application must perform a decryption of
281 * unauthenticated data, the application writer should take care not
282 * to reveal whether the padding is invalid.
283 *
284 * Implementations should strive to make valid and invalid padding
285 * as close as possible to indistinguishable to an external observer.
286 * In particular, the timing of a decryption operation should not
287 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200288#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100289
David Saadab4ecc272019-02-14 13:48:10 +0200290/** Return this error when there's insufficient data when attempting
291 * to read from a resource. */
292#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100293
Ronald Croncf56a0a2020-08-04 09:51:30 +0200294/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100295 */
David Saadab4ecc272019-02-14 13:48:10 +0200296#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100297
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100298/** Stored data has been corrupted.
299 *
300 * This error indicates that some persistent storage has suffered corruption.
301 * It does not indicate the following situations, which have specific error
302 * codes:
303 *
304 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
305 * - A communication error between the cryptoprocessor and its external
306 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
307 * - When the storage is in a valid state but is full - use
308 * #PSA_ERROR_INSUFFICIENT_STORAGE.
309 * - When the storage fails for other reasons - use
310 * #PSA_ERROR_STORAGE_FAILURE.
311 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
312 *
313 * \note A storage corruption does not indicate that any data that was
314 * previously read is invalid. However this previously read data might no
315 * longer be readable from storage.
316 *
317 * When a storage failure occurs, it is no longer possible to ensure the
318 * global integrity of the keystore.
319 */
320#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
321
gabor-mezei-armfe309242020-11-09 17:39:56 +0100322/** Data read from storage is not valid for the implementation.
323 *
324 * This error indicates that some data read from storage does not have a valid
325 * format. It does not indicate the following situations, which have specific
326 * error codes:
327 *
328 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
329 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
330 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
331 *
332 * This error is typically a result of either storage corruption on a
333 * cleartext storage backend, or an attempt to read data that was
334 * written by an incompatible version of the library.
335 */
336#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
337
Gilles Peskine45873ce2023-01-04 19:50:27 +0100338/* *INDENT-ON* */
339
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340/**@}*/
341
342/** \defgroup crypto_types Key and algorithm types
343 * @{
344 */
345
Gilles Peskine79733992022-06-20 18:41:20 +0200346/* Note that key type values, including ECC family and DH group values, are
347 * embedded in the persistent key store, as part of key metadata. As a
348 * consequence, they must not be changed (unless the storage format version
349 * changes).
350 */
351
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100352/** An invalid key type value.
353 *
354 * Zero is not the encoding of any key type.
355 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100356#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100358/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100359 *
360 * Key types defined by this standard will never have the
361 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
362 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
363 * respect the bitwise structure used by standard encodings whenever practical.
364 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100365#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100366
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100367#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100368#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
369#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
370#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100371#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100372
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100373#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100374
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100375/** Whether a key type is vendor-defined.
376 *
377 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
378 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100379#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
380 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
381
382/** Whether a key type is an unstructured array of bytes.
383 *
384 * This encompasses both symmetric keys and non-key data.
385 */
386#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100387 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
388 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100389
390/** Whether a key type is asymmetric: either a key pair or a public key. */
391#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
392 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
393 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
394 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
395/** Whether a key type is the public part of a key pair. */
396#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
397 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
398/** Whether a key type is a key pair containing a private part and a public
399 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200400#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100401 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
402/** The key pair type corresponding to a public key type.
403 *
404 * You may also pass a key pair type as \p type, it will be left unchanged.
405 *
406 * \param type A public key type or key pair type.
407 *
408 * \return The corresponding key pair type.
409 * If \p type is not a public key or a key pair,
410 * the return value is undefined.
411 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200412#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100413 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
414/** The public key type corresponding to a key pair type.
415 *
416 * You may also pass a key pair type as \p type, it will be left unchanged.
417 *
418 * \param type A public key type or key pair type.
419 *
420 * \return The corresponding public key type.
421 * If \p type is not a public key or a key pair,
422 * the return value is undefined.
423 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200424#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100425 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
426
427/** Raw data.
428 *
429 * A "key" of this type cannot be used for any cryptographic operation.
430 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100431#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100432
433/** HMAC key.
434 *
435 * The key policy determines which underlying hash algorithm the key can be
436 * used for.
437 *
438 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100439 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100440 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100441#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100442
443/** A secret for key derivation.
444 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200445 * This key type is for high-entropy secrets only. For low-entropy secrets,
446 * #PSA_KEY_TYPE_PASSWORD should be used instead.
447 *
448 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
449 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
450 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100451 * The key policy determines which key derivation algorithm the key
452 * can be used for.
453 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100454#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100455
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456/** A low-entropy secret for password hashing or key derivation.
457 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * This key type is suitable for passwords and passphrases which are typically
459 * intended to be memorizable by humans, and have a low entropy relative to
460 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200461 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200462 * for such keys. It is not suitable for passwords with extremely low entropy,
463 * such as numerical PINs.
464 *
465 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
466 * key derivation algorithms. Algorithms that accept such an input were
467 * designed to accept low-entropy secret and are known as password hashing or
468 * key stretching algorithms.
469 *
470 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
471 * key derivation algorithms, as the algorithms that take such an input expect
472 * it to be high-entropy.
473 *
474 * The key policy determines which key derivation algorithm the key can be
475 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200476 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200477#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200478
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200479/** A secret value that can be used to verify a password hash.
480 *
481 * The key policy determines which key derivation algorithm the key
482 * can be used for, among the same permissible subset as for
483 * #PSA_KEY_TYPE_PASSWORD.
484 */
485#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
486
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200487/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200488 *
489 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200490 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200491 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200492#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200493
Gilles Peskine737c6be2019-05-21 16:01:06 +0200494/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100495 *
496 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
497 * 32 bytes (AES-256).
498 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100499#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200501/** Key for a cipher, AEAD or MAC algorithm based on the
502 * ARIA block cipher. */
503#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
504
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100505/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
506 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100507 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
508 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100509 *
510 * Note that single DES and 2-key 3DES are weak and strongly
511 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
512 * is weak and deprecated and should only be used in legacy protocols.
513 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100514#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100515
Gilles Peskine737c6be2019-05-21 16:01:06 +0200516/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100517 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100518#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100519
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200520/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
521 *
522 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
523 *
Gilles Peskine14d35542022-03-10 18:36:37 +0100524 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
525 * 12-byte nonces.
526 *
527 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
528 * with the initial counter value 1, you can process and discard a
529 * 64-byte block before the real data.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200530 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100531#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200532
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100533/** RSA public key.
534 *
535 * The size of an RSA key is the bit size of the modulus.
536 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100537#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100538/** RSA key pair (private and public key).
539 *
540 * The size of an RSA key is the bit size of the modulus.
541 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100542#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100543/** Whether a key type is an RSA key (pair or public-only). */
544#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200545 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100546
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100547#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100548#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
549#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100550/** Elliptic curve key pair.
551 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100552 * The size of an elliptic curve key is the bit size associated with the curve,
553 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
554 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
555 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100556 * \param curve A value of type ::psa_ecc_family_t that
557 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100558 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200559#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
560 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100561/** Elliptic curve public key.
562 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100563 * The size of an elliptic curve public key is the same as the corresponding
564 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
565 * `PSA_ECC_FAMILY_xxx` curve families).
566 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567 * \param curve A value of type ::psa_ecc_family_t that
568 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100569 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100570#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
571 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
572
573/** Whether a key type is an elliptic curve key (pair or public-only). */
574#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200575 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100576 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100577/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200578#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100579 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200580 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100581/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100582#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
583 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
584 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
585
586/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100587#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
588 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100589 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
590 0))
591
Przemyslaw Stekiel6d3d18b2022-01-20 22:41:17 +0100592/** Check if the curve of given family is Weierstrass elliptic curve. */
593#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
594
Gilles Peskine228abc52019-12-03 17:24:19 +0100595/** SEC Koblitz curves over prime fields.
596 *
597 * This family comprises the following curves:
598 * secp192k1, secp224k1, secp256k1.
599 * They are defined in _Standards for Efficient Cryptography_,
600 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
601 * https://www.secg.org/sec2-v2.pdf
602 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100603#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100604
605/** SEC random curves over prime fields.
