blob: fafd3ec3509f3ee99699ef5b57191f85f9708508 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200412 * This key type is for high-entropy secrets only. For low-entropy secrets,
413 * #PSA_KEY_TYPE_PASSWORD should be used instead.
414 *
415 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
416 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
417 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 * The key policy determines which key derivation algorithm the key
419 * can be used for.
420 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100421#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100422
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200423/** A low-entropy secret for password hashing or key derivation.
424 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200425 * This key type is suitable for passwords and passphrases which are typically
426 * intended to be memorizable by humans, and have a low entropy relative to
427 * their size. It can be used for randomly generated or derived keys with
428 * maximum or near-maximum entropy, but PSA_KEY_TYPE_DERIVE is more suitable
429 * for such keys. It is not suitable for passwords with extremely low entropy,
430 * such as numerical PINs.
431 *
432 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
433 * key derivation algorithms. Algorithms that accept such an input were
434 * designed to accept low-entropy secret and are known as password hashing or
435 * key stretching algorithms.
436 *
437 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
438 * key derivation algorithms, as the algorithms that take such an input expect
439 * it to be high-entropy.
440 *
441 * The key policy determines which key derivation algorithm the key can be
442 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200443 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200444#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200445
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200446/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200447 *
448 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200449 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200450 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200451#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1205)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200452
Gilles Peskine737c6be2019-05-21 16:01:06 +0200453/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100454 *
455 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
456 * 32 bytes (AES-256).
457 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100458#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100459
460/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
461 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100462 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
463 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100464 *
465 * Note that single DES and 2-key 3DES are weak and strongly
466 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
467 * is weak and deprecated and should only be used in legacy protocols.
468 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100469#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100470
Gilles Peskine737c6be2019-05-21 16:01:06 +0200471/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100472 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100473#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100474
475/** Key for the RC4 stream cipher.
476 *
477 * Note that RC4 is weak and deprecated and should only be used in
478 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100479#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100480
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200481/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
482 *
483 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
484 *
485 * Implementations must support 12-byte nonces, may support 8-byte nonces,
486 * and should reject other sizes.
487 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100488#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200489
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100490/** RSA public key.
491 *
492 * The size of an RSA key is the bit size of the modulus.
493 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100494#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100495/** RSA key pair (private and public key).
496 *
497 * The size of an RSA key is the bit size of the modulus.
498 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100499#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500/** Whether a key type is an RSA key (pair or public-only). */
501#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200502 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100503
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100504#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100505#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
506#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100507/** Elliptic curve key pair.
508 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100509 * The size of an elliptic curve key is the bit size associated with the curve,
510 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
511 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
512 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100513 * \param curve A value of type ::psa_ecc_family_t that
514 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100515 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200516#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
517 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100518/** Elliptic curve public key.
519 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100520 * The size of an elliptic curve public key is the same as the corresponding
521 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
522 * `PSA_ECC_FAMILY_xxx` curve families).
523 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100524 * \param curve A value of type ::psa_ecc_family_t that
525 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100526 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100527#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
528 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
529
530/** Whether a key type is an elliptic curve key (pair or public-only). */
531#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200532 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100533 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100534/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200535#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100536 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200537 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100538/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100539#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
540 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
541 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
542
543/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100544#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
545 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100546 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
547 0))
548
Gilles Peskine228abc52019-12-03 17:24:19 +0100549/** SEC Koblitz curves over prime fields.
550 *
551 * This family comprises the following curves:
552 * secp192k1, secp224k1, secp256k1.
553 * They are defined in _Standards for Efficient Cryptography_,
554 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
555 * https://www.secg.org/sec2-v2.pdf
556 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100557#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100558
559/** SEC random curves over prime fields.
560 *
561 * This family comprises the following curves:
562 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
563 * They are defined in _Standards for Efficient Cryptography_,
564 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
565 * https://www.secg.org/sec2-v2.pdf
566 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100567#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100568/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100569#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100570
571/** SEC Koblitz curves over binary fields.
572 *
573 * This family comprises the following curves:
574 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
575 * They are defined in _Standards for Efficient Cryptography_,
576 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
577 * https://www.secg.org/sec2-v2.pdf
578 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100579#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100580
581/** SEC random curves over binary fields.
582 *
583 * This family comprises the following curves:
584 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
585 * They are defined in _Standards for Efficient Cryptography_,
586 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
587 * https://www.secg.org/sec2-v2.pdf
588 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100589#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100590
591/** SEC additional random curves over binary fields.
592 *
593 * This family comprises the following curve:
594 * sect163r2.
595 * It is defined in _Standards for Efficient Cryptography_,
596 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
597 * https://www.secg.org/sec2-v2.pdf
598 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100599#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100600
601/** Brainpool P random curves.
602 *
603 * This family comprises the following curves:
604 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
605 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
606 * It is defined in RFC 5639.
607 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100608#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100609
610/** Curve25519 and Curve448.
611 *
612 * This family comprises the following Montgomery curves:
613 * - 255-bit: Bernstein et al.,
614 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
615 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
616 * - 448-bit: Hamburg,
617 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
618 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
619 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100620#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100621
Gilles Peskine67546802021-02-24 21:49:40 +0100622/** The twisted Edwards curves Ed25519 and Ed448.
623 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100624 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100625 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100626 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100627 *
628 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100629 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100630 * to Curve25519.
631 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
632 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
633 * to Curve448.
634 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
635 */
636#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
637
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100638#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100639#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
640#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100641/** Diffie-Hellman key pair.
642 *
Paul Elliott75e27032020-06-03 15:17:39 +0100643 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100644 * Diffie-Hellman group to be used.
645 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200646#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
647 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100648/** Diffie-Hellman public key.
649 *
Paul Elliott75e27032020-06-03 15:17:39 +0100650 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100651 * Diffie-Hellman group to be used.
