blob: 7442ec2c967685627ec8165b1a40c92c805671e2 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020036#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037
38/** \defgroup error Error codes
39 * @{
40 */
41
David Saadab4ecc272019-02-14 13:48:10 +020042/* PSA error codes */
43
Gilles Peskinef3b731e2018-12-12 13:38:31 +010044/** The action was completed successfully. */
45#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010046
47/** An error occurred that does not correspond to any defined
48 * failure cause.
49 *
50 * Implementations may use this error code if none of the other standard
51 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020052#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010053
54/** The requested operation or a parameter is not supported
55 * by this implementation.
56 *
57 * Implementations should return this error code when an enumeration
58 * parameter such as a key type, algorithm, etc. is not recognized.
59 * If a combination of parameters is recognized and identified as
60 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020061#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** The requested action is denied by a policy.
64 *
65 * Implementations should return this error code when the parameters
66 * are recognized as valid and supported, and a policy explicitly
67 * denies the requested operation.
68 *
69 * If a subset of the parameters of a function call identify a
70 * forbidden operation, and another subset of the parameters are
71 * not valid or not supported, it is unspecified whether the function
72 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
73 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020074#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010075
76/** An output buffer is too small.
77 *
78 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
79 * description to determine a sufficient buffer size.
80 *
81 * Implementations should preferably return this error code only
82 * in cases when performing the operation with a larger output
83 * buffer would succeed. However implementations may return this
84 * error if a function has invalid or unsupported parameters in addition
85 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
David Saadab4ecc272019-02-14 13:48:10 +020088/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010089 *
David Saadab4ecc272019-02-14 13:48:10 +020090 * Implementations should return this error, when attempting
91 * to write an item (like a key) that already exists. */
92#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010093
David Saadab4ecc272019-02-14 13:48:10 +020094/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010095 *
David Saadab4ecc272019-02-14 13:48:10 +020096 * Implementations should return this error, if a requested item (like
97 * a key) does not exist. */
98#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** The requested action cannot be performed in the current state.
101 *
102 * Multipart operations return this error when one of the
103 * functions is called out of sequence. Refer to the function
104 * descriptions for permitted sequencing of functions.
105 *
106 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100107 * that a key either exists or not,
108 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100109 * as applicable.
110 *
111 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200112 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100113 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200114#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100115
116/** The parameters passed to the function are invalid.
117 *
118 * Implementations may return this error any time a parameter or
119 * combination of parameters are recognized as invalid.
120 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200122 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * instead.
124 */
David Saadab4ecc272019-02-14 13:48:10 +0200125#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** There is not enough runtime memory.
128 *
129 * If the action is carried out across multiple security realms, this
130 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200131#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100132
133/** There is not enough persistent storage.
134 *
135 * Functions that modify the key storage return this error code if
136 * there is insufficient storage space on the host media. In addition,
137 * many functions that do not otherwise access storage may return this
138 * error code if the implementation requires a mandatory log entry for
139 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200140#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100141
142/** There was a communication failure inside the implementation.
143 *
144 * This can indicate a communication failure between the application
145 * and an external cryptoprocessor or between the cryptoprocessor and
146 * an external volatile or persistent memory. A communication failure
147 * may be transient or permanent depending on the cause.
148 *
149 * \warning If a function returns this error, it is undetermined
150 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200151 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
153 * if the requested action was completed successfully in an external
154 * cryptoprocessor but there was a breakdown of communication before
155 * the cryptoprocessor could report the status to the application.
156 */
David Saadab4ecc272019-02-14 13:48:10 +0200157#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100158
159/** There was a storage failure that may have led to data loss.
160 *
161 * This error indicates that some persistent storage is corrupted.
162 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200163 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * between the cryptoprocessor and its external storage (use
165 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
166 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
167 *
168 * Note that a storage failure does not indicate that any data that was
169 * previously read is invalid. However this previously read data may no
170 * longer be readable from storage.
171 *
172 * When a storage failure occurs, it is no longer possible to ensure
173 * the global integrity of the keystore. Depending on the global
174 * integrity guarantees offered by the implementation, access to other
175 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100176 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100177 *
178 * Implementations should only use this error code to report a
179 * permanent storage corruption. However application writers should
180 * keep in mind that transient errors while reading the storage may be
181 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200182#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100183
184/** A hardware failure was detected.
185 *
186 * A hardware failure may be transient or permanent depending on the
187 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200188#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189
190/** A tampering attempt was detected.
191 *
192 * If an application receives this error code, there is no guarantee
193 * that previously accessed or computed data was correct and remains
194 * confidential. Applications should not perform any security function
195 * and should enter a safe failure state.
196 *
197 * Implementations may return this error code if they detect an invalid
198 * state that cannot happen during normal operation and that indicates
199 * that the implementation's security guarantees no longer hold. Depending
200 * on the implementation architecture and on its security and safety goals,
201 * the implementation may forcibly terminate the application.
202 *
203 * This error code is intended as a last resort when a security breach
204 * is detected and it is unsure whether the keystore data is still
205 * protected. Implementations shall only return this error code
206 * to report an alarm from a tampering detector, to indicate that
207 * the confidentiality of stored data can no longer be guaranteed,
208 * or to indicate that the integrity of previously returned data is now
209 * considered compromised. Implementations shall not use this error code
210 * to indicate a hardware failure that merely makes it impossible to
211 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
212 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
213 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
214 * instead).
215 *
216 * This error indicates an attack against the application. Implementations
217 * shall not return this error code as a consequence of the behavior of
218 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200219#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100220
221/** There is not enough entropy to generate random data needed
222 * for the requested action.
223 *
224 * This error indicates a failure of a hardware random generator.
225 * Application writers should note that this error can be returned not
226 * only by functions whose purpose is to generate random data, such
227 * as key, IV or nonce generation, but also by functions that execute
228 * an algorithm with a randomized result, as well as functions that
229 * use randomization of intermediate computations as a countermeasure
230 * to certain attacks.
231 *
232 * Implementations should avoid returning this error after psa_crypto_init()
233 * has succeeded. Implementations should generate sufficient
234 * entropy during initialization and subsequently use a cryptographically
235 * secure pseudorandom generator (PRNG). However implementations may return
236 * this error at any time if a policy requires the PRNG to be reseeded
237 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200238#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100239
240/** The signature, MAC or hash is incorrect.
241 *
242 * Verification functions return this error if the verification
243 * calculations completed successfully, and the value to be verified
244 * was determined to be incorrect.
245 *
246 * If the value to verify has an invalid size, implementations may return
247 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200248#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100249
250/** The decrypted padding is incorrect.
251 *
252 * \warning In some protocols, when decrypting data, it is essential that
253 * the behavior of the application does not depend on whether the padding
254 * is correct, down to precise timing. Applications should prefer
255 * protocols that use authenticated encryption rather than plain
256 * encryption. If the application must perform a decryption of
257 * unauthenticated data, the application writer should take care not
258 * to reveal whether the padding is invalid.
259 *
260 * Implementations should strive to make valid and invalid padding
261 * as close as possible to indistinguishable to an external observer.
262 * In particular, the timing of a decryption operation should not
263 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200264#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100265
David Saadab4ecc272019-02-14 13:48:10 +0200266/** Return this error when there's insufficient data when attempting
267 * to read from a resource. */
268#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100269
Ronald Croncf56a0a2020-08-04 09:51:30 +0200270/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271 */
David Saadab4ecc272019-02-14 13:48:10 +0200272#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100274/** Stored data has been corrupted.
275 *
276 * This error indicates that some persistent storage has suffered corruption.