606 *
607 * This family comprises the following curves:
608 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
609 * They are defined in _Standards for Efficient Cryptography_,
610 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
611 * https://www.secg.org/sec2-v2.pdf
612 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100613#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100614/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100615#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100616
617/** SEC Koblitz curves over binary fields.
618 *
619 * This family comprises the following curves:
620 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
621 * They are defined in _Standards for Efficient Cryptography_,
622 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
623 * https://www.secg.org/sec2-v2.pdf
624 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100625#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100626
627/** SEC random curves over binary fields.
628 *
629 * This family comprises the following curves:
630 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
631 * They are defined in _Standards for Efficient Cryptography_,
632 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
633 * https://www.secg.org/sec2-v2.pdf
634 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100635#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100636
637/** SEC additional random curves over binary fields.
638 *
639 * This family comprises the following curve:
640 * sect163r2.
641 * It is defined in _Standards for Efficient Cryptography_,
642 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
643 * https://www.secg.org/sec2-v2.pdf
644 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100645#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100646
647/** Brainpool P random curves.
648 *
649 * This family comprises the following curves:
650 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
651 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
652 * It is defined in RFC 5639.
653 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100654#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100655
656/** Curve25519 and Curve448.
657 *
658 * This family comprises the following Montgomery curves:
659 * - 255-bit: Bernstein et al.,
660 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
661 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
662 * - 448-bit: Hamburg,
663 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
664 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
665 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100666#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100667
Gilles Peskine67546802021-02-24 21:49:40 +0100668/** The twisted Edwards curves Ed25519 and Ed448.
669 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100670 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100671 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100672 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100673 *
674 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100675 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100676 * to Curve25519.
677 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
678 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
679 * to Curve448.
680 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
681 */
682#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
683
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100684#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100685#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
686#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100687/** Diffie-Hellman key pair.
688 *
Paul Elliott75e27032020-06-03 15:17:39 +0100689 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100690 * Diffie-Hellman group to be used.
691 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200692#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
693 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100694/** Diffie-Hellman public key.
695 *
Paul Elliott75e27032020-06-03 15:17:39 +0100696 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100697 * Diffie-Hellman group to be used.
698 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200699#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
700 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
701
702/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
703#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200704 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200705 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
706/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200707#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200708 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200709 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200710/** Whether a key type is a Diffie-Hellman public key. */
711#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
712 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
713 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
714
715/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100716#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
717 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200718 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
719 0))
720
Gilles Peskine228abc52019-12-03 17:24:19 +0100721/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
722 *
723 * This family includes groups with the following key sizes (in bits):
724 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
725 * all of these sizes or only a subset.
726 */
Paul Elliott75e27032020-06-03 15:17:39 +0100727#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100728
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100729#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100730 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731/** The block size of a block cipher.
732 *
733 * \param type A cipher key type (value of type #psa_key_type_t).
734 *
735 * \return The block size for a block cipher, or 1 for a stream cipher.
736 * The return value is undefined if \p type is not a supported
737 * cipher key type.
738 *
739 * \note It is possible to build stream cipher algorithms on top of a block
740 * cipher, for example CTR mode (#PSA_ALG_CTR).
741 * This macro only takes the key type into account, so it cannot be
742 * used to determine the size of the data that #psa_cipher_update()
743 * might buffer for future processing in general.
744 *
745 * \note This macro returns a compile-time constant if its argument is one.
746 *
747 * \warning This macro may evaluate its argument multiple times.
748 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100749#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100750 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100751 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100752 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100753
Gilles Peskine79733992022-06-20 18:41:20 +0200754/* Note that algorithm values are embedded in the persistent key store,
755 * as part of key metadata. As a consequence, they must not be changed
756 * (unless the storage format version changes).
757 */
758
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100759/** Vendor-defined algorithm flag.
760 *
761 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
762 * bit set. Vendors who define additional algorithms must use an encoding with
763 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
764 * used by standard encodings whenever practical.
765 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100766#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100767
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100768#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100769#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
770#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100771#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100772#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
773#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
774#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
775#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
776#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100777
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100778/** Whether an algorithm is vendor-defined.
779 *
780 * See also #PSA_ALG_VENDOR_FLAG.
781 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100782#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
783 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
784
785/** Whether the specified algorithm is a hash algorithm.
786 *
787 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
788 *
789 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
790 * This macro may return either 0 or 1 if \p alg is not a supported
791 * algorithm identifier.
792 */
793#define PSA_ALG_IS_HASH(alg) \
794 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
795
796/** Whether the specified algorithm is a MAC algorithm.
797 *
798 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
799 *
800 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
801 * This macro may return either 0 or 1 if \p alg is not a supported
802 * algorithm identifier.
803 */
804#define PSA_ALG_IS_MAC(alg) \
805 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
806
807/** Whether the specified algorithm is a symmetric cipher algorithm.
808 *
809 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
810 *
811 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
812 * This macro may return either 0 or 1 if \p alg is not a supported
813 * algorithm identifier.
814 */
815#define PSA_ALG_IS_CIPHER(alg) \
816 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
817
818/** Whether the specified algorithm is an authenticated encryption
819 * with associated data (AEAD) algorithm.
820 *
821 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
822 *
823 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
824 * This macro may return either 0 or 1 if \p alg is not a supported
825 * algorithm identifier.
826 */
827#define PSA_ALG_IS_AEAD(alg) \
828 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
829
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200830/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200831 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100832 *
833 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
834 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200835 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100836 * This macro may return either 0 or 1 if \p alg is not a supported
837 * algorithm identifier.
838 */
839#define PSA_ALG_IS_SIGN(alg) \
840 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
841
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200842/** Whether the specified algorithm is an asymmetric encryption algorithm,
843 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100844 *
845 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
846 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200847 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100848 * This macro may return either 0 or 1 if \p alg is not a supported
849 * algorithm identifier.
850 */
851#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
852 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
853
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100854/** Whether the specified algorithm is a key agreement algorithm.
855 *
856 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
857 *
858 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
859 * This macro may return either 0 or 1 if \p alg is not a supported
860 * algorithm identifier.
861 */
862#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100863 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864
865/** Whether the specified algorithm is a key derivation algorithm.
866 *
867 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
868 *
869 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
870 * This macro may return either 0 or 1 if \p alg is not a supported
871 * algorithm identifier.
872 */
873#define PSA_ALG_IS_KEY_DERIVATION(alg) \
874 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
875
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200876/** Whether the specified algorithm is a key stretching / password hashing
877 * algorithm.
878 *
879 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200880 * that is suitable for use with a low-entropy secret such as a password.
881 * Equivalently, it's a key derivation algorithm that uses a
882 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200883 *
884 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
885 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100886 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200887 * otherwise. This macro may return either 0 or 1 if \p alg is not a
888 * supported algorithm identifier.
889 */
890#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
891 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
892 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
893
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200894/** An invalid algorithm identifier value. */
Gilles Peskinea6516072023-01-04 19:52:38 +0100895/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200896#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +0100897/* *INDENT-ON* */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200898
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100899#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100900/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100901#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100902/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100903#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100904/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100905#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100906/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100907#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100908/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100909#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100910/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100911#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100912/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100913#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100914/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100915#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100916/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100917#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100918/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100919#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100920/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100921#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100922/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100923#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100924/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100925#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100926/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100927 *
928 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
929 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
930 * has the same output size and a (theoretically) higher security strength.
931 */
Gilles Peskine27354692021-03-03 17:45:06 +0100932#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100933
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100934/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100935 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100936 * This value may be used to form the algorithm usage field of a policy
937 * for a signature algorithm that is parametrized by a hash. The key
938 * may then be used to perform operations using the same signature
939 * algorithm parametrized with any supported hash.
940 *
941 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200942 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100943 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100944 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100945 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
946 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100947 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200948 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100949 * ```
950 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100951 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100952 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
953 * call to sign or verify a message may use a different hash.
954 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200955 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
956 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
957 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100958 * ```
959 *
960 * This value may not be used to build other algorithms that are
961 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100962 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100963 *
964 * This value may not be used to build an algorithm specification to
965 * perform an operation. It is only valid to build policies.
966 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100967#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100968
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100969#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100970#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100971/** Macro to build an HMAC algorithm.
972 *
973 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
974 *
975 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
976 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
977 *
978 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100979 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100980 * hash algorithm.
