blob: a17879b948d0808aa157dff7c55b6ed771137a3a [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine79733992022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Dave Rodgmane3c05852023-11-03 12:21:36 +000024 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Gilles Peskinef3b731e2018-12-12 13:38:31 +010025 */
26
27#ifndef PSA_CRYPTO_VALUES_H
28#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020029#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010030
31/** \defgroup error Error codes
32 * @{
33 */
34
David Saadab4ecc272019-02-14 13:48:10 +020035/* PSA error codes */
36
Gilles Peskine79733992022-06-20 18:41:20 +020037/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskine955993c2022-06-29 14:37:17 +020038 * etc.). Do not change the values in this section or even the expansions
39 * of each macro: it must be possible to `#include` both this header
40 * and some other PSA component's headers in the same C source,
41 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
42 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
43 * to the same sequence of tokens.
44 *
45 * If you must add a new
Gilles Peskine79733992022-06-20 18:41:20 +020046 * value, check with the Arm PSA framework group to pick one that other
47 * domains aren't already using. */
48
Gilles Peskine45873ce2023-01-04 19:50:27 +010049/* Tell uncrustify not to touch the constant definitions, otherwise
50 * it might change the spacing to something that is not PSA-compliant
51 * (e.g. adding a space after casts).
52 *
53 * *INDENT-OFF*
54 */
55
Gilles Peskinef3b731e2018-12-12 13:38:31 +010056/** The action was completed successfully. */
57#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010058
59/** An error occurred that does not correspond to any defined
60 * failure cause.
61 *
62 * Implementations may use this error code if none of the other standard
63 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020064#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010065
66/** The requested operation or a parameter is not supported
67 * by this implementation.
68 *
69 * Implementations should return this error code when an enumeration
70 * parameter such as a key type, algorithm, etc. is not recognized.
71 * If a combination of parameters is recognized and identified as
72 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** The requested action is denied by a policy.
76 *
77 * Implementations should return this error code when the parameters
78 * are recognized as valid and supported, and a policy explicitly
79 * denies the requested operation.
80 *
81 * If a subset of the parameters of a function call identify a
82 * forbidden operation, and another subset of the parameters are
83 * not valid or not supported, it is unspecified whether the function
84 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
85 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
88/** An output buffer is too small.
89 *
90 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
91 * description to determine a sufficient buffer size.
92 *
93 * Implementations should preferably return this error code only
94 * in cases when performing the operation with a larger output
95 * buffer would succeed. However implementations may return this
96 * error if a function has invalid or unsupported parameters in addition
97 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020098#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
David Saadab4ecc272019-02-14 13:48:10 +0200100/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100101 *
David Saadab4ecc272019-02-14 13:48:10 +0200102 * Implementations should return this error, when attempting
103 * to write an item (like a key) that already exists. */
104#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100105
David Saadab4ecc272019-02-14 13:48:10 +0200106/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100107 *
David Saadab4ecc272019-02-14 13:48:10 +0200108 * Implementations should return this error, if a requested item (like
109 * a key) does not exist. */
110#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100111
112/** The requested action cannot be performed in the current state.
113 *
114 * Multipart operations return this error when one of the
115 * functions is called out of sequence. Refer to the function
116 * descriptions for permitted sequencing of functions.
117 *
118 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100119 * that a key either exists or not,
120 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * as applicable.
122 *
123 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200124 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100125 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** The parameters passed to the function are invalid.
129 *
130 * Implementations may return this error any time a parameter or
131 * combination of parameters are recognized as invalid.
132 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100133 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200134 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100135 * instead.
136 */
David Saadab4ecc272019-02-14 13:48:10 +0200137#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100138
139/** There is not enough runtime memory.
140 *
141 * If the action is carried out across multiple security realms, this
142 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200143#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100144
145/** There is not enough persistent storage.
146 *
147 * Functions that modify the key storage return this error code if
148 * there is insufficient storage space on the host media. In addition,
149 * many functions that do not otherwise access storage may return this
150 * error code if the implementation requires a mandatory log entry for
151 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200152#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153
154/** There was a communication failure inside the implementation.
155 *
156 * This can indicate a communication failure between the application
157 * and an external cryptoprocessor or between the cryptoprocessor and
158 * an external volatile or persistent memory. A communication failure
159 * may be transient or permanent depending on the cause.
160 *
161 * \warning If a function returns this error, it is undetermined
162 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200163 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
165 * if the requested action was completed successfully in an external
166 * cryptoprocessor but there was a breakdown of communication before
167 * the cryptoprocessor could report the status to the application.
168 */
David Saadab4ecc272019-02-14 13:48:10 +0200169#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100170
171/** There was a storage failure that may have led to data loss.
172 *
173 * This error indicates that some persistent storage is corrupted.
174 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200175 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 * between the cryptoprocessor and its external storage (use
177 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
178 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
179 *
180 * Note that a storage failure does not indicate that any data that was
181 * previously read is invalid. However this previously read data may no
182 * longer be readable from storage.
183 *
184 * When a storage failure occurs, it is no longer possible to ensure
185 * the global integrity of the keystore. Depending on the global
186 * integrity guarantees offered by the implementation, access to other
187 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100188 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189 *
190 * Implementations should only use this error code to report a
191 * permanent storage corruption. However application writers should
192 * keep in mind that transient errors while reading the storage may be
193 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200194#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100195
196/** A hardware failure was detected.
197 *
198 * A hardware failure may be transient or permanent depending on the
199 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200200#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100201
202/** A tampering attempt was detected.
203 *
204 * If an application receives this error code, there is no guarantee
205 * that previously accessed or computed data was correct and remains
206 * confidential. Applications should not perform any security function
207 * and should enter a safe failure state.
208 *
209 * Implementations may return this error code if they detect an invalid
210 * state that cannot happen during normal operation and that indicates
211 * that the implementation's security guarantees no longer hold. Depending
212 * on the implementation architecture and on its security and safety goals,
213 * the implementation may forcibly terminate the application.
214 *
215 * This error code is intended as a last resort when a security breach
216 * is detected and it is unsure whether the keystore data is still
217 * protected. Implementations shall only return this error code
218 * to report an alarm from a tampering detector, to indicate that
219 * the confidentiality of stored data can no longer be guaranteed,
220 * or to indicate that the integrity of previously returned data is now
221 * considered compromised. Implementations shall not use this error code
222 * to indicate a hardware failure that merely makes it impossible to
223 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
224 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
225 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
226 * instead).
227 *
228 * This error indicates an attack against the application. Implementations
229 * shall not return this error code as a consequence of the behavior of
230 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200231#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100232
233/** There is not enough entropy to generate random data needed
234 * for the requested action.
235 *
236 * This error indicates a failure of a hardware random generator.
237 * Application writers should note that this error can be returned not
238 * only by functions whose purpose is to generate random data, such
239 * as key, IV or nonce generation, but also by functions that execute
240 * an algorithm with a randomized result, as well as functions that
241 * use randomization of intermediate computations as a countermeasure
242 * to certain attacks.
243 *
244 * Implementations should avoid returning this error after psa_crypto_init()
245 * has succeeded. Implementations should generate sufficient
246 * entropy during initialization and subsequently use a cryptographically
247 * secure pseudorandom generator (PRNG). However implementations may return
248 * this error at any time if a policy requires the PRNG to be reseeded
249 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200250#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100251
252/** The signature, MAC or hash is incorrect.
253 *
254 * Verification functions return this error if the verification
255 * calculations completed successfully, and the value to be verified
256 * was determined to be incorrect.
257 *
258 * If the value to verify has an invalid size, implementations may return
259 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200260#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100261
262/** The decrypted padding is incorrect.
263 *
264 * \warning In some protocols, when decrypting data, it is essential that
265 * the behavior of the application does not depend on whether the padding
266 * is correct, down to precise timing. Applications should prefer
267 * protocols that use authenticated encryption rather than plain
268 * encryption. If the application must perform a decryption of
269 * unauthenticated data, the application writer should take care not
270 * to reveal whether the padding is invalid.
271 *
272 * Implementations should strive to make valid and invalid padding
273 * as close as possible to indistinguishable to an external observer.
274 * In particular, the timing of a decryption operation should not
275 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200276#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100277
David Saadab4ecc272019-02-14 13:48:10 +0200278/** Return this error when there's insufficient data when attempting
279 * to read from a resource. */
280#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100281
Ronald Croncf56a0a2020-08-04 09:51:30 +0200282/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100283 */
David Saadab4ecc272019-02-14 13:48:10 +0200284#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100285
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100286/** Stored data has been corrupted.
287 *
288 * This error indicates that some persistent storage has suffered corruption.
289 * It does not indicate the following situations, which have specific error
290 * codes:
291 *
292 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
293 * - A communication error between the cryptoprocessor and its external
294 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
295 * - When the storage is in a valid state but is full - use
296 * #PSA_ERROR_INSUFFICIENT_STORAGE.
297 * - When the storage fails for other reasons - use
298 * #PSA_ERROR_STORAGE_FAILURE.