277 * It does not indicate the following situations, which have specific error
278 * codes:
279 *
280 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
281 * - A communication error between the cryptoprocessor and its external
282 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
283 * - When the storage is in a valid state but is full - use
284 * #PSA_ERROR_INSUFFICIENT_STORAGE.
285 * - When the storage fails for other reasons - use
286 * #PSA_ERROR_STORAGE_FAILURE.
287 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
288 *
289 * \note A storage corruption does not indicate that any data that was
290 * previously read is invalid. However this previously read data might no
291 * longer be readable from storage.
292 *
293 * When a storage failure occurs, it is no longer possible to ensure the
294 * global integrity of the keystore.
295 */
296#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
297
gabor-mezei-armfe309242020-11-09 17:39:56 +0100298/** Data read from storage is not valid for the implementation.
299 *
300 * This error indicates that some data read from storage does not have a valid
301 * format. It does not indicate the following situations, which have specific
302 * error codes:
303 *
304 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
305 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
306 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
307 *
308 * This error is typically a result of either storage corruption on a
309 * cleartext storage backend, or an attempt to read data that was
310 * written by an incompatible version of the library.
311 */
312#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
313
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100314/**@}*/
315
316/** \defgroup crypto_types Key and algorithm types
317 * @{
318 */
319
320/** An invalid key type value.
321 *
322 * Zero is not the encoding of any key type.
323 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100324#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100325
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100326/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 *
328 * Key types defined by this standard will never have the
329 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
330 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
331 * respect the bitwise structure used by standard encodings whenever practical.
332 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100333#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100334
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100335#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100336#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
337#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
338#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100339#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100341#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100343/** Whether a key type is vendor-defined.
344 *
345 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
346 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
348 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
349
350/** Whether a key type is an unstructured array of bytes.
351 *
352 * This encompasses both symmetric keys and non-key data.
353 */
354#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100355 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
356 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
358/** Whether a key type is asymmetric: either a key pair or a public key. */
359#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
360 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
361 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
362 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
363/** Whether a key type is the public part of a key pair. */
364#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
365 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
366/** Whether a key type is a key pair containing a private part and a public
367 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200368#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
370/** The key pair type corresponding to a public key type.
371 *
372 * You may also pass a key pair type as \p type, it will be left unchanged.
373 *
374 * \param type A public key type or key pair type.
375 *
376 * \return The corresponding key pair type.
377 * If \p type is not a public key or a key pair,
378 * the return value is undefined.
379 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200380#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100381 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
382/** The public key type corresponding to a key pair type.
383 *
384 * You may also pass a key pair type as \p type, it will be left unchanged.
385 *
386 * \param type A public key type or key pair type.
387 *
388 * \return The corresponding public key type.
389 * If \p type is not a public key or a key pair,
390 * the return value is undefined.
391 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200392#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100393 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
394
395/** Raw data.
396 *
397 * A "key" of this type cannot be used for any cryptographic operation.
398 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100399#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100400
401/** HMAC key.
402 *
403 * The key policy determines which underlying hash algorithm the key can be
404 * used for.
405 *
406 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100407 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100409#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100410
411/** A secret for key derivation.
412 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200413 * This key type is for high-entropy secrets only. For low-entropy secrets,
414 * #PSA_KEY_TYPE_PASSWORD should be used instead.
415 *
416 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
417 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
418 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100419 * The key policy determines which key derivation algorithm the key
420 * can be used for.
421 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100422#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100423
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200424/** A low-entropy secret for password hashing or key derivation.
425 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200426 * This key type is suitable for passwords and passphrases which are typically
427 * intended to be memorizable by humans, and have a low entropy relative to
428 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200429 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200430 * for such keys. It is not suitable for passwords with extremely low entropy,
431 * such as numerical PINs.
432 *
433 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
434 * key derivation algorithms. Algorithms that accept such an input were
435 * designed to accept low-entropy secret and are known as password hashing or
436 * key stretching algorithms.
437 *
438 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
439 * key derivation algorithms, as the algorithms that take such an input expect
440 * it to be high-entropy.
441 *
442 * The key policy determines which key derivation algorithm the key can be
443 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200444 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200445#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200446
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200447/** A secret value that can be used to verify a password hash.
448 *
449 * The key policy determines which key derivation algorithm the key
450 * can be used for, among the same permissible subset as for
451 * #PSA_KEY_TYPE_PASSWORD.
452 */
453#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
454
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200455/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200456 *
457 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200458 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200459 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200460#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200461
Gilles Peskine737c6be2019-05-21 16:01:06 +0200462/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100463 *
464 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
465 * 32 bytes (AES-256).
466 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100467#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100468
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200469/** Key for a cipher, AEAD or MAC algorithm based on the
470 * ARIA block cipher. */
471#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
472
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100473/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
474 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100475 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
476 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100477 *
478 * Note that single DES and 2-key 3DES are weak and strongly
479 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
480 * is weak and deprecated and should only be used in legacy protocols.
481 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100482#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100483
Gilles Peskine737c6be2019-05-21 16:01:06 +0200484/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100485 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100486#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100487
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200488/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
489 *
490 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
491 *
492 * Implementations must support 12-byte nonces, may support 8-byte nonces,
493 * and should reject other sizes.
494 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100495#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200496
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100497/** RSA public key.
498 *
499 * The size of an RSA key is the bit size of the modulus.
500 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100501#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100502/** RSA key pair (private and public key).
503 *
504 * The size of an RSA key is the bit size of the modulus.
505 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100506#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100507/** Whether a key type is an RSA key (pair or public-only). */
508#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200509 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100510
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100511#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100512#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
513#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100514/** Elliptic curve key pair.
515 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100516 * The size of an elliptic curve key is the bit size associated with the curve,
517 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
518 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
519 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100520 * \param curve A value of type ::psa_ecc_family_t that
521 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100522 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200523#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
524 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100525/** Elliptic curve public key.
526 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100527 * The size of an elliptic curve public key is the same as the corresponding
528 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
529 * `PSA_ECC_FAMILY_xxx` curve families).
530 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100531 * \param curve A value of type ::psa_ecc_family_t that
532 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100533 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100534#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
535 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
536
537/** Whether a key type is an elliptic curve key (pair or public-only). */
538#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200539 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100540 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100541/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200542#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100543 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200544 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100545/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100546#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
547 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
548 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
549
550/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100551#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
552 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100553 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
554 0))
555
Gilles Peskine228abc52019-12-03 17:24:19 +0100556/** SEC Koblitz curves over prime fields.
557 *
558 * This family comprises the following curves:
559 * secp192k1, secp224k1, secp256k1.
560 * They are defined in _Standards for Efficient Cryptography_,
561 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
562 * https://www.secg.org/sec2-v2.pdf
563 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100564#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100565
566/** SEC random curves over prime fields.
567 *
568 * This family comprises the following curves:
569 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
570 * They are defined in _Standards for Efficient Cryptography_,
571 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
572 * https://www.secg.org/sec2-v2.pdf
573 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100574#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100575/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100576#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100577
578/** SEC Koblitz curves over binary fields.
579 *
580 * This family comprises the following curves:
581 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
582 * They are defined in _Standards for Efficient Cryptography_,
583 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
584 * https://www.secg.org/sec2-v2.pdf
585 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100586#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100587
588/** SEC random curves over binary fields.
589 *
590 * This family comprises the following curves:
591 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
592 * They are defined in _Standards for Efficient Cryptography_,
593 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
594 * https://www.secg.org/sec2-v2.pdf
595 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100596#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100597
598/** SEC additional random curves over binary fields.
599 *
600 * This family comprises the following curve:
601 * sect163r2.
602 * It is defined in _Standards for Efficient Cryptography_,
603 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
604 * https://www.secg.org/sec2-v2.pdf
605 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100606#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100607
608/** Brainpool P random curves.
