blob: e69f0c4d693d8f78e2978c5c3fb52a91e1aa70c7 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine79733992022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Dave Rodgman16799db2023-11-02 19:47:20 +000024 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Gilles Peskinef3b731e2018-12-12 13:38:31 +010025 */
26
27#ifndef PSA_CRYPTO_VALUES_H
28#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020029#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010030
31/** \defgroup error Error codes
32 * @{
33 */
34
David Saadab4ecc272019-02-14 13:48:10 +020035/* PSA error codes */
36
Gilles Peskine79733992022-06-20 18:41:20 +020037/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskine955993c2022-06-29 14:37:17 +020038 * etc.). Do not change the values in this section or even the expansions
39 * of each macro: it must be possible to `#include` both this header
40 * and some other PSA component's headers in the same C source,
41 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
42 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
43 * to the same sequence of tokens.
44 *
45 * If you must add a new
Gilles Peskine79733992022-06-20 18:41:20 +020046 * value, check with the Arm PSA framework group to pick one that other
47 * domains aren't already using. */
48
Gilles Peskine45873ce2023-01-04 19:50:27 +010049/* Tell uncrustify not to touch the constant definitions, otherwise
50 * it might change the spacing to something that is not PSA-compliant
51 * (e.g. adding a space after casts).
52 *
53 * *INDENT-OFF*
54 */
55
Gilles Peskinef3b731e2018-12-12 13:38:31 +010056/** The action was completed successfully. */
57#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010058
59/** An error occurred that does not correspond to any defined
60 * failure cause.
61 *
62 * Implementations may use this error code if none of the other standard
63 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020064#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010065
66/** The requested operation or a parameter is not supported
67 * by this implementation.
68 *
69 * Implementations should return this error code when an enumeration
70 * parameter such as a key type, algorithm, etc. is not recognized.
71 * If a combination of parameters is recognized and identified as
72 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** The requested action is denied by a policy.
76 *
77 * Implementations should return this error code when the parameters
78 * are recognized as valid and supported, and a policy explicitly
79 * denies the requested operation.
80 *
81 * If a subset of the parameters of a function call identify a
82 * forbidden operation, and another subset of the parameters are
83 * not valid or not supported, it is unspecified whether the function
84 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
85 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
88/** An output buffer is too small.
89 *
90 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
91 * description to determine a sufficient buffer size.
92 *
93 * Implementations should preferably return this error code only
94 * in cases when performing the operation with a larger output
95 * buffer would succeed. However implementations may return this
96 * error if a function has invalid or unsupported parameters in addition
97 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020098#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
David Saadab4ecc272019-02-14 13:48:10 +0200100/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100101 *
David Saadab4ecc272019-02-14 13:48:10 +0200102 * Implementations should return this error, when attempting
103 * to write an item (like a key) that already exists. */
104#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100105
David Saadab4ecc272019-02-14 13:48:10 +0200106/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100107 *
David Saadab4ecc272019-02-14 13:48:10 +0200108 * Implementations should return this error, if a requested item (like
109 * a key) does not exist. */
110#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100111
112/** The requested action cannot be performed in the current state.
113 *
114 * Multipart operations return this error when one of the
115 * functions is called out of sequence. Refer to the function
116 * descriptions for permitted sequencing of functions.
117 *
118 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100119 * that a key either exists or not,
120 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * as applicable.
122 *
123 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200124 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100125 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** The parameters passed to the function are invalid.
129 *
130 * Implementations may return this error any time a parameter or
131 * combination of parameters are recognized as invalid.
132 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100133 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200134 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100135 * instead.
136 */
David Saadab4ecc272019-02-14 13:48:10 +0200137#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100138
139/** There is not enough runtime memory.
140 *
141 * If the action is carried out across multiple security realms, this
142 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200143#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100144
145/** There is not enough persistent storage.
146 *
147 * Functions that modify the key storage return this error code if
148 * there is insufficient storage space on the host media. In addition,
149 * many functions that do not otherwise access storage may return this
150 * error code if the implementation requires a mandatory log entry for
151 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200152#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153
154/** There was a communication failure inside the implementation.
155 *
156 * This can indicate a communication failure between the application
157 * and an external cryptoprocessor or between the cryptoprocessor and
158 * an external volatile or persistent memory. A communication failure
159 * may be transient or permanent depending on the cause.
160 *
161 * \warning If a function returns this error, it is undetermined
162 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200163 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
165 * if the requested action was completed successfully in an external
166 * cryptoprocessor but there was a breakdown of communication before
167 * the cryptoprocessor could report the status to the application.
168 */
David Saadab4ecc272019-02-14 13:48:10 +0200169#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100170
171/** There was a storage failure that may have led to data loss.
172 *
173 * This error indicates that some persistent storage is corrupted.
174 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200175 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 * between the cryptoprocessor and its external storage (use
177 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
178 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
179 *
180 * Note that a storage failure does not indicate that any data that was
181 * previously read is invalid. However this previously read data may no
182 * longer be readable from storage.
183 *
184 * When a storage failure occurs, it is no longer possible to ensure
185 * the global integrity of the keystore. Depending on the global
186 * integrity guarantees offered by the implementation, access to other
187 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100188 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189 *
190 * Implementations should only use this error code to report a
191 * permanent storage corruption. However application writers should
192 * keep in mind that transient errors while reading the storage may be
193 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200194#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100195
196/** A hardware failure was detected.
197 *
198 * A hardware failure may be transient or permanent depending on the
199 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200200#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100201
202/** A tampering attempt was detected.
203 *
204 * If an application receives this error code, there is no guarantee
205 * that previously accessed or computed data was correct and remains
206 * confidential. Applications should not perform any security function
207 * and should enter a safe failure state.
208 *
209 * Implementations may return this error code if they detect an invalid
210 * state that cannot happen during normal operation and that indicates
211 * that the implementation's security guarantees no longer hold. Depending
212 * on the implementation architecture and on its security and safety goals,
213 * the implementation may forcibly terminate the application.
214 *
215 * This error code is intended as a last resort when a security breach
216 * is detected and it is unsure whether the keystore data is still
217 * protected. Implementations shall only return this error code
218 * to report an alarm from a tampering detector, to indicate that
219 * the confidentiality of stored data can no longer be guaranteed,
220 * or to indicate that the integrity of previously returned data is now
221 * considered compromised. Implementations shall not use this error code
222 * to indicate a hardware failure that merely makes it impossible to
223 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
224 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
225 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
226 * instead).
227 *
228 * This error indicates an attack against the application. Implementations
229 * shall not return this error code as a consequence of the behavior of
230 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200231#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100232
233/** There is not enough entropy to generate random data needed
234 * for the requested action.
235 *
236 * This error indicates a failure of a hardware random generator.
237 * Application writers should note that this error can be returned not
238 * only by functions whose purpose is to generate random data, such
239 * as key, IV or nonce generation, but also by functions that execute
240 * an algorithm with a randomized result, as well as functions that
241 * use randomization of intermediate computations as a countermeasure
242 * to certain attacks.
243 *
244 * Implementations should avoid returning this error after psa_crypto_init()
245 * has succeeded. Implementations should generate sufficient
246 * entropy during initialization and subsequently use a cryptographically
247 * secure pseudorandom generator (PRNG). However implementations may return
248 * this error at any time if a policy requires the PRNG to be reseeded
249 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200250#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100251
252/** The signature, MAC or hash is incorrect.
253 *
254 * Verification functions return this error if the verification
255 * calculations completed successfully, and the value to be verified
256 * was determined to be incorrect.
257 *
258 * If the value to verify has an invalid size, implementations may return
259 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200260#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100261
262/** The decrypted padding is incorrect.
263 *
264 * \warning In some protocols, when decrypting data, it is essential that
265 * the behavior of the application does not depend on whether the padding
266 * is correct, down to precise timing. Applications should prefer
267 * protocols that use authenticated encryption rather than plain
268 * encryption. If the application must perform a decryption of
269 * unauthenticated data, the application writer should take care not
270 * to reveal whether the padding is invalid.
271 *
272 * Implementations should strive to make valid and invalid padding
273 * as close as possible to indistinguishable to an external observer.
274 * In particular, the timing of a decryption operation should not
275 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200276#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100277
David Saadab4ecc272019-02-14 13:48:10 +0200278/** Return this error when there's insufficient data when attempting
279 * to read from a resource. */
280#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100281
Ronald Croncf56a0a2020-08-04 09:51:30 +0200282/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100283 */
David Saadab4ecc272019-02-14 13:48:10 +0200284#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100285
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100286/** Stored data has been corrupted.
287 *
288 * This error indicates that some persistent storage has suffered corruption.
289 * It does not indicate the following situations, which have specific error
290 * codes:
291 *
292 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
293 * - A communication error between the cryptoprocessor and its external
294 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
295 * - When the storage is in a valid state but is full - use
296 * #PSA_ERROR_INSUFFICIENT_STORAGE.
297 * - When the storage fails for other reasons - use
298 * #PSA_ERROR_STORAGE_FAILURE.
299 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
300 *
301 * \note A storage corruption does not indicate that any data that was
302 * previously read is invalid. However this previously read data might no
303 * longer be readable from storage.
304 *
305 * When a storage failure occurs, it is no longer possible to ensure the
306 * global integrity of the keystore.
307 */
308#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
309
gabor-mezei-armfe309242020-11-09 17:39:56 +0100310/** Data read from storage is not valid for the implementation.
311 *
312 * This error indicates that some data read from storage does not have a valid
313 * format. It does not indicate the following situations, which have specific
314 * error codes:
315 *
316 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
317 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
318 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
319 *
320 * This error is typically a result of either storage corruption on a
321 * cleartext storage backend, or an attempt to read data that was
322 * written by an incompatible version of the library.