299 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
300 *
301 * \note A storage corruption does not indicate that any data that was
302 * previously read is invalid. However this previously read data might no
303 * longer be readable from storage.
304 *
305 * When a storage failure occurs, it is no longer possible to ensure the
306 * global integrity of the keystore.
307 */
308#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
309
gabor-mezei-armfe309242020-11-09 17:39:56 +0100310/** Data read from storage is not valid for the implementation.
311 *
312 * This error indicates that some data read from storage does not have a valid
313 * format. It does not indicate the following situations, which have specific
314 * error codes:
315 *
316 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
317 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
318 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
319 *
320 * This error is typically a result of either storage corruption on a
321 * cleartext storage backend, or an attempt to read data that was
322 * written by an incompatible version of the library.
323 */
324#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
325
Paul Elliott1265f002022-09-09 17:15:43 +0100326/** The function that returns this status is defined as interruptible and
327 * still has work to do, thus the user should call the function again with the
328 * same operation context until it either returns #PSA_SUCCESS or any other
329 * error. This is not an error per se, more a notification of status.
330 */
331#define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
332
Gilles Peskine45873ce2023-01-04 19:50:27 +0100333/* *INDENT-ON* */
334
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100335/**@}*/
336
337/** \defgroup crypto_types Key and algorithm types
338 * @{
339 */
340
Gilles Peskine79733992022-06-20 18:41:20 +0200341/* Note that key type values, including ECC family and DH group values, are
342 * embedded in the persistent key store, as part of key metadata. As a
343 * consequence, they must not be changed (unless the storage format version
344 * changes).
345 */
346
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347/** An invalid key type value.
348 *
349 * Zero is not the encoding of any key type.
350 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100351#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100352
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100353/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100354 *
355 * Key types defined by this standard will never have the
356 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
357 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
358 * respect the bitwise structure used by standard encodings whenever practical.
359 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100360#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361
Gilles Peskine449bd832023-01-11 14:50:10 +0100362#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
363#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
364#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
365#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
366#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100367
Gilles Peskine449bd832023-01-11 14:50:10 +0100368#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100370/** Whether a key type is vendor-defined.
371 *
372 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
373 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100374#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
375 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
376
377/** Whether a key type is an unstructured array of bytes.
378 *
379 * This encompasses both symmetric keys and non-key data.
380 */
381#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100382 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
383 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100384
385/** Whether a key type is asymmetric: either a key pair or a public key. */
386#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
387 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
388 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
389 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
390/** Whether a key type is the public part of a key pair. */
391#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
392 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
393/** Whether a key type is a key pair containing a private part and a public
394 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200395#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100396 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
397/** The key pair type corresponding to a public key type.
398 *
399 * You may also pass a key pair type as \p type, it will be left unchanged.
400 *
401 * \param type A public key type or key pair type.
402 *
403 * \return The corresponding key pair type.
404 * If \p type is not a public key or a key pair,
405 * the return value is undefined.
406 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200407#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
409/** The public key type corresponding to a key pair type.
410 *
411 * You may also pass a key pair type as \p type, it will be left unchanged.
412 *
413 * \param type A public key type or key pair type.
414 *
415 * \return The corresponding public key type.
416 * If \p type is not a public key or a key pair,
417 * the return value is undefined.
418 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
421
422/** Raw data.
423 *
424 * A "key" of this type cannot be used for any cryptographic operation.
425 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100426#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427
428/** HMAC key.
429 *
430 * The key policy determines which underlying hash algorithm the key can be
431 * used for.
432 *
433 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100434 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100435 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100436#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437
438/** A secret for key derivation.
439 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200440 * This key type is for high-entropy secrets only. For low-entropy secrets,
441 * #PSA_KEY_TYPE_PASSWORD should be used instead.
442 *
443 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
444 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
445 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100446 * The key policy determines which key derivation algorithm the key
447 * can be used for.
448 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100449#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100450
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200451/** A low-entropy secret for password hashing or key derivation.
452 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200453 * This key type is suitable for passwords and passphrases which are typically
454 * intended to be memorizable by humans, and have a low entropy relative to
455 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200456 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200457 * for such keys. It is not suitable for passwords with extremely low entropy,
458 * such as numerical PINs.
459 *
460 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
461 * key derivation algorithms. Algorithms that accept such an input were
462 * designed to accept low-entropy secret and are known as password hashing or
463 * key stretching algorithms.
464 *
465 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
466 * key derivation algorithms, as the algorithms that take such an input expect
467 * it to be high-entropy.
468 *
469 * The key policy determines which key derivation algorithm the key can be
470 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200471 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100472#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t) 0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200473
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200474/** A secret value that can be used to verify a password hash.
475 *
476 * The key policy determines which key derivation algorithm the key
477 * can be used for, among the same permissible subset as for
478 * #PSA_KEY_TYPE_PASSWORD.
479 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100480#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t) 0x1205)
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200481
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200482/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200483 *
484 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200485 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200486 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100487#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t) 0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200488
Gilles Peskine737c6be2019-05-21 16:01:06 +0200489/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100490 *
491 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
492 * 32 bytes (AES-256).
493 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100494#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100495
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200496/** Key for a cipher, AEAD or MAC algorithm based on the
497 * ARIA block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100498#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200499
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
501 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100502 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
503 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100504 *
505 * Note that single DES and 2-key 3DES are weak and strongly
506 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
507 * is weak and deprecated and should only be used in legacy protocols.
508 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100509#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100510
Gilles Peskine737c6be2019-05-21 16:01:06 +0200511/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100512 * Camellia block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100513#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100514
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200515/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
516 *
517 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
518 *
Gilles Peskine14d35542022-03-10 18:36:37 +0100519 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
520 * 12-byte nonces.
521 *
522 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
523 * with the initial counter value 1, you can process and discard a
524 * 64-byte block before the real data.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200525 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100526#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200527
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100528/** RSA public key.
529 *
530 * The size of an RSA key is the bit size of the modulus.
531 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100532#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100533/** RSA key pair (private and public key).
534 *
535 * The size of an RSA key is the bit size of the modulus.
536 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100537#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100538/** Whether a key type is an RSA key (pair or public-only). */
539#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200540 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100541
Gilles Peskine449bd832023-01-11 14:50:10 +0100542#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
543#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
544#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100545/** Elliptic curve key pair.
546 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100547 * The size of an elliptic curve key is the bit size associated with the curve,
548 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
549 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
550 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100551 * \param curve A value of type ::psa_ecc_family_t that
552 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100553 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200554#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
555 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100556/** Elliptic curve public key.
557 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100558 * The size of an elliptic curve public key is the same as the corresponding
559 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
560 * `PSA_ECC_FAMILY_xxx` curve families).
561 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100562 * \param curve A value of type ::psa_ecc_family_t that
563 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100564 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100565#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
566 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
567
568/** Whether a key type is an elliptic curve key (pair or public-only). */
569#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200570 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100571 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100572/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200573#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100574 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200575 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100576/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100577#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
578 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
579 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
580
581/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100582#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
583 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100584 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
585 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100586
Przemyslaw Stekiel6d3d18b2022-01-20 22:41:17 +0100587/** Check if the curve of given family is Weierstrass elliptic curve. */
588#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
589
Gilles Peskine228abc52019-12-03 17:24:19 +0100590/** SEC Koblitz curves over prime fields.
591 *
592 * This family comprises the following curves:
593 * secp192k1, secp224k1, secp256k1.
594 * They are defined in _Standards for Efficient Cryptography_,
595 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
596 * https://www.secg.org/sec2-v2.pdf
597 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100598#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100599
600/** SEC random curves over prime fields.
601 *
602 * This family comprises the following curves:
603 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
604 * They are defined in _Standards for Efficient Cryptography_,
605 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
606 * https://www.secg.org/sec2-v2.pdf
607 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100608#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100609/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100610#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100611
612/** SEC Koblitz curves over binary fields.
613 *
614 * This family comprises the following curves:
615 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
616 * They are defined in _Standards for Efficient Cryptography_,
617 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
618 * https://www.secg.org/sec2-v2.pdf
619 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100620#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100621
622/** SEC random curves over binary fields.
623 *
624 * This family comprises the following curves:
625 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
626 * They are defined in _Standards for Efficient Cryptography_,
627 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
628 * https://www.secg.org/sec2-v2.pdf
629 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100630#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100631
632/** SEC additional random curves over binary fields.
633 *
634 * This family comprises the following curve:
635 * sect163r2.
636 * It is defined in _Standards for Efficient Cryptography_,
637 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
638 * https://www.secg.org/sec2-v2.pdf
639 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100640#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100641
642/** Brainpool P random curves.
643 *
644 * This family comprises the following curves:
645 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
646 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
647 * It is defined in RFC 5639.
648 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100649#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100650
651/** Curve25519 and Curve448.