609 *
610 * This family comprises the following curves:
611 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
612 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
613 * It is defined in RFC 5639.
614 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100615#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100616
617/** Curve25519 and Curve448.
618 *
619 * This family comprises the following Montgomery curves:
620 * - 255-bit: Bernstein et al.,
621 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
622 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
623 * - 448-bit: Hamburg,
624 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
625 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
626 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100627#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100628
Gilles Peskine67546802021-02-24 21:49:40 +0100629/** The twisted Edwards curves Ed25519 and Ed448.
630 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100631 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100632 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100633 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100634 *
635 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100636 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100637 * to Curve25519.
638 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
639 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
640 * to Curve448.
641 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
642 */
643#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
644
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100645#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100646#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
647#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100648/** Diffie-Hellman key pair.
649 *
Paul Elliott75e27032020-06-03 15:17:39 +0100650 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100651 * Diffie-Hellman group to be used.
652 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200653#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
654 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100655/** Diffie-Hellman public key.
656 *
Paul Elliott75e27032020-06-03 15:17:39 +0100657 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100658 * Diffie-Hellman group to be used.
659 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200660#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
661 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
662
663/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
664#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200665 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200666 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
667/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200668#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200669 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200670 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200671/** Whether a key type is a Diffie-Hellman public key. */
672#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
673 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
674 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
675
676/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100677#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
678 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200679 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
680 0))
681
Gilles Peskine228abc52019-12-03 17:24:19 +0100682/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
683 *
684 * This family includes groups with the following key sizes (in bits):
685 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
686 * all of these sizes or only a subset.
687 */
Paul Elliott75e27032020-06-03 15:17:39 +0100688#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100689
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100690#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100691 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100692/** The block size of a block cipher.
693 *
694 * \param type A cipher key type (value of type #psa_key_type_t).
695 *
696 * \return The block size for a block cipher, or 1 for a stream cipher.
697 * The return value is undefined if \p type is not a supported
698 * cipher key type.
699 *
700 * \note It is possible to build stream cipher algorithms on top of a block
701 * cipher, for example CTR mode (#PSA_ALG_CTR).
702 * This macro only takes the key type into account, so it cannot be
703 * used to determine the size of the data that #psa_cipher_update()
704 * might buffer for future processing in general.
705 *
706 * \note This macro returns a compile-time constant if its argument is one.
707 *
708 * \warning This macro may evaluate its argument multiple times.
709 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100710#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100711 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100712 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100713 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100714
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100715/** Vendor-defined algorithm flag.
716 *
717 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
718 * bit set. Vendors who define additional algorithms must use an encoding with
719 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
720 * used by standard encodings whenever practical.
721 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100722#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100723
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100724#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100725#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
726#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100727#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100728#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
729#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
730#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
731#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
732#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100733
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100734/** Whether an algorithm is vendor-defined.
735 *
736 * See also #PSA_ALG_VENDOR_FLAG.
737 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100738#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
739 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
740
741/** Whether the specified algorithm is a hash algorithm.
742 *
743 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
744 *
745 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
746 * This macro may return either 0 or 1 if \p alg is not a supported
747 * algorithm identifier.
748 */
749#define PSA_ALG_IS_HASH(alg) \
750 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
751
752/** Whether the specified algorithm is a MAC algorithm.
753 *
754 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
755 *
756 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
757 * This macro may return either 0 or 1 if \p alg is not a supported
758 * algorithm identifier.
759 */
760#define PSA_ALG_IS_MAC(alg) \
761 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
762
763/** Whether the specified algorithm is a symmetric cipher algorithm.
764 *
765 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
766 *
767 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
768 * This macro may return either 0 or 1 if \p alg is not a supported
769 * algorithm identifier.
770 */
771#define PSA_ALG_IS_CIPHER(alg) \
772 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
773
774/** Whether the specified algorithm is an authenticated encryption
775 * with associated data (AEAD) algorithm.
776 *
777 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
778 *
779 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
780 * This macro may return either 0 or 1 if \p alg is not a supported
781 * algorithm identifier.
782 */
783#define PSA_ALG_IS_AEAD(alg) \
784 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
785
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200786/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200787 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100788 *
789 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
790 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200791 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100792 * This macro may return either 0 or 1 if \p alg is not a supported
793 * algorithm identifier.
794 */
795#define PSA_ALG_IS_SIGN(alg) \
796 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
797
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200798/** Whether the specified algorithm is an asymmetric encryption algorithm,
799 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100800 *
801 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
802 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200803 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100804 * This macro may return either 0 or 1 if \p alg is not a supported
805 * algorithm identifier.
806 */
807#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
808 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
809
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100810/** Whether the specified algorithm is a key agreement algorithm.
811 *
812 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
813 *
814 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
815 * This macro may return either 0 or 1 if \p alg is not a supported
816 * algorithm identifier.
817 */
818#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100819 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100820
821/** Whether the specified algorithm is a key derivation algorithm.
822 *
823 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
824 *
825 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
826 * This macro may return either 0 or 1 if \p alg is not a supported
827 * algorithm identifier.
828 */
829#define PSA_ALG_IS_KEY_DERIVATION(alg) \
830 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
831
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200832/** Whether the specified algorithm is a key stretching / password hashing
833 * algorithm.
834 *
835 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200836 * that is suitable for use with a low-entropy secret such as a password.
837 * Equivalently, it's a key derivation algorithm that uses a
838 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200839 *
840 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
841 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100842 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200843 * otherwise. This macro may return either 0 or 1 if \p alg is not a
844 * supported algorithm identifier.
845 */
846#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
847 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
848 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
849
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100850#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100851/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100852#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100853/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100854#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100855/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100856#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100857/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100858#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100859/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100860#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100861/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100862#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100864#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100865/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100866#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100867/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100868#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100869/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100870#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100871/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100872#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100873/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100874#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100875/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100876#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100877/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100878 *
879 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
880 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
881 * has the same output size and a (theoretically) higher security strength.
882 */
Gilles Peskine27354692021-03-03 17:45:06 +0100883#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100884
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100885/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100886 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100887 * This value may be used to form the algorithm usage field of a policy
888 * for a signature algorithm that is parametrized by a hash. The key
889 * may then be used to perform operations using the same signature
890 * algorithm parametrized with any supported hash.
891 *
892 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100893 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100894 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100895 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100896 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
897 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100898 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200899 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100900 * ```
901 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100902 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100903 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
904 * call to sign or verify a message may use a different hash.
905 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200906 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
907 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
908 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100909 * ```
910 *
911 * This value may not be used to build other algorithms that are
912 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100913 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100914 *
915 * This value may not be used to build an algorithm specification to
916 * perform an operation. It is only valid to build policies.
917 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100918#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100919
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100920#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100921#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100922/** Macro to build an HMAC algorithm.
923 *
924 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
925 *
926 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
927 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
928 *
929 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100930 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100931 * hash algorithm.
932 */
933#define PSA_ALG_HMAC(hash_alg) \
934 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
935
936#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
937 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
938
939/** Whether the specified algorithm is an HMAC algorithm.
940 *
941 * HMAC is a family of MAC algorithms that are based on a hash function.
942 *
943 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
944 *
945 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
946 * This macro may return either 0 or 1 if \p alg is not a supported
947 * algorithm identifier.
948 */
949#define PSA_ALG_IS_HMAC(alg) \
950 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
951 PSA_ALG_HMAC_BASE)
952
953/* In the encoding of a MAC algorithm, the bits corresponding to
954 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
955 * truncated. As an exception, the value 0 means the untruncated algorithm,
956 * whatever its length is. The length is encoded in 6 bits, so it can
957 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
958 * to full length is correctly encoded as 0 and any non-trivial truncation
959 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100960#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
961#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100962
Steven Cooremand927ed72021-02-22 19:59:35 +0100963/* In the encoding of a MAC algorithm, the bit corresponding to
964 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100965 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
966 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100967 * same base class and having a (potentially truncated) MAC length greater or
968 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
969#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
970
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100971/** Macro to build a truncated MAC algorithm.