652 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200653#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
654 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
655
656/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
657#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200658 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200659 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
660/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200661#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200662 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200663 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200664/** Whether a key type is a Diffie-Hellman public key. */
665#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
666 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
667 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
668
669/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100670#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
671 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200672 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
673 0))
674
Gilles Peskine228abc52019-12-03 17:24:19 +0100675/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
676 *
677 * This family includes groups with the following key sizes (in bits):
678 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
679 * all of these sizes or only a subset.
680 */
Paul Elliott75e27032020-06-03 15:17:39 +0100681#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100682
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100683#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100684 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100685/** The block size of a block cipher.
686 *
687 * \param type A cipher key type (value of type #psa_key_type_t).
688 *
689 * \return The block size for a block cipher, or 1 for a stream cipher.
690 * The return value is undefined if \p type is not a supported
691 * cipher key type.
692 *
693 * \note It is possible to build stream cipher algorithms on top of a block
694 * cipher, for example CTR mode (#PSA_ALG_CTR).
695 * This macro only takes the key type into account, so it cannot be
696 * used to determine the size of the data that #psa_cipher_update()
697 * might buffer for future processing in general.
698 *
699 * \note This macro returns a compile-time constant if its argument is one.
700 *
701 * \warning This macro may evaluate its argument multiple times.
702 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100703#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100704 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100705 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100706 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100707
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100708/** Vendor-defined algorithm flag.
709 *
710 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
711 * bit set. Vendors who define additional algorithms must use an encoding with
712 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
713 * used by standard encodings whenever practical.
714 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100715#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100716
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100717#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100718#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
719#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100720#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100721#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
722#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
723#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
724#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
725#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100726
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100727/** Whether an algorithm is vendor-defined.
728 *
729 * See also #PSA_ALG_VENDOR_FLAG.
730 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100731#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
732 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
733
734/** Whether the specified algorithm is a hash algorithm.
735 *
736 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
737 *
738 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
739 * This macro may return either 0 or 1 if \p alg is not a supported
740 * algorithm identifier.
741 */
742#define PSA_ALG_IS_HASH(alg) \
743 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
744
745/** Whether the specified algorithm is a MAC algorithm.
746 *
747 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
748 *
749 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
750 * This macro may return either 0 or 1 if \p alg is not a supported
751 * algorithm identifier.
752 */
753#define PSA_ALG_IS_MAC(alg) \
754 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
755
756/** Whether the specified algorithm is a symmetric cipher algorithm.
757 *
758 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
759 *
760 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
761 * This macro may return either 0 or 1 if \p alg is not a supported
762 * algorithm identifier.
763 */
764#define PSA_ALG_IS_CIPHER(alg) \
765 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
766
767/** Whether the specified algorithm is an authenticated encryption
768 * with associated data (AEAD) algorithm.
769 *
770 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
771 *
772 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
773 * This macro may return either 0 or 1 if \p alg is not a supported
774 * algorithm identifier.
775 */
776#define PSA_ALG_IS_AEAD(alg) \
777 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
778
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200779/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200780 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100781 *
782 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
783 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200784 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100785 * This macro may return either 0 or 1 if \p alg is not a supported
786 * algorithm identifier.
787 */
788#define PSA_ALG_IS_SIGN(alg) \
789 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
790
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200791/** Whether the specified algorithm is an asymmetric encryption algorithm,
792 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100793 *
794 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
795 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200796 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100797 * This macro may return either 0 or 1 if \p alg is not a supported
798 * algorithm identifier.
799 */
800#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
801 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
802
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100803/** Whether the specified algorithm is a key agreement algorithm.
804 *
805 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
806 *
807 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
808 * This macro may return either 0 or 1 if \p alg is not a supported
809 * algorithm identifier.
810 */
811#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100812 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100813
814/** Whether the specified algorithm is a key derivation algorithm.
815 *
816 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
817 *
818 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
819 * This macro may return either 0 or 1 if \p alg is not a supported
820 * algorithm identifier.
821 */
822#define PSA_ALG_IS_KEY_DERIVATION(alg) \
823 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
824
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200825/** Whether the specified algorithm is a key stretching / password hashing
826 * algorithm.
827 *
828 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200829 * that is suitable for use with a low-entropy secret such as a password.
830 * Equivalently, it's a key derivation algorithm that uses a
831 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200832 *
833 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
834 *
835 * \return 1 if \p alg is a key stretching / passowrd hashing algorithm, 0
836 * otherwise. This macro may return either 0 or 1 if \p alg is not a
837 * supported algorithm identifier.
838 */
839#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
840 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
841 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
842
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100843#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100844/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100845#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100846/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100847#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100848/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100849#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100850/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100851#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100852/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100853#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100854/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100855#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100856/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100857#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100858/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100859#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100860/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100861#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100862/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100863#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100865#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100866/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100867#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100868/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100869#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100870/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100871#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100872/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100873#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100874/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100875 *
876 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
877 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
878 * has the same output size and a (theoretically) higher security strength.
879 */
Gilles Peskine27354692021-03-03 17:45:06 +0100880#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100881
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100882/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100883 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100884 * This value may be used to form the algorithm usage field of a policy
885 * for a signature algorithm that is parametrized by a hash. The key
886 * may then be used to perform operations using the same signature
887 * algorithm parametrized with any supported hash.
888 *
889 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100890 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100891 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100892 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100893 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
894 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100895 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200896 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100897 * ```
898 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100899 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100900 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
901 * call to sign or verify a message may use a different hash.
902 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200903 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
904 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
905 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100906 * ```
907 *
908 * This value may not be used to build other algorithms that are
909 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100910 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100911 *
912 * This value may not be used to build an algorithm specification to
913 * perform an operation. It is only valid to build policies.
914 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100915#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100916
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100917#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100918#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100919/** Macro to build an HMAC algorithm.
920 *
921 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
922 *
923 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
924 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
925 *
926 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100927 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100928 * hash algorithm.
929 */
930#define PSA_ALG_HMAC(hash_alg) \
931 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
932
933#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
934 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
935
936/** Whether the specified algorithm is an HMAC algorithm.
937 *
938 * HMAC is a family of MAC algorithms that are based on a hash function.
939 *
940 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
941 *
942 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
943 * This macro may return either 0 or 1 if \p alg is not a supported
944 * algorithm identifier.