981 */
982#define PSA_ALG_HMAC(hash_alg) \
983 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
984
985#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
986 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
987
988/** Whether the specified algorithm is an HMAC algorithm.
989 *
990 * HMAC is a family of MAC algorithms that are based on a hash function.
991 *
992 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
993 *
994 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
995 * This macro may return either 0 or 1 if \p alg is not a supported
996 * algorithm identifier.
997 */
998#define PSA_ALG_IS_HMAC(alg) \
999 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1000 PSA_ALG_HMAC_BASE)
1001
1002/* In the encoding of a MAC algorithm, the bits corresponding to
1003 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1004 * truncated. As an exception, the value 0 means the untruncated algorithm,
1005 * whatever its length is. The length is encoded in 6 bits, so it can
1006 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1007 * to full length is correctly encoded as 0 and any non-trivial truncation
1008 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +01001009#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
1010#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001011
Steven Cooremand927ed72021-02-22 19:59:35 +01001012/* In the encoding of a MAC algorithm, the bit corresponding to
1013 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001014 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1015 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001016 * same base class and having a (potentially truncated) MAC length greater or
1017 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
1018#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1019
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001020/** Macro to build a truncated MAC algorithm.
1021 *
1022 * A truncated MAC algorithm is identical to the corresponding MAC
1023 * algorithm except that the MAC value for the truncated algorithm
1024 * consists of only the first \p mac_length bytes of the MAC value
1025 * for the untruncated algorithm.
1026 *
1027 * \note This macro may allow constructing algorithm identifiers that
1028 * are not valid, either because the specified length is larger
1029 * than the untruncated MAC or because the specified length is
1030 * smaller than permitted by the implementation.
1031 *
1032 * \note It is implementation-defined whether a truncated MAC that
1033 * is truncated to the same length as the MAC of the untruncated
1034 * algorithm is considered identical to the untruncated algorithm
1035 * for policy comparison purposes.
1036 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001037 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001038 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001039 * is true). This may be a truncated or untruncated
1040 * MAC algorithm.
1041 * \param mac_length Desired length of the truncated MAC in bytes.
1042 * This must be at most the full length of the MAC
1043 * and must be at least an implementation-specified
1044 * minimum. The implementation-specified minimum
1045 * shall not be zero.
1046 *
1047 * \return The corresponding MAC algorithm with the specified
1048 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001049 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001050 * MAC algorithm or if \p mac_length is too small or
1051 * too large for the specified MAC algorithm.
1052 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001053#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1054 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1055 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001056 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1057
1058/** Macro to build the base MAC algorithm corresponding to a truncated
1059 * MAC algorithm.
1060 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001061 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001062 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001063 * is true). This may be a truncated or untruncated
1064 * MAC algorithm.
1065 *
1066 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001067 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001068 * MAC algorithm.
1069 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001070#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1071 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1072 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001073
1074/** Length to which a MAC algorithm is truncated.
1075 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001076 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001077 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001078 * is true).
1079 *
1080 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001081 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1082 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001083 * MAC algorithm.
1084 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001085#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1086 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001087
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001088/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001089 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001090 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001091 * sharing the same base algorithm, and where the (potentially truncated) MAC
1092 * length of the specific algorithm is equal to or larger then the wildcard
1093 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001094 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001095 * \note When setting the minimum required MAC length to less than the
1096 * smallest MAC length allowed by the base algorithm, this effectively
1097 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001098 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001099 * \param mac_alg A MAC algorithm identifier (value of type
1100 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1101 * is true).
1102 * \param min_mac_length Desired minimum length of the message authentication
1103 * code in bytes. This must be at most the untruncated
1104 * length of the MAC and must be at least 1.
1105 *
1106 * \return The corresponding MAC wildcard algorithm with the
1107 * specified minimum length.
1108 * \return Unspecified if \p mac_alg is not a supported MAC
1109 * algorithm or if \p min_mac_length is less than 1 or
1110 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001111 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001112#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1113 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1114 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001115
Bence Szépkútia2945512020-12-03 21:40:17 +01001116#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001117/** The CBC-MAC construction over a block cipher
1118 *
1119 * \warning CBC-MAC is insecure in many cases.
1120 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1121 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001122#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001123/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001124#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001125
1126/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1127 *
1128 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1129 *
1130 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1131 * This macro may return either 0 or 1 if \p alg is not a supported
1132 * algorithm identifier.
1133 */
1134#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1135 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1136 PSA_ALG_CIPHER_MAC_BASE)
1137
1138#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1139#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1140
1141/** Whether the specified algorithm is a stream cipher.
1142 *
1143 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1144 * by applying a bitwise-xor with a stream of bytes that is generated
1145 * from a key.
1146 *
1147 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1148 *
1149 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1150 * This macro may return either 0 or 1 if \p alg is not a supported
1151 * algorithm identifier or if it is not a symmetric cipher algorithm.
1152 */
1153#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1154 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1155 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1156
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001157/** The stream cipher mode of a stream cipher algorithm.
1158 *
1159 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001160 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001161 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001162#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001163
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001164/** The CTR stream cipher mode.
1165 *
1166 * CTR is a stream cipher which is built from a block cipher.
1167 * The underlying block cipher is determined by the key type.
1168 * For example, to use AES-128-CTR, use this algorithm with
1169 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1170 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001171#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001172
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001173/** The CFB stream cipher mode.
1174 *
1175 * The underlying block cipher is determined by the key type.
1176 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001177#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001178
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001179/** The OFB stream cipher mode.
1180 *
1181 * The underlying block cipher is determined by the key type.
1182 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001183#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001184
1185/** The XTS cipher mode.
1186 *
1187 * XTS is a cipher mode which is built from a block cipher. It requires at
1188 * least one full block of input, but beyond this minimum the input
1189 * does not need to be a whole number of blocks.
1190 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001191#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001192
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001193/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1194 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001195 * \warning ECB mode does not protect the confidentiality of the encrypted data
1196 * except in extremely narrow circumstances. It is recommended that applications
1197 * only use ECB if they need to construct an operating mode that the
1198 * implementation does not provide. Implementations are encouraged to provide
1199 * the modes that applications need in preference to supporting direct access
1200 * to ECB.
1201 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001202 * The underlying block cipher is determined by the key type.
1203 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001204 * This symmetric cipher mode can only be used with messages whose lengths are a
1205 * multiple of the block size of the chosen block cipher.
1206 *
1207 * ECB mode does not accept an initialization vector (IV). When using a
1208 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1209 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001210 */
1211#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1212
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001213/** The CBC block cipher chaining mode, with no padding.
1214 *
1215 * The underlying block cipher is determined by the key type.
1216 *
1217 * This symmetric cipher mode can only be used with messages whose lengths
1218 * are whole number of blocks for the chosen block cipher.
1219 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001220#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001221
1222/** The CBC block cipher chaining mode with PKCS#7 padding.
1223 *
1224 * The underlying block cipher is determined by the key type.
1225 *
1226 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1227 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001228#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001229
Gilles Peskine679693e2019-05-06 15:10:16 +02001230#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1231
1232/** Whether the specified algorithm is an AEAD mode on a block cipher.
1233 *
1234 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1235 *
1236 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1237 * a block cipher, 0 otherwise.
1238 * This macro may return either 0 or 1 if \p alg is not a supported
1239 * algorithm identifier.
1240 */
1241#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1242 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1243 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1244
Gilles Peskine9153ec02019-02-15 13:02:02 +01001245/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001246 *
1247 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001248 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001249#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001250
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001251/** The CCM* cipher mode without authentication.
1252 *
1253 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1254 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1255 *
1256 * The underlying block cipher is determined by the key type.
1257 *
1258 * Currently only 13-byte long IV's are supported.
1259 */
1260#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
1261
Gilles Peskine9153ec02019-02-15 13:02:02 +01001262/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001263 *
1264 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001265 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001266#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001267
1268/** The Chacha20-Poly1305 AEAD algorithm.
1269 *
1270 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001271 *
1272 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1273 * and should reject other sizes.
1274 *
1275 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001276 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001277#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001278
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01001279/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001280 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1281 * The constants for default lengths follow this encoding.
1282 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001283#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1284#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001285
Steven Cooremand927ed72021-02-22 19:59:35 +01001286/* In the encoding of an AEAD algorithm, the bit corresponding to
1287 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001288 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1289 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001290 * same base class and having a tag length greater than or equal to the one
1291 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1292#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1293
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001294/** Macro to build a shortened AEAD algorithm.