972 *
973 * A truncated MAC algorithm is identical to the corresponding MAC
974 * algorithm except that the MAC value for the truncated algorithm
975 * consists of only the first \p mac_length bytes of the MAC value
976 * for the untruncated algorithm.
977 *
978 * \note This macro may allow constructing algorithm identifiers that
979 * are not valid, either because the specified length is larger
980 * than the untruncated MAC or because the specified length is
981 * smaller than permitted by the implementation.
982 *
983 * \note It is implementation-defined whether a truncated MAC that
984 * is truncated to the same length as the MAC of the untruncated
985 * algorithm is considered identical to the untruncated algorithm
986 * for policy comparison purposes.
987 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200988 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100989 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100990 * is true). This may be a truncated or untruncated
991 * MAC algorithm.
992 * \param mac_length Desired length of the truncated MAC in bytes.
993 * This must be at most the full length of the MAC
994 * and must be at least an implementation-specified
995 * minimum. The implementation-specified minimum
996 * shall not be zero.
997 *
998 * \return The corresponding MAC algorithm with the specified
999 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001000 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001001 * MAC algorithm or if \p mac_length is too small or
1002 * too large for the specified MAC algorithm.
1003 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001004#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1005 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1006 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001007 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1008
1009/** Macro to build the base MAC algorithm corresponding to a truncated
1010 * MAC algorithm.
1011 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001012 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001013 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001014 * is true). This may be a truncated or untruncated
1015 * MAC algorithm.
1016 *
1017 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001018 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001019 * MAC algorithm.
1020 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001021#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1022 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1023 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001024
1025/** Length to which a MAC algorithm is truncated.
1026 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001027 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001028 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001029 * is true).
1030 *
1031 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001032 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1033 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001034 * MAC algorithm.
1035 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001036#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1037 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001038
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001039/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001040 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001041 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001042 * sharing the same base algorithm, and where the (potentially truncated) MAC
1043 * length of the specific algorithm is equal to or larger then the wildcard
1044 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001045 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001046 * \note When setting the minimum required MAC length to less than the
1047 * smallest MAC length allowed by the base algorithm, this effectively
1048 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001049 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001050 * \param mac_alg A MAC algorithm identifier (value of type
1051 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1052 * is true).
1053 * \param min_mac_length Desired minimum length of the message authentication
1054 * code in bytes. This must be at most the untruncated
1055 * length of the MAC and must be at least 1.
1056 *
1057 * \return The corresponding MAC wildcard algorithm with the
1058 * specified minimum length.
1059 * \return Unspecified if \p mac_alg is not a supported MAC
1060 * algorithm or if \p min_mac_length is less than 1 or
1061 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001062 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001063#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1064 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1065 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001066
Bence Szépkútia2945512020-12-03 21:40:17 +01001067#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001068/** The CBC-MAC construction over a block cipher
1069 *
1070 * \warning CBC-MAC is insecure in many cases.
1071 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1072 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001073#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001074/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001075#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001076
1077/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1078 *
1079 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1080 *
1081 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1082 * This macro may return either 0 or 1 if \p alg is not a supported
1083 * algorithm identifier.
1084 */
1085#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1086 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1087 PSA_ALG_CIPHER_MAC_BASE)
1088
1089#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1090#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1091
1092/** Whether the specified algorithm is a stream cipher.
1093 *
1094 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1095 * by applying a bitwise-xor with a stream of bytes that is generated
1096 * from a key.
1097 *
1098 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1099 *
1100 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1101 * This macro may return either 0 or 1 if \p alg is not a supported
1102 * algorithm identifier or if it is not a symmetric cipher algorithm.
1103 */
1104#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1105 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1106 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1107
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001108/** The stream cipher mode of a stream cipher algorithm.
1109 *
1110 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001111 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001112 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001113#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001114
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001115/** The CTR stream cipher mode.
1116 *
1117 * CTR is a stream cipher which is built from a block cipher.
1118 * The underlying block cipher is determined by the key type.
1119 * For example, to use AES-128-CTR, use this algorithm with
1120 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1121 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001122#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001123
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001124/** The CFB stream cipher mode.
1125 *
1126 * The underlying block cipher is determined by the key type.
1127 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001128#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001129
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001130/** The OFB stream cipher mode.
1131 *
1132 * The underlying block cipher is determined by the key type.
1133 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001134#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135
1136/** The XTS cipher mode.
1137 *
1138 * XTS is a cipher mode which is built from a block cipher. It requires at
1139 * least one full block of input, but beyond this minimum the input
1140 * does not need to be a whole number of blocks.
1141 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001142#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001143
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001144/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1145 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001146 * \warning ECB mode does not protect the confidentiality of the encrypted data
1147 * except in extremely narrow circumstances. It is recommended that applications
1148 * only use ECB if they need to construct an operating mode that the
1149 * implementation does not provide. Implementations are encouraged to provide
1150 * the modes that applications need in preference to supporting direct access
1151 * to ECB.
1152 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001153 * The underlying block cipher is determined by the key type.
1154 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001155 * This symmetric cipher mode can only be used with messages whose lengths are a
1156 * multiple of the block size of the chosen block cipher.
1157 *
1158 * ECB mode does not accept an initialization vector (IV). When using a
1159 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1160 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001161 */
1162#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1163
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001164/** The CBC block cipher chaining mode, with no padding.
1165 *
1166 * The underlying block cipher is determined by the key type.
1167 *
1168 * This symmetric cipher mode can only be used with messages whose lengths
1169 * are whole number of blocks for the chosen block cipher.
1170 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001171#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001172
1173/** The CBC block cipher chaining mode with PKCS#7 padding.
1174 *
1175 * The underlying block cipher is determined by the key type.
1176 *
1177 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1178 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001179#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001180
Gilles Peskine679693e2019-05-06 15:10:16 +02001181#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1182
1183/** Whether the specified algorithm is an AEAD mode on a block cipher.
1184 *
1185 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1186 *
1187 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1188 * a block cipher, 0 otherwise.
1189 * This macro may return either 0 or 1 if \p alg is not a supported
1190 * algorithm identifier.
1191 */
1192#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1193 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1194 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1195
Gilles Peskine9153ec02019-02-15 13:02:02 +01001196/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001197 *
1198 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001199 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001200#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001201
1202/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001203 *
1204 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001205 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001206#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001207
1208/** The Chacha20-Poly1305 AEAD algorithm.
1209 *
1210 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001211 *
1212 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1213 * and should reject other sizes.
1214 *
1215 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001216 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001217#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001218
1219/* In the encoding of a AEAD algorithm, the bits corresponding to
1220 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1221 * The constants for default lengths follow this encoding.
1222 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001223#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1224#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001225
Steven Cooremand927ed72021-02-22 19:59:35 +01001226/* In the encoding of an AEAD algorithm, the bit corresponding to
1227 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001228 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1229 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001230 * same base class and having a tag length greater than or equal to the one
1231 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1232#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1233
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001234/** Macro to build a shortened AEAD algorithm.
1235 *
1236 * A shortened AEAD algorithm is similar to the corresponding AEAD
1237 * algorithm, but has an authentication tag that consists of fewer bytes.
1238 * Depending on the algorithm, the tag length may affect the calculation
1239 * of the ciphertext.
1240 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001241 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001242 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001243 * is true).
1244 * \param tag_length Desired length of the authentication tag in bytes.