323 */
324#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
325
Paul Elliott1265f002022-09-09 17:15:43 +0100326/** The function that returns this status is defined as interruptible and
327 * still has work to do, thus the user should call the function again with the
328 * same operation context until it either returns #PSA_SUCCESS or any other
329 * error. This is not an error per se, more a notification of status.
330 */
331#define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
332
Gilles Peskine45873ce2023-01-04 19:50:27 +0100333/* *INDENT-ON* */
334
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100335/**@}*/
336
337/** \defgroup crypto_types Key and algorithm types
338 * @{
339 */
340
Gilles Peskine79733992022-06-20 18:41:20 +0200341/* Note that key type values, including ECC family and DH group values, are
342 * embedded in the persistent key store, as part of key metadata. As a
343 * consequence, they must not be changed (unless the storage format version
344 * changes).
345 */
346
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347/** An invalid key type value.
348 *
349 * Zero is not the encoding of any key type.
350 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100351#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100352
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100353/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100354 *
355 * Key types defined by this standard will never have the
356 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
357 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
358 * respect the bitwise structure used by standard encodings whenever practical.
359 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100360#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361
Gilles Peskine449bd832023-01-11 14:50:10 +0100362#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
363#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
364#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
365#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
366#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100367
Gilles Peskine449bd832023-01-11 14:50:10 +0100368#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100370/** Whether a key type is vendor-defined.
371 *
372 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
373 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100374#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
375 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
376
377/** Whether a key type is an unstructured array of bytes.
378 *
379 * This encompasses both symmetric keys and non-key data.
380 */
381#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100382 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
383 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100384
385/** Whether a key type is asymmetric: either a key pair or a public key. */
386#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
387 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
388 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
389 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
390/** Whether a key type is the public part of a key pair. */
391#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
392 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
393/** Whether a key type is a key pair containing a private part and a public
394 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200395#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100396 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
397/** The key pair type corresponding to a public key type.
398 *
399 * You may also pass a key pair type as \p type, it will be left unchanged.
400 *
401 * \param type A public key type or key pair type.
402 *
403 * \return The corresponding key pair type.
404 * If \p type is not a public key or a key pair,
405 * the return value is undefined.
406 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200407#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
409/** The public key type corresponding to a key pair type.
410 *
411 * You may also pass a key pair type as \p type, it will be left unchanged.
412 *
413 * \param type A public key type or key pair type.
414 *
415 * \return The corresponding public key type.
416 * If \p type is not a public key or a key pair,
417 * the return value is undefined.
418 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
421
422/** Raw data.
423 *
424 * A "key" of this type cannot be used for any cryptographic operation.
425 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100426#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427
428/** HMAC key.
429 *
430 * The key policy determines which underlying hash algorithm the key can be
431 * used for.
432 *
433 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100434 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100435 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100436#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437
438/** A secret for key derivation.
439 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200440 * This key type is for high-entropy secrets only. For low-entropy secrets,
441 * #PSA_KEY_TYPE_PASSWORD should be used instead.
442 *
443 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
444 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
445 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100446 * The key policy determines which key derivation algorithm the key
447 * can be used for.
448 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100449#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100450
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200451/** A low-entropy secret for password hashing or key derivation.
452 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200453 * This key type is suitable for passwords and passphrases which are typically
454 * intended to be memorizable by humans, and have a low entropy relative to
455 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200456 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200457 * for such keys. It is not suitable for passwords with extremely low entropy,
458 * such as numerical PINs.
459 *
460 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
461 * key derivation algorithms. Algorithms that accept such an input were
462 * designed to accept low-entropy secret and are known as password hashing or
463 * key stretching algorithms.
464 *
465 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
466 * key derivation algorithms, as the algorithms that take such an input expect
467 * it to be high-entropy.
468 *
469 * The key policy determines which key derivation algorithm the key can be
470 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200471 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100472#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t) 0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200473
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200474/** A secret value that can be used to verify a password hash.
475 *
476 * The key policy determines which key derivation algorithm the key
477 * can be used for, among the same permissible subset as for
478 * #PSA_KEY_TYPE_PASSWORD.
479 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100480#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t) 0x1205)
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200481
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200482/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200483 *
484 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200485 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200486 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100487#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t) 0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200488
Gilles Peskine737c6be2019-05-21 16:01:06 +0200489/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100490 *
491 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
492 * 32 bytes (AES-256).
493 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100494#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100495
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200496/** Key for a cipher, AEAD or MAC algorithm based on the
497 * ARIA block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100498#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200499
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
501 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100502 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
503 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100504 *
505 * Note that single DES and 2-key 3DES are weak and strongly
506 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
507 * is weak and deprecated and should only be used in legacy protocols.
508 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100509#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100510
Gilles Peskine737c6be2019-05-21 16:01:06 +0200511/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100512 * Camellia block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100513#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100514
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200515/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
516 *
517 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
518 *
Gilles Peskine14d35542022-03-10 18:36:37 +0100519 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
520 * 12-byte nonces.
521 *
522 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
523 * with the initial counter value 1, you can process and discard a
524 * 64-byte block before the real data.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200525 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100526#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200527
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100528/** RSA public key.
529 *
530 * The size of an RSA key is the bit size of the modulus.
531 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100532#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100533/** RSA key pair (private and public key).
534 *
535 * The size of an RSA key is the bit size of the modulus.
536 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100537#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100538/** Whether a key type is an RSA key (pair or public-only). */
539#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200540 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100541
Gilles Peskine449bd832023-01-11 14:50:10 +0100542#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
543#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
544#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100545/** Elliptic curve key pair.
546 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100547 * The size of an elliptic curve key is the bit size associated with the curve,
548 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
549 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
550 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100551 * \param curve A value of type ::psa_ecc_family_t that
552 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100553 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200554#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
555 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100556/** Elliptic curve public key.
557 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100558 * The size of an elliptic curve public key is the same as the corresponding
559 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
560 * `PSA_ECC_FAMILY_xxx` curve families).
561 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100562 * \param curve A value of type ::psa_ecc_family_t that
563 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100564 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100565#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
566 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
567
568/** Whether a key type is an elliptic curve key (pair or public-only). */
569#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200570 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100571 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100572/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200573#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100574 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200575 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100576/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100577#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
578 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
579 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
580
581/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100582#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
583 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100584 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
585 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100586
Przemyslaw Stekiel6d3d18b2022-01-20 22:41:17 +0100587/** Check if the curve of given family is Weierstrass elliptic curve. */
588#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
589
Gilles Peskine228abc52019-12-03 17:24:19 +0100590/** SEC Koblitz curves over prime fields.
591 *
592 * This family comprises the following curves:
593 * secp192k1, secp224k1, secp256k1.
594 * They are defined in _Standards for Efficient Cryptography_,
595 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
596 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine6e206962024-01-03 20:59:03 +0100597 *
598 * \note For secp224k1, the bit-size is 225 (size of a private value).
Gilles Peskine228abc52019-12-03 17:24:19 +0100599 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100600#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100601
602/** SEC random curves over prime fields.
603 *
604 * This family comprises the following curves:
Gilles Peskine2a22dac2024-01-03 20:58:55 +0100605 * secp192r1, secp224r1, secp256r1, secp384r1, secp521r1.
Gilles Peskine228abc52019-12-03 17:24:19 +0100606 * They are defined in _Standards for Efficient Cryptography_,
607 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
608 * https://www.secg.org/sec2-v2.pdf
609 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100610#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100611/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100612#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100613
614/** SEC Koblitz curves over binary fields.
615 *
616 * This family comprises the following curves:
617 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
618 * They are defined in _Standards for Efficient Cryptography_,
619 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
620 * https://www.secg.org/sec2-v2.pdf
621 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100622#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100623
624/** SEC random curves over binary fields.
625 *
626 * This family comprises the following curves:
627 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
628 * They are defined in _Standards for Efficient Cryptography_,
629 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
630 * https://www.secg.org/sec2-v2.pdf
631 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100632#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100633
634/** SEC additional random curves over binary fields.
635 *
636 * This family comprises the following curve:
637 * sect163r2.
638 * It is defined in _Standards for Efficient Cryptography_,
639 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
640 * https://www.secg.org/sec2-v2.pdf
641 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100642#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100643
644/** Brainpool P random curves.
645 *
646 * This family comprises the following curves:
647 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
648 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
649 * It is defined in RFC 5639.
650 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100651#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100652
653/** Curve25519 and Curve448.
654 *
655 * This family comprises the following Montgomery curves:
656 * - 255-bit: Bernstein et al.,
657 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
658 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
659 * - 448-bit: Hamburg,
660 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
661 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
662 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100663#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100664
Gilles Peskine67546802021-02-24 21:49:40 +0100665/** The twisted Edwards curves Ed25519 and Ed448.
666 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100667 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100668 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100669 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100670 *
671 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100672 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100673 * to Curve25519.
674 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
675 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
676 * to Curve448.
677 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
678 */
679#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
680
Gilles Peskine449bd832023-01-11 14:50:10 +0100681#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
682#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
683#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100684/** Diffie-Hellman key pair.
685 *
Paul Elliott75e27032020-06-03 15:17:39 +0100686 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100687 * Diffie-Hellman group to be used.
688 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200689#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
690 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100691/** Diffie-Hellman public key.
692 *
Paul Elliott75e27032020-06-03 15:17:39 +0100693 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100694 * Diffie-Hellman group to be used.
695 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200696#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
697 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
698
699/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
700#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200701 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200702 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
703/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200704#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200705 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200706 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200707/** Whether a key type is a Diffie-Hellman public key. */
708#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
709 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
710 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
711
712/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100713#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
714 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100715 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
716 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200717
Gilles Peskine228abc52019-12-03 17:24:19 +0100718/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
719 *
720 * This family includes groups with the following key sizes (in bits):
721 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
722 * all of these sizes or only a subset.