945 */
946#define PSA_ALG_IS_HMAC(alg) \
947 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
948 PSA_ALG_HMAC_BASE)
949
950/* In the encoding of a MAC algorithm, the bits corresponding to
951 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
952 * truncated. As an exception, the value 0 means the untruncated algorithm,
953 * whatever its length is. The length is encoded in 6 bits, so it can
954 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
955 * to full length is correctly encoded as 0 and any non-trivial truncation
956 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100957#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
958#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100959
Steven Cooremand927ed72021-02-22 19:59:35 +0100960/* In the encoding of a MAC algorithm, the bit corresponding to
961 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100962 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
963 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100964 * same base class and having a (potentially truncated) MAC length greater or
965 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
966#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
967
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100968/** Macro to build a truncated MAC algorithm.
969 *
970 * A truncated MAC algorithm is identical to the corresponding MAC
971 * algorithm except that the MAC value for the truncated algorithm
972 * consists of only the first \p mac_length bytes of the MAC value
973 * for the untruncated algorithm.
974 *
975 * \note This macro may allow constructing algorithm identifiers that
976 * are not valid, either because the specified length is larger
977 * than the untruncated MAC or because the specified length is
978 * smaller than permitted by the implementation.
979 *
980 * \note It is implementation-defined whether a truncated MAC that
981 * is truncated to the same length as the MAC of the untruncated
982 * algorithm is considered identical to the untruncated algorithm
983 * for policy comparison purposes.
984 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200985 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100986 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100987 * is true). This may be a truncated or untruncated
988 * MAC algorithm.
989 * \param mac_length Desired length of the truncated MAC in bytes.
990 * This must be at most the full length of the MAC
991 * and must be at least an implementation-specified
992 * minimum. The implementation-specified minimum
993 * shall not be zero.
994 *
995 * \return The corresponding MAC algorithm with the specified
996 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100997 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100998 * MAC algorithm or if \p mac_length is too small or
999 * too large for the specified MAC algorithm.
1000 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001001#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1002 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1003 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001004 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1005
1006/** Macro to build the base MAC algorithm corresponding to a truncated
1007 * MAC algorithm.
1008 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001009 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001010 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001011 * is true). This may be a truncated or untruncated
1012 * MAC algorithm.
1013 *
1014 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001015 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001016 * MAC algorithm.
1017 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001018#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1019 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1020 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001021
1022/** Length to which a MAC algorithm is truncated.
1023 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001024 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001025 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001026 * is true).
1027 *
1028 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001029 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1030 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001031 * MAC algorithm.
1032 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001033#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1034 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001035
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001036/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001037 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001038 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001039 * sharing the same base algorithm, and where the (potentially truncated) MAC
1040 * length of the specific algorithm is equal to or larger then the wildcard
1041 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001042 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001043 * \note When setting the minimum required MAC length to less than the
1044 * smallest MAC length allowed by the base algorithm, this effectively
1045 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001046 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001047 * \param mac_alg A MAC algorithm identifier (value of type
1048 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1049 * is true).
1050 * \param min_mac_length Desired minimum length of the message authentication
1051 * code in bytes. This must be at most the untruncated
1052 * length of the MAC and must be at least 1.
1053 *
1054 * \return The corresponding MAC wildcard algorithm with the
1055 * specified minimum length.
1056 * \return Unspecified if \p mac_alg is not a supported MAC
1057 * algorithm or if \p min_mac_length is less than 1 or
1058 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001059 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001060#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1061 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1062 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001063
Bence Szépkútia2945512020-12-03 21:40:17 +01001064#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001065/** The CBC-MAC construction over a block cipher
1066 *
1067 * \warning CBC-MAC is insecure in many cases.
1068 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1069 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001070#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001071/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001072#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001073
1074/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1075 *
1076 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1077 *
1078 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1079 * This macro may return either 0 or 1 if \p alg is not a supported
1080 * algorithm identifier.
1081 */
1082#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1083 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1084 PSA_ALG_CIPHER_MAC_BASE)
1085
1086#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1087#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1088
1089/** Whether the specified algorithm is a stream cipher.
1090 *
1091 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1092 * by applying a bitwise-xor with a stream of bytes that is generated
1093 * from a key.
1094 *
1095 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1096 *
1097 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1098 * This macro may return either 0 or 1 if \p alg is not a supported
1099 * algorithm identifier or if it is not a symmetric cipher algorithm.
1100 */
1101#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1102 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1103 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1104
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001105/** The stream cipher mode of a stream cipher algorithm.
1106 *
1107 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001108 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1109 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001110 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001111#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001112
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001113/** The CTR stream cipher mode.
1114 *
1115 * CTR is a stream cipher which is built from a block cipher.
1116 * The underlying block cipher is determined by the key type.
1117 * For example, to use AES-128-CTR, use this algorithm with
1118 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1119 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001120#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001121
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001122/** The CFB stream cipher mode.
1123 *
1124 * The underlying block cipher is determined by the key type.
1125 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001126#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001127
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001128/** The OFB stream cipher mode.
1129 *
1130 * The underlying block cipher is determined by the key type.
1131 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001132#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001133
1134/** The XTS cipher mode.
1135 *
1136 * XTS is a cipher mode which is built from a block cipher. It requires at
1137 * least one full block of input, but beyond this minimum the input
1138 * does not need to be a whole number of blocks.
1139 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001140#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001141
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001142/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1143 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001144 * \warning ECB mode does not protect the confidentiality of the encrypted data
1145 * except in extremely narrow circumstances. It is recommended that applications
1146 * only use ECB if they need to construct an operating mode that the
1147 * implementation does not provide. Implementations are encouraged to provide
1148 * the modes that applications need in preference to supporting direct access
1149 * to ECB.
1150 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001151 * The underlying block cipher is determined by the key type.
1152 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001153 * This symmetric cipher mode can only be used with messages whose lengths are a
1154 * multiple of the block size of the chosen block cipher.