1295 *
1296 * A shortened AEAD algorithm is similar to the corresponding AEAD
1297 * algorithm, but has an authentication tag that consists of fewer bytes.
1298 * Depending on the algorithm, the tag length may affect the calculation
1299 * of the ciphertext.
1300 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001301 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001302 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001303 * is true).
1304 * \param tag_length Desired length of the authentication tag in bytes.
1305 *
1306 * \return The corresponding AEAD algorithm with the specified
1307 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001308 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001309 * AEAD algorithm or if \p tag_length is not valid
1310 * for the specified AEAD algorithm.
1311 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001312#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001313 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1314 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001315 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1316 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1317
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001318/** Retrieve the tag length of a specified AEAD algorithm
1319 *
1320 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001321 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001322 * is true).
1323 *
1324 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001325 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001326 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001327 */
1328#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1329 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1330 PSA_AEAD_TAG_LENGTH_OFFSET )
1331
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001332/** Calculate the corresponding AEAD algorithm with the default tag length.
1333 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001334 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001335 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001336 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001337 * \return The corresponding AEAD algorithm with the default
1338 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001339 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001340#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001341 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001342 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1343 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1344 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001345 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001346#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1347 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1348 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001349 ref :
1350
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001351/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001352 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001353 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001354 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001355 * algorithm is equal to or larger then the minimum tag length specified by the
1356 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001357 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001358 * \note When setting the minimum required tag length to less than the
1359 * smallest tag length allowed by the base algorithm, this effectively
1360 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001361 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001362 * \param aead_alg An AEAD algorithm identifier (value of type
1363 * #psa_algorithm_t such that
1364 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1365 * \param min_tag_length Desired minimum length of the authentication tag in
1366 * bytes. This must be at least 1 and at most the largest
1367 * allowed tag length of the algorithm.
1368 *
1369 * \return The corresponding AEAD wildcard algorithm with the
1370 * specified minimum length.
1371 * \return Unspecified if \p aead_alg is not a supported
1372 * AEAD algorithm or if \p min_tag_length is less than 1
1373 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001374 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001375#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001376 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1377 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001378
Bence Szépkútia2945512020-12-03 21:40:17 +01001379#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380/** RSA PKCS#1 v1.5 signature with hashing.
1381 *
1382 * This is the signature scheme defined by RFC 8017
1383 * (PKCS#1: RSA Cryptography Specifications) under the name
1384 * RSASSA-PKCS1-v1_5.
1385 *
1386 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1387 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001388 * This includes #PSA_ALG_ANY_HASH
1389 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001390 *
1391 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001392 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001393 * hash algorithm.
1394 */
1395#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1396 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1397/** Raw PKCS#1 v1.5 signature.
1398 *
1399 * The input to this algorithm is the DigestInfo structure used by
1400 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1401 * steps 3&ndash;6.
1402 */
1403#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1404#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1405 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1406
Bence Szépkútia2945512020-12-03 21:40:17 +01001407#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001408#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t)0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001409/** RSA PSS signature with hashing.
1410 *
1411 * This is the signature scheme defined by RFC 8017
1412 * (PKCS#1: RSA Cryptography Specifications) under the name
1413 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu44baacd2022-06-17 10:25:05 +01001414 * a salt length equal to the length of the hash, or the largest
1415 * possible salt length for the algorithm and key size if that is
1416 * smaller than the hash length. The specified hash algorithm is
1417 * used to hash the input message, to create the salted hash, and
1418 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001419 *
1420 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1421 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001422 * This includes #PSA_ALG_ANY_HASH
1423 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001424 *
1425 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001426 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001427 * hash algorithm.
1428 */
1429#define PSA_ALG_RSA_PSS(hash_alg) \
1430 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001431
1432/** RSA PSS signature with hashing with relaxed verification.
1433 *
1434 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1435 * but allows an arbitrary salt length (including \c 0) when verifying a
1436 * signature.
1437 *
1438 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1439 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1440 * This includes #PSA_ALG_ANY_HASH
1441 * when specifying the algorithm in a usage policy.
1442 *
1443 * \return The corresponding RSA PSS signature algorithm.
1444 * \return Unspecified if \p hash_alg is not a supported
1445 * hash algorithm.
1446 */
1447#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1448 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1449
1450/** Whether the specified algorithm is RSA PSS with standard salt.
1451 *
1452 * \param alg An algorithm value or an algorithm policy wildcard.
1453 *
1454 * \return 1 if \p alg is of the form
1455 * #PSA_ALG_RSA_PSS(\c hash_alg),
1456 * where \c hash_alg is a hash algorithm or
1457 * #PSA_ALG_ANY_HASH. 0 otherwise.
1458 * This macro may return either 0 or 1 if \p alg is not
1459 * a supported algorithm identifier or policy.
1460 */
1461#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001462 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1463
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001464/** Whether the specified algorithm is RSA PSS with any salt.
1465 *
1466 * \param alg An algorithm value or an algorithm policy wildcard.
1467 *
1468 * \return 1 if \p alg is of the form
1469 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1470 * where \c hash_alg is a hash algorithm or
1471 * #PSA_ALG_ANY_HASH. 0 otherwise.
1472 * This macro may return either 0 or 1 if \p alg is not
1473 * a supported algorithm identifier or policy.
1474 */
1475#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1476 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1477
1478/** Whether the specified algorithm is RSA PSS.
1479 *
1480 * This includes any of the RSA PSS algorithm variants, regardless of the
1481 * constraints on salt length.
1482 *
1483 * \param alg An algorithm value or an algorithm policy wildcard.
1484 *
1485 * \return 1 if \p alg is of the form
1486 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1487 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1488 * where \c hash_alg is a hash algorithm or
1489 * #PSA_ALG_ANY_HASH. 0 otherwise.
1490 * This macro may return either 0 or 1 if \p alg is not
1491 * a supported algorithm identifier or policy.
1492 */
1493#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001494 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1495 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001496
Bence Szépkútia2945512020-12-03 21:40:17 +01001497#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001498/** ECDSA signature with hashing.
1499 *
1500 * This is the ECDSA signature scheme defined by ANSI X9.62,
1501 * with a random per-message secret number (*k*).
1502 *
1503 * The representation of the signature as a byte string consists of
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001504 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001505 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1506 * of the base point of the curve in octets. Each value is represented
1507 * in big-endian order (most significant octet first).
1508 *
1509 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1510 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001511 * This includes #PSA_ALG_ANY_HASH
1512 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513 *
1514 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001515 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001516 * hash algorithm.
1517 */
1518#define PSA_ALG_ECDSA(hash_alg) \
1519 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1520/** ECDSA signature without hashing.
1521 *
1522 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1523 * without specifying a hash algorithm. This algorithm may only be
1524 * used to sign or verify a sequence of bytes that should be an
1525 * already-calculated hash. Note that the input is padded with
1526 * zeros on the left or truncated on the left as required to fit
1527 * the curve size.
1528 */
1529#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001530#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001531/** Deterministic ECDSA signature with hashing.
1532 *
1533 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1534 *
1535 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1536 *
1537 * Note that when this algorithm is used for verification, signatures
1538 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1539 * same private key are accepted. In other words,
1540 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1541 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1542 *
1543 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1544 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001545 * This includes #PSA_ALG_ANY_HASH
1546 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001547 *
1548 * \return The corresponding deterministic ECDSA signature
1549 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001550 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001551 * hash algorithm.
1552 */
1553#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1554 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001555#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001556#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001557 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001558 PSA_ALG_ECDSA_BASE)
1559#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001560 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001561#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1562 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1563#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1564 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1565
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001566/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1567 * using standard parameters.
1568 *
1569 * Contexts are not supported in the current version of this specification
1570 * because there is no suitable signature interface that can take the
1571 * context as a parameter. A future version of this specification may add
1572 * suitable functions and extend this algorithm to support contexts.
1573 *
1574 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1575 * In this specification, the following curves are supported:
1576 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1577 * in RFC 8032.
1578 * The curve is Edwards25519.
1579 * The hash function used internally is SHA-512.
1580 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1581 * in RFC 8032.
1582 * The curve is Edwards448.