723 */
Paul Elliott75e27032020-06-03 15:17:39 +0100724#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100725
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100726#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100727 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100728/** The block size of a block cipher.
729 *
730 * \param type A cipher key type (value of type #psa_key_type_t).
731 *
732 * \return The block size for a block cipher, or 1 for a stream cipher.
733 * The return value is undefined if \p type is not a supported
734 * cipher key type.
735 *
736 * \note It is possible to build stream cipher algorithms on top of a block
737 * cipher, for example CTR mode (#PSA_ALG_CTR).
738 * This macro only takes the key type into account, so it cannot be
739 * used to determine the size of the data that #psa_cipher_update()
740 * might buffer for future processing in general.
741 *
742 * \note This macro returns a compile-time constant if its argument is one.
743 *
744 * \warning This macro may evaluate its argument multiple times.
745 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100746#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100747 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100748 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine449bd832023-01-11 14:50:10 +0100749 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100750
Gilles Peskine79733992022-06-20 18:41:20 +0200751/* Note that algorithm values are embedded in the persistent key store,
752 * as part of key metadata. As a consequence, they must not be changed
753 * (unless the storage format version changes).
754 */
755
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100756/** Vendor-defined algorithm flag.
757 *
758 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
759 * bit set. Vendors who define additional algorithms must use an encoding with
760 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
761 * used by standard encodings whenever practical.
762 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100763#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100764
Gilles Peskine449bd832023-01-11 14:50:10 +0100765#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
766#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
767#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
768#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
769#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
770#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
771#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
772#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
773#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100774
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100775/** Whether an algorithm is vendor-defined.
776 *
777 * See also #PSA_ALG_VENDOR_FLAG.
778 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100779#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
780 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
781
782/** Whether the specified algorithm is a hash algorithm.
783 *
784 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
785 *
786 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
787 * This macro may return either 0 or 1 if \p alg is not a supported
788 * algorithm identifier.
789 */
790#define PSA_ALG_IS_HASH(alg) \
791 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
792
793/** Whether the specified algorithm is a MAC algorithm.
794 *
795 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
796 *
797 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
798 * This macro may return either 0 or 1 if \p alg is not a supported
799 * algorithm identifier.
800 */
801#define PSA_ALG_IS_MAC(alg) \
802 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
803
804/** Whether the specified algorithm is a symmetric cipher algorithm.
805 *
806 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
807 *
808 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
809 * This macro may return either 0 or 1 if \p alg is not a supported
810 * algorithm identifier.
811 */
812#define PSA_ALG_IS_CIPHER(alg) \
813 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
814
815/** Whether the specified algorithm is an authenticated encryption
816 * with associated data (AEAD) algorithm.
817 *
818 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
819 *
820 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
821 * This macro may return either 0 or 1 if \p alg is not a supported
822 * algorithm identifier.
823 */
824#define PSA_ALG_IS_AEAD(alg) \
825 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
826
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200827/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200828 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100829 *
830 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
831 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200832 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100833 * This macro may return either 0 or 1 if \p alg is not a supported
834 * algorithm identifier.
835 */
836#define PSA_ALG_IS_SIGN(alg) \
837 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
838
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200839/** Whether the specified algorithm is an asymmetric encryption algorithm,
840 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100841 *
842 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
843 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200844 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100845 * This macro may return either 0 or 1 if \p alg is not a supported
846 * algorithm identifier.
847 */
848#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
849 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
850
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100851/** Whether the specified algorithm is a key agreement algorithm.
852 *
853 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
854 *
855 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
856 * This macro may return either 0 or 1 if \p alg is not a supported
857 * algorithm identifier.
858 */
859#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100860 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100861
862/** Whether the specified algorithm is a key derivation algorithm.
863 *
864 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
865 *
866 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
867 * This macro may return either 0 or 1 if \p alg is not a supported
868 * algorithm identifier.
869 */
870#define PSA_ALG_IS_KEY_DERIVATION(alg) \
871 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
872
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200873/** Whether the specified algorithm is a key stretching / password hashing
874 * algorithm.
875 *
876 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200877 * that is suitable for use with a low-entropy secret such as a password.
878 * Equivalently, it's a key derivation algorithm that uses a
879 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200880 *
881 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
882 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100883 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200884 * otherwise. This macro may return either 0 or 1 if \p alg is not a
885 * supported algorithm identifier.
886 */
887#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
888 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
889 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
890
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200891/** An invalid algorithm identifier value. */
Gilles Peskinea6516072023-01-04 19:52:38 +0100892/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200893#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +0100894/* *INDENT-ON* */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200895
Gilles Peskine449bd832023-01-11 14:50:10 +0100896#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100897/** MD5 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100898#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100899/** PSA_ALG_RIPEMD160 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100900#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100901/** SHA1 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100902#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100903/** SHA2-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100904#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100905/** SHA2-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100906#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100907/** SHA2-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100908#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100909/** SHA2-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100910#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100911/** SHA2-512/224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100912#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100913/** SHA2-512/256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100914#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100915/** SHA3-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100916#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100917/** SHA3-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100918#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100919/** SHA3-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100920#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100921/** SHA3-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100922#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100923/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100924 *
925 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
926 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
927 * has the same output size and a (theoretically) higher security strength.
928 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100929#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100930
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100931/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100932 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100933 * This value may be used to form the algorithm usage field of a policy
934 * for a signature algorithm that is parametrized by a hash. The key
935 * may then be used to perform operations using the same signature
936 * algorithm parametrized with any supported hash.
937 *
938 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200939 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100940 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100941 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100942 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
943 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100944 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200945 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100946 * ```
947 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100948 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100949 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
950 * call to sign or verify a message may use a different hash.
951 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200952 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
953 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
954 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100955 * ```
956 *
957 * This value may not be used to build other algorithms that are
958 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100959 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100960 *
961 * This value may not be used to build an algorithm specification to
962 * perform an operation. It is only valid to build policies.
963 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100964#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100965
Gilles Peskine449bd832023-01-11 14:50:10 +0100966#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
967#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100968/** Macro to build an HMAC algorithm.
969 *
970 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
971 *
972 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
973 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
974 *
975 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100976 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100977 * hash algorithm.
978 */
979#define PSA_ALG_HMAC(hash_alg) \
980 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
981
982#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
983 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
984
985/** Whether the specified algorithm is an HMAC algorithm.
986 *
987 * HMAC is a family of MAC algorithms that are based on a hash function.
988 *
989 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
990 *
991 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
992 * This macro may return either 0 or 1 if \p alg is not a supported
993 * algorithm identifier.
994 */
995#define PSA_ALG_IS_HMAC(alg) \
996 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
997 PSA_ALG_HMAC_BASE)
998
999/* In the encoding of a MAC algorithm, the bits corresponding to
1000 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1001 * truncated. As an exception, the value 0 means the untruncated algorithm,
1002 * whatever its length is. The length is encoded in 6 bits, so it can
1003 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1004 * to full length is correctly encoded as 0 and any non-trivial truncation
1005 * is correctly encoded as a value between 1 and 63. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001006#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001007#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001008
Steven Cooremand927ed72021-02-22 19:59:35 +01001009/* In the encoding of a MAC algorithm, the bit corresponding to
1010 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001011 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1012 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001013 * same base class and having a (potentially truncated) MAC length greater or
1014 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001015#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001016
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001017/** Macro to build a truncated MAC algorithm.
1018 *
1019 * A truncated MAC algorithm is identical to the corresponding MAC
1020 * algorithm except that the MAC value for the truncated algorithm
1021 * consists of only the first \p mac_length bytes of the MAC value
1022 * for the untruncated algorithm.
1023 *
1024 * \note This macro may allow constructing algorithm identifiers that
1025 * are not valid, either because the specified length is larger
1026 * than the untruncated MAC or because the specified length is
1027 * smaller than permitted by the implementation.
1028 *
1029 * \note It is implementation-defined whether a truncated MAC that
1030 * is truncated to the same length as the MAC of the untruncated
1031 * algorithm is considered identical to the untruncated algorithm
1032 * for policy comparison purposes.
1033 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001034 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001035 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001036 * is true). This may be a truncated or untruncated
1037 * MAC algorithm.
1038 * \param mac_length Desired length of the truncated MAC in bytes.
1039 * This must be at most the full length of the MAC
1040 * and must be at least an implementation-specified
1041 * minimum. The implementation-specified minimum
1042 * shall not be zero.
1043 *
1044 * \return The corresponding MAC algorithm with the specified
1045 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001046 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001047 * MAC algorithm or if \p mac_length is too small or
1048 * too large for the specified MAC algorithm.
1049 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001050#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1051 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1052 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001053 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1054
1055/** Macro to build the base MAC algorithm corresponding to a truncated
1056 * MAC algorithm.
1057 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001058 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001059 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001060 * is true). This may be a truncated or untruncated
1061 * MAC algorithm.
1062 *
1063 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001064 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001065 * MAC algorithm.
1066 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001067#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1068 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1069 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001070
1071/** Length to which a MAC algorithm is truncated.
1072 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001073 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001074 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001075 * is true).
1076 *
1077 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001078 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1079 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001080 * MAC algorithm.
1081 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001082#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1083 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001084
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001085/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001086 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001087 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001088 * sharing the same base algorithm, and where the (potentially truncated) MAC
1089 * length of the specific algorithm is equal to or larger then the wildcard
1090 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001091 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001092 * \note When setting the minimum required MAC length to less than the
1093 * smallest MAC length allowed by the base algorithm, this effectively
1094 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001095 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001096 * \param mac_alg A MAC algorithm identifier (value of type
1097 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1098 * is true).