1155 *
1156 * ECB mode does not accept an initialization vector (IV). When using a
1157 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1158 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001159 */
1160#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1161
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001162/** The CBC block cipher chaining mode, with no padding.
1163 *
1164 * The underlying block cipher is determined by the key type.
1165 *
1166 * This symmetric cipher mode can only be used with messages whose lengths
1167 * are whole number of blocks for the chosen block cipher.
1168 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001169#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001170
1171/** The CBC block cipher chaining mode with PKCS#7 padding.
1172 *
1173 * The underlying block cipher is determined by the key type.
1174 *
1175 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1176 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001177#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001178
Gilles Peskine679693e2019-05-06 15:10:16 +02001179#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1180
1181/** Whether the specified algorithm is an AEAD mode on a block cipher.
1182 *
1183 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1184 *
1185 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1186 * a block cipher, 0 otherwise.
1187 * This macro may return either 0 or 1 if \p alg is not a supported
1188 * algorithm identifier.
1189 */
1190#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1191 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1192 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1193
Gilles Peskine9153ec02019-02-15 13:02:02 +01001194/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001195 *
1196 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001197 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001198#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001199
1200/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001201 *
1202 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001203 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001204#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001205
1206/** The Chacha20-Poly1305 AEAD algorithm.
1207 *
1208 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001209 *
1210 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1211 * and should reject other sizes.
1212 *
1213 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001214 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001215#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001216
1217/* In the encoding of a AEAD algorithm, the bits corresponding to
1218 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1219 * The constants for default lengths follow this encoding.
1220 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001221#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1222#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001223
Steven Cooremand927ed72021-02-22 19:59:35 +01001224/* In the encoding of an AEAD algorithm, the bit corresponding to
1225 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001226 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1227 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001228 * same base class and having a tag length greater than or equal to the one
1229 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1230#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1231
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001232/** Macro to build a shortened AEAD algorithm.
1233 *
1234 * A shortened AEAD algorithm is similar to the corresponding AEAD
1235 * algorithm, but has an authentication tag that consists of fewer bytes.
1236 * Depending on the algorithm, the tag length may affect the calculation
1237 * of the ciphertext.
1238 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001239 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001240 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001241 * is true).
1242 * \param tag_length Desired length of the authentication tag in bytes.
1243 *
1244 * \return The corresponding AEAD algorithm with the specified
1245 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001246 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001247 * AEAD algorithm or if \p tag_length is not valid
1248 * for the specified AEAD algorithm.
1249 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001250#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001251 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1252 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001253 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1254 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1255
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001256/** Retrieve the tag length of a specified AEAD algorithm
1257 *
1258 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001259 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001260 * is true).
1261 *
1262 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001263 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001264 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001265 */
1266#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1267 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1268 PSA_AEAD_TAG_LENGTH_OFFSET )
1269
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001270/** Calculate the corresponding AEAD algorithm with the default tag length.
1271 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001272 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001273 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001274 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001275 * \return The corresponding AEAD algorithm with the default
1276 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001277 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001278#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001279 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001280 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1281 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1282 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001283 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001284#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1285 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1286 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001287 ref :
1288
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001289/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001290 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001291 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001292 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001293 * algorithm is equal to or larger then the minimum tag length specified by the
1294 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001295 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001296 * \note When setting the minimum required tag length to less than the
1297 * smallest tag length allowed by the base algorithm, this effectively
1298 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001299 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001300 * \param aead_alg An AEAD algorithm identifier (value of type
1301 * #psa_algorithm_t such that
1302 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1303 * \param min_tag_length Desired minimum length of the authentication tag in
1304 * bytes. This must be at least 1 and at most the largest
1305 * allowed tag length of the algorithm.
1306 *
1307 * \return The corresponding AEAD wildcard algorithm with the
1308 * specified minimum length.
1309 * \return Unspecified if \p aead_alg is not a supported
1310 * AEAD algorithm or if \p min_tag_length is less than 1
1311 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001312 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001313#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001314 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1315 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001316
Bence Szépkútia2945512020-12-03 21:40:17 +01001317#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001318/** RSA PKCS#1 v1.5 signature with hashing.
1319 *
1320 * This is the signature scheme defined by RFC 8017
1321 * (PKCS#1: RSA Cryptography Specifications) under the name
1322 * RSASSA-PKCS1-v1_5.
1323 *
1324 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1325 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001326 * This includes #PSA_ALG_ANY_HASH
1327 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001328 *
1329 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001330 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001331 * hash algorithm.
1332 */
1333#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1334 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1335/** Raw PKCS#1 v1.5 signature.
1336 *
1337 * The input to this algorithm is the DigestInfo structure used by
1338 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1339 * steps 3&ndash;6.
1340 */
1341#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1342#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1343 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1344
Bence Szépkútia2945512020-12-03 21:40:17 +01001345#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001346/** RSA PSS signature with hashing.
1347 *
1348 * This is the signature scheme defined by RFC 8017
1349 * (PKCS#1: RSA Cryptography Specifications) under the name
1350 * RSASSA-PSS, with the message generation function MGF1, and with
1351 * a salt length equal to the length of the hash. The specified
1352 * hash algorithm is used to hash the input message, to create the
1353 * salted hash, and for the mask generation.
1354 *
1355 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1356 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001357 * This includes #PSA_ALG_ANY_HASH
1358 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001359 *
1360 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001361 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001362 * hash algorithm.
1363 */
1364#define PSA_ALG_RSA_PSS(hash_alg) \
1365 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1366#define PSA_ALG_IS_RSA_PSS(alg) \
1367 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1368
Bence Szépkútia2945512020-12-03 21:40:17 +01001369#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001370/** ECDSA signature with hashing.
1371 *
1372 * This is the ECDSA signature scheme defined by ANSI X9.62,
1373 * with a random per-message secret number (*k*).
1374 *
1375 * The representation of the signature as a byte string consists of
1376 * the concatentation of the signature values *r* and *s*. Each of
1377 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1378 * of the base point of the curve in octets. Each value is represented
1379 * in big-endian order (most significant octet first).