1583 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001584 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001585 *
1586 * This algorithm can be used with psa_sign_message() and
1587 * psa_verify_message(). Since there is no prehashing, it cannot be used
1588 * with psa_sign_hash() or psa_verify_hash().
1589 *
1590 * The signature format is the concatenation of R and S as defined by
1591 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1592 * string for Ed448).
1593 */
1594#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1595
1596#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1597#define PSA_ALG_IS_HASH_EDDSA(alg) \
1598 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1599
1600/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001601 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001602 *
1603 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1604 *
1605 * This algorithm is Ed25519 as specified in RFC 8032.
1606 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001607 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001608 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001609 *
1610 * This is a hash-and-sign algorithm: to calculate a signature,
1611 * you can either:
1612 * - call psa_sign_message() on the message;
1613 * - or calculate the SHA-512 hash of the message
1614 * with psa_hash_compute()
1615 * or with a multi-part hash operation started with psa_hash_setup(),
1616 * using the hash algorithm #PSA_ALG_SHA_512,
1617 * then sign the calculated hash with psa_sign_hash().
1618 * Verifying a signature is similar, using psa_verify_message() or
1619 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001620 */
1621#define PSA_ALG_ED25519PH \
1622 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1623
1624/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1625 * using SHAKE256 and the Edwards448 curve.
1626 *
1627 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1628 *
1629 * This algorithm is Ed448 as specified in RFC 8032.
1630 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001631 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001632 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001633 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001634 *
1635 * This is a hash-and-sign algorithm: to calculate a signature,
1636 * you can either:
1637 * - call psa_sign_message() on the message;
1638 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1639 * with psa_hash_compute()
1640 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001641 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001642 * then sign the calculated hash with psa_sign_hash().
1643 * Verifying a signature is similar, using psa_verify_message() or
1644 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001645 */
1646#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001647 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001648
Gilles Peskine6d400852021-02-24 21:39:52 +01001649/* Default definition, to be overridden if the library is extended with
1650 * more hash-and-sign algorithms that we want to keep out of this header
1651 * file. */
1652#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1653
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001654/** Whether the specified algorithm is a signature algorithm that can be used
1655 * with psa_sign_hash() and psa_verify_hash().
1656 *
1657 * This encompasses all strict hash-and-sign algorithms categorized by
1658 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1659 * paradigm more loosely:
1660 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1661 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1662 *
1663 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1664 *
1665 * \return 1 if alg is a signature algorithm that can be used to sign a
1666 * hash. 0 if alg is a signature algorithm that can only be used
1667 * to sign a message. 0 if alg is not a signature algorithm.
1668 * This macro can return either 0 or 1 if alg is not a
1669 * supported algorithm identifier.
1670 */
1671#define PSA_ALG_IS_SIGN_HASH(alg) \
1672 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1673 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1674 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1675
1676/** Whether the specified algorithm is a signature algorithm that can be used
1677 * with psa_sign_message() and psa_verify_message().
1678 *
1679 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1680 *
1681 * \return 1 if alg is a signature algorithm that can be used to sign a
1682 * message. 0 if \p alg is a signature algorithm that can only be used
1683 * to sign an already-calculated hash. 0 if \p alg is not a signature
1684 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1685 * supported algorithm identifier.
1686 */
1687#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1688 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA )
1689
Gilles Peskined35b4892019-01-14 16:02:15 +01001690/** Whether the specified algorithm is a hash-and-sign algorithm.
1691 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001692 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1693 * structured in two parts: first the calculation of a hash in a way that
1694 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001695 * hash value and the key. Hash-and-sign algorithms encode the hash
1696 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1697 * to extract this algorithm.
1698 *
1699 * Thus, for a hash-and-sign algorithm,
1700 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1701 * ```
1702 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1703 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1704 * ```
1705 * Most usefully, separating the hash from the signature allows the hash
1706 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1707 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1708 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001709 *
1710 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1711 *
1712 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1713 * This macro may return either 0 or 1 if \p alg is not a supported
1714 * algorithm identifier.
1715 */
1716#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001717 (PSA_ALG_IS_SIGN_HASH(alg) && \
1718 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001719
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001720/** Get the hash used by a hash-and-sign signature algorithm.
1721 *
1722 * A hash-and-sign algorithm is a signature algorithm which is
1723 * composed of two phases: first a hashing phase which does not use
1724 * the key and produces a hash of the input message, then a signing
1725 * phase which only uses the hash and the key and not the message
1726 * itself.
1727 *
1728 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1729 * #PSA_ALG_IS_SIGN(\p alg) is true).
1730 *
1731 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1732 * algorithm.
1733 * \return 0 if \p alg is a signature algorithm that does not
1734 * follow the hash-and-sign structure.
1735 * \return Unspecified if \p alg is not a signature algorithm or
1736 * if it is not supported by the implementation.
1737 */
1738#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001739 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001740 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1741 0)
1742
1743/** RSA PKCS#1 v1.5 encryption.
1744 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001745#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001746
Bence Szépkútia2945512020-12-03 21:40:17 +01001747#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001748/** RSA OAEP encryption.
1749 *
1750 * This is the encryption scheme defined by RFC 8017
1751 * (PKCS#1: RSA Cryptography Specifications) under the name
1752 * RSAES-OAEP, with the message generation function MGF1.
1753 *
1754 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1755 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1756 * for MGF1.
1757 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001758 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001759 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001760 * hash algorithm.
1761 */
1762#define PSA_ALG_RSA_OAEP(hash_alg) \
1763 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1764#define PSA_ALG_IS_RSA_OAEP(alg) \
1765 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1766#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1767 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1768 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1769 0)
1770
Bence Szépkútia2945512020-12-03 21:40:17 +01001771#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001772/** Macro to build an HKDF algorithm.
1773 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001774 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001775 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001776 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001777 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001778 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001779 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1780 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1781 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1782 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001783 * starting to generate output.
1784 *
Przemek Stekiel73f97d42022-06-03 09:05:08 +02001785 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1786 * if the salt is longer than the block size of the hash algorithm; then
1787 * pad with null bytes up to the block size. As a result, it is possible
1788 * for distinct salt inputs to result in the same outputs. To ensure
1789 * unique outputs, it is recommended to use a fixed length for salt values.
1790 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001791 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1792 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1793 *
1794 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001795 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001796 * hash algorithm.
1797 */
1798#define PSA_ALG_HKDF(hash_alg) \
1799 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1800/** Whether the specified algorithm is an HKDF algorithm.
1801 *
1802 * HKDF is a family of key derivation algorithms that are based on a hash
1803 * function and the HMAC construction.
1804 *
1805 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1806 *
1807 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1808 * This macro may return either 0 or 1 if \c alg is not a supported
1809 * key derivation algorithm identifier.
1810 */
1811#define PSA_ALG_IS_HKDF(alg) \
1812 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1813#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1814 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1815
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001816#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t)0x08000400)
1817/** Macro to build an HKDF-Extract algorithm.
1818 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001819 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001820 * HKDF-Extract using HMAC-SHA-256.
1821 *
1822 * This key derivation algorithm uses the following inputs:
Przemek Stekielb398d862022-05-18 15:43:54 +02001823 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001824 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1825 * "extract" step.
Przemek Stekielb398d862022-05-18 15:43:54 +02001826 * The inputs are mandatory and must be passed in the order above.
1827 * Each input may only be passed once.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001828 *
1829 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1830 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1831 * as a separate algorithm for the sake of protocols that use it as a
1832 * building block. It may also be a slight performance optimization
1833 * in applications that use HKDF with the same salt and key but many
1834 * different info strings.
1835 *
Przemek Stekielb398d862022-05-18 15:43:54 +02001836 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1837 * if the salt is longer than the block size of the hash algorithm; then
1838 * pad with null bytes up to the block size. As a result, it is possible
1839 * for distinct salt inputs to result in the same outputs. To ensure
1840 * unique outputs, it is recommended to use a fixed length for salt values.
1841 *
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001842 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1843 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1844 *
1845 * \return The corresponding HKDF-Extract algorithm.
1846 * \return Unspecified if \p hash_alg is not a supported
1847 * hash algorithm.
1848 */
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001849#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1850 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1851/** Whether the specified algorithm is an HKDF-Extract algorithm.