1099 * \param min_mac_length Desired minimum length of the message authentication
1100 * code in bytes. This must be at most the untruncated
1101 * length of the MAC and must be at least 1.
1102 *
1103 * \return The corresponding MAC wildcard algorithm with the
1104 * specified minimum length.
1105 * \return Unspecified if \p mac_alg is not a supported MAC
1106 * algorithm or if \p min_mac_length is less than 1 or
1107 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001108 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001109#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001110 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1111 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001112
Gilles Peskine449bd832023-01-11 14:50:10 +01001113#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001114/** The CBC-MAC construction over a block cipher
1115 *
1116 * \warning CBC-MAC is insecure in many cases.
1117 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1118 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001119#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001120/** The CMAC construction over a block cipher */
Gilles Peskine449bd832023-01-11 14:50:10 +01001121#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001122
1123/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1124 *
1125 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1126 *
1127 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1128 * This macro may return either 0 or 1 if \p alg is not a supported
1129 * algorithm identifier.
1130 */
1131#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1132 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1133 PSA_ALG_CIPHER_MAC_BASE)
1134
Gilles Peskine449bd832023-01-11 14:50:10 +01001135#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1136#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001137
1138/** Whether the specified algorithm is a stream cipher.
1139 *
1140 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1141 * by applying a bitwise-xor with a stream of bytes that is generated
1142 * from a key.
1143 *
1144 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1145 *
1146 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1147 * This macro may return either 0 or 1 if \p alg is not a supported
1148 * algorithm identifier or if it is not a symmetric cipher algorithm.
1149 */
1150#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1151 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Gilles Peskine449bd832023-01-11 14:50:10 +01001152 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001153
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001154/** The stream cipher mode of a stream cipher algorithm.
1155 *
1156 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001157 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001158 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001159#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001160
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001161/** The CTR stream cipher mode.
1162 *
1163 * CTR is a stream cipher which is built from a block cipher.
1164 * The underlying block cipher is determined by the key type.
1165 * For example, to use AES-128-CTR, use this algorithm with
1166 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1167 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001168#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001169
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001170/** The CFB stream cipher mode.
1171 *
1172 * The underlying block cipher is determined by the key type.
1173 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001174#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001175
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001176/** The OFB stream cipher mode.
1177 *
1178 * The underlying block cipher is determined by the key type.
1179 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001180#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001181
1182/** The XTS cipher mode.
1183 *
1184 * XTS is a cipher mode which is built from a block cipher. It requires at
1185 * least one full block of input, but beyond this minimum the input
1186 * does not need to be a whole number of blocks.
1187 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001188#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001189
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001190/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1191 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001192 * \warning ECB mode does not protect the confidentiality of the encrypted data
1193 * except in extremely narrow circumstances. It is recommended that applications
1194 * only use ECB if they need to construct an operating mode that the
1195 * implementation does not provide. Implementations are encouraged to provide
1196 * the modes that applications need in preference to supporting direct access
1197 * to ECB.
1198 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001199 * The underlying block cipher is determined by the key type.
1200 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001201 * This symmetric cipher mode can only be used with messages whose lengths are a
1202 * multiple of the block size of the chosen block cipher.
1203 *
1204 * ECB mode does not accept an initialization vector (IV). When using a
1205 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1206 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001207 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001208#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001209
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001210/** The CBC block cipher chaining mode, with no padding.
1211 *
1212 * The underlying block cipher is determined by the key type.
1213 *
1214 * This symmetric cipher mode can only be used with messages whose lengths
1215 * are whole number of blocks for the chosen block cipher.
1216 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001217#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001218
1219/** The CBC block cipher chaining mode with PKCS#7 padding.
1220 *
1221 * The underlying block cipher is determined by the key type.
1222 *
1223 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1224 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001225#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001226
Gilles Peskine449bd832023-01-11 14:50:10 +01001227#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001228
1229/** Whether the specified algorithm is an AEAD mode on a block cipher.
1230 *
1231 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1232 *
1233 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1234 * a block cipher, 0 otherwise.
1235 * This macro may return either 0 or 1 if \p alg is not a supported
1236 * algorithm identifier.
1237 */
1238#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1239 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1240 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1241
Gilles Peskine9153ec02019-02-15 13:02:02 +01001242/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001243 *
1244 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001245 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001246#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001247
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001248/** The CCM* cipher mode without authentication.
1249 *
1250 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1251 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1252 *
1253 * The underlying block cipher is determined by the key type.
1254 *
1255 * Currently only 13-byte long IV's are supported.
1256 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001257#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t) 0x04c01300)
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001258
Gilles Peskine9153ec02019-02-15 13:02:02 +01001259/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001260 *
1261 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001262 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001263#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001264
1265/** The Chacha20-Poly1305 AEAD algorithm.
1266 *
1267 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001268 *
1269 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1270 * and should reject other sizes.
1271 *
1272 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001273 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001274#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001275
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01001276/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001277 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1278 * The constants for default lengths follow this encoding.
1279 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001280#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001281#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001282
Steven Cooremand927ed72021-02-22 19:59:35 +01001283/* In the encoding of an AEAD algorithm, the bit corresponding to
1284 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001285 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1286 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001287 * same base class and having a tag length greater than or equal to the one
1288 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001289#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001290
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001291/** Macro to build a shortened AEAD algorithm.
1292 *
1293 * A shortened AEAD algorithm is similar to the corresponding AEAD
1294 * algorithm, but has an authentication tag that consists of fewer bytes.
1295 * Depending on the algorithm, the tag length may affect the calculation
1296 * of the ciphertext.
1297 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001298 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001299 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001300 * is true).
1301 * \param tag_length Desired length of the authentication tag in bytes.
1302 *
1303 * \return The corresponding AEAD algorithm with the specified
1304 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001305 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001306 * AEAD algorithm or if \p tag_length is not valid
1307 * for the specified AEAD algorithm.
1308 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001309#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001310 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1311 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001312 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskine449bd832023-01-11 14:50:10 +01001313 PSA_ALG_AEAD_TAG_LENGTH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001314
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001315/** Retrieve the tag length of a specified AEAD algorithm
1316 *
1317 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001318 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001319 * is true).
1320 *
1321 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001322 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001323 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001324 */
1325#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1326 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
Gilles Peskine449bd832023-01-11 14:50:10 +01001327 PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001328
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001329/** Calculate the corresponding AEAD algorithm with the default tag length.
1330 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001331 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001332 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001333 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001334 * \return The corresponding AEAD algorithm with the default
1335 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001336 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001337#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001338 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001339 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1340 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1341 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001342 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001343#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1344 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1345 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001346 ref :
1347
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001348/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001349 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001350 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001351 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001352 * algorithm is equal to or larger then the minimum tag length specified by the
1353 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001354 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001355 * \note When setting the minimum required tag length to less than the
1356 * smallest tag length allowed by the base algorithm, this effectively
1357 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001358 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001359 * \param aead_alg An AEAD algorithm identifier (value of type
1360 * #psa_algorithm_t such that
1361 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1362 * \param min_tag_length Desired minimum length of the authentication tag in
1363 * bytes. This must be at least 1 and at most the largest
1364 * allowed tag length of the algorithm.
1365 *
1366 * \return The corresponding AEAD wildcard algorithm with the
1367 * specified minimum length.
1368 * \return Unspecified if \p aead_alg is not a supported
1369 * AEAD algorithm or if \p min_tag_length is less than 1
1370 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001371 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001372#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001373 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1374 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001375
Gilles Peskine449bd832023-01-11 14:50:10 +01001376#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001377/** RSA PKCS#1 v1.5 signature with hashing.
1378 *
1379 * This is the signature scheme defined by RFC 8017
1380 * (PKCS#1: RSA Cryptography Specifications) under the name
1381 * RSASSA-PKCS1-v1_5.
1382 *
1383 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1384 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001385 * This includes #PSA_ALG_ANY_HASH
1386 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001387 *
1388 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001389 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001390 * hash algorithm.
1391 */
1392#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1393 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1394/** Raw PKCS#1 v1.5 signature.
1395 *
1396 * The input to this algorithm is the DigestInfo structure used by
1397 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1398 * steps 3&ndash;6.
1399 */
1400#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1401#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1402 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1403
Gilles Peskine449bd832023-01-11 14:50:10 +01001404#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1405#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001406/** RSA PSS signature with hashing.
1407 *
1408 * This is the signature scheme defined by RFC 8017
1409 * (PKCS#1: RSA Cryptography Specifications) under the name
1410 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu44baacd2022-06-17 10:25:05 +01001411 * a salt length equal to the length of the hash, or the largest
1412 * possible salt length for the algorithm and key size if that is
1413 * smaller than the hash length. The specified hash algorithm is
1414 * used to hash the input message, to create the salted hash, and
1415 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001416 *
1417 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1418 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001419 * This includes #PSA_ALG_ANY_HASH
1420 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001421 *
1422 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001423 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001424 * hash algorithm.
1425 */
1426#define PSA_ALG_RSA_PSS(hash_alg) \
1427 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001428
1429/** RSA PSS signature with hashing with relaxed verification.
1430 *
1431 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1432 * but allows an arbitrary salt length (including \c 0) when verifying a
1433 * signature.
1434 *
1435 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1436 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1437 * This includes #PSA_ALG_ANY_HASH
1438 * when specifying the algorithm in a usage policy.
1439 *
1440 * \return The corresponding RSA PSS signature algorithm.
1441 * \return Unspecified if \p hash_alg is not a supported
1442 * hash algorithm.