652 *
653 * This family comprises the following Montgomery curves:
654 * - 255-bit: Bernstein et al.,
655 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
656 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
657 * - 448-bit: Hamburg,
658 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
659 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
660 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100661#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100662
Gilles Peskine67546802021-02-24 21:49:40 +0100663/** The twisted Edwards curves Ed25519 and Ed448.
664 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100665 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100666 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100667 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100668 *
669 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100670 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100671 * to Curve25519.
672 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
673 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
674 * to Curve448.
675 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
676 */
677#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
678
Gilles Peskine449bd832023-01-11 14:50:10 +0100679#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
680#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
681#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100682/** Diffie-Hellman key pair.
683 *
Paul Elliott75e27032020-06-03 15:17:39 +0100684 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100685 * Diffie-Hellman group to be used.
686 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200687#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
688 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100689/** Diffie-Hellman public key.
690 *
Paul Elliott75e27032020-06-03 15:17:39 +0100691 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100692 * Diffie-Hellman group to be used.
693 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200694#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
695 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
696
697/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
698#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200699 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200700 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
701/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200702#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200703 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200704 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200705/** Whether a key type is a Diffie-Hellman public key. */
706#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
707 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
708 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
709
710/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100711#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
712 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100713 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
714 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200715
Gilles Peskine228abc52019-12-03 17:24:19 +0100716/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
717 *
718 * This family includes groups with the following key sizes (in bits):
719 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
720 * all of these sizes or only a subset.
721 */
Paul Elliott75e27032020-06-03 15:17:39 +0100722#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100723
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100724#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100725 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100726/** The block size of a block cipher.
727 *
728 * \param type A cipher key type (value of type #psa_key_type_t).
729 *
730 * \return The block size for a block cipher, or 1 for a stream cipher.
731 * The return value is undefined if \p type is not a supported
732 * cipher key type.
733 *
734 * \note It is possible to build stream cipher algorithms on top of a block
735 * cipher, for example CTR mode (#PSA_ALG_CTR).
736 * This macro only takes the key type into account, so it cannot be
737 * used to determine the size of the data that #psa_cipher_update()
738 * might buffer for future processing in general.
739 *
740 * \note This macro returns a compile-time constant if its argument is one.
741 *
742 * \warning This macro may evaluate its argument multiple times.
743 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100744#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100745 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100746 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine449bd832023-01-11 14:50:10 +0100747 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100748
Gilles Peskine79733992022-06-20 18:41:20 +0200749/* Note that algorithm values are embedded in the persistent key store,
750 * as part of key metadata. As a consequence, they must not be changed
751 * (unless the storage format version changes).
752 */
753
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100754/** Vendor-defined algorithm flag.
755 *
756 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
757 * bit set. Vendors who define additional algorithms must use an encoding with
758 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
759 * used by standard encodings whenever practical.
760 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100761#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100762
Gilles Peskine449bd832023-01-11 14:50:10 +0100763#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
764#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
765#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
766#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
767#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
768#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
769#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
770#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
771#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100772
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100773/** Whether an algorithm is vendor-defined.
774 *
775 * See also #PSA_ALG_VENDOR_FLAG.
776 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100777#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
778 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
779
780/** Whether the specified algorithm is a hash algorithm.
781 *
782 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
783 *
784 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
785 * This macro may return either 0 or 1 if \p alg is not a supported
786 * algorithm identifier.
787 */
788#define PSA_ALG_IS_HASH(alg) \
789 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
790
791/** Whether the specified algorithm is a MAC algorithm.
792 *
793 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
794 *
795 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
796 * This macro may return either 0 or 1 if \p alg is not a supported
797 * algorithm identifier.
798 */
799#define PSA_ALG_IS_MAC(alg) \
800 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
801
802/** Whether the specified algorithm is a symmetric cipher algorithm.
803 *
804 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
805 *
806 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
807 * This macro may return either 0 or 1 if \p alg is not a supported
808 * algorithm identifier.
809 */
810#define PSA_ALG_IS_CIPHER(alg) \
811 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
812
813/** Whether the specified algorithm is an authenticated encryption
814 * with associated data (AEAD) algorithm.
815 *
816 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
817 *
818 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
819 * This macro may return either 0 or 1 if \p alg is not a supported
820 * algorithm identifier.
821 */
822#define PSA_ALG_IS_AEAD(alg) \
823 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
824
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200825/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200826 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100827 *
828 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
829 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200830 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100831 * This macro may return either 0 or 1 if \p alg is not a supported
832 * algorithm identifier.
833 */
834#define PSA_ALG_IS_SIGN(alg) \
835 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
836
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200837/** Whether the specified algorithm is an asymmetric encryption algorithm,
838 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100839 *
840 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
841 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200842 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100843 * This macro may return either 0 or 1 if \p alg is not a supported
844 * algorithm identifier.
845 */
846#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
847 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
848
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100849/** Whether the specified algorithm is a key agreement algorithm.
850 *
851 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
852 *
853 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
854 * This macro may return either 0 or 1 if \p alg is not a supported
855 * algorithm identifier.
856 */
857#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100858 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100859
860/** Whether the specified algorithm is a key derivation algorithm.
861 *
862 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
863 *
864 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
865 * This macro may return either 0 or 1 if \p alg is not a supported
866 * algorithm identifier.
867 */
868#define PSA_ALG_IS_KEY_DERIVATION(alg) \
869 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
870
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200871/** Whether the specified algorithm is a key stretching / password hashing
872 * algorithm.
873 *
874 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200875 * that is suitable for use with a low-entropy secret such as a password.
876 * Equivalently, it's a key derivation algorithm that uses a
877 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200878 *
879 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
880 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100881 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200882 * otherwise. This macro may return either 0 or 1 if \p alg is not a
883 * supported algorithm identifier.
884 */
885#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
886 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
887 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
888
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200889/** An invalid algorithm identifier value. */
Gilles Peskinea6516072023-01-04 19:52:38 +0100890/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200891#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +0100892/* *INDENT-ON* */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200893
Gilles Peskine449bd832023-01-11 14:50:10 +0100894#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100895/** MD5 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100896#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100897/** PSA_ALG_RIPEMD160 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100898#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100899/** SHA1 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100900#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100901/** SHA2-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100902#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100903/** SHA2-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100904#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100905/** SHA2-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100906#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100907/** SHA2-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100908#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100909/** SHA2-512/224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100910#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100911/** SHA2-512/256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100912#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100913/** SHA3-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100914#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100915/** SHA3-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100916#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100917/** SHA3-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100918#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100919/** SHA3-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100920#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100921/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100922 *
923 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
924 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
925 * has the same output size and a (theoretically) higher security strength.
926 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100927#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100928
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100929/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100930 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100931 * This value may be used to form the algorithm usage field of a policy
932 * for a signature algorithm that is parametrized by a hash. The key
933 * may then be used to perform operations using the same signature
934 * algorithm parametrized with any supported hash.
935 *
936 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200937 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100938 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100939 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100940 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
941 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100942 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200943 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100944 * ```
945 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100946 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100947 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
948 * call to sign or verify a message may use a different hash.
949 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200950 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
951 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
952 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100953 * ```
954 *
955 * This value may not be used to build other algorithms that are
956 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100957 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100958 *
959 * This value may not be used to build an algorithm specification to
960 * perform an operation. It is only valid to build policies.
961 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100962#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100963
Gilles Peskine449bd832023-01-11 14:50:10 +0100964#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
965#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100966/** Macro to build an HMAC algorithm.
967 *
968 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
969 *
970 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
971 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
972 *
973 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100974 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100975 * hash algorithm.
976 */
977#define PSA_ALG_HMAC(hash_alg) \
978 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
979
980#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
981 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
982
983/** Whether the specified algorithm is an HMAC algorithm.
984 *
985 * HMAC is a family of MAC algorithms that are based on a hash function.
986 *
987 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
988 *
989 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
990 * This macro may return either 0 or 1 if \p alg is not a supported
991 * algorithm identifier.
992 */
993#define PSA_ALG_IS_HMAC(alg) \
994 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
995 PSA_ALG_HMAC_BASE)
996
997/* In the encoding of a MAC algorithm, the bits corresponding to
998 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
999 * truncated. As an exception, the value 0 means the untruncated algorithm,
1000 * whatever its length is. The length is encoded in 6 bits, so it can
1001 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1002 * to full length is correctly encoded as 0 and any non-trivial truncation
1003 * is correctly encoded as a value between 1 and 63. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001004#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001005#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001006
Steven Cooremand927ed72021-02-22 19:59:35 +01001007/* In the encoding of a MAC algorithm, the bit corresponding to
1008 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001009 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1010 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001011 * same base class and having a (potentially truncated) MAC length greater or
1012 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001013#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001014
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001015/** Macro to build a truncated MAC algorithm.
1016 *
1017 * A truncated MAC algorithm is identical to the corresponding MAC
1018 * algorithm except that the MAC value for the truncated algorithm
1019 * consists of only the first \p mac_length bytes of the MAC value
1020 * for the untruncated algorithm.