1852 *
1853 * HKDF-Extract is a family of key derivation algorithms that are based
1854 * on a hash function and the HMAC construction.
1855 *
1856 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1857 *
1858 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1859 * This macro may return either 0 or 1 if \c alg is not a supported
1860 * key derivation algorithm identifier.
1861 */
1862#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1863 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1864
1865#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t)0x08000500)
1866/** Macro to build an HKDF-Expand algorithm.
1867 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001868 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001869 * HKDF-Expand using HMAC-SHA-256.
1870 *
1871 * This key derivation algorithm uses the following inputs:
Przemek Stekiel459ee352022-06-02 11:16:52 +02001872 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001873 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1874 *
1875 * The inputs are mandatory and must be passed in the order above.
1876 * Each input may only be passed once.
1877 *
1878 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1879 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1880 * a separate algorithm for the sake of protocols that use it as a building
1881 * block. It may also be a slight performance optimization in applications
1882 * that use HKDF with the same salt and key but many different info strings.
1883 *
1884 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1885 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1886 *
1887 * \return The corresponding HKDF-Expand algorithm.
1888 * \return Unspecified if \p hash_alg is not a supported
1889 * hash algorithm.
1890 */
1891#define PSA_ALG_HKDF_EXPAND(hash_alg) \
1892 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Przemek Stekielebf62812022-05-11 14:16:05 +02001893/** Whether the specified algorithm is an HKDF-Expand algorithm.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001894 *
1895 * HKDF-Expand is a family of key derivation algorithms that are based
1896 * on a hash function and the HMAC construction.
1897 *
1898 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1899 *
1900 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1901 * This macro may return either 0 or 1 if \c alg is not a supported
1902 * key derivation algorithm identifier.
1903 */
1904#define PSA_ALG_IS_HKDF_EXPAND(alg) \
1905 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1906
Przemek Stekiela29b4882022-06-02 11:37:03 +02001907/** Whether the specified algorithm is an HKDF or HKDF-Extract or
1908 * HKDF-Expand algorithm.
1909 *
1910 *
1911 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1912 *
1913 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1914 * This macro may return either 0 or 1 if \c alg is not a supported
1915 * key derivation algorithm identifier.
1916 */
1917#define PSA_ALG_IS_ANY_HKDF(alg) \
1918 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1919 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1920 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1921
Bence Szépkútia2945512020-12-03 21:40:17 +01001922#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001923/** Macro to build a TLS-1.2 PRF algorithm.
1924 *
1925 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1926 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1927 * used with either SHA-256 or SHA-384.
1928 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001929 * This key derivation algorithm uses the following inputs, which must be
1930 * passed in the order given here:
1931 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001932 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1933 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001934 *
1935 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001936 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001937 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001938 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001939 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001940 * TLS 1.2 PRF using HMAC-SHA-256.
1941 *
1942 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1943 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1944 *
1945 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001946 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001947 * hash algorithm.
1948 */
1949#define PSA_ALG_TLS12_PRF(hash_alg) \
1950 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1951
1952/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1953 *
1954 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1955 *
1956 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1957 * This macro may return either 0 or 1 if \c alg is not a supported
1958 * key derivation algorithm identifier.
1959 */
1960#define PSA_ALG_IS_TLS12_PRF(alg) \
1961 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1962#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1963 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1964
Bence Szépkútia2945512020-12-03 21:40:17 +01001965#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001966/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1967 *
1968 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1969 * from the PreSharedKey (PSK) through the application of padding
1970 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1971 * The latter is based on HMAC and can be used with either SHA-256
1972 * or SHA-384.
1973 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001974 * This key derivation algorithm uses the following inputs, which must be
1975 * passed in the order given here:
1976 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001977 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1978 * computation of the premaster secret. This input is optional;
1979 * if omitted, it defaults to a string of null bytes with the same length
1980 * as the secret (PSK) input.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001981 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1982 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001983 *
1984 * For the application to TLS-1.2, the seed (which is
1985 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1986 * ClientHello.Random + ServerHello.Random,
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001987 * the label is "master secret" or "extended master secret" and
1988 * the other secret depends on the key exchange specified in the cipher suite:
1989 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1990 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1991 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1992 * (RFC 5489, Section 2), the other secret should be the output of the
1993 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1994 * The recommended way to pass this input is to use a key derivation
1995 * algorithm constructed as
1996 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1997 * and to call psa_key_derivation_key_agreement(). Alternatively,
1998 * this input may be an output of `psa_raw_key_agreement()` passed with
1999 * psa_key_derivation_input_bytes(), or an equivalent input passed with
2000 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
2001 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2002 * should be the 48-byte client challenge (the PreMasterSecret of
2003 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2004 * a 46-byte random string chosen by the client. On the server, this is
2005 * typically an output of psa_asymmetric_decrypt() using
2006 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2007 * with `psa_key_derivation_input_bytes()`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002008 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002009 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002010 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2011 *
2012 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2013 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2014 *
2015 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01002016 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002017 * hash algorithm.
2018 */
2019#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2020 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2021
2022/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2023 *
2024 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2025 *
2026 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2027 * This macro may return either 0 or 1 if \c alg is not a supported
2028 * key derivation algorithm identifier.
2029 */
2030#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2031 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2032#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2033 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2034
Andrzej Kurek1fafb1f2022-09-16 07:19:49 -04002035/* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2036 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2037 * will use to derive the session secret, as defined by step 2 of
2038 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2039 * Uses PSA_ALG_SHA_256.
2040 * This function takes a single input:
2041 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2042 * The only supported curve is secp256r1 (the 256-bit curve in
2043 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
Andrzej Kureke09aff82022-09-26 10:59:31 -04002044 * The output has to be read as a single chunk of 32 bytes, defined as
2045 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002046 */
Andrzej Kurek96b9f232022-09-26 10:30:46 -04002047#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609)
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002048
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002049/* This flag indicates whether the key derivation algorithm is suitable for
2050 * use on low-entropy secrets such as password - these algorithms are also
2051 * known as key stretching or password hashing schemes. These are also the
2052 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002053 *
2054 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002055 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002056#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002057
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002058#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002059/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002060 *
2061 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002062 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2063 * HMAC with the specified hash.
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002064 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002065 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002066 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002067 * This key derivation algorithm uses the following inputs, which must be
2068 * provided in the following order:
2069 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002070 * This input step must be used exactly once.
2071 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2072 * This input step must be used one or more times; if used several times, the
2073 * inputs will be concatenated. This can be used to build the final salt
2074 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002075 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002076 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002077 *
2078 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2079 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2080 *
2081 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2082 * \return Unspecified if \p hash_alg is not a supported
2083 * hash algorithm.
2084 */
2085#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2086 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2087
2088/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2089 *
2090 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2091 *
2092 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2093 * This macro may return either 0 or 1 if \c alg is not a supported
2094 * key derivation algorithm identifier.
2095 */
2096#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2097 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002098
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002099/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2100 *
2101 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2102 * This macro specifies the PBKDF2 algorithm constructed using the
2103 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2104 *
2105 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02002106 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002107 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002108#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002109
Bence Szépkútia2945512020-12-03 21:40:17 +01002110#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
2111#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002112
Gilles Peskine6843c292019-01-18 16:44:49 +01002113/** Macro to build a combined algorithm that chains a key agreement with
2114 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002115 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002116 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2117 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2118 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2119 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002120 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002121 * \return The corresponding key agreement and derivation
2122 * algorithm.
2123 * \return Unspecified if \p ka_alg is not a supported
2124 * key agreement algorithm or \p kdf_alg is not a
2125 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002126 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002127#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2128 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002129
2130#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2131 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2132
Gilles Peskine6843c292019-01-18 16:44:49 +01002133#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2134 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002135
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002136/** Whether the specified algorithm is a raw key agreement algorithm.
2137 *
2138 * A raw key agreement algorithm is one that does not specify
2139 * a key derivation function.
2140 * Usually, raw key agreement algorithms are constructed directly with
2141 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02002142 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002143 *
2144 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2145 *
2146 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2147 * This macro may return either 0 or 1 if \p alg is not a supported
2148 * algorithm identifier.
2149 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002150#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002151 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2152 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01002153
2154#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2155 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2156
2157/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002158 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002159 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002160 * `g^{ab}` in big-endian format.