1443 */
1444#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1445 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1446
1447/** Whether the specified algorithm is RSA PSS with standard salt.
1448 *
1449 * \param alg An algorithm value or an algorithm policy wildcard.
1450 *
1451 * \return 1 if \p alg is of the form
1452 * #PSA_ALG_RSA_PSS(\c hash_alg),
1453 * where \c hash_alg is a hash algorithm or
1454 * #PSA_ALG_ANY_HASH. 0 otherwise.
1455 * This macro may return either 0 or 1 if \p alg is not
1456 * a supported algorithm identifier or policy.
1457 */
1458#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001459 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1460
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001461/** Whether the specified algorithm is RSA PSS with any salt.
1462 *
1463 * \param alg An algorithm value or an algorithm policy wildcard.
1464 *
1465 * \return 1 if \p alg is of the form
1466 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1467 * where \c hash_alg is a hash algorithm or
1468 * #PSA_ALG_ANY_HASH. 0 otherwise.
1469 * This macro may return either 0 or 1 if \p alg is not
1470 * a supported algorithm identifier or policy.
1471 */
1472#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1473 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1474
1475/** Whether the specified algorithm is RSA PSS.
1476 *
1477 * This includes any of the RSA PSS algorithm variants, regardless of the
1478 * constraints on salt length.
1479 *
1480 * \param alg An algorithm value or an algorithm policy wildcard.
1481 *
1482 * \return 1 if \p alg is of the form
1483 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1484 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1485 * where \c hash_alg is a hash algorithm or
1486 * #PSA_ALG_ANY_HASH. 0 otherwise.
1487 * This macro may return either 0 or 1 if \p alg is not
1488 * a supported algorithm identifier or policy.
1489 */
1490#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001491 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1492 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001493
Gilles Peskine449bd832023-01-11 14:50:10 +01001494#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001495/** ECDSA signature with hashing.
1496 *
1497 * This is the ECDSA signature scheme defined by ANSI X9.62,
1498 * with a random per-message secret number (*k*).
1499 *
1500 * The representation of the signature as a byte string consists of
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001501 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001502 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1503 * of the base point of the curve in octets. Each value is represented
1504 * in big-endian order (most significant octet first).
1505 *
1506 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1507 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001508 * This includes #PSA_ALG_ANY_HASH
1509 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001510 *
1511 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001512 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001513 * hash algorithm.
1514 */
1515#define PSA_ALG_ECDSA(hash_alg) \
1516 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1517/** ECDSA signature without hashing.
1518 *
1519 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1520 * without specifying a hash algorithm. This algorithm may only be
1521 * used to sign or verify a sequence of bytes that should be an
1522 * already-calculated hash. Note that the input is padded with
1523 * zeros on the left or truncated on the left as required to fit
1524 * the curve size.
1525 */
1526#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Gilles Peskine449bd832023-01-11 14:50:10 +01001527#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001528/** Deterministic ECDSA signature with hashing.
1529 *
1530 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1531 *
1532 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1533 *
1534 * Note that when this algorithm is used for verification, signatures
1535 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1536 * same private key are accepted. In other words,
1537 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1538 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1539 *
1540 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1541 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001542 * This includes #PSA_ALG_ANY_HASH
1543 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001544 *
1545 * \return The corresponding deterministic ECDSA signature
1546 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001547 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001548 * hash algorithm.
1549 */
1550#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1551 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine449bd832023-01-11 14:50:10 +01001552#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001553#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001554 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001555 PSA_ALG_ECDSA_BASE)
1556#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001557 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001558#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1559 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1560#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1561 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1562
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001563/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1564 * using standard parameters.
1565 *
1566 * Contexts are not supported in the current version of this specification
1567 * because there is no suitable signature interface that can take the
1568 * context as a parameter. A future version of this specification may add
1569 * suitable functions and extend this algorithm to support contexts.
1570 *
1571 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1572 * In this specification, the following curves are supported:
1573 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1574 * in RFC 8032.
1575 * The curve is Edwards25519.
1576 * The hash function used internally is SHA-512.
1577 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1578 * in RFC 8032.
1579 * The curve is Edwards448.
1580 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001581 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001582 *
1583 * This algorithm can be used with psa_sign_message() and
1584 * psa_verify_message(). Since there is no prehashing, it cannot be used
1585 * with psa_sign_hash() or psa_verify_hash().
1586 *
1587 * The signature format is the concatenation of R and S as defined by
1588 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1589 * string for Ed448).
1590 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001591#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001592
Gilles Peskine449bd832023-01-11 14:50:10 +01001593#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001594#define PSA_ALG_IS_HASH_EDDSA(alg) \
1595 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1596
1597/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001598 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001599 *
1600 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1601 *
1602 * This algorithm is Ed25519 as specified in RFC 8032.
1603 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001604 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001605 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001606 *
1607 * This is a hash-and-sign algorithm: to calculate a signature,
1608 * you can either:
1609 * - call psa_sign_message() on the message;
1610 * - or calculate the SHA-512 hash of the message
1611 * with psa_hash_compute()
1612 * or with a multi-part hash operation started with psa_hash_setup(),
1613 * using the hash algorithm #PSA_ALG_SHA_512,
1614 * then sign the calculated hash with psa_sign_hash().
1615 * Verifying a signature is similar, using psa_verify_message() or
1616 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001617 */
1618#define PSA_ALG_ED25519PH \
1619 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1620
1621/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1622 * using SHAKE256 and the Edwards448 curve.
1623 *
1624 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1625 *
1626 * This algorithm is Ed448 as specified in RFC 8032.
1627 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001628 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001629 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001630 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001631 *
1632 * This is a hash-and-sign algorithm: to calculate a signature,
1633 * you can either:
1634 * - call psa_sign_message() on the message;
1635 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1636 * with psa_hash_compute()
1637 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001638 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001639 * then sign the calculated hash with psa_sign_hash().
1640 * Verifying a signature is similar, using psa_verify_message() or
1641 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001642 */
1643#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001644 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001645
Gilles Peskine6d400852021-02-24 21:39:52 +01001646/* Default definition, to be overridden if the library is extended with
1647 * more hash-and-sign algorithms that we want to keep out of this header
1648 * file. */
1649#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1650
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001651/** Whether the specified algorithm is a signature algorithm that can be used
1652 * with psa_sign_hash() and psa_verify_hash().
1653 *
1654 * This encompasses all strict hash-and-sign algorithms categorized by
1655 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1656 * paradigm more loosely:
1657 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1658 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1659 *
1660 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1661 *
1662 * \return 1 if alg is a signature algorithm that can be used to sign a
1663 * hash. 0 if alg is a signature algorithm that can only be used
1664 * to sign a message. 0 if alg is not a signature algorithm.
1665 * This macro can return either 0 or 1 if alg is not a
1666 * supported algorithm identifier.
1667 */
1668#define PSA_ALG_IS_SIGN_HASH(alg) \
1669 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1670 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1671 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1672
1673/** Whether the specified algorithm is a signature algorithm that can be used
1674 * with psa_sign_message() and psa_verify_message().
1675 *
1676 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1677 *
1678 * \return 1 if alg is a signature algorithm that can be used to sign a
1679 * message. 0 if \p alg is a signature algorithm that can only be used
1680 * to sign an already-calculated hash. 0 if \p alg is not a signature
1681 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1682 * supported algorithm identifier.
1683 */
1684#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001685 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001686
Gilles Peskined35b4892019-01-14 16:02:15 +01001687/** Whether the specified algorithm is a hash-and-sign algorithm.
1688 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001689 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1690 * structured in two parts: first the calculation of a hash in a way that
1691 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001692 * hash value and the key. Hash-and-sign algorithms encode the hash
1693 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1694 * to extract this algorithm.
1695 *
1696 * Thus, for a hash-and-sign algorithm,
1697 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1698 * ```
1699 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1700 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1701 * ```
1702 * Most usefully, separating the hash from the signature allows the hash
1703 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1704 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1705 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001706 *
1707 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1708 *
1709 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1710 * This macro may return either 0 or 1 if \p alg is not a supported
1711 * algorithm identifier.
1712 */
1713#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001714 (PSA_ALG_IS_SIGN_HASH(alg) && \
1715 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001716
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001717/** Get the hash used by a hash-and-sign signature algorithm.
1718 *
1719 * A hash-and-sign algorithm is a signature algorithm which is
1720 * composed of two phases: first a hashing phase which does not use
1721 * the key and produces a hash of the input message, then a signing
1722 * phase which only uses the hash and the key and not the message
1723 * itself.
1724 *
1725 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1726 * #PSA_ALG_IS_SIGN(\p alg) is true).
1727 *
1728 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1729 * algorithm.
1730 * \return 0 if \p alg is a signature algorithm that does not
1731 * follow the hash-and-sign structure.
1732 * \return Unspecified if \p alg is not a signature algorithm or
1733 * if it is not supported by the implementation.
1734 */
1735#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001736 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001737 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1738 0)
1739
1740/** RSA PKCS#1 v1.5 encryption.
1741 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001742#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001743
Gilles Peskine449bd832023-01-11 14:50:10 +01001744#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001745/** RSA OAEP encryption.
1746 *
1747 * This is the encryption scheme defined by RFC 8017
1748 * (PKCS#1: RSA Cryptography Specifications) under the name
1749 * RSAES-OAEP, with the message generation function MGF1.
1750 *
1751 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1752 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1753 * for MGF1.
1754 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001755 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001756 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001757 * hash algorithm.
1758 */
1759#define PSA_ALG_RSA_OAEP(hash_alg) \
1760 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1761#define PSA_ALG_IS_RSA_OAEP(alg) \
1762 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1763#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1764 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1765 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1766 0)
1767
Gilles Peskine449bd832023-01-11 14:50:10 +01001768#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001769/** Macro to build an HKDF algorithm.