1021 *
1022 * \note This macro may allow constructing algorithm identifiers that
1023 * are not valid, either because the specified length is larger
1024 * than the untruncated MAC or because the specified length is
1025 * smaller than permitted by the implementation.
1026 *
1027 * \note It is implementation-defined whether a truncated MAC that
1028 * is truncated to the same length as the MAC of the untruncated
1029 * algorithm is considered identical to the untruncated algorithm
1030 * for policy comparison purposes.
1031 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001032 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001033 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001034 * is true). This may be a truncated or untruncated
1035 * MAC algorithm.
1036 * \param mac_length Desired length of the truncated MAC in bytes.
1037 * This must be at most the full length of the MAC
1038 * and must be at least an implementation-specified
1039 * minimum. The implementation-specified minimum
1040 * shall not be zero.
1041 *
1042 * \return The corresponding MAC algorithm with the specified
1043 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001044 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001045 * MAC algorithm or if \p mac_length is too small or
1046 * too large for the specified MAC algorithm.
1047 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001048#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1049 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1050 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001051 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1052
1053/** Macro to build the base MAC algorithm corresponding to a truncated
1054 * MAC algorithm.
1055 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001056 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001057 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001058 * is true). This may be a truncated or untruncated
1059 * MAC algorithm.
1060 *
1061 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001062 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001063 * MAC algorithm.
1064 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001065#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1066 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1067 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001068
1069/** Length to which a MAC algorithm is truncated.
1070 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001071 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001072 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001073 * is true).
1074 *
1075 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001076 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1077 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001078 * MAC algorithm.
1079 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001080#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1081 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001082
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001083/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001084 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001085 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001086 * sharing the same base algorithm, and where the (potentially truncated) MAC
1087 * length of the specific algorithm is equal to or larger then the wildcard
1088 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001089 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001090 * \note When setting the minimum required MAC length to less than the
1091 * smallest MAC length allowed by the base algorithm, this effectively
1092 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001093 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001094 * \param mac_alg A MAC algorithm identifier (value of type
1095 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1096 * is true).
1097 * \param min_mac_length Desired minimum length of the message authentication
1098 * code in bytes. This must be at most the untruncated
1099 * length of the MAC and must be at least 1.
1100 *
1101 * \return The corresponding MAC wildcard algorithm with the
1102 * specified minimum length.
1103 * \return Unspecified if \p mac_alg is not a supported MAC
1104 * algorithm or if \p min_mac_length is less than 1 or
1105 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001106 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001107#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001108 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1109 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001110
Gilles Peskine449bd832023-01-11 14:50:10 +01001111#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001112/** The CBC-MAC construction over a block cipher
1113 *
1114 * \warning CBC-MAC is insecure in many cases.
1115 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1116 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001117#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001118/** The CMAC construction over a block cipher */
Gilles Peskine449bd832023-01-11 14:50:10 +01001119#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001120
1121/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1122 *
1123 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1124 *
1125 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1126 * This macro may return either 0 or 1 if \p alg is not a supported
1127 * algorithm identifier.
1128 */
1129#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1130 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1131 PSA_ALG_CIPHER_MAC_BASE)
1132
Gilles Peskine449bd832023-01-11 14:50:10 +01001133#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1134#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135
1136/** Whether the specified algorithm is a stream cipher.
1137 *
1138 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1139 * by applying a bitwise-xor with a stream of bytes that is generated
1140 * from a key.
1141 *
1142 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1143 *
1144 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1145 * This macro may return either 0 or 1 if \p alg is not a supported
1146 * algorithm identifier or if it is not a symmetric cipher algorithm.
1147 */
1148#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1149 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Gilles Peskine449bd832023-01-11 14:50:10 +01001150 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001151
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001152/** The stream cipher mode of a stream cipher algorithm.
1153 *
1154 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001155 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001156 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001157#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001158
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001159/** The CTR stream cipher mode.
1160 *
1161 * CTR is a stream cipher which is built from a block cipher.
1162 * The underlying block cipher is determined by the key type.
1163 * For example, to use AES-128-CTR, use this algorithm with
1164 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1165 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001166#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001167
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001168/** The CFB stream cipher mode.
1169 *
1170 * The underlying block cipher is determined by the key type.
1171 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001172#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001173
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001174/** The OFB stream cipher mode.
1175 *
1176 * The underlying block cipher is determined by the key type.
1177 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001178#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001179
1180/** The XTS cipher mode.
1181 *
1182 * XTS is a cipher mode which is built from a block cipher. It requires at
1183 * least one full block of input, but beyond this minimum the input
1184 * does not need to be a whole number of blocks.
1185 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001186#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001187
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001188/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1189 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001190 * \warning ECB mode does not protect the confidentiality of the encrypted data
1191 * except in extremely narrow circumstances. It is recommended that applications
1192 * only use ECB if they need to construct an operating mode that the
1193 * implementation does not provide. Implementations are encouraged to provide
1194 * the modes that applications need in preference to supporting direct access
1195 * to ECB.
1196 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001197 * The underlying block cipher is determined by the key type.
1198 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001199 * This symmetric cipher mode can only be used with messages whose lengths are a
1200 * multiple of the block size of the chosen block cipher.
1201 *
1202 * ECB mode does not accept an initialization vector (IV). When using a
1203 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1204 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001205 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001206#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001207
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001208/** The CBC block cipher chaining mode, with no padding.
1209 *
1210 * The underlying block cipher is determined by the key type.
1211 *
1212 * This symmetric cipher mode can only be used with messages whose lengths
1213 * are whole number of blocks for the chosen block cipher.
1214 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001215#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001216
1217/** The CBC block cipher chaining mode with PKCS#7 padding.
1218 *
1219 * The underlying block cipher is determined by the key type.
1220 *
1221 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1222 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001223#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001224
Gilles Peskine449bd832023-01-11 14:50:10 +01001225#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001226
1227/** Whether the specified algorithm is an AEAD mode on a block cipher.
1228 *
1229 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1230 *
1231 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1232 * a block cipher, 0 otherwise.
1233 * This macro may return either 0 or 1 if \p alg is not a supported
1234 * algorithm identifier.
1235 */
1236#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1237 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1238 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1239
Gilles Peskine9153ec02019-02-15 13:02:02 +01001240/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001241 *
1242 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001243 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001244#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001245
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001246/** The CCM* cipher mode without authentication.
1247 *
1248 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1249 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1250 *
1251 * The underlying block cipher is determined by the key type.
1252 *
1253 * Currently only 13-byte long IV's are supported.
1254 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001255#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t) 0x04c01300)
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001256
Gilles Peskine9153ec02019-02-15 13:02:02 +01001257/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001258 *
1259 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001260 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001261#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001262
1263/** The Chacha20-Poly1305 AEAD algorithm.
1264 *
1265 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001266 *
1267 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1268 * and should reject other sizes.
1269 *
1270 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001271 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001272#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001273
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01001274/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001275 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1276 * The constants for default lengths follow this encoding.
1277 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001278#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001279#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001280
Steven Cooremand927ed72021-02-22 19:59:35 +01001281/* In the encoding of an AEAD algorithm, the bit corresponding to
1282 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001283 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1284 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001285 * same base class and having a tag length greater than or equal to the one
1286 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001287#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001288
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001289/** Macro to build a shortened AEAD algorithm.
1290 *
1291 * A shortened AEAD algorithm is similar to the corresponding AEAD
1292 * algorithm, but has an authentication tag that consists of fewer bytes.
1293 * Depending on the algorithm, the tag length may affect the calculation
1294 * of the ciphertext.
1295 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001296 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001297 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001298 * is true).
1299 * \param tag_length Desired length of the authentication tag in bytes.
1300 *
1301 * \return The corresponding AEAD algorithm with the specified
1302 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001303 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001304 * AEAD algorithm or if \p tag_length is not valid
1305 * for the specified AEAD algorithm.
1306 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001307#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001308 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1309 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001310 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskine449bd832023-01-11 14:50:10 +01001311 PSA_ALG_AEAD_TAG_LENGTH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001312
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001313/** Retrieve the tag length of a specified AEAD algorithm
1314 *
1315 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001316 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001317 * is true).
1318 *
1319 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001320 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001321 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001322 */
1323#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1324 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
Gilles Peskine449bd832023-01-11 14:50:10 +01001325 PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001326
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001327/** Calculate the corresponding AEAD algorithm with the default tag length.
1328 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001329 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001330 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001331 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001332 * \return The corresponding AEAD algorithm with the default
1333 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001334 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001335#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001336 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001337 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1338 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1339 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001340 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001341#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1342 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1343 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001344 ref :
1345
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001346/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001347 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001348 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001349 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001350 * algorithm is equal to or larger then the minimum tag length specified by the
1351 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001352 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001353 * \note When setting the minimum required tag length to less than the
1354 * smallest tag length allowed by the base algorithm, this effectively
1355 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001356 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001357 * \param aead_alg An AEAD algorithm identifier (value of type
1358 * #psa_algorithm_t such that
1359 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1360 * \param min_tag_length Desired minimum length of the authentication tag in
1361 * bytes. This must be at least 1 and at most the largest
1362 * allowed tag length of the algorithm.