2161 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2162 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002163 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002164#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002165
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002166/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2167 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002168 * This includes the raw finite field Diffie-Hellman algorithm as well as
2169 * finite-field Diffie-Hellman followed by any supporter key derivation
2170 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002171 *
2172 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2173 *
2174 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2175 * This macro may return either 0 or 1 if \c alg is not a supported
2176 * key agreement algorithm identifier.
2177 */
2178#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002179 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002180
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002181/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2182 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002183 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002184 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2185 * `m` is the bit size associated with the curve, i.e. the bit size of the
2186 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2187 * the byte containing the most significant bit of the shared secret
2188 * is padded with zero bits. The byte order is either little-endian
2189 * or big-endian depending on the curve type.
2190 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01002191 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002192 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2193 * in little-endian byte order.
2194 * The bit size is 448 for Curve448 and 255 for Curve25519.
2195 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002196 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002197 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2198 * in big-endian byte order.
2199 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2200 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002201 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002202 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2203 * in big-endian byte order.
2204 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002205 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002206#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002207
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002208/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2209 * algorithm.
2210 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002211 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2212 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2213 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002214 *
2215 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2216 *
2217 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2218 * 0 otherwise.
2219 * This macro may return either 0 or 1 if \c alg is not a supported
2220 * key agreement algorithm identifier.
2221 */
2222#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002223 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002224
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002225/** Whether the specified algorithm encoding is a wildcard.
2226 *
2227 * Wildcard values may only be used to set the usage algorithm field in
2228 * a policy, not to perform an operation.
2229 *
2230 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2231 *
2232 * \return 1 if \c alg is a wildcard algorithm encoding.
2233 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2234 * an operation).
2235 * \return This macro may return either 0 or 1 if \c alg is not a supported
2236 * algorithm identifier.
2237 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002238#define PSA_ALG_IS_WILDCARD(alg) \
2239 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2240 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2241 PSA_ALG_IS_MAC(alg) ? \
2242 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2243 PSA_ALG_IS_AEAD(alg) ? \
2244 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002245 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002246
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002247/** Get the hash used by a composite algorithm.
2248 *
2249 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2250 *
2251 * \return The underlying hash algorithm if alg is a composite algorithm that
2252 * uses a hash algorithm.
2253 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002254 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002255 */
2256#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002257 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002258
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002259/**@}*/
2260
2261/** \defgroup key_lifetimes Key lifetimes
2262 * @{
2263 */
2264
Gilles Peskine79733992022-06-20 18:41:20 +02002265/* Note that location and persistence level values are embedded in the
2266 * persistent key store, as part of key metadata. As a consequence, they
2267 * must not be changed (unless the storage format version changes).
2268 */
2269
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002270/** The default lifetime for volatile keys.
2271 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002272 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002273 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002274 *
2275 * A key with this lifetime is typically stored in the RAM area of the
2276 * PSA Crypto subsystem. However this is an implementation choice.
2277 * If an implementation stores data about the key in a non-volatile memory,
2278 * it must release all the resources associated with the key and erase the
2279 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002280 */
2281#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
2282
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002283/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002284 *
2285 * A persistent key remains in storage until it is explicitly destroyed or
2286 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002287 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002288 * provide their own mechanism (for example to perform a factory reset,
2289 * to prepare for device refurbishment, or to uninstall an application).
2290 *
2291 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002292 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002293 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002294 */
2295#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
2296
Gilles Peskineaff11812020-05-04 19:03:10 +02002297/** The persistence level of volatile keys.
2298 *
2299 * See ::psa_key_persistence_t for more information.
2300 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002301#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002302
2303/** The default persistence level for persistent keys.
2304 *
2305 * See ::psa_key_persistence_t for more information.
2306 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002307#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002308
2309/** A persistence level indicating that a key is never destroyed.
2310 *
2311 * See ::psa_key_persistence_t for more information.
2312 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002313#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002314
2315#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002316 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002317
2318#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002319 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002320
2321/** Whether a key lifetime indicates that the key is volatile.
2322 *
2323 * A volatile key is automatically destroyed by the implementation when
2324 * the application instance terminates. In particular, a volatile key
2325 * is automatically destroyed on a power reset of the device.
2326 *
2327 * A key that is not volatile is persistent. Persistent keys are
2328 * preserved until the application explicitly destroys them or until an
2329 * implementation-specific device management event occurs (for example,
2330 * a factory reset).
2331 *
2332 * \param lifetime The lifetime value to query (value of type
2333 * ::psa_key_lifetime_t).
2334 *
2335 * \return \c 1 if the key is volatile, otherwise \c 0.
2336 */
2337#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2338 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002339 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002340
Gilles Peskined133bb22021-04-21 20:05:59 +02002341/** Whether a key lifetime indicates that the key is read-only.
2342 *
2343 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2344 * They must be created through platform-specific means that bypass the API.
2345 *
2346 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002347 * consider a platform with multiple levels of privilege, where a
2348 * low-privilege application can use a key but is not allowed to destroy
2349 * it, and the platform exposes the key to the application with a read-only
2350 * lifetime. High-privilege code can destroy the key even though the
2351 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002352 *
2353 * \param lifetime The lifetime value to query (value of type
2354 * ::psa_key_lifetime_t).
2355 *
2356 * \return \c 1 if the key is read-only, otherwise \c 0.
2357 */
2358#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2359 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2360 PSA_KEY_PERSISTENCE_READ_ONLY)
2361
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002362/** Construct a lifetime from a persistence level and a location.
2363 *
2364 * \param persistence The persistence level
2365 * (value of type ::psa_key_persistence_t).
2366 * \param location The location indicator
2367 * (value of type ::psa_key_location_t).
2368 *
2369 * \return The constructed lifetime value.
2370 */
2371#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2372 ((location) << 8 | (persistence))
2373
Gilles Peskineaff11812020-05-04 19:03:10 +02002374/** The local storage area for persistent keys.
2375 *
2376 * This storage area is available on all systems that can store persistent
2377 * keys without delegating the storage to a third-party cryptoprocessor.
2378 *
2379 * See ::psa_key_location_t for more information.
2380 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002381#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002382
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002383#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002384
Gilles Peskine79733992022-06-20 18:41:20 +02002385/* Note that key identifier values are embedded in the
2386 * persistent key store, as part of key metadata. As a consequence, they
2387 * must not be changed (unless the storage format version changes).
2388 */
2389
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002390/** The null key identifier.
2391 */
Gilles Peskinea6516072023-01-04 19:52:38 +01002392/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002393#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +01002394/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002395/** The minimum value for a key identifier chosen by the application.
2396 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002397#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002398/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002399 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002400#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002401/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002402 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002403#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002404/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002405 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002406#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002407
Ronald Cron7424f0d2020-09-14 16:17:41 +02002408
2409#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2410
2411#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2412#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2413#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2414
2415/** Utility to initialize a key identifier at runtime.
2416 *
2417 * \param unused Unused parameter.
2418 * \param key_id Identifier of the key.
2419 */
2420static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2421 unsigned int unused, psa_key_id_t key_id )
2422{
2423 (void)unused;
2424
2425 return( key_id );
2426}
2427
2428/** Compare two key identifiers.
2429 *
2430 * \param id1 First key identifier.
2431 * \param id2 Second key identifier.
2432 *
2433 * \return Non-zero if the two key identifier are equal, zero otherwise.
2434 */
2435static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2436 mbedtls_svc_key_id_t id2 )
2437{
2438 return( id1 == id2 );
2439}
2440
Ronald Cronc4d1b512020-07-31 11:26:37 +02002441/** Check whether a key identifier is null.
2442 *
2443 * \param key Key identifier.
2444 *
2445 * \return Non-zero if the key identifier is null, zero otherwise.
2446 */
2447static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2448{
2449 return( key == 0 );
2450}
2451
Ronald Cron7424f0d2020-09-14 16:17:41 +02002452#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2453
2454#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
Antonio de Angelis67294742022-05-05 14:11:32 +01002455#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).MBEDTLS_PRIVATE(key_id) )
2456#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).MBEDTLS_PRIVATE(owner) )
Ronald Cron7424f0d2020-09-14 16:17:41 +02002457
2458/** Utility to initialize a key identifier at runtime.
2459 *
2460 * \param owner_id Identifier of the key owner.
2461 * \param key_id Identifier of the key.