1770 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001771 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001772 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001773 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001774 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001775 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001776 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1777 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1778 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1779 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001780 * starting to generate output.
1781 *
Przemek Stekiel73f97d42022-06-03 09:05:08 +02001782 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1783 * if the salt is longer than the block size of the hash algorithm; then
1784 * pad with null bytes up to the block size. As a result, it is possible
1785 * for distinct salt inputs to result in the same outputs. To ensure
1786 * unique outputs, it is recommended to use a fixed length for salt values.
1787 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001788 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1789 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1790 *
1791 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001792 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001793 * hash algorithm.
1794 */
1795#define PSA_ALG_HKDF(hash_alg) \
1796 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1797/** Whether the specified algorithm is an HKDF algorithm.
1798 *
1799 * HKDF is a family of key derivation algorithms that are based on a hash
1800 * function and the HMAC construction.
1801 *
1802 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1803 *
1804 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1805 * This macro may return either 0 or 1 if \c alg is not a supported
1806 * key derivation algorithm identifier.
1807 */
1808#define PSA_ALG_IS_HKDF(alg) \
1809 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1810#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1811 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1812
Gilles Peskine449bd832023-01-11 14:50:10 +01001813#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t) 0x08000400)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001814/** Macro to build an HKDF-Extract algorithm.
1815 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001816 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001817 * HKDF-Extract using HMAC-SHA-256.
1818 *
1819 * This key derivation algorithm uses the following inputs:
Przemek Stekielb398d862022-05-18 15:43:54 +02001820 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001821 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1822 * "extract" step.
Przemek Stekielb398d862022-05-18 15:43:54 +02001823 * The inputs are mandatory and must be passed in the order above.
1824 * Each input may only be passed once.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001825 *
1826 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1827 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1828 * as a separate algorithm for the sake of protocols that use it as a
1829 * building block. It may also be a slight performance optimization
1830 * in applications that use HKDF with the same salt and key but many
1831 * different info strings.
1832 *
Przemek Stekielb398d862022-05-18 15:43:54 +02001833 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1834 * if the salt is longer than the block size of the hash algorithm; then
1835 * pad with null bytes up to the block size. As a result, it is possible
1836 * for distinct salt inputs to result in the same outputs. To ensure
1837 * unique outputs, it is recommended to use a fixed length for salt values.
1838 *
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001839 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1840 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1841 *
1842 * \return The corresponding HKDF-Extract algorithm.
1843 * \return Unspecified if \p hash_alg is not a supported
1844 * hash algorithm.
1845 */
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001846#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1847 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1848/** Whether the specified algorithm is an HKDF-Extract algorithm.
1849 *
1850 * HKDF-Extract is a family of key derivation algorithms that are based
1851 * on a hash function and the HMAC construction.
1852 *
1853 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1854 *
1855 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1856 * This macro may return either 0 or 1 if \c alg is not a supported
1857 * key derivation algorithm identifier.
1858 */
1859#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1860 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1861
Gilles Peskine449bd832023-01-11 14:50:10 +01001862#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t) 0x08000500)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001863/** Macro to build an HKDF-Expand algorithm.
1864 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001865 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001866 * HKDF-Expand using HMAC-SHA-256.
1867 *
1868 * This key derivation algorithm uses the following inputs:
Przemek Stekiel459ee352022-06-02 11:16:52 +02001869 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001870 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1871 *
1872 * The inputs are mandatory and must be passed in the order above.
1873 * Each input may only be passed once.
1874 *
1875 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1876 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1877 * a separate algorithm for the sake of protocols that use it as a building
1878 * block. It may also be a slight performance optimization in applications
1879 * that use HKDF with the same salt and key but many different info strings.
1880 *
1881 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1882 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1883 *
1884 * \return The corresponding HKDF-Expand algorithm.
1885 * \return Unspecified if \p hash_alg is not a supported
1886 * hash algorithm.
1887 */
1888#define PSA_ALG_HKDF_EXPAND(hash_alg) \
1889 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Przemek Stekielebf62812022-05-11 14:16:05 +02001890/** Whether the specified algorithm is an HKDF-Expand algorithm.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001891 *
1892 * HKDF-Expand is a family of key derivation algorithms that are based
1893 * on a hash function and the HMAC construction.
1894 *
1895 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1896 *
1897 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1898 * This macro may return either 0 or 1 if \c alg is not a supported
1899 * key derivation algorithm identifier.
1900 */
1901#define PSA_ALG_IS_HKDF_EXPAND(alg) \
1902 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1903
Przemek Stekiela29b4882022-06-02 11:37:03 +02001904/** Whether the specified algorithm is an HKDF or HKDF-Extract or
1905 * HKDF-Expand algorithm.
1906 *
1907 *
1908 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1909 *
1910 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1911 * This macro may return either 0 or 1 if \c alg is not a supported
1912 * key derivation algorithm identifier.
1913 */
1914#define PSA_ALG_IS_ANY_HKDF(alg) \
1915 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1916 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1917 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1918
Gilles Peskine449bd832023-01-11 14:50:10 +01001919#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001920/** Macro to build a TLS-1.2 PRF algorithm.
1921 *
1922 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1923 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1924 * used with either SHA-256 or SHA-384.
1925 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001926 * This key derivation algorithm uses the following inputs, which must be
1927 * passed in the order given here:
1928 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001929 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1930 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001931 *
1932 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001933 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001934 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001935 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001936 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001937 * TLS 1.2 PRF using HMAC-SHA-256.
1938 *
1939 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1940 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1941 *
1942 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001943 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001944 * hash algorithm.
1945 */
1946#define PSA_ALG_TLS12_PRF(hash_alg) \
1947 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1948
1949/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1950 *
1951 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1952 *
1953 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1954 * This macro may return either 0 or 1 if \c alg is not a supported
1955 * key derivation algorithm identifier.
1956 */
1957#define PSA_ALG_IS_TLS12_PRF(alg) \
1958 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1959#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1960 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1961
Gilles Peskine449bd832023-01-11 14:50:10 +01001962#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001963/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1964 *
1965 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1966 * from the PreSharedKey (PSK) through the application of padding
1967 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1968 * The latter is based on HMAC and can be used with either SHA-256
1969 * or SHA-384.
1970 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001971 * This key derivation algorithm uses the following inputs, which must be
1972 * passed in the order given here:
1973 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001974 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1975 * computation of the premaster secret. This input is optional;
1976 * if omitted, it defaults to a string of null bytes with the same length
1977 * as the secret (PSK) input.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001978 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1979 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001980 *
1981 * For the application to TLS-1.2, the seed (which is
1982 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1983 * ClientHello.Random + ServerHello.Random,
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001984 * the label is "master secret" or "extended master secret" and
1985 * the other secret depends on the key exchange specified in the cipher suite:
1986 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1987 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1988 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1989 * (RFC 5489, Section 2), the other secret should be the output of the
1990 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1991 * The recommended way to pass this input is to use a key derivation
1992 * algorithm constructed as
1993 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1994 * and to call psa_key_derivation_key_agreement(). Alternatively,
1995 * this input may be an output of `psa_raw_key_agreement()` passed with
1996 * psa_key_derivation_input_bytes(), or an equivalent input passed with
1997 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
1998 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
1999 * should be the 48-byte client challenge (the PreMasterSecret of
2000 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2001 * a 46-byte random string chosen by the client. On the server, this is
2002 * typically an output of psa_asymmetric_decrypt() using
2003 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2004 * with `psa_key_derivation_input_bytes()`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002005 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002006 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002007 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2008 *
2009 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2010 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2011 *
2012 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01002013 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002014 * hash algorithm.
2015 */
2016#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2017 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2018
2019/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2020 *
2021 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2022 *
2023 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2024 * This macro may return either 0 or 1 if \c alg is not a supported
2025 * key derivation algorithm identifier.
2026 */
2027#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2028 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2029#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2030 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2031
Andrzej Kurek1fafb1f2022-09-16 07:19:49 -04002032/* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2033 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2034 * will use to derive the session secret, as defined by step 2 of
2035 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2036 * Uses PSA_ALG_SHA_256.
2037 * This function takes a single input:
2038 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2039 * The only supported curve is secp256r1 (the 256-bit curve in
2040 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
Andrzej Kureke09aff82022-09-26 10:59:31 -04002041 * The output has to be read as a single chunk of 32 bytes, defined as
2042 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002043 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002044#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t) 0x08000609)
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002045
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002046/* This flag indicates whether the key derivation algorithm is suitable for
2047 * use on low-entropy secrets such as password - these algorithms are also
2048 * known as key stretching or password hashing schemes. These are also the
2049 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002050 *
2051 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002052 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002053#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t) 0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002054
Gilles Peskine449bd832023-01-11 14:50:10 +01002055#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t) 0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002056/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002057 *
2058 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002059 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2060 * HMAC with the specified hash.
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002061 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002062 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002063 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002064 * This key derivation algorithm uses the following inputs, which must be
2065 * provided in the following order:
2066 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002067 * This input step must be used exactly once.
2068 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2069 * This input step must be used one or more times; if used several times, the
2070 * inputs will be concatenated. This can be used to build the final salt
2071 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002072 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002073 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002074 *
2075 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2076 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2077 *
2078 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2079 * \return Unspecified if \p hash_alg is not a supported
2080 * hash algorithm.
2081 */
2082#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2083 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2084
2085/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2086 *
2087 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2088 *
2089 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2090 * This macro may return either 0 or 1 if \c alg is not a supported
2091 * key derivation algorithm identifier.