1380 *
1381 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1382 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001383 * This includes #PSA_ALG_ANY_HASH
1384 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001385 *
1386 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001387 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388 * hash algorithm.
1389 */
1390#define PSA_ALG_ECDSA(hash_alg) \
1391 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1392/** ECDSA signature without hashing.
1393 *
1394 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1395 * without specifying a hash algorithm. This algorithm may only be
1396 * used to sign or verify a sequence of bytes that should be an
1397 * already-calculated hash. Note that the input is padded with
1398 * zeros on the left or truncated on the left as required to fit
1399 * the curve size.
1400 */
1401#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001402#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001403/** Deterministic ECDSA signature with hashing.
1404 *
1405 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1406 *
1407 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1408 *
1409 * Note that when this algorithm is used for verification, signatures
1410 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1411 * same private key are accepted. In other words,
1412 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1413 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1414 *
1415 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1416 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001417 * This includes #PSA_ALG_ANY_HASH
1418 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001419 *
1420 * \return The corresponding deterministic ECDSA signature
1421 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001422 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001423 * hash algorithm.
1424 */
1425#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1426 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001427#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001428#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001429 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001430 PSA_ALG_ECDSA_BASE)
1431#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001432 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001433#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1434 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1435#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1436 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1437
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001438/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1439 * using standard parameters.
1440 *
1441 * Contexts are not supported in the current version of this specification
1442 * because there is no suitable signature interface that can take the
1443 * context as a parameter. A future version of this specification may add
1444 * suitable functions and extend this algorithm to support contexts.
1445 *
1446 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1447 * In this specification, the following curves are supported:
1448 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1449 * in RFC 8032.
1450 * The curve is Edwards25519.
1451 * The hash function used internally is SHA-512.
1452 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1453 * in RFC 8032.
1454 * The curve is Edwards448.
1455 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001456 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001457 *
1458 * This algorithm can be used with psa_sign_message() and
1459 * psa_verify_message(). Since there is no prehashing, it cannot be used
1460 * with psa_sign_hash() or psa_verify_hash().
1461 *
1462 * The signature format is the concatenation of R and S as defined by
1463 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1464 * string for Ed448).
1465 */
1466#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1467
1468#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1469#define PSA_ALG_IS_HASH_EDDSA(alg) \
1470 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1471
1472/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001473 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001474 *
1475 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1476 *
1477 * This algorithm is Ed25519 as specified in RFC 8032.
1478 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001479 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001480 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001481 *
1482 * This is a hash-and-sign algorithm: to calculate a signature,
1483 * you can either:
1484 * - call psa_sign_message() on the message;
1485 * - or calculate the SHA-512 hash of the message
1486 * with psa_hash_compute()
1487 * or with a multi-part hash operation started with psa_hash_setup(),
1488 * using the hash algorithm #PSA_ALG_SHA_512,
1489 * then sign the calculated hash with psa_sign_hash().
1490 * Verifying a signature is similar, using psa_verify_message() or
1491 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001492 */
1493#define PSA_ALG_ED25519PH \
1494 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1495
1496/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1497 * using SHAKE256 and the Edwards448 curve.
1498 *
1499 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1500 *
1501 * This algorithm is Ed448 as specified in RFC 8032.
1502 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001503 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001504 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001505 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001506 *
1507 * This is a hash-and-sign algorithm: to calculate a signature,
1508 * you can either:
1509 * - call psa_sign_message() on the message;
1510 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1511 * with psa_hash_compute()
1512 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001513 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001514 * then sign the calculated hash with psa_sign_hash().
1515 * Verifying a signature is similar, using psa_verify_message() or
1516 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001517 */
1518#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001519 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001520
Gilles Peskine6d400852021-02-24 21:39:52 +01001521/* Default definition, to be overridden if the library is extended with
1522 * more hash-and-sign algorithms that we want to keep out of this header
1523 * file. */
1524#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1525
Gilles Peskined35b4892019-01-14 16:02:15 +01001526/** Whether the specified algorithm is a hash-and-sign algorithm.
1527 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001528 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1529 * structured in two parts: first the calculation of a hash in a way that
1530 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001531 * hash value and the key.
1532 *
1533 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1534 *
1535 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1536 * This macro may return either 0 or 1 if \p alg is not a supported
1537 * algorithm identifier.
1538 */
1539#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1540 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001541 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001542 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001543
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001544/** Get the hash used by a hash-and-sign signature algorithm.
1545 *
1546 * A hash-and-sign algorithm is a signature algorithm which is
1547 * composed of two phases: first a hashing phase which does not use
1548 * the key and produces a hash of the input message, then a signing
1549 * phase which only uses the hash and the key and not the message
1550 * itself.
1551 *
1552 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1553 * #PSA_ALG_IS_SIGN(\p alg) is true).
1554 *
1555 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1556 * algorithm.
1557 * \return 0 if \p alg is a signature algorithm that does not
1558 * follow the hash-and-sign structure.
1559 * \return Unspecified if \p alg is not a signature algorithm or
1560 * if it is not supported by the implementation.
1561 */
1562#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001563 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001564 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1565 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1566 0)
1567
1568/** RSA PKCS#1 v1.5 encryption.
1569 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001570#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001571
Bence Szépkútia2945512020-12-03 21:40:17 +01001572#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001573/** RSA OAEP encryption.
1574 *
1575 * This is the encryption scheme defined by RFC 8017
1576 * (PKCS#1: RSA Cryptography Specifications) under the name
1577 * RSAES-OAEP, with the message generation function MGF1.
1578 *
1579 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1580 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1581 * for MGF1.
1582 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001583 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001584 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001585 * hash algorithm.
1586 */
1587#define PSA_ALG_RSA_OAEP(hash_alg) \
1588 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1589#define PSA_ALG_IS_RSA_OAEP(alg) \
1590 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1591#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1592 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1593 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1594 0)
1595
Bence Szépkútia2945512020-12-03 21:40:17 +01001596#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001597/** Macro to build an HKDF algorithm.
1598 *
1599 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1600 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001601 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001602 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001603 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001604 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1605 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1606 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1607 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001608 * starting to generate output.