1245 *
1246 * \return The corresponding AEAD algorithm with the specified
1247 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001248 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001249 * AEAD algorithm or if \p tag_length is not valid
1250 * for the specified AEAD algorithm.
1251 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001252#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001253 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1254 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001255 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1256 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1257
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001258/** Retrieve the tag length of a specified AEAD algorithm
1259 *
1260 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001261 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001262 * is true).
1263 *
1264 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001265 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001266 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001267 */
1268#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1269 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1270 PSA_AEAD_TAG_LENGTH_OFFSET )
1271
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001272/** Calculate the corresponding AEAD algorithm with the default tag length.
1273 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001274 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001275 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001276 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001277 * \return The corresponding AEAD algorithm with the default
1278 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001279 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001280#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001281 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001282 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1283 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1284 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001285 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001286#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1287 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1288 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001289 ref :
1290
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001291/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001292 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001293 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001294 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001295 * algorithm is equal to or larger then the minimum tag length specified by the
1296 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001297 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001298 * \note When setting the minimum required tag length to less than the
1299 * smallest tag length allowed by the base algorithm, this effectively
1300 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001301 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001302 * \param aead_alg An AEAD algorithm identifier (value of type
1303 * #psa_algorithm_t such that
1304 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1305 * \param min_tag_length Desired minimum length of the authentication tag in
1306 * bytes. This must be at least 1 and at most the largest
1307 * allowed tag length of the algorithm.
1308 *
1309 * \return The corresponding AEAD wildcard algorithm with the
1310 * specified minimum length.
1311 * \return Unspecified if \p aead_alg is not a supported
1312 * AEAD algorithm or if \p min_tag_length is less than 1
1313 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001314 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001315#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001316 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1317 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001318
Bence Szépkútia2945512020-12-03 21:40:17 +01001319#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001320/** RSA PKCS#1 v1.5 signature with hashing.
1321 *
1322 * This is the signature scheme defined by RFC 8017
1323 * (PKCS#1: RSA Cryptography Specifications) under the name
1324 * RSASSA-PKCS1-v1_5.
1325 *
1326 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1327 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001328 * This includes #PSA_ALG_ANY_HASH
1329 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001330 *
1331 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001332 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001333 * hash algorithm.
1334 */
1335#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1336 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1337/** Raw PKCS#1 v1.5 signature.
1338 *
1339 * The input to this algorithm is the DigestInfo structure used by
1340 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1341 * steps 3&ndash;6.
1342 */
1343#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1344#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1345 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1346
Bence Szépkútia2945512020-12-03 21:40:17 +01001347#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001348/** RSA PSS signature with hashing.
1349 *
1350 * This is the signature scheme defined by RFC 8017
1351 * (PKCS#1: RSA Cryptography Specifications) under the name
1352 * RSASSA-PSS, with the message generation function MGF1, and with
1353 * a salt length equal to the length of the hash. The specified
1354 * hash algorithm is used to hash the input message, to create the
1355 * salted hash, and for the mask generation.
1356 *
1357 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1358 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001359 * This includes #PSA_ALG_ANY_HASH
1360 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001361 *
1362 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001363 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001364 * hash algorithm.
1365 */
1366#define PSA_ALG_RSA_PSS(hash_alg) \
1367 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1368#define PSA_ALG_IS_RSA_PSS(alg) \
1369 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1370
Bence Szépkútia2945512020-12-03 21:40:17 +01001371#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001372/** ECDSA signature with hashing.
1373 *
1374 * This is the ECDSA signature scheme defined by ANSI X9.62,
1375 * with a random per-message secret number (*k*).
1376 *
1377 * The representation of the signature as a byte string consists of
1378 * the concatentation of the signature values *r* and *s*. Each of
1379 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1380 * of the base point of the curve in octets. Each value is represented
1381 * in big-endian order (most significant octet first).
1382 *
1383 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1384 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001385 * This includes #PSA_ALG_ANY_HASH
1386 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001387 *
1388 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001389 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001390 * hash algorithm.
1391 */
1392#define PSA_ALG_ECDSA(hash_alg) \
1393 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1394/** ECDSA signature without hashing.
1395 *
1396 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1397 * without specifying a hash algorithm. This algorithm may only be
1398 * used to sign or verify a sequence of bytes that should be an
1399 * already-calculated hash. Note that the input is padded with
1400 * zeros on the left or truncated on the left as required to fit
1401 * the curve size.
1402 */
1403#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001404#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001405/** Deterministic ECDSA signature with hashing.
1406 *
1407 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1408 *
1409 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1410 *
1411 * Note that when this algorithm is used for verification, signatures
1412 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1413 * same private key are accepted. In other words,
1414 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1415 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1416 *
1417 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1418 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001419 * This includes #PSA_ALG_ANY_HASH
1420 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001421 *
1422 * \return The corresponding deterministic ECDSA signature
1423 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001424 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001425 * hash algorithm.
1426 */
1427#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1428 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001429#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001430#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001431 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001432 PSA_ALG_ECDSA_BASE)
1433#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001434 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001435#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1436 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1437#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1438 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1439
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001440/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1441 * using standard parameters.
1442 *
1443 * Contexts are not supported in the current version of this specification
1444 * because there is no suitable signature interface that can take the
1445 * context as a parameter. A future version of this specification may add
1446 * suitable functions and extend this algorithm to support contexts.
1447 *
1448 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1449 * In this specification, the following curves are supported:
1450 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1451 * in RFC 8032.
1452 * The curve is Edwards25519.
1453 * The hash function used internally is SHA-512.
1454 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1455 * in RFC 8032.
1456 * The curve is Edwards448.
1457 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001458 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001459 *
1460 * This algorithm can be used with psa_sign_message() and
1461 * psa_verify_message(). Since there is no prehashing, it cannot be used
1462 * with psa_sign_hash() or psa_verify_hash().
1463 *
1464 * The signature format is the concatenation of R and S as defined by
1465 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1466 * string for Ed448).
1467 */
1468#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1469
1470#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1471#define PSA_ALG_IS_HASH_EDDSA(alg) \
1472 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1473
1474/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001475 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001476 *
1477 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1478 *
1479 * This algorithm is Ed25519 as specified in RFC 8032.
1480 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001481 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001482 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001483 *
1484 * This is a hash-and-sign algorithm: to calculate a signature,
1485 * you can either:
1486 * - call psa_sign_message() on the message;
1487 * - or calculate the SHA-512 hash of the message
1488 * with psa_hash_compute()
1489 * or with a multi-part hash operation started with psa_hash_setup(),
1490 * using the hash algorithm #PSA_ALG_SHA_512,
1491 * then sign the calculated hash with psa_sign_hash().
1492 * Verifying a signature is similar, using psa_verify_message() or
1493 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001494 */
1495#define PSA_ALG_ED25519PH \
1496 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1497
1498/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1499 * using SHAKE256 and the Edwards448 curve.
1500 *
1501 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1502 *
1503 * This algorithm is Ed448 as specified in RFC 8032.
1504 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001505 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001506 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001507 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001508 *
1509 * This is a hash-and-sign algorithm: to calculate a signature,
1510 * you can either:
1511 * - call psa_sign_message() on the message;
1512 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1513 * with psa_hash_compute()
1514 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001515 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001516 * then sign the calculated hash with psa_sign_hash().
1517 * Verifying a signature is similar, using psa_verify_message() or
1518 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001519 */
1520#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001521 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001522
Gilles Peskine6d400852021-02-24 21:39:52 +01001523/* Default definition, to be overridden if the library is extended with
1524 * more hash-and-sign algorithms that we want to keep out of this header
1525 * file. */
1526#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1527
Gilles Peskined35b4892019-01-14 16:02:15 +01001528/** Whether the specified algorithm is a hash-and-sign algorithm.