1363 *
1364 * \return The corresponding AEAD wildcard algorithm with the
1365 * specified minimum length.
1366 * \return Unspecified if \p aead_alg is not a supported
1367 * AEAD algorithm or if \p min_tag_length is less than 1
1368 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001369 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001370#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001371 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1372 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001373
Gilles Peskine449bd832023-01-11 14:50:10 +01001374#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001375/** RSA PKCS#1 v1.5 signature with hashing.
1376 *
1377 * This is the signature scheme defined by RFC 8017
1378 * (PKCS#1: RSA Cryptography Specifications) under the name
1379 * RSASSA-PKCS1-v1_5.
1380 *
1381 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1382 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001383 * This includes #PSA_ALG_ANY_HASH
1384 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001385 *
1386 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001387 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001388 * hash algorithm.
1389 */
1390#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1391 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1392/** Raw PKCS#1 v1.5 signature.
1393 *
1394 * The input to this algorithm is the DigestInfo structure used by
1395 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1396 * steps 3&ndash;6.
1397 */
1398#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1399#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1400 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1401
Gilles Peskine449bd832023-01-11 14:50:10 +01001402#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1403#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001404/** RSA PSS signature with hashing.
1405 *
1406 * This is the signature scheme defined by RFC 8017
1407 * (PKCS#1: RSA Cryptography Specifications) under the name
1408 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu44baacd2022-06-17 10:25:05 +01001409 * a salt length equal to the length of the hash, or the largest
1410 * possible salt length for the algorithm and key size if that is
1411 * smaller than the hash length. The specified hash algorithm is
1412 * used to hash the input message, to create the salted hash, and
1413 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001414 *
1415 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1416 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001417 * This includes #PSA_ALG_ANY_HASH
1418 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001419 *
1420 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001421 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001422 * hash algorithm.
1423 */
1424#define PSA_ALG_RSA_PSS(hash_alg) \
1425 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001426
1427/** RSA PSS signature with hashing with relaxed verification.
1428 *
1429 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1430 * but allows an arbitrary salt length (including \c 0) when verifying a
1431 * signature.
1432 *
1433 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1434 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1435 * This includes #PSA_ALG_ANY_HASH
1436 * when specifying the algorithm in a usage policy.
1437 *
1438 * \return The corresponding RSA PSS signature algorithm.
1439 * \return Unspecified if \p hash_alg is not a supported
1440 * hash algorithm.
1441 */
1442#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1443 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1444
1445/** Whether the specified algorithm is RSA PSS with standard salt.
1446 *
1447 * \param alg An algorithm value or an algorithm policy wildcard.
1448 *
1449 * \return 1 if \p alg is of the form
1450 * #PSA_ALG_RSA_PSS(\c hash_alg),
1451 * where \c hash_alg is a hash algorithm or
1452 * #PSA_ALG_ANY_HASH. 0 otherwise.
1453 * This macro may return either 0 or 1 if \p alg is not
1454 * a supported algorithm identifier or policy.
1455 */
1456#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001457 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1458
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001459/** Whether the specified algorithm is RSA PSS with any salt.
1460 *
1461 * \param alg An algorithm value or an algorithm policy wildcard.
1462 *
1463 * \return 1 if \p alg is of the form
1464 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1465 * where \c hash_alg is a hash algorithm or
1466 * #PSA_ALG_ANY_HASH. 0 otherwise.
1467 * This macro may return either 0 or 1 if \p alg is not
1468 * a supported algorithm identifier or policy.
1469 */
1470#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1471 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1472
1473/** Whether the specified algorithm is RSA PSS.
1474 *
1475 * This includes any of the RSA PSS algorithm variants, regardless of the
1476 * constraints on salt length.
1477 *
1478 * \param alg An algorithm value or an algorithm policy wildcard.
1479 *
1480 * \return 1 if \p alg is of the form
1481 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1482 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1483 * where \c hash_alg is a hash algorithm or
1484 * #PSA_ALG_ANY_HASH. 0 otherwise.
1485 * This macro may return either 0 or 1 if \p alg is not
1486 * a supported algorithm identifier or policy.
1487 */
1488#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001489 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1490 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001491
Gilles Peskine449bd832023-01-11 14:50:10 +01001492#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001493/** ECDSA signature with hashing.
1494 *
1495 * This is the ECDSA signature scheme defined by ANSI X9.62,
1496 * with a random per-message secret number (*k*).
1497 *
1498 * The representation of the signature as a byte string consists of
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001499 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001500 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1501 * of the base point of the curve in octets. Each value is represented
1502 * in big-endian order (most significant octet first).
1503 *
1504 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1505 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001506 * This includes #PSA_ALG_ANY_HASH
1507 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001508 *
1509 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001510 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001511 * hash algorithm.
1512 */
1513#define PSA_ALG_ECDSA(hash_alg) \
1514 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1515/** ECDSA signature without hashing.
1516 *
1517 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1518 * without specifying a hash algorithm. This algorithm may only be
1519 * used to sign or verify a sequence of bytes that should be an
1520 * already-calculated hash. Note that the input is padded with
1521 * zeros on the left or truncated on the left as required to fit
1522 * the curve size.
1523 */
1524#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Gilles Peskine449bd832023-01-11 14:50:10 +01001525#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001526/** Deterministic ECDSA signature with hashing.
1527 *
1528 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1529 *
1530 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1531 *
1532 * Note that when this algorithm is used for verification, signatures
1533 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1534 * same private key are accepted. In other words,
1535 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1536 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1537 *
1538 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1539 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001540 * This includes #PSA_ALG_ANY_HASH
1541 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001542 *
1543 * \return The corresponding deterministic ECDSA signature
1544 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001545 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001546 * hash algorithm.
1547 */
1548#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1549 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine449bd832023-01-11 14:50:10 +01001550#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001551#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001552 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001553 PSA_ALG_ECDSA_BASE)
1554#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001555 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001556#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1557 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1558#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1559 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1560
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001561/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1562 * using standard parameters.
1563 *
1564 * Contexts are not supported in the current version of this specification
1565 * because there is no suitable signature interface that can take the
1566 * context as a parameter. A future version of this specification may add
1567 * suitable functions and extend this algorithm to support contexts.
1568 *
1569 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1570 * In this specification, the following curves are supported:
1571 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1572 * in RFC 8032.
1573 * The curve is Edwards25519.
1574 * The hash function used internally is SHA-512.
1575 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1576 * in RFC 8032.
1577 * The curve is Edwards448.
1578 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001579 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001580 *
1581 * This algorithm can be used with psa_sign_message() and
1582 * psa_verify_message(). Since there is no prehashing, it cannot be used
1583 * with psa_sign_hash() or psa_verify_hash().
1584 *
1585 * The signature format is the concatenation of R and S as defined by
1586 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1587 * string for Ed448).
1588 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001589#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001590
Gilles Peskine449bd832023-01-11 14:50:10 +01001591#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001592#define PSA_ALG_IS_HASH_EDDSA(alg) \
1593 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1594
1595/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001596 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001597 *
1598 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1599 *
1600 * This algorithm is Ed25519 as specified in RFC 8032.
1601 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001602 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001603 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001604 *
1605 * This is a hash-and-sign algorithm: to calculate a signature,
1606 * you can either:
1607 * - call psa_sign_message() on the message;
1608 * - or calculate the SHA-512 hash of the message
1609 * with psa_hash_compute()
1610 * or with a multi-part hash operation started with psa_hash_setup(),
1611 * using the hash algorithm #PSA_ALG_SHA_512,
1612 * then sign the calculated hash with psa_sign_hash().
1613 * Verifying a signature is similar, using psa_verify_message() or
1614 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001615 */
1616#define PSA_ALG_ED25519PH \
1617 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1618
1619/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1620 * using SHAKE256 and the Edwards448 curve.
1621 *
1622 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1623 *
1624 * This algorithm is Ed448 as specified in RFC 8032.
1625 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001626 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001627 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001628 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001629 *
1630 * This is a hash-and-sign algorithm: to calculate a signature,
1631 * you can either:
1632 * - call psa_sign_message() on the message;
1633 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1634 * with psa_hash_compute()
1635 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001636 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001637 * then sign the calculated hash with psa_sign_hash().
1638 * Verifying a signature is similar, using psa_verify_message() or
1639 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001640 */
1641#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001642 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001643
Gilles Peskine6d400852021-02-24 21:39:52 +01001644/* Default definition, to be overridden if the library is extended with
1645 * more hash-and-sign algorithms that we want to keep out of this header
1646 * file. */
1647#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1648
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001649/** Whether the specified algorithm is a signature algorithm that can be used
1650 * with psa_sign_hash() and psa_verify_hash().