1609 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001610 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1611 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1612 *
1613 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001614 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001615 * hash algorithm.
1616 */
1617#define PSA_ALG_HKDF(hash_alg) \
1618 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1619/** Whether the specified algorithm is an HKDF algorithm.
1620 *
1621 * HKDF is a family of key derivation algorithms that are based on a hash
1622 * function and the HMAC construction.
1623 *
1624 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1625 *
1626 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1627 * This macro may return either 0 or 1 if \c alg is not a supported
1628 * key derivation algorithm identifier.
1629 */
1630#define PSA_ALG_IS_HKDF(alg) \
1631 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1632#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1633 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1634
Bence Szépkútia2945512020-12-03 21:40:17 +01001635#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001636/** Macro to build a TLS-1.2 PRF algorithm.
1637 *
1638 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1639 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1640 * used with either SHA-256 or SHA-384.
1641 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001642 * This key derivation algorithm uses the following inputs, which must be
1643 * passed in the order given here:
1644 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001645 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1646 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001647 *
1648 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001649 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001650 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001651 *
1652 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1653 * TLS 1.2 PRF using HMAC-SHA-256.
1654 *
1655 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1656 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1657 *
1658 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001659 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001660 * hash algorithm.
1661 */
1662#define PSA_ALG_TLS12_PRF(hash_alg) \
1663 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1664
1665/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1666 *
1667 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1668 *
1669 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1670 * This macro may return either 0 or 1 if \c alg is not a supported
1671 * key derivation algorithm identifier.
1672 */
1673#define PSA_ALG_IS_TLS12_PRF(alg) \
1674 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1675#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1676 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1677
Bence Szépkútia2945512020-12-03 21:40:17 +01001678#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001679/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1680 *
1681 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1682 * from the PreSharedKey (PSK) through the application of padding
1683 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1684 * The latter is based on HMAC and can be used with either SHA-256
1685 * or SHA-384.
1686 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001687 * This key derivation algorithm uses the following inputs, which must be
1688 * passed in the order given here:
1689 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001690 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1691 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001692 *
1693 * For the application to TLS-1.2, the seed (which is
1694 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1695 * ClientHello.Random + ServerHello.Random,
1696 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001697 *
1698 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1699 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1700 *
1701 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1702 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1703 *
1704 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001705 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001706 * hash algorithm.
1707 */
1708#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1709 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1710
1711/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1712 *
1713 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1714 *
1715 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1716 * This macro may return either 0 or 1 if \c alg is not a supported
1717 * key derivation algorithm identifier.
1718 */
1719#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1720 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1721#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1722 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1723
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001724/* This flag indicates whether the key derivation algorithm is suitable for
1725 * use on low-entropy secrets such as password - these algorithms are also
1726 * known as key stretching or password hashing schemes. These are also the
1727 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
1728 */
1729#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00008000)
1730
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001731#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08008100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001732/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001733 *
1734 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001735 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1736 * HMAC with the specified hash.
1737 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1738 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001739 *
1740 * This key derivation algorithm uses the following inputs:
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001741 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
1742 * This input step must be used exactly once.
1743 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1744 * This input step must be used one or more times; if used several times, the
1745 * inputs will be concatenated. This can be used to build the final salt
1746 * from multiple sources, both public and secret (also known as pepper).
1747 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
1748 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001749 *
1750 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1751 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1752 *
1753 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1754 * \return Unspecified if \p hash_alg is not a supported
1755 * hash algorithm.
1756 */
1757#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1758 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1759
1760/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1761 *
1762 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1763 *
1764 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1765 * This macro may return either 0 or 1 if \c alg is not a supported
1766 * key derivation algorithm identifier.
1767 */
1768#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1769 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
1770#define PSA_ALG_PBKDF2_HMAC_GET_HASH(hkdf_alg) \
1771 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1772
Bence Szépkútia2945512020-12-03 21:40:17 +01001773#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1774#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001775
Gilles Peskine6843c292019-01-18 16:44:49 +01001776/** Macro to build a combined algorithm that chains a key agreement with
1777 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001778 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001779 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1780 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1781 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1782 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001783 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001784 * \return The corresponding key agreement and derivation
1785 * algorithm.
1786 * \return Unspecified if \p ka_alg is not a supported
1787 * key agreement algorithm or \p kdf_alg is not a
1788 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001789 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001790#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1791 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001792
1793#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1794 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1795
Gilles Peskine6843c292019-01-18 16:44:49 +01001796#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1797 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001798
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001799/** Whether the specified algorithm is a raw key agreement algorithm.
1800 *
1801 * A raw key agreement algorithm is one that does not specify
1802 * a key derivation function.
1803 * Usually, raw key agreement algorithms are constructed directly with
1804 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001805 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001806 *
1807 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1808 *
1809 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1810 * This macro may return either 0 or 1 if \p alg is not a supported
1811 * algorithm identifier.
1812 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001813#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001814 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1815 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001816
1817#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1818 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1819
1820/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001821 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001822 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001823 * `g^{ab}` in big-endian format.
1824 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1825 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001826 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001827#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001828
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001829/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1830 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001831 * This includes the raw finite field Diffie-Hellman algorithm as well as
1832 * finite-field Diffie-Hellman followed by any supporter key derivation
1833 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001834 *
1835 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1836 *
1837 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1838 * This macro may return either 0 or 1 if \c alg is not a supported
1839 * key agreement algorithm identifier.
1840 */
1841#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001842 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001843
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001844/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1845 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001846 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001847 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1848 * `m` is the bit size associated with the curve, i.e. the bit size of the
1849 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1850 * the byte containing the most significant bit of the shared secret
1851 * is padded with zero bits. The byte order is either little-endian
1852 * or big-endian depending on the curve type.
1853 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001854 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001855 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1856 * in little-endian byte order.
1857 * The bit size is 448 for Curve448 and 255 for Curve25519.
1858 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001859 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001860 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1861 * in big-endian byte order.
1862 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1863 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001864 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001865 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1866 * in big-endian byte order.