2092 */
2093#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2094 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Kusumit Ghoderao10cc6bd2023-05-24 12:35:14 +05302095#define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg) \
2096 (PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002097/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2098 *
2099 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2100 * This macro specifies the PBKDF2 algorithm constructed using the
2101 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2102 *
2103 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02002104 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002105 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002106#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t) 0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002107
Kusumit Ghoderao9ab03c32023-07-27 21:14:05 +05302108#define PSA_ALG_IS_PBKDF2(kdf_alg) \
2109 (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
Kusumit Ghoderao9928ca12023-08-16 11:48:27 +05302110 ((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
Kusumit Ghoderao9ab03c32023-07-27 21:14:05 +05302111
Gilles Peskine449bd832023-01-11 14:50:10 +01002112#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
2113#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002114
Gilles Peskine6843c292019-01-18 16:44:49 +01002115/** Macro to build a combined algorithm that chains a key agreement with
2116 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002117 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002118 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2119 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2120 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2121 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002122 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002123 * \return The corresponding key agreement and derivation
2124 * algorithm.
2125 * \return Unspecified if \p ka_alg is not a supported
2126 * key agreement algorithm or \p kdf_alg is not a
2127 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002128 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002129#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2130 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002131
2132#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2133 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2134
Gilles Peskine6843c292019-01-18 16:44:49 +01002135#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2136 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002137
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002138/** Whether the specified algorithm is a raw key agreement algorithm.
2139 *
2140 * A raw key agreement algorithm is one that does not specify
2141 * a key derivation function.
2142 * Usually, raw key agreement algorithms are constructed directly with
2143 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02002144 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002145 *
2146 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2147 *
2148 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2149 * This macro may return either 0 or 1 if \p alg is not a supported
2150 * algorithm identifier.
2151 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002152#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002153 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2154 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01002155
2156#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2157 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2158
2159/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002160 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002161 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002162 * `g^{ab}` in big-endian format.
2163 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2164 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002165 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002166#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002167
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002168/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2169 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002170 * This includes the raw finite field Diffie-Hellman algorithm as well as
2171 * finite-field Diffie-Hellman followed by any supporter key derivation
2172 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002173 *
2174 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2175 *
2176 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2177 * This macro may return either 0 or 1 if \c alg is not a supported
2178 * key agreement algorithm identifier.
2179 */
2180#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002181 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002182
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002183/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2184 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002185 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002186 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2187 * `m` is the bit size associated with the curve, i.e. the bit size of the
2188 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2189 * the byte containing the most significant bit of the shared secret
2190 * is padded with zero bits. The byte order is either little-endian
2191 * or big-endian depending on the curve type.
2192 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01002193 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002194 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2195 * in little-endian byte order.
2196 * The bit size is 448 for Curve448 and 255 for Curve25519.
2197 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002198 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002199 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2200 * in big-endian byte order.
2201 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2202 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002203 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002204 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2205 * in big-endian byte order.
2206 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002207 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002208#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002209
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002210/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2211 * algorithm.
2212 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002213 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2214 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2215 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002216 *
2217 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2218 *
2219 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2220 * 0 otherwise.
2221 * This macro may return either 0 or 1 if \c alg is not a supported
2222 * key agreement algorithm identifier.
2223 */
2224#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002225 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002226
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002227/** Whether the specified algorithm encoding is a wildcard.
2228 *
2229 * Wildcard values may only be used to set the usage algorithm field in
2230 * a policy, not to perform an operation.
2231 *
2232 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2233 *
2234 * \return 1 if \c alg is a wildcard algorithm encoding.
2235 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2236 * an operation).
2237 * \return This macro may return either 0 or 1 if \c alg is not a supported
2238 * algorithm identifier.
2239 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002240#define PSA_ALG_IS_WILDCARD(alg) \
2241 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2242 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2243 PSA_ALG_IS_MAC(alg) ? \
2244 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2245 PSA_ALG_IS_AEAD(alg) ? \
2246 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002247 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002248
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002249/** Get the hash used by a composite algorithm.
2250 *
2251 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2252 *
2253 * \return The underlying hash algorithm if alg is a composite algorithm that
2254 * uses a hash algorithm.
2255 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002256 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002257 */
2258#define PSA_ALG_GET_HASH(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002259 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002260
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002261/**@}*/
2262
2263/** \defgroup key_lifetimes Key lifetimes
2264 * @{
2265 */
2266
Gilles Peskine79733992022-06-20 18:41:20 +02002267/* Note that location and persistence level values are embedded in the
2268 * persistent key store, as part of key metadata. As a consequence, they
2269 * must not be changed (unless the storage format version changes).
2270 */
2271
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002272/** The default lifetime for volatile keys.
2273 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002274 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002275 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002276 *
2277 * A key with this lifetime is typically stored in the RAM area of the
2278 * PSA Crypto subsystem. However this is an implementation choice.
2279 * If an implementation stores data about the key in a non-volatile memory,
2280 * it must release all the resources associated with the key and erase the
2281 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002282 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002283#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002284
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002285/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002286 *
2287 * A persistent key remains in storage until it is explicitly destroyed or
2288 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002289 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002290 * provide their own mechanism (for example to perform a factory reset,
2291 * to prepare for device refurbishment, or to uninstall an application).
2292 *
2293 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002294 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002295 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002296 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002297#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002298
Gilles Peskineaff11812020-05-04 19:03:10 +02002299/** The persistence level of volatile keys.
2300 *
2301 * See ::psa_key_persistence_t for more information.
2302 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002303#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002304
2305/** The default persistence level for persistent keys.
2306 *
2307 * See ::psa_key_persistence_t for more information.
2308 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002309#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002310
2311/** A persistence level indicating that a key is never destroyed.
2312 *
2313 * See ::psa_key_persistence_t for more information.
2314 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002315#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002316
2317#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002318 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002319
2320#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002321 ((psa_key_location_t) ((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002322
2323/** Whether a key lifetime indicates that the key is volatile.
2324 *
2325 * A volatile key is automatically destroyed by the implementation when
2326 * the application instance terminates. In particular, a volatile key
2327 * is automatically destroyed on a power reset of the device.
2328 *
2329 * A key that is not volatile is persistent. Persistent keys are
2330 * preserved until the application explicitly destroys them or until an
2331 * implementation-specific device management event occurs (for example,
2332 * a factory reset).
2333 *
2334 * \param lifetime The lifetime value to query (value of type
2335 * ::psa_key_lifetime_t).
2336 *
2337 * \return \c 1 if the key is volatile, otherwise \c 0.
2338 */
2339#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2340 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002341 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002342
Gilles Peskined133bb22021-04-21 20:05:59 +02002343/** Whether a key lifetime indicates that the key is read-only.
2344 *
2345 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2346 * They must be created through platform-specific means that bypass the API.
2347 *
2348 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002349 * consider a platform with multiple levels of privilege, where a
2350 * low-privilege application can use a key but is not allowed to destroy
2351 * it, and the platform exposes the key to the application with a read-only
2352 * lifetime. High-privilege code can destroy the key even though the
2353 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002354 *
2355 * \param lifetime The lifetime value to query (value of type
2356 * ::psa_key_lifetime_t).
2357 *
2358 * \return \c 1 if the key is read-only, otherwise \c 0.
2359 */
2360#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2361 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2362 PSA_KEY_PERSISTENCE_READ_ONLY)
2363
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002364/** Construct a lifetime from a persistence level and a location.
2365 *
2366 * \param persistence The persistence level
2367 * (value of type ::psa_key_persistence_t).
2368 * \param location The location indicator
2369 * (value of type ::psa_key_location_t).
2370 *
2371 * \return The constructed lifetime value.
2372 */
2373#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2374 ((location) << 8 | (persistence))
2375
Gilles Peskineaff11812020-05-04 19:03:10 +02002376/** The local storage area for persistent keys.
2377 *
2378 * This storage area is available on all systems that can store persistent
2379 * keys without delegating the storage to a third-party cryptoprocessor.
2380 *
2381 * See ::psa_key_location_t for more information.
2382 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002383#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002384
Gilles Peskine449bd832023-01-11 14:50:10 +01002385#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002386
Gilles Peskine79733992022-06-20 18:41:20 +02002387/* Note that key identifier values are embedded in the
2388 * persistent key store, as part of key metadata. As a consequence, they
2389 * must not be changed (unless the storage format version changes).
2390 */
2391
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002392/** The null key identifier.
2393 */
Gilles Peskinea6516072023-01-04 19:52:38 +01002394/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002395#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +01002396/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002397/** The minimum value for a key identifier chosen by the application.
2398 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002399#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002400/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002401 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002402#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002403/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002404 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002405#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002406/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002407 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002408#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002409
Ronald Cron7424f0d2020-09-14 16:17:41 +02002410
2411#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2412
Gilles Peskine449bd832023-01-11 14:50:10 +01002413#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2414#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2415#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002416
2417/** Utility to initialize a key identifier at runtime.
2418 *
2419 * \param unused Unused parameter.
2420 * \param key_id Identifier of the key.
2421 */
2422static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002423 unsigned int unused, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002424{
Gilles Peskine449bd832023-01-11 14:50:10 +01002425 (void) unused;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002426
Gilles Peskine449bd832023-01-11 14:50:10 +01002427 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002428}
2429
2430/** Compare two key identifiers.
2431 *
2432 * \param id1 First key identifier.
2433 * \param id2 Second key identifier.
2434 *
2435 * \return Non-zero if the two key identifier are equal, zero otherwise.
2436 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002437static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2438 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002439{
Gilles Peskine449bd832023-01-11 14:50:10 +01002440 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002441}
2442
Ronald Cronc4d1b512020-07-31 11:26:37 +02002443/** Check whether a key identifier is null.
2444 *
2445 * \param key Key identifier.