1651 *
1652 * This encompasses all strict hash-and-sign algorithms categorized by
1653 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1654 * paradigm more loosely:
1655 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1656 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1657 *
1658 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1659 *
1660 * \return 1 if alg is a signature algorithm that can be used to sign a
1661 * hash. 0 if alg is a signature algorithm that can only be used
1662 * to sign a message. 0 if alg is not a signature algorithm.
1663 * This macro can return either 0 or 1 if alg is not a
1664 * supported algorithm identifier.
1665 */
1666#define PSA_ALG_IS_SIGN_HASH(alg) \
1667 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1668 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1669 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1670
1671/** Whether the specified algorithm is a signature algorithm that can be used
1672 * with psa_sign_message() and psa_verify_message().
1673 *
1674 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1675 *
1676 * \return 1 if alg is a signature algorithm that can be used to sign a
1677 * message. 0 if \p alg is a signature algorithm that can only be used
1678 * to sign an already-calculated hash. 0 if \p alg is not a signature
1679 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1680 * supported algorithm identifier.
1681 */
1682#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001683 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001684
Gilles Peskined35b4892019-01-14 16:02:15 +01001685/** Whether the specified algorithm is a hash-and-sign algorithm.
1686 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001687 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1688 * structured in two parts: first the calculation of a hash in a way that
1689 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001690 * hash value and the key. Hash-and-sign algorithms encode the hash
1691 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1692 * to extract this algorithm.
1693 *
1694 * Thus, for a hash-and-sign algorithm,
1695 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1696 * ```
1697 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1698 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1699 * ```
1700 * Most usefully, separating the hash from the signature allows the hash
1701 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1702 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1703 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001704 *
1705 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1706 *
1707 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1708 * This macro may return either 0 or 1 if \p alg is not a supported
1709 * algorithm identifier.
1710 */
1711#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001712 (PSA_ALG_IS_SIGN_HASH(alg) && \
1713 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001714
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001715/** Get the hash used by a hash-and-sign signature algorithm.
1716 *
1717 * A hash-and-sign algorithm is a signature algorithm which is
1718 * composed of two phases: first a hashing phase which does not use
1719 * the key and produces a hash of the input message, then a signing
1720 * phase which only uses the hash and the key and not the message
1721 * itself.
1722 *
1723 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1724 * #PSA_ALG_IS_SIGN(\p alg) is true).
1725 *
1726 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1727 * algorithm.
1728 * \return 0 if \p alg is a signature algorithm that does not
1729 * follow the hash-and-sign structure.
1730 * \return Unspecified if \p alg is not a signature algorithm or
1731 * if it is not supported by the implementation.
1732 */
1733#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001734 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001735 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1736 0)
1737
1738/** RSA PKCS#1 v1.5 encryption.
Janos Follath393df9c2023-12-29 11:14:58 +00001739 *
1740 * \warning Calling psa_asymmetric_decrypt() with this algorithm as a
1741 * parameter is considered an inherently dangerous function
1742 * (CWE-242). Unless it is used in a side channel free and safe
1743 * way (eg. implementing the TLS protocol as per 7.4.7.1 of
1744 * RFC 5246), the calling code is vulnerable.
1745 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001746 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001747#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001748
Gilles Peskine449bd832023-01-11 14:50:10 +01001749#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001750/** RSA OAEP encryption.
1751 *
1752 * This is the encryption scheme defined by RFC 8017
1753 * (PKCS#1: RSA Cryptography Specifications) under the name
1754 * RSAES-OAEP, with the message generation function MGF1.
1755 *
1756 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1757 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1758 * for MGF1.
1759 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001760 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001761 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001762 * hash algorithm.
1763 */
1764#define PSA_ALG_RSA_OAEP(hash_alg) \
1765 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1766#define PSA_ALG_IS_RSA_OAEP(alg) \
1767 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1768#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1769 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1770 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1771 0)
1772
Gilles Peskine449bd832023-01-11 14:50:10 +01001773#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001774/** Macro to build an HKDF algorithm.
1775 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001776 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001777 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001778 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001779 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001780 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001781 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1782 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1783 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1784 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001785 * starting to generate output.
1786 *
Przemek Stekiel73f97d42022-06-03 09:05:08 +02001787 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1788 * if the salt is longer than the block size of the hash algorithm; then
1789 * pad with null bytes up to the block size. As a result, it is possible
1790 * for distinct salt inputs to result in the same outputs. To ensure
1791 * unique outputs, it is recommended to use a fixed length for salt values.
1792 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001793 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1794 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1795 *
1796 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001797 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001798 * hash algorithm.
1799 */
1800#define PSA_ALG_HKDF(hash_alg) \
1801 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1802/** Whether the specified algorithm is an HKDF algorithm.
1803 *
1804 * HKDF is a family of key derivation algorithms that are based on a hash
1805 * function and the HMAC construction.
1806 *
1807 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1808 *
1809 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1810 * This macro may return either 0 or 1 if \c alg is not a supported
1811 * key derivation algorithm identifier.
1812 */
1813#define PSA_ALG_IS_HKDF(alg) \
1814 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1815#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1816 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1817
Gilles Peskine449bd832023-01-11 14:50:10 +01001818#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t) 0x08000400)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001819/** Macro to build an HKDF-Extract algorithm.
1820 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001821 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001822 * HKDF-Extract using HMAC-SHA-256.
1823 *
1824 * This key derivation algorithm uses the following inputs:
Przemek Stekielb398d862022-05-18 15:43:54 +02001825 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001826 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1827 * "extract" step.
Przemek Stekielb398d862022-05-18 15:43:54 +02001828 * The inputs are mandatory and must be passed in the order above.
1829 * Each input may only be passed once.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001830 *
1831 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1832 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1833 * as a separate algorithm for the sake of protocols that use it as a
1834 * building block. It may also be a slight performance optimization
1835 * in applications that use HKDF with the same salt and key but many
1836 * different info strings.
1837 *
Przemek Stekielb398d862022-05-18 15:43:54 +02001838 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1839 * if the salt is longer than the block size of the hash algorithm; then
1840 * pad with null bytes up to the block size. As a result, it is possible
1841 * for distinct salt inputs to result in the same outputs. To ensure
1842 * unique outputs, it is recommended to use a fixed length for salt values.
1843 *
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001844 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1845 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1846 *
1847 * \return The corresponding HKDF-Extract algorithm.
1848 * \return Unspecified if \p hash_alg is not a supported
1849 * hash algorithm.
1850 */
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001851#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1852 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1853/** Whether the specified algorithm is an HKDF-Extract algorithm.
1854 *
1855 * HKDF-Extract is a family of key derivation algorithms that are based
1856 * on a hash function and the HMAC construction.
1857 *
1858 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1859 *
1860 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1861 * This macro may return either 0 or 1 if \c alg is not a supported
1862 * key derivation algorithm identifier.
1863 */
1864#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1865 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1866
Gilles Peskine449bd832023-01-11 14:50:10 +01001867#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t) 0x08000500)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001868/** Macro to build an HKDF-Expand algorithm.
1869 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001870 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001871 * HKDF-Expand using HMAC-SHA-256.
1872 *
1873 * This key derivation algorithm uses the following inputs:
Przemek Stekiel459ee352022-06-02 11:16:52 +02001874 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001875 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1876 *
1877 * The inputs are mandatory and must be passed in the order above.
1878 * Each input may only be passed once.
1879 *
1880 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1881 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1882 * a separate algorithm for the sake of protocols that use it as a building
1883 * block. It may also be a slight performance optimization in applications
1884 * that use HKDF with the same salt and key but many different info strings.
1885 *
1886 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1887 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1888 *
1889 * \return The corresponding HKDF-Expand algorithm.
1890 * \return Unspecified if \p hash_alg is not a supported
1891 * hash algorithm.
1892 */
1893#define PSA_ALG_HKDF_EXPAND(hash_alg) \
1894 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Przemek Stekielebf62812022-05-11 14:16:05 +02001895/** Whether the specified algorithm is an HKDF-Expand algorithm.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001896 *
1897 * HKDF-Expand is a family of key derivation algorithms that are based
1898 * on a hash function and the HMAC construction.
1899 *
1900 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1901 *
1902 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1903 * This macro may return either 0 or 1 if \c alg is not a supported
1904 * key derivation algorithm identifier.
1905 */
1906#define PSA_ALG_IS_HKDF_EXPAND(alg) \
1907 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1908
Przemek Stekiela29b4882022-06-02 11:37:03 +02001909/** Whether the specified algorithm is an HKDF or HKDF-Extract or
1910 * HKDF-Expand algorithm.
1911 *
1912 *
1913 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1914 *
1915 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1916 * This macro may return either 0 or 1 if \c alg is not a supported
1917 * key derivation algorithm identifier.
1918 */
1919#define PSA_ALG_IS_ANY_HKDF(alg) \
1920 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1921 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1922 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1923
Gilles Peskine449bd832023-01-11 14:50:10 +01001924#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001925/** Macro to build a TLS-1.2 PRF algorithm.
1926 *
1927 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1928 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1929 * used with either SHA-256 or SHA-384.