1867 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001868 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001869#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001870
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001871/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1872 * algorithm.
1873 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001874 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1875 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1876 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001877 *
1878 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1879 *
1880 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1881 * 0 otherwise.
1882 * This macro may return either 0 or 1 if \c alg is not a supported
1883 * key agreement algorithm identifier.
1884 */
1885#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001886 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001887
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001888/** Whether the specified algorithm encoding is a wildcard.
1889 *
1890 * Wildcard values may only be used to set the usage algorithm field in
1891 * a policy, not to perform an operation.
1892 *
1893 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1894 *
1895 * \return 1 if \c alg is a wildcard algorithm encoding.
1896 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1897 * an operation).
1898 * \return This macro may return either 0 or 1 if \c alg is not a supported
1899 * algorithm identifier.
1900 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001901#define PSA_ALG_IS_WILDCARD(alg) \
1902 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1903 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1904 PSA_ALG_IS_MAC(alg) ? \
1905 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1906 PSA_ALG_IS_AEAD(alg) ? \
1907 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001908 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001909
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001910/**@}*/
1911
1912/** \defgroup key_lifetimes Key lifetimes
1913 * @{
1914 */
1915
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001916/** The default lifetime for volatile keys.
1917 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001918 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001919 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001920 *
1921 * A key with this lifetime is typically stored in the RAM area of the
1922 * PSA Crypto subsystem. However this is an implementation choice.
1923 * If an implementation stores data about the key in a non-volatile memory,
1924 * it must release all the resources associated with the key and erase the
1925 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001926 */
1927#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1928
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001929/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001930 *
1931 * A persistent key remains in storage until it is explicitly destroyed or
1932 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001933 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001934 * provide their own mechanism (for example to perform a factory reset,
1935 * to prepare for device refurbishment, or to uninstall an application).
1936 *
1937 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001938 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001939 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001940 */
1941#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1942
Gilles Peskineaff11812020-05-04 19:03:10 +02001943/** The persistence level of volatile keys.
1944 *
1945 * See ::psa_key_persistence_t for more information.
1946 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001947#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001948
1949/** The default persistence level for persistent keys.
1950 *
1951 * See ::psa_key_persistence_t for more information.
1952 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001953#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001954
1955/** A persistence level indicating that a key is never destroyed.
1956 *
1957 * See ::psa_key_persistence_t for more information.
1958 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001959#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001960
1961#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001962 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001963
1964#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001965 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001966
1967/** Whether a key lifetime indicates that the key is volatile.
1968 *
1969 * A volatile key is automatically destroyed by the implementation when
1970 * the application instance terminates. In particular, a volatile key
1971 * is automatically destroyed on a power reset of the device.
1972 *
1973 * A key that is not volatile is persistent. Persistent keys are
1974 * preserved until the application explicitly destroys them or until an
1975 * implementation-specific device management event occurs (for example,
1976 * a factory reset).
1977 *
1978 * \param lifetime The lifetime value to query (value of type
1979 * ::psa_key_lifetime_t).
1980 *
1981 * \return \c 1 if the key is volatile, otherwise \c 0.
1982 */
1983#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
1984 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02001985 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001986
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02001987/** Construct a lifetime from a persistence level and a location.
1988 *
1989 * \param persistence The persistence level
1990 * (value of type ::psa_key_persistence_t).
1991 * \param location The location indicator
1992 * (value of type ::psa_key_location_t).
1993 *
1994 * \return The constructed lifetime value.
1995 */
1996#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
1997 ((location) << 8 | (persistence))
1998
Gilles Peskineaff11812020-05-04 19:03:10 +02001999/** The local storage area for persistent keys.
2000 *
2001 * This storage area is available on all systems that can store persistent
2002 * keys without delegating the storage to a third-party cryptoprocessor.
2003 *
2004 * See ::psa_key_location_t for more information.
2005 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002006#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002007
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002008#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002009
Gilles Peskine4a231b82019-05-06 18:56:14 +02002010/** The minimum value for a key identifier chosen by the application.
2011 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002012#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002013/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002014 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002015#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002016/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002017 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002018#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002019/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002020 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002021#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002022
Ronald Cron7424f0d2020-09-14 16:17:41 +02002023
2024#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2025
2026#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2027#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2028#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2029
2030/** Utility to initialize a key identifier at runtime.
2031 *
2032 * \param unused Unused parameter.
2033 * \param key_id Identifier of the key.
2034 */
2035static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2036 unsigned int unused, psa_key_id_t key_id )
2037{
2038 (void)unused;
2039
2040 return( key_id );
2041}
2042
2043/** Compare two key identifiers.
2044 *
2045 * \param id1 First key identifier.
2046 * \param id2 Second key identifier.
2047 *
2048 * \return Non-zero if the two key identifier are equal, zero otherwise.
2049 */
2050static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2051 mbedtls_svc_key_id_t id2 )
2052{
2053 return( id1 == id2 );
2054}
2055
Ronald Cronc4d1b512020-07-31 11:26:37 +02002056/** Check whether a key identifier is null.
2057 *
2058 * \param key Key identifier.
2059 *
2060 * \return Non-zero if the key identifier is null, zero otherwise.
2061 */
2062static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2063{
2064 return( key == 0 );
2065}
2066
Ronald Cron7424f0d2020-09-14 16:17:41 +02002067#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2068
2069#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2070#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2071#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2072
2073/** Utility to initialize a key identifier at runtime.
2074 *
2075 * \param owner_id Identifier of the key owner.
2076 * \param key_id Identifier of the key.
2077 */
2078static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2079 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2080{
2081 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
2082 .owner = owner_id } );
2083}
2084
2085/** Compare two key identifiers.
2086 *
2087 * \param id1 First key identifier.
2088 * \param id2 Second key identifier.
2089 *
2090 * \return Non-zero if the two key identifier are equal, zero otherwise.
2091 */
2092static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2093 mbedtls_svc_key_id_t id2 )
2094{
2095 return( ( id1.key_id == id2.key_id ) &&
2096 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2097}
2098
Ronald Cronc4d1b512020-07-31 11:26:37 +02002099/** Check whether a key identifier is null.