2462 */
2463static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2464 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2465{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002466 return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2467 .MBEDTLS_PRIVATE(owner) = owner_id } );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002468}
2469
2470/** Compare two key identifiers.
2471 *
2472 * \param id1 First key identifier.
2473 * \param id2 Second key identifier.
2474 *
2475 * \return Non-zero if the two key identifier are equal, zero otherwise.
2476 */
2477static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2478 mbedtls_svc_key_id_t id2 )
2479{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002480 return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2481 mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002482}
2483
Ronald Cronc4d1b512020-07-31 11:26:37 +02002484/** Check whether a key identifier is null.
2485 *
2486 * \param key Key identifier.
2487 *
2488 * \return Non-zero if the key identifier is null, zero otherwise.
2489 */
2490static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2491{
Gilles Peskine52bb83e2021-05-28 12:59:49 +02002492 return( key.MBEDTLS_PRIVATE(key_id) == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002493}
2494
Ronald Cron7424f0d2020-09-14 16:17:41 +02002495#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002496
2497/**@}*/
2498
2499/** \defgroup policy Key policies
2500 * @{
2501 */
2502
Gilles Peskine79733992022-06-20 18:41:20 +02002503/* Note that key usage flags are embedded in the
2504 * persistent key store, as part of key metadata. As a consequence, they
2505 * must not be changed (unless the storage format version changes).
2506 */
2507
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002508/** Whether the key may be exported.
2509 *
2510 * A public key or the public part of a key pair may always be exported
2511 * regardless of the value of this permission flag.
2512 *
2513 * If a key does not have export permission, implementations shall not
2514 * allow the key to be exported in plain form from the cryptoprocessor,
2515 * whether through psa_export_key() or through a proprietary interface.
2516 * The key may however be exportable in a wrapped form, i.e. in a form
2517 * where it is encrypted by another key.
2518 */
2519#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2520
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002521/** Whether the key may be copied.
2522 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002523 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002524 * with the same policy or a more restrictive policy.
2525 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002526 * For lifetimes for which the key is located in a secure element which
2527 * enforce the non-exportability of keys, copying a key outside the secure
2528 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2529 * Copying the key inside the secure element is permitted with just
2530 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2531 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002532 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2533 * is sufficient to permit the copy.
2534 */
2535#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2536
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002537/** Whether the key may be used to encrypt a message.
2538 *
2539 * This flag allows the key to be used for a symmetric encryption operation,
2540 * for an AEAD encryption-and-authentication operation,
2541 * or for an asymmetric encryption operation,
2542 * if otherwise permitted by the key's type and policy.
2543 *
2544 * For a key pair, this concerns the public key.
2545 */
2546#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2547
2548/** Whether the key may be used to decrypt a message.
2549 *
2550 * This flag allows the key to be used for a symmetric decryption operation,
2551 * for an AEAD decryption-and-verification operation,
2552 * or for an asymmetric decryption operation,
2553 * if otherwise permitted by the key's type and policy.
2554 *
2555 * For a key pair, this concerns the private key.
2556 */
2557#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2558
2559/** Whether the key may be used to sign a message.
2560 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002561 * This flag allows the key to be used for a MAC calculation operation or for
2562 * an asymmetric message signature operation, if otherwise permitted by the
2563 * key’s type and policy.
2564 *
2565 * For a key pair, this concerns the private key.
2566 */
2567#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2568
2569/** Whether the key may be used to verify a message.
2570 *
2571 * This flag allows the key to be used for a MAC verification operation or for
2572 * an asymmetric message signature verification operation, if otherwise
2573 * permitted by the key’s type and policy.
2574 *
2575 * For a key pair, this concerns the public key.
2576 */
2577#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2578
2579/** Whether the key may be used to sign a message.
2580 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002581 * This flag allows the key to be used for a MAC calculation operation
2582 * or for an asymmetric signature operation,
2583 * if otherwise permitted by the key's type and policy.
2584 *
2585 * For a key pair, this concerns the private key.
2586 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002587#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002588
2589/** Whether the key may be used to verify a message signature.
2590 *
2591 * This flag allows the key to be used for a MAC verification operation
2592 * or for an asymmetric signature verification operation,
Tom Cosgrove1797b052022-12-04 17:19:59 +00002593 * if otherwise permitted by the key's type and policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002594 *
2595 * For a key pair, this concerns the public key.
2596 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002597#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002598
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002599/** Whether the key may be used to derive other keys or produce a password
2600 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002601 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002602 * This flag allows the key to be used for a key derivation operation or for
Tom Cosgrove1797b052022-12-04 17:19:59 +00002603 * a key agreement operation, if otherwise permitted by the key's type and
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002604 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002605 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002606 * If this flag is present on all keys used in calls to
2607 * psa_key_derivation_input_key() for a key derivation operation, then it
2608 * permits calling psa_key_derivation_output_bytes() or
2609 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002610 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002611#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002612
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002613/** Whether the key may be used to verify the result of a key derivation,
2614 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002615 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002616 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002617 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002618 * This flag allows the key to be used in a key derivation operation, if
Tom Cosgrove1797b052022-12-04 17:19:59 +00002619 * otherwise permitted by the key's type and policy.
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002620 *
2621 * If this flag is present on all keys used in calls to
2622 * psa_key_derivation_input_key() for a key derivation operation, then it
2623 * permits calling psa_key_derivation_verify_bytes() or
2624 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002625 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002626#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002627
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002628/**@}*/
2629
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002630/** \defgroup derivation Key derivation
2631 * @{
2632 */
2633
Gilles Peskine79733992022-06-20 18:41:20 +02002634/* Key input steps are not embedded in the persistent storage, so you can
2635 * change them if needed: it's only an ABI change. */
2636
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002637/** A secret input for key derivation.
2638 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002639 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2640 * (passed to psa_key_derivation_input_key())
2641 * or the shared secret resulting from a key agreement
2642 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002643 *
2644 * The secret can also be a direct input (passed to
2645 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002646 * may not be used to derive keys: the operation will only allow
2647 * psa_key_derivation_output_bytes(),
2648 * psa_key_derivation_verify_bytes(), or
2649 * psa_key_derivation_verify_key(), but not
2650 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002651 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002652#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002653
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002654/** A low-entropy secret input for password hashing / key stretching.
2655 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002656 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2657 * psa_key_derivation_input_key()) or a direct input (passed to
2658 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2659 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2660 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002661 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002662 * The secret can also be a direct input (passed to
2663 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002664 * may not be used to derive keys: the operation will only allow
2665 * psa_key_derivation_output_bytes(),
2666 * psa_key_derivation_verify_bytes(), or
2667 * psa_key_derivation_verify_key(), but not
2668 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002669 */
2670#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2671
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002672/** A high-entropy additional secret input for key derivation.
2673 *
2674 * This is typically the shared secret resulting from a key agreement obtained
2675 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2676 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2677 * a direct input passed to `psa_key_derivation_input_bytes()`.
2678 */
2679#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2680 ((psa_key_derivation_step_t)0x0103)
2681
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002682/** A label for key derivation.
2683 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002684 * This should be a direct input.
2685 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002686 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002687#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002688
2689/** A salt for key derivation.
2690 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002691 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002692 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2693 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002694 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002695#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002696
2697/** An information string for key derivation.
2698 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002699 * This should be a direct input.
2700 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002701 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002702#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002703
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002704/** A seed for key derivation.
2705 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002706 * This should be a direct input.
2707 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002708 */
2709#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2710
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002711/** A cost parameter for password hashing / key stretching.
2712 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002713 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002714 */
2715#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2716
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002717/**@}*/
2718
Bence Szépkútib639d432021-04-21 10:33:54 +02002719/** \defgroup helper_macros Helper macros
2720 * @{
2721 */
2722
2723/* Helper macros */
2724
2725/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2726 * regardless of the tag length they encode.
2727 *
2728 * \param aead_alg_1 An AEAD algorithm identifier.
2729 * \param aead_alg_2 An AEAD algorithm identifier.
2730 *
2731 * \return 1 if both identifiers refer to the same AEAD algorithm,
2732 * 0 otherwise.
2733 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2734 * a supported AEAD algorithm.
2735 */
2736#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2737 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2738 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2739
2740/**@}*/
2741
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002742#endif /* PSA_CRYPTO_VALUES_H */