1529 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001530 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1531 * structured in two parts: first the calculation of a hash in a way that
1532 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001533 * hash value and the key.
1534 *
1535 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1536 *
1537 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1538 * This macro may return either 0 or 1 if \p alg is not a supported
1539 * algorithm identifier.
1540 */
1541#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1542 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001543 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001544 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001545
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001546/** Whether the specified algorithm is a signature algorithm that can be used
1547 * with psa_sign_message() and psa_verify_message().
1548 *
1549 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1550 *
1551 * \return 1 if alg is a signature algorithm that can be used to sign a
gabor-mezei-arm36658e42021-04-20 12:08:36 +02001552 * message. 0 if \p alg is a signature algorithm that can only be used
1553 * to sign an already-calculated hash. 0 if \p alg is not a signature
1554 * algorithm. This macro can return either 0 or 1 if \p alg is not a
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001555 * supported algorithm identifier.
1556 */
1557#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
gabor-mezei-arm36658e42021-04-20 12:08:36 +02001558 (PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_PURE_EDDSA )
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001559
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001560/** Get the hash used by a hash-and-sign signature algorithm.
1561 *
1562 * A hash-and-sign algorithm is a signature algorithm which is
1563 * composed of two phases: first a hashing phase which does not use
1564 * the key and produces a hash of the input message, then a signing
1565 * phase which only uses the hash and the key and not the message
1566 * itself.
1567 *
1568 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1569 * #PSA_ALG_IS_SIGN(\p alg) is true).
1570 *
1571 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1572 * algorithm.
1573 * \return 0 if \p alg is a signature algorithm that does not
1574 * follow the hash-and-sign structure.
1575 * \return Unspecified if \p alg is not a signature algorithm or
1576 * if it is not supported by the implementation.
1577 */
1578#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001579 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001580 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1581 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1582 0)
1583
1584/** RSA PKCS#1 v1.5 encryption.
1585 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001586#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001587
Bence Szépkútia2945512020-12-03 21:40:17 +01001588#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001589/** RSA OAEP encryption.
1590 *
1591 * This is the encryption scheme defined by RFC 8017
1592 * (PKCS#1: RSA Cryptography Specifications) under the name
1593 * RSAES-OAEP, with the message generation function MGF1.
1594 *
1595 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1596 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1597 * for MGF1.
1598 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001599 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001600 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001601 * hash algorithm.
1602 */
1603#define PSA_ALG_RSA_OAEP(hash_alg) \
1604 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1605#define PSA_ALG_IS_RSA_OAEP(alg) \
1606 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1607#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1608 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1609 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1610 0)
1611
Bence Szépkútia2945512020-12-03 21:40:17 +01001612#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001613/** Macro to build an HKDF algorithm.
1614 *
1615 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1616 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001617 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001618 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001619 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001620 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1621 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1622 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1623 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001624 * starting to generate output.
1625 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001626 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1627 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1628 *
1629 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001630 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001631 * hash algorithm.
1632 */
1633#define PSA_ALG_HKDF(hash_alg) \
1634 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1635/** Whether the specified algorithm is an HKDF algorithm.
1636 *
1637 * HKDF is a family of key derivation algorithms that are based on a hash
1638 * function and the HMAC construction.
1639 *
1640 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1641 *
1642 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1643 * This macro may return either 0 or 1 if \c alg is not a supported
1644 * key derivation algorithm identifier.
1645 */
1646#define PSA_ALG_IS_HKDF(alg) \
1647 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1648#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1649 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1650
Bence Szépkútia2945512020-12-03 21:40:17 +01001651#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001652/** Macro to build a TLS-1.2 PRF algorithm.
1653 *
1654 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1655 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1656 * used with either SHA-256 or SHA-384.
1657 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001658 * This key derivation algorithm uses the following inputs, which must be
1659 * passed in the order given here:
1660 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001661 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1662 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001663 *
1664 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001665 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001666 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001667 *
1668 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1669 * TLS 1.2 PRF using HMAC-SHA-256.
1670 *
1671 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1672 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1673 *
1674 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001675 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001676 * hash algorithm.
1677 */
1678#define PSA_ALG_TLS12_PRF(hash_alg) \
1679 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1680
1681/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1682 *
1683 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1684 *
1685 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1686 * This macro may return either 0 or 1 if \c alg is not a supported
1687 * key derivation algorithm identifier.
1688 */
1689#define PSA_ALG_IS_TLS12_PRF(alg) \
1690 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1691#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1692 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1693
Bence Szépkútia2945512020-12-03 21:40:17 +01001694#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001695/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1696 *
1697 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1698 * from the PreSharedKey (PSK) through the application of padding
1699 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1700 * The latter is based on HMAC and can be used with either SHA-256
1701 * or SHA-384.
1702 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001703 * This key derivation algorithm uses the following inputs, which must be
1704 * passed in the order given here:
1705 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001706 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1707 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001708 *
1709 * For the application to TLS-1.2, the seed (which is
1710 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1711 * ClientHello.Random + ServerHello.Random,
1712 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001713 *
1714 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1715 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1716 *
1717 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1718 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1719 *
1720 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001721 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001722 * hash algorithm.
1723 */
1724#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1725 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1726
1727/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1728 *
1729 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1730 *
1731 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1732 * This macro may return either 0 or 1 if \c alg is not a supported
1733 * key derivation algorithm identifier.
1734 */
1735#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1736 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1737#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1738 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1739
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001740/* This flag indicates whether the key derivation algorithm is suitable for
1741 * use on low-entropy secrets such as password - these algorithms are also
1742 * known as key stretching or password hashing schemes. These are also the
1743 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001744 *
1745 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001746 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001747#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001748
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001749#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001750/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001751 *
1752 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001753 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1754 * HMAC with the specified hash.
1755 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1756 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001757 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001758 * This key derivation algorithm uses the following inputs, which must be
1759 * provided in the following order:
1760 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001761 * This input step must be used exactly once.
1762 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1763 * This input step must be used one or more times; if used several times, the
1764 * inputs will be concatenated. This can be used to build the final salt
1765 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001766 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001767 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001768 *
1769 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1770 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1771 *
1772 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1773 * \return Unspecified if \p hash_alg is not a supported
1774 * hash algorithm.
1775 */
1776#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1777 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1778
1779/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1780 *
1781 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1782 *
1783 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1784 * This macro may return either 0 or 1 if \c alg is not a supported
1785 * key derivation algorithm identifier.
1786 */
1787#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1788 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001789
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001790/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1791 *
1792 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1793 * This macro specifies the PBKDF2 algorithm constructed using the
1794 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1795 *
1796 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02001797 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001798 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001799#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001800
Bence Szépkútia2945512020-12-03 21:40:17 +01001801#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1802#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001803
Gilles Peskine6843c292019-01-18 16:44:49 +01001804/** Macro to build a combined algorithm that chains a key agreement with
1805 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001806 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001807 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1808 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1809 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1810 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001811 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001812 * \return The corresponding key agreement and derivation
1813 * algorithm.
1814 * \return Unspecified if \p ka_alg is not a supported
1815 * key agreement algorithm or \p kdf_alg is not a
1816 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001817 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001818#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1819 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001820
1821#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1822 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1823
Gilles Peskine6843c292019-01-18 16:44:49 +01001824#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1825 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001826
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001827/** Whether the specified algorithm is a raw key agreement algorithm.
1828 *
1829 * A raw key agreement algorithm is one that does not specify
1830 * a key derivation function.
1831 * Usually, raw key agreement algorithms are constructed directly with
1832 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001833 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001834 *
1835 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1836 *
1837 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1838 * This macro may return either 0 or 1 if \p alg is not a supported
1839 * algorithm identifier.