2100 *
2101 * \param key Key identifier.
2102 *
2103 * \return Non-zero if the key identifier is null, zero otherwise.
2104 */
2105static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2106{
2107 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
2108}
2109
Ronald Cron7424f0d2020-09-14 16:17:41 +02002110#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002111
2112/**@}*/
2113
2114/** \defgroup policy Key policies
2115 * @{
2116 */
2117
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002118/** Whether the key may be exported.
2119 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002120 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002121 * regardless of the value of this permission flag.
2122 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002123 * If a key does not have export permission, implementations shall not
2124 * allow the key to be exported in plain form from the cryptoprocessor,
2125 * whether through psa_export_key() or through a proprietary interface.
2126 * The key may however be exportable in a wrapped form, i.e. in a form
2127 * where it is encrypted by another key.
2128 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002129#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2130
2131/** Whether the key may be copied.
2132 *
2133 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002134 * with the same policy or a more restrictive policy.
2135 *
2136 * For lifetimes for which the key is located in a secure element which
2137 * enforce the non-exportability of keys, copying a key outside the secure
2138 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2139 * Copying the key inside the secure element is permitted with just
2140 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2141 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2142 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2143 * is sufficient to permit the copy.
2144 */
2145#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2146
2147/** Whether the key may be used to encrypt a message.
2148 *
2149 * This flag allows the key to be used for a symmetric encryption operation,
2150 * for an AEAD encryption-and-authentication operation,
2151 * or for an asymmetric encryption operation,
2152 * if otherwise permitted by the key's type and policy.
2153 *
2154 * For a key pair, this concerns the public key.
2155 */
2156#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2157
2158/** Whether the key may be used to decrypt a message.
2159 *
2160 * This flag allows the key to be used for a symmetric decryption operation,
2161 * for an AEAD decryption-and-verification operation,
2162 * or for an asymmetric decryption operation,
2163 * if otherwise permitted by the key's type and policy.
2164 *
2165 * For a key pair, this concerns the private key.
2166 */
2167#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2168
2169/** Whether the key may be used to sign a message.
2170 *
2171 * This flag allows the key to be used for a MAC calculation operation
2172 * or for an asymmetric signature operation,
2173 * if otherwise permitted by the key's type and policy.
2174 *
2175 * For a key pair, this concerns the private key.
2176 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002177#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002178
2179/** Whether the key may be used to verify a message signature.
2180 *
2181 * This flag allows the key to be used for a MAC verification operation
2182 * or for an asymmetric signature verification operation,
2183 * if otherwise permitted by by the key's type and policy.
2184 *
2185 * For a key pair, this concerns the public key.
2186 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002187#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002188
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002189/** Whether the key may be used to derive other keys or produce a password
2190 * hash.
2191 *
2192 * This flag allows the key to be used as the input of
2193 * psa_key_derivation_input_key() at the step
2194 * #PSA_KEY_DERIVATION_INPUT_SECRET of #PSA_KEY_DERIVATION_INPUT_PASSWORD
2195 * depending on the algorithm, and allows the use of
2196 * psa_key_derivation_output_bytes() or psa_key_derivation_output_key()
2197 * at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002198 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002199#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002200
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002201/** Whether the key may be used to produce a password hash and verify it
2202 * against an expected value.
2203 *
2204 * This flag allows the key to be used as the input of
2205 * psa_key_derivation_input_key() at the step
2206 * #PSA_KEY_DERIVATION_INPUT_SECRET of #PSA_KEY_DERIVATION_INPUT_PASSWORD
2207 * depending on the algorithm, and allows the use of
2208 * psa_key_derivation_verify_output_bytes() or
2209 * psa_key_derivation_verify_output_key() at the end of the operation.
2210 */
Manuel Pégourié-Gonnarddc1b4e42021-04-30 10:41:07 +02002211#define PSA_KEY_USAGE_PASSWORD_HASH_AND_VERIFY ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002212
2213/** Whether the key may be used to as the expected value to which a password
2214 * hash will be compared.
2215 *
2216 * This flag allows key to be used as the \c key argument of
2217 * psa_key_derivation_verify_output_key().
2218 */
2219#define PSA_KEY_USAGE_PASSWORD_HASH_VERIFIER ((psa_key_usage_t)0x00010000)
2220
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002221/**@}*/
2222
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002223/** \defgroup derivation Key derivation
2224 * @{
2225 */
2226
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002227/** A secret input for key derivation.
2228 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002229 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2230 * (passed to psa_key_derivation_input_key())
2231 * or the shared secret resulting from a key agreement
2232 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002233 *
2234 * The secret can also be a direct input (passed to
2235 * key_derivation_input_bytes()). In this case, the derivation operation
2236 * may not be used to derive keys: the operation will only allow
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002237 * psa_key_derivation_output_bytes() or
2238 * psa_key_derivation_verify_output_xxx() but not
2239 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002240 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002241#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002242
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002243/** A low-entropy secret input for password hashing / key stretching.
2244 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002245 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2246 * psa_key_derivation_input_key()) or a direct input (passed to
2247 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2248 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2249 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002250 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002251 * If the secret is a direct input, the derivation operation
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002252 * may not be used to derive keys: the operation will only allow
2253 * psa_key_derivation_output_bytes(), not psa_key_derivation_output_key().
2254 */
2255#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2256
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002257/** A label for key derivation.
2258 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002259 * This should be a direct input.
2260 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002261 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002262#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002263
2264/** A salt for key derivation.
2265 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002266 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002267 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2268 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002269 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002270#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002271
2272/** An information string for key derivation.
2273 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002274 * This should be a direct input.
2275 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002276 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002277#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002278
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002279/** A seed for key derivation.
2280 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002281 * This should be a direct input.
2282 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002283 */
2284#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2285
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002286/** A cost parameter for password hashing / key stretching.
2287 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002288 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002289 */
2290#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2291
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002292/**@}*/
2293
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002294#endif /* PSA_CRYPTO_VALUES_H */