1930 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001931 * This key derivation algorithm uses the following inputs, which must be
1932 * passed in the order given here:
1933 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001934 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1935 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001936 *
1937 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001938 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001939 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001940 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001941 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001942 * TLS 1.2 PRF using HMAC-SHA-256.
1943 *
1944 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1945 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1946 *
1947 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001948 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001949 * hash algorithm.
1950 */
1951#define PSA_ALG_TLS12_PRF(hash_alg) \
1952 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1953
1954/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1955 *
1956 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1957 *
1958 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1959 * This macro may return either 0 or 1 if \c alg is not a supported
1960 * key derivation algorithm identifier.
1961 */
1962#define PSA_ALG_IS_TLS12_PRF(alg) \
1963 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1964#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1965 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1966
Gilles Peskine449bd832023-01-11 14:50:10 +01001967#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001968/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1969 *
1970 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1971 * from the PreSharedKey (PSK) through the application of padding
1972 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1973 * The latter is based on HMAC and can be used with either SHA-256
1974 * or SHA-384.
1975 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001976 * This key derivation algorithm uses the following inputs, which must be
1977 * passed in the order given here:
1978 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001979 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1980 * computation of the premaster secret. This input is optional;
1981 * if omitted, it defaults to a string of null bytes with the same length
1982 * as the secret (PSK) input.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001983 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1984 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001985 *
1986 * For the application to TLS-1.2, the seed (which is
1987 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1988 * ClientHello.Random + ServerHello.Random,
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001989 * the label is "master secret" or "extended master secret" and
1990 * the other secret depends on the key exchange specified in the cipher suite:
1991 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1992 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1993 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1994 * (RFC 5489, Section 2), the other secret should be the output of the
1995 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
1996 * The recommended way to pass this input is to use a key derivation
1997 * algorithm constructed as
1998 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
1999 * and to call psa_key_derivation_key_agreement(). Alternatively,
2000 * this input may be an output of `psa_raw_key_agreement()` passed with
2001 * psa_key_derivation_input_bytes(), or an equivalent input passed with
2002 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
2003 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2004 * should be the 48-byte client challenge (the PreMasterSecret of
2005 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2006 * a 46-byte random string chosen by the client. On the server, this is
2007 * typically an output of psa_asymmetric_decrypt() using
2008 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2009 * with `psa_key_derivation_input_bytes()`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002010 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002011 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002012 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2013 *
2014 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2015 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2016 *
2017 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01002018 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002019 * hash algorithm.
2020 */
2021#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2022 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2023
2024/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2025 *
2026 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2027 *
2028 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2029 * This macro may return either 0 or 1 if \c alg is not a supported
2030 * key derivation algorithm identifier.
2031 */
2032#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2033 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2034#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2035 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2036
Andrzej Kurek1fafb1f2022-09-16 07:19:49 -04002037/* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2038 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2039 * will use to derive the session secret, as defined by step 2 of
2040 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2041 * Uses PSA_ALG_SHA_256.
2042 * This function takes a single input:
2043 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2044 * The only supported curve is secp256r1 (the 256-bit curve in
2045 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
Andrzej Kureke09aff82022-09-26 10:59:31 -04002046 * The output has to be read as a single chunk of 32 bytes, defined as
2047 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002048 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002049#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t) 0x08000609)
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002050
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002051/* This flag indicates whether the key derivation algorithm is suitable for
2052 * use on low-entropy secrets such as password - these algorithms are also
2053 * known as key stretching or password hashing schemes. These are also the
2054 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002055 *
2056 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002057 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002058#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t) 0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002059
Gilles Peskine449bd832023-01-11 14:50:10 +01002060#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t) 0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002061/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002062 *
2063 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002064 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2065 * HMAC with the specified hash.
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002066 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002067 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002068 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002069 * This key derivation algorithm uses the following inputs, which must be
2070 * provided in the following order:
2071 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002072 * This input step must be used exactly once.
2073 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2074 * This input step must be used one or more times; if used several times, the
2075 * inputs will be concatenated. This can be used to build the final salt
2076 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002077 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002078 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002079 *
2080 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2081 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2082 *
2083 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2084 * \return Unspecified if \p hash_alg is not a supported
2085 * hash algorithm.
2086 */
2087#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2088 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2089
2090/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2091 *
2092 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2093 *
2094 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2095 * This macro may return either 0 or 1 if \c alg is not a supported
2096 * key derivation algorithm identifier.
2097 */
2098#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2099 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Kusumit Ghoderao10cc6bd2023-05-24 12:35:14 +05302100#define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg) \
2101 (PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002102/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2103 *
2104 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2105 * This macro specifies the PBKDF2 algorithm constructed using the
2106 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2107 *
2108 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02002109 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002110 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002111#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t) 0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002112
Kusumit Ghoderao9ab03c32023-07-27 21:14:05 +05302113#define PSA_ALG_IS_PBKDF2(kdf_alg) \
2114 (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
Kusumit Ghoderao9928ca12023-08-16 11:48:27 +05302115 ((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
Kusumit Ghoderao9ab03c32023-07-27 21:14:05 +05302116
Gilles Peskine449bd832023-01-11 14:50:10 +01002117#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
2118#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002119
Gilles Peskine6843c292019-01-18 16:44:49 +01002120/** Macro to build a combined algorithm that chains a key agreement with
2121 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002122 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002123 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2124 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2125 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2126 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002127 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002128 * \return The corresponding key agreement and derivation
2129 * algorithm.
2130 * \return Unspecified if \p ka_alg is not a supported
2131 * key agreement algorithm or \p kdf_alg is not a
2132 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002133 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002134#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2135 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002136
2137#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2138 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2139
Gilles Peskine6843c292019-01-18 16:44:49 +01002140#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2141 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002142
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002143/** Whether the specified algorithm is a raw key agreement algorithm.
2144 *
2145 * A raw key agreement algorithm is one that does not specify
2146 * a key derivation function.
2147 * Usually, raw key agreement algorithms are constructed directly with
2148 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02002149 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002150 *
2151 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2152 *
2153 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2154 * This macro may return either 0 or 1 if \p alg is not a supported
2155 * algorithm identifier.
2156 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002157#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002158 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2159 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01002160
2161#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2162 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2163
2164/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002165 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002166 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002167 * `g^{ab}` in big-endian format.
2168 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2169 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002170 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002171#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002172
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002173/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2174 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002175 * This includes the raw finite field Diffie-Hellman algorithm as well as
2176 * finite-field Diffie-Hellman followed by any supporter key derivation
2177 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002178 *
2179 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2180 *
2181 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2182 * This macro may return either 0 or 1 if \c alg is not a supported
2183 * key agreement algorithm identifier.
2184 */
2185#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002186 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002187
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002188/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2189 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002190 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002191 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2192 * `m` is the bit size associated with the curve, i.e. the bit size of the
2193 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2194 * the byte containing the most significant bit of the shared secret
2195 * is padded with zero bits. The byte order is either little-endian
2196 * or big-endian depending on the curve type.
2197 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01002198 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002199 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2200 * in little-endian byte order.
2201 * The bit size is 448 for Curve448 and 255 for Curve25519.
2202 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002203 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002204 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2205 * in big-endian byte order.
2206 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2207 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002208 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002209 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2210 * in big-endian byte order.
2211 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002212 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002213#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002214
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002215/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2216 * algorithm.
2217 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002218 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2219 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2220 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002221 *
2222 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2223 *
2224 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2225 * 0 otherwise.
2226 * This macro may return either 0 or 1 if \c alg is not a supported
2227 * key agreement algorithm identifier.
2228 */
2229#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002230 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002231
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002232/** Whether the specified algorithm encoding is a wildcard.
2233 *
2234 * Wildcard values may only be used to set the usage algorithm field in
2235 * a policy, not to perform an operation.
2236 *
2237 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2238 *
2239 * \return 1 if \c alg is a wildcard algorithm encoding.
2240 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2241 * an operation).
2242 * \return This macro may return either 0 or 1 if \c alg is not a supported
2243 * algorithm identifier.
2244 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002245#define PSA_ALG_IS_WILDCARD(alg) \
2246 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2247 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2248 PSA_ALG_IS_MAC(alg) ? \
2249 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2250 PSA_ALG_IS_AEAD(alg) ? \
2251 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002252 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002253
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002254/** Get the hash used by a composite algorithm.
2255 *
2256 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2257 *
2258 * \return The underlying hash algorithm if alg is a composite algorithm that
2259 * uses a hash algorithm.
2260 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002261 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002262 */
2263#define PSA_ALG_GET_HASH(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002264 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002265
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002266/**@}*/
2267
2268/** \defgroup key_lifetimes Key lifetimes
2269 * @{
2270 */
2271
Gilles Peskine79733992022-06-20 18:41:20 +02002272/* Note that location and persistence level values are embedded in the
2273 * persistent key store, as part of key metadata. As a consequence, they
2274 * must not be changed (unless the storage format version changes).
2275 */
2276
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002277/** The default lifetime for volatile keys.