1840 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001841#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001842 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1843 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001844
1845#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1846 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1847
1848/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001849 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001850 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001851 * `g^{ab}` in big-endian format.
1852 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1853 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001854 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001855#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001856
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001857/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1858 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001859 * This includes the raw finite field Diffie-Hellman algorithm as well as
1860 * finite-field Diffie-Hellman followed by any supporter key derivation
1861 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001862 *
1863 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1864 *
1865 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1866 * This macro may return either 0 or 1 if \c alg is not a supported
1867 * key agreement algorithm identifier.
1868 */
1869#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001870 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001871
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001872/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1873 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001874 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001875 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1876 * `m` is the bit size associated with the curve, i.e. the bit size of the
1877 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1878 * the byte containing the most significant bit of the shared secret
1879 * is padded with zero bits. The byte order is either little-endian
1880 * or big-endian depending on the curve type.
1881 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001882 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001883 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1884 * in little-endian byte order.
1885 * The bit size is 448 for Curve448 and 255 for Curve25519.
1886 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001887 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001888 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1889 * in big-endian byte order.
1890 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1891 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001892 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001893 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1894 * in big-endian byte order.
1895 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001896 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001897#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001898
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001899/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1900 * algorithm.
1901 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001902 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1903 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1904 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001905 *
1906 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1907 *
1908 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1909 * 0 otherwise.
1910 * This macro may return either 0 or 1 if \c alg is not a supported
1911 * key agreement algorithm identifier.
1912 */
1913#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001914 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001915
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001916/** Whether the specified algorithm encoding is a wildcard.
1917 *
1918 * Wildcard values may only be used to set the usage algorithm field in
1919 * a policy, not to perform an operation.
1920 *
1921 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1922 *
1923 * \return 1 if \c alg is a wildcard algorithm encoding.
1924 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1925 * an operation).
1926 * \return This macro may return either 0 or 1 if \c alg is not a supported
1927 * algorithm identifier.
1928 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001929#define PSA_ALG_IS_WILDCARD(alg) \
1930 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1931 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1932 PSA_ALG_IS_MAC(alg) ? \
1933 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1934 PSA_ALG_IS_AEAD(alg) ? \
1935 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001936 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001937
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001938/** Get the hash used by a composite algorithm.
1939 *
1940 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1941 *
1942 * \return The underlying hash algorithm if alg is a composite algorithm that
1943 * uses a hash algorithm.
1944 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02001945 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001946 */
1947#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02001948 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001949
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001950/**@}*/
1951
1952/** \defgroup key_lifetimes Key lifetimes
1953 * @{
1954 */
1955
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001956/** The default lifetime for volatile keys.
1957 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001958 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001959 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001960 *
1961 * A key with this lifetime is typically stored in the RAM area of the
1962 * PSA Crypto subsystem. However this is an implementation choice.
1963 * If an implementation stores data about the key in a non-volatile memory,
1964 * it must release all the resources associated with the key and erase the
1965 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001966 */
1967#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
1968
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001969/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001970 *
1971 * A persistent key remains in storage until it is explicitly destroyed or
1972 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001973 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001974 * provide their own mechanism (for example to perform a factory reset,
1975 * to prepare for device refurbishment, or to uninstall an application).
1976 *
1977 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001978 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001979 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001980 */
1981#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
1982
Gilles Peskineaff11812020-05-04 19:03:10 +02001983/** The persistence level of volatile keys.
1984 *
1985 * See ::psa_key_persistence_t for more information.
1986 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001987#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001988
1989/** The default persistence level for persistent keys.
1990 *
1991 * See ::psa_key_persistence_t for more information.
1992 */
Gilles Peskineee04e692020-05-04 18:52:21 +02001993#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001994
1995/** A persistence level indicating that a key is never destroyed.
1996 *
1997 * See ::psa_key_persistence_t for more information.
1998 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02001999#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002000
2001#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002002 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002003
2004#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002005 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002006
2007/** Whether a key lifetime indicates that the key is volatile.
2008 *
2009 * A volatile key is automatically destroyed by the implementation when
2010 * the application instance terminates. In particular, a volatile key
2011 * is automatically destroyed on a power reset of the device.
2012 *
2013 * A key that is not volatile is persistent. Persistent keys are
2014 * preserved until the application explicitly destroys them or until an
2015 * implementation-specific device management event occurs (for example,
2016 * a factory reset).
2017 *
2018 * \param lifetime The lifetime value to query (value of type
2019 * ::psa_key_lifetime_t).
2020 *
2021 * \return \c 1 if the key is volatile, otherwise \c 0.
2022 */
2023#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2024 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002025 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002026
Gilles Peskined133bb22021-04-21 20:05:59 +02002027/** Whether a key lifetime indicates that the key is read-only.
2028 *
2029 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2030 * They must be created through platform-specific means that bypass the API.
2031 *
2032 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002033 * consider a platform with multiple levels of privilege, where a
2034 * low-privilege application can use a key but is not allowed to destroy
2035 * it, and the platform exposes the key to the application with a read-only
2036 * lifetime. High-privilege code can destroy the key even though the
2037 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002038 *
2039 * \param lifetime The lifetime value to query (value of type
2040 * ::psa_key_lifetime_t).
2041 *
2042 * \return \c 1 if the key is read-only, otherwise \c 0.
2043 */
2044#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2045 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2046 PSA_KEY_PERSISTENCE_READ_ONLY)
2047
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002048/** Construct a lifetime from a persistence level and a location.
2049 *
2050 * \param persistence The persistence level
2051 * (value of type ::psa_key_persistence_t).
2052 * \param location The location indicator
2053 * (value of type ::psa_key_location_t).
2054 *
2055 * \return The constructed lifetime value.
2056 */
2057#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2058 ((location) << 8 | (persistence))
2059
Gilles Peskineaff11812020-05-04 19:03:10 +02002060/** The local storage area for persistent keys.
2061 *
2062 * This storage area is available on all systems that can store persistent
2063 * keys without delegating the storage to a third-party cryptoprocessor.
2064 *
2065 * See ::psa_key_location_t for more information.
2066 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002067#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002068
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002069#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002070
Gilles Peskine4a231b82019-05-06 18:56:14 +02002071/** The minimum value for a key identifier chosen by the application.
2072 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002073#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002074/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002075 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002076#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002077/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002078 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002079#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002080/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002081 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002082#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002083
Ronald Cron7424f0d2020-09-14 16:17:41 +02002084
2085#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2086
2087#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2088#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2089#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2090
2091/** Utility to initialize a key identifier at runtime.
2092 *
2093 * \param unused Unused parameter.
2094 * \param key_id Identifier of the key.
2095 */
2096static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2097 unsigned int unused, psa_key_id_t key_id )
2098{
2099 (void)unused;
2100
2101 return( key_id );
2102}
2103
2104/** Compare two key identifiers.
2105 *
2106 * \param id1 First key identifier.
2107 * \param id2 Second key identifier.
2108 *
2109 * \return Non-zero if the two key identifier are equal, zero otherwise.
2110 */
2111static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2112 mbedtls_svc_key_id_t id2 )
2113{
2114 return( id1 == id2 );
2115}
2116
Ronald Cronc4d1b512020-07-31 11:26:37 +02002117/** Check whether a key identifier is null.
2118 *
2119 * \param key Key identifier.
2120 *
2121 * \return Non-zero if the key identifier is null, zero otherwise.
2122 */
2123static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2124{
2125 return( key == 0 );
2126}
2127
Ronald Cron7424f0d2020-09-14 16:17:41 +02002128#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2129
2130#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2131#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2132#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2133
2134/** Utility to initialize a key identifier at runtime.