2446 *
2447 * \return Non-zero if the key identifier is null, zero otherwise.
2448 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002449static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002450{
Gilles Peskine449bd832023-01-11 14:50:10 +01002451 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002452}
2453
Ronald Cron7424f0d2020-09-14 16:17:41 +02002454#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2455
Gilles Peskine449bd832023-01-11 14:50:10 +01002456#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2457#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2458#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
Ronald Cron7424f0d2020-09-14 16:17:41 +02002459
2460/** Utility to initialize a key identifier at runtime.
2461 *
2462 * \param owner_id Identifier of the key owner.
2463 * \param key_id Identifier of the key.
2464 */
2465static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002466 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002467{
Gilles Peskine449bd832023-01-11 14:50:10 +01002468 return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2469 .MBEDTLS_PRIVATE(owner) = owner_id };
Ronald Cron7424f0d2020-09-14 16:17:41 +02002470}
2471
2472/** Compare two key identifiers.
2473 *
2474 * \param id1 First key identifier.
2475 * \param id2 Second key identifier.
2476 *
2477 * \return Non-zero if the two key identifier are equal, zero otherwise.
2478 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002479static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2480 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002481{
Gilles Peskine449bd832023-01-11 14:50:10 +01002482 return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2483 mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
Ronald Cron7424f0d2020-09-14 16:17:41 +02002484}
2485
Ronald Cronc4d1b512020-07-31 11:26:37 +02002486/** Check whether a key identifier is null.
2487 *
2488 * \param key Key identifier.
2489 *
2490 * \return Non-zero if the key identifier is null, zero otherwise.
2491 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002492static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002493{
Gilles Peskine449bd832023-01-11 14:50:10 +01002494 return key.MBEDTLS_PRIVATE(key_id) == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002495}
2496
Ronald Cron7424f0d2020-09-14 16:17:41 +02002497#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002498
2499/**@}*/
2500
2501/** \defgroup policy Key policies
2502 * @{
2503 */
2504
Gilles Peskine79733992022-06-20 18:41:20 +02002505/* Note that key usage flags are embedded in the
2506 * persistent key store, as part of key metadata. As a consequence, they
2507 * must not be changed (unless the storage format version changes).
2508 */
2509
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002510/** Whether the key may be exported.
2511 *
2512 * A public key or the public part of a key pair may always be exported
2513 * regardless of the value of this permission flag.
2514 *
2515 * If a key does not have export permission, implementations shall not
2516 * allow the key to be exported in plain form from the cryptoprocessor,
2517 * whether through psa_export_key() or through a proprietary interface.
2518 * The key may however be exportable in a wrapped form, i.e. in a form
2519 * where it is encrypted by another key.
2520 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002521#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002522
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002523/** Whether the key may be copied.
2524 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002525 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002526 * with the same policy or a more restrictive policy.
2527 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002528 * For lifetimes for which the key is located in a secure element which
2529 * enforce the non-exportability of keys, copying a key outside the secure
2530 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2531 * Copying the key inside the secure element is permitted with just
2532 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2533 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002534 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2535 * is sufficient to permit the copy.
2536 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002537#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002538
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002539/** Whether the key may be used to encrypt a message.
2540 *
2541 * This flag allows the key to be used for a symmetric encryption operation,
2542 * for an AEAD encryption-and-authentication operation,
2543 * or for an asymmetric encryption operation,
2544 * if otherwise permitted by the key's type and policy.
2545 *
2546 * For a key pair, this concerns the public key.
2547 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002548#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002549
2550/** Whether the key may be used to decrypt a message.
2551 *
2552 * This flag allows the key to be used for a symmetric decryption operation,
2553 * for an AEAD decryption-and-verification operation,
2554 * or for an asymmetric decryption operation,
2555 * if otherwise permitted by the key's type and policy.
2556 *
2557 * For a key pair, this concerns the private key.
2558 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002559#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002560
2561/** Whether the key may be used to sign a message.
2562 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002563 * This flag allows the key to be used for a MAC calculation operation or for
2564 * an asymmetric message signature operation, if otherwise permitted by the
2565 * key’s type and policy.
2566 *
2567 * For a key pair, this concerns the private key.
2568 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002569#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002570
2571/** Whether the key may be used to verify a message.
2572 *
2573 * This flag allows the key to be used for a MAC verification operation or for
2574 * an asymmetric message signature verification operation, if otherwise
2575 * permitted by the key’s type and policy.
2576 *
2577 * For a key pair, this concerns the public key.
2578 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002579#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002580
2581/** Whether the key may be used to sign a message.
2582 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002583 * This flag allows the key to be used for a MAC calculation operation
2584 * or for an asymmetric signature operation,
2585 * if otherwise permitted by the key's type and policy.
2586 *
2587 * For a key pair, this concerns the private key.
2588 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002589#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002590
2591/** Whether the key may be used to verify a message signature.
2592 *
2593 * This flag allows the key to be used for a MAC verification operation
2594 * or for an asymmetric signature verification operation,
Tom Cosgrove1797b052022-12-04 17:19:59 +00002595 * if otherwise permitted by the key's type and policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002596 *
2597 * For a key pair, this concerns the public key.
2598 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002599#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002600
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002601/** Whether the key may be used to derive other keys or produce a password
2602 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002603 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002604 * This flag allows the key to be used for a key derivation operation or for
Tom Cosgrove1797b052022-12-04 17:19:59 +00002605 * a key agreement operation, if otherwise permitted by the key's type and
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002606 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002607 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002608 * If this flag is present on all keys used in calls to
2609 * psa_key_derivation_input_key() for a key derivation operation, then it
2610 * permits calling psa_key_derivation_output_bytes() or
2611 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002612 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002613#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002614
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002615/** Whether the key may be used to verify the result of a key derivation,
2616 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002617 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002618 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002619 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002620 * This flag allows the key to be used in a key derivation operation, if
Tom Cosgrove1797b052022-12-04 17:19:59 +00002621 * otherwise permitted by the key's type and policy.
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002622 *
2623 * If this flag is present on all keys used in calls to
2624 * psa_key_derivation_input_key() for a key derivation operation, then it
2625 * permits calling psa_key_derivation_verify_bytes() or
2626 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002627 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002628#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t) 0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002629
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002630/**@}*/
2631
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002632/** \defgroup derivation Key derivation
2633 * @{
2634 */
2635
Gilles Peskine79733992022-06-20 18:41:20 +02002636/* Key input steps are not embedded in the persistent storage, so you can
2637 * change them if needed: it's only an ABI change. */
2638
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002639/** A secret input for key derivation.
2640 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002641 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2642 * (passed to psa_key_derivation_input_key())
2643 * or the shared secret resulting from a key agreement
2644 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002645 *
2646 * The secret can also be a direct input (passed to
2647 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002648 * may not be used to derive keys: the operation will only allow
2649 * psa_key_derivation_output_bytes(),
2650 * psa_key_derivation_verify_bytes(), or
2651 * psa_key_derivation_verify_key(), but not
2652 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002653 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002654#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002655
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002656/** A low-entropy secret input for password hashing / key stretching.
2657 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002658 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2659 * psa_key_derivation_input_key()) or a direct input (passed to
2660 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2661 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2662 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002663 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002664 * The secret can also be a direct input (passed to
2665 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002666 * may not be used to derive keys: the operation will only allow
2667 * psa_key_derivation_output_bytes(),
2668 * psa_key_derivation_verify_bytes(), or
2669 * psa_key_derivation_verify_key(), but not
2670 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002671 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002672#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t) 0x0102)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002673
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002674/** A high-entropy additional secret input for key derivation.
2675 *
2676 * This is typically the shared secret resulting from a key agreement obtained
2677 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2678 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2679 * a direct input passed to `psa_key_derivation_input_bytes()`.
2680 */
2681#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
Gilles Peskine449bd832023-01-11 14:50:10 +01002682 ((psa_key_derivation_step_t) 0x0103)
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002683
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002684/** A label for key derivation.
2685 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002686 * This should be a direct input.
2687 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002688 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002689#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002690
2691/** A salt for key derivation.
2692 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002693 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002694 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2695 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002696 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002697#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002698
2699/** An information string for key derivation.
2700 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002701 * This should be a direct input.
2702 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002703 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002704#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002705
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002706/** A seed for key derivation.
2707 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002708 * This should be a direct input.
2709 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002710 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002711#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002712
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002713/** A cost parameter for password hashing / key stretching.
2714 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002715 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002716 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002717#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t) 0x0205)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002718
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002719/**@}*/
2720
Bence Szépkútib639d432021-04-21 10:33:54 +02002721/** \defgroup helper_macros Helper macros
2722 * @{
2723 */
2724
2725/* Helper macros */
2726
2727/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2728 * regardless of the tag length they encode.
2729 *
2730 * \param aead_alg_1 An AEAD algorithm identifier.
2731 * \param aead_alg_2 An AEAD algorithm identifier.
2732 *
2733 * \return 1 if both identifiers refer to the same AEAD algorithm,
2734 * 0 otherwise.
2735 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2736 * a supported AEAD algorithm.
2737 */
2738#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2739 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2740 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2741
2742/**@}*/
2743
Paul Elliott1265f002022-09-09 17:15:43 +01002744/**@}*/
2745
2746/** \defgroup interruptible Interruptible operations
2747 * @{
2748 */
2749
2750/** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2751 * the maximum number of ops allowed to be executed by an interruptible
2752 * function in a single call.
2753 */
Paul Elliottab7c5c82023-02-03 15:49:42 +00002754#define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
Paul Elliott1265f002022-09-09 17:15:43 +01002755
2756/**@}*/
2757
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002758#endif /* PSA_CRYPTO_VALUES_H */