2135 *
2136 * \param owner_id Identifier of the key owner.
2137 * \param key_id Identifier of the key.
2138 */
2139static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2140 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2141{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002142 return( (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2143 .MBEDTLS_PRIVATE(owner) = owner_id } );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002144}
2145
2146/** Compare two key identifiers.
2147 *
2148 * \param id1 First key identifier.
2149 * \param id2 Second key identifier.
2150 *
2151 * \return Non-zero if the two key identifier are equal, zero otherwise.
2152 */
2153static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2154 mbedtls_svc_key_id_t id2 )
2155{
Mateusz Starzyk363eb292021-05-19 17:32:44 +02002156 return( ( id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id) ) &&
2157 mbedtls_key_owner_id_equal( id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner) ) );
Ronald Cron7424f0d2020-09-14 16:17:41 +02002158}
2159
Ronald Cronc4d1b512020-07-31 11:26:37 +02002160/** Check whether a key identifier is null.
2161 *
2162 * \param key Key identifier.
2163 *
2164 * \return Non-zero if the key identifier is null, zero otherwise.
2165 */
2166static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2167{
Gilles Peskine52bb83e2021-05-28 12:59:49 +02002168 return( key.MBEDTLS_PRIVATE(key_id) == 0 );
Ronald Cronc4d1b512020-07-31 11:26:37 +02002169}
2170
Ronald Cron7424f0d2020-09-14 16:17:41 +02002171#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002172
2173/**@}*/
2174
2175/** \defgroup policy Key policies
2176 * @{
2177 */
2178
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002179/** Whether the key may be exported.
2180 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002181 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002182 * regardless of the value of this permission flag.
2183 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002184 * If a key does not have export permission, implementations shall not
2185 * allow the key to be exported in plain form from the cryptoprocessor,
2186 * whether through psa_export_key() or through a proprietary interface.
2187 * The key may however be exportable in a wrapped form, i.e. in a form
2188 * where it is encrypted by another key.
2189 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002190#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2191
2192/** Whether the key may be copied.
2193 *
2194 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002195 * with the same policy or a more restrictive policy.
2196 *
2197 * For lifetimes for which the key is located in a secure element which
2198 * enforce the non-exportability of keys, copying a key outside the secure
2199 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2200 * Copying the key inside the secure element is permitted with just
2201 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2202 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2203 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2204 * is sufficient to permit the copy.
2205 */
2206#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2207
2208/** Whether the key may be used to encrypt a message.
2209 *
2210 * This flag allows the key to be used for a symmetric encryption operation,
2211 * for an AEAD encryption-and-authentication operation,
2212 * or for an asymmetric encryption operation,
2213 * if otherwise permitted by the key's type and policy.
2214 *
2215 * For a key pair, this concerns the public key.
2216 */
2217#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2218
2219/** Whether the key may be used to decrypt a message.
2220 *
2221 * This flag allows the key to be used for a symmetric decryption operation,
2222 * for an AEAD decryption-and-verification operation,
2223 * or for an asymmetric decryption operation,
2224 * if otherwise permitted by the key's type and policy.
2225 *
2226 * For a key pair, this concerns the private key.
2227 */
2228#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2229
2230/** Whether the key may be used to sign a message.
2231 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002232 * This flag allows the key to be used for a MAC calculation operation or for
2233 * an asymmetric message signature operation, if otherwise permitted by the
2234 * key’s type and policy.
2235 *
2236 * For a key pair, this concerns the private key.
2237 */
2238#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2239
2240/** Whether the key may be used to verify a message.
2241 *
2242 * This flag allows the key to be used for a MAC verification operation or for
2243 * an asymmetric message signature verification operation, if otherwise
2244 * permitted by the key’s type and policy.
2245 *
2246 * For a key pair, this concerns the public key.
2247 */
2248#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2249
2250/** Whether the key may be used to sign a message.
2251 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002252 * This flag allows the key to be used for a MAC calculation operation
2253 * or for an asymmetric signature operation,
2254 * if otherwise permitted by the key's type and policy.
2255 *
2256 * For a key pair, this concerns the private key.
2257 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002258#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002259
2260/** Whether the key may be used to verify a message signature.
2261 *
2262 * This flag allows the key to be used for a MAC verification operation
2263 * or for an asymmetric signature verification operation,
2264 * if otherwise permitted by by the key's type and policy.
2265 *
2266 * For a key pair, this concerns the public key.
2267 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002268#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002269
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002270/** Whether the key may be used to derive other keys or produce a password
2271 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002272 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002273 * This flag allows the key to be used for a key derivation operation or for
2274 * a key agreement operation, if otherwise permitted by by the key's type and
2275 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002276 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002277 * If this flag is present on all keys used in calls to
2278 * psa_key_derivation_input_key() for a key derivation operation, then it
2279 * permits calling psa_key_derivation_output_bytes() or
2280 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002281 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002282#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002283
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002284/** Whether the key may be used to verify the result of a key derivation,
2285 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002286 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002287 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002288 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002289 * This flag allows the key to be used in a key derivation operation, if
2290 * otherwise permitted by by the key's type and policy.
2291 *
2292 * If this flag is present on all keys used in calls to
2293 * psa_key_derivation_input_key() for a key derivation operation, then it
2294 * permits calling psa_key_derivation_verify_bytes() or
2295 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002296 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002297#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002298
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002299/**@}*/
2300
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002301/** \defgroup derivation Key derivation
2302 * @{
2303 */
2304
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002305/** A secret input for key derivation.
2306 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002307 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2308 * (passed to psa_key_derivation_input_key())
2309 * or the shared secret resulting from a key agreement
2310 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002311 *
2312 * The secret can also be a direct input (passed to
2313 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002314 * may not be used to derive keys: the operation will only allow
2315 * psa_key_derivation_output_bytes(),
2316 * psa_key_derivation_verify_bytes(), or
2317 * psa_key_derivation_verify_key(), but not
2318 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002319 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002320#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002321
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002322/** A low-entropy secret input for password hashing / key stretching.
2323 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002324 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2325 * psa_key_derivation_input_key()) or a direct input (passed to
2326 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2327 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2328 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002329 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002330 * The secret can also be a direct input (passed to
2331 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002332 * may not be used to derive keys: the operation will only allow
2333 * psa_key_derivation_output_bytes(),
2334 * psa_key_derivation_verify_bytes(), or
2335 * psa_key_derivation_verify_key(), but not
2336 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002337 */
2338#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2339
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002340/** A label for key derivation.
2341 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002342 * This should be a direct input.
2343 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002344 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002345#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002346
2347/** A salt for key derivation.
2348 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002349 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002350 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2351 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002352 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002353#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002354
2355/** An information string for key derivation.
2356 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002357 * This should be a direct input.
2358 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002359 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002360#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002361
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002362/** A seed for key derivation.
2363 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002364 * This should be a direct input.
2365 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002366 */
2367#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2368
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002369/** A cost parameter for password hashing / key stretching.
2370 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002371 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002372 */
2373#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2374
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002375/**@}*/
2376
Bence Szépkútib639d432021-04-21 10:33:54 +02002377/** \defgroup helper_macros Helper macros
2378 * @{
2379 */
2380
2381/* Helper macros */
2382
2383/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2384 * regardless of the tag length they encode.
2385 *
2386 * \param aead_alg_1 An AEAD algorithm identifier.
2387 * \param aead_alg_2 An AEAD algorithm identifier.
2388 *
2389 * \return 1 if both identifiers refer to the same AEAD algorithm,
2390 * 0 otherwise.
2391 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2392 * a supported AEAD algorithm.
2393 */
2394#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2395 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2396 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2397
2398/**@}*/
2399
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002400#endif /* PSA_CRYPTO_VALUES_H */