2278 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002279 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002280 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002281 *
2282 * A key with this lifetime is typically stored in the RAM area of the
2283 * PSA Crypto subsystem. However this is an implementation choice.
2284 * If an implementation stores data about the key in a non-volatile memory,
2285 * it must release all the resources associated with the key and erase the
2286 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002287 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002288#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002289
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002290/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002291 *
2292 * A persistent key remains in storage until it is explicitly destroyed or
2293 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002294 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002295 * provide their own mechanism (for example to perform a factory reset,
2296 * to prepare for device refurbishment, or to uninstall an application).
2297 *
2298 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002299 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002300 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002301 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002302#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002303
Gilles Peskineaff11812020-05-04 19:03:10 +02002304/** The persistence level of volatile keys.
2305 *
2306 * See ::psa_key_persistence_t for more information.
2307 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002308#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002309
2310/** The default persistence level for persistent keys.
2311 *
2312 * See ::psa_key_persistence_t for more information.
2313 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002314#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002315
2316/** A persistence level indicating that a key is never destroyed.
2317 *
2318 * See ::psa_key_persistence_t for more information.
2319 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002320#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002321
2322#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002323 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002324
2325#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002326 ((psa_key_location_t) ((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002327
2328/** Whether a key lifetime indicates that the key is volatile.
2329 *
2330 * A volatile key is automatically destroyed by the implementation when
2331 * the application instance terminates. In particular, a volatile key
2332 * is automatically destroyed on a power reset of the device.
2333 *
2334 * A key that is not volatile is persistent. Persistent keys are
2335 * preserved until the application explicitly destroys them or until an
2336 * implementation-specific device management event occurs (for example,
2337 * a factory reset).
2338 *
2339 * \param lifetime The lifetime value to query (value of type
2340 * ::psa_key_lifetime_t).
2341 *
2342 * \return \c 1 if the key is volatile, otherwise \c 0.
2343 */
2344#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2345 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002346 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002347
Gilles Peskined133bb22021-04-21 20:05:59 +02002348/** Whether a key lifetime indicates that the key is read-only.
2349 *
2350 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2351 * They must be created through platform-specific means that bypass the API.
2352 *
2353 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002354 * consider a platform with multiple levels of privilege, where a
2355 * low-privilege application can use a key but is not allowed to destroy
2356 * it, and the platform exposes the key to the application with a read-only
2357 * lifetime. High-privilege code can destroy the key even though the
2358 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002359 *
2360 * \param lifetime The lifetime value to query (value of type
2361 * ::psa_key_lifetime_t).
2362 *
2363 * \return \c 1 if the key is read-only, otherwise \c 0.
2364 */
2365#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2366 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2367 PSA_KEY_PERSISTENCE_READ_ONLY)
2368
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002369/** Construct a lifetime from a persistence level and a location.
2370 *
2371 * \param persistence The persistence level
2372 * (value of type ::psa_key_persistence_t).
2373 * \param location The location indicator
2374 * (value of type ::psa_key_location_t).
2375 *
2376 * \return The constructed lifetime value.
2377 */
2378#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2379 ((location) << 8 | (persistence))
2380
Gilles Peskineaff11812020-05-04 19:03:10 +02002381/** The local storage area for persistent keys.
2382 *
2383 * This storage area is available on all systems that can store persistent
2384 * keys without delegating the storage to a third-party cryptoprocessor.
2385 *
2386 * See ::psa_key_location_t for more information.
2387 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002388#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002389
Gilles Peskine449bd832023-01-11 14:50:10 +01002390#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002391
Gilles Peskine79733992022-06-20 18:41:20 +02002392/* Note that key identifier values are embedded in the
2393 * persistent key store, as part of key metadata. As a consequence, they
2394 * must not be changed (unless the storage format version changes).
2395 */
2396
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002397/** The null key identifier.
2398 */
Gilles Peskinea6516072023-01-04 19:52:38 +01002399/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002400#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +01002401/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002402/** The minimum value for a key identifier chosen by the application.
2403 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002404#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002405/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002406 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002407#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002408/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002409 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002410#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002411/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002412 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002413#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002414
Ronald Cron7424f0d2020-09-14 16:17:41 +02002415
2416#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2417
Gilles Peskine449bd832023-01-11 14:50:10 +01002418#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2419#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2420#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002421
2422/** Utility to initialize a key identifier at runtime.
2423 *
2424 * \param unused Unused parameter.
2425 * \param key_id Identifier of the key.
2426 */
2427static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002428 unsigned int unused, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002429{
Gilles Peskine449bd832023-01-11 14:50:10 +01002430 (void) unused;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002431
Gilles Peskine449bd832023-01-11 14:50:10 +01002432 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002433}
2434
2435/** Compare two key identifiers.
2436 *
2437 * \param id1 First key identifier.
2438 * \param id2 Second key identifier.
2439 *
2440 * \return Non-zero if the two key identifier are equal, zero otherwise.
2441 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002442static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2443 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002444{
Gilles Peskine449bd832023-01-11 14:50:10 +01002445 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002446}
2447
Ronald Cronc4d1b512020-07-31 11:26:37 +02002448/** Check whether a key identifier is null.
2449 *
2450 * \param key Key identifier.
2451 *
2452 * \return Non-zero if the key identifier is null, zero otherwise.
2453 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002454static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002455{
Gilles Peskine449bd832023-01-11 14:50:10 +01002456 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002457}
2458
Ronald Cron7424f0d2020-09-14 16:17:41 +02002459#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2460
Gilles Peskine449bd832023-01-11 14:50:10 +01002461#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2462#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2463#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
Ronald Cron7424f0d2020-09-14 16:17:41 +02002464
2465/** Utility to initialize a key identifier at runtime.
2466 *
2467 * \param owner_id Identifier of the key owner.
2468 * \param key_id Identifier of the key.
2469 */
2470static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002471 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002472{
Gilles Peskine449bd832023-01-11 14:50:10 +01002473 return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2474 .MBEDTLS_PRIVATE(owner) = owner_id };
Ronald Cron7424f0d2020-09-14 16:17:41 +02002475}
2476
2477/** Compare two key identifiers.
2478 *
2479 * \param id1 First key identifier.
2480 * \param id2 Second key identifier.
2481 *
2482 * \return Non-zero if the two key identifier are equal, zero otherwise.
2483 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002484static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2485 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002486{
Gilles Peskine449bd832023-01-11 14:50:10 +01002487 return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2488 mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
Ronald Cron7424f0d2020-09-14 16:17:41 +02002489}
2490
Ronald Cronc4d1b512020-07-31 11:26:37 +02002491/** Check whether a key identifier is null.
2492 *
2493 * \param key Key identifier.
2494 *
2495 * \return Non-zero if the key identifier is null, zero otherwise.
2496 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002497static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002498{
Gilles Peskine449bd832023-01-11 14:50:10 +01002499 return key.MBEDTLS_PRIVATE(key_id) == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002500}
2501
Ronald Cron7424f0d2020-09-14 16:17:41 +02002502#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002503
2504/**@}*/
2505
2506/** \defgroup policy Key policies
2507 * @{
2508 */
2509
Gilles Peskine79733992022-06-20 18:41:20 +02002510/* Note that key usage flags are embedded in the
2511 * persistent key store, as part of key metadata. As a consequence, they
2512 * must not be changed (unless the storage format version changes).
2513 */
2514
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002515/** Whether the key may be exported.
2516 *
2517 * A public key or the public part of a key pair may always be exported
2518 * regardless of the value of this permission flag.
2519 *
2520 * If a key does not have export permission, implementations shall not
2521 * allow the key to be exported in plain form from the cryptoprocessor,
2522 * whether through psa_export_key() or through a proprietary interface.
2523 * The key may however be exportable in a wrapped form, i.e. in a form
2524 * where it is encrypted by another key.
2525 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002526#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002527
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002528/** Whether the key may be copied.
2529 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002530 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002531 * with the same policy or a more restrictive policy.
2532 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002533 * For lifetimes for which the key is located in a secure element which
2534 * enforce the non-exportability of keys, copying a key outside the secure
2535 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2536 * Copying the key inside the secure element is permitted with just
2537 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2538 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002539 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2540 * is sufficient to permit the copy.
2541 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002542#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002543
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002544/** Whether the key may be used to encrypt a message.
2545 *
2546 * This flag allows the key to be used for a symmetric encryption operation,
2547 * for an AEAD encryption-and-authentication operation,
2548 * or for an asymmetric encryption operation,
2549 * if otherwise permitted by the key's type and policy.
2550 *
2551 * For a key pair, this concerns the public key.
2552 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002553#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002554
2555/** Whether the key may be used to decrypt a message.
2556 *
2557 * This flag allows the key to be used for a symmetric decryption operation,
2558 * for an AEAD decryption-and-verification operation,
2559 * or for an asymmetric decryption operation,
2560 * if otherwise permitted by the key's type and policy.
2561 *
2562 * For a key pair, this concerns the private key.
2563 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002564#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002565
2566/** Whether the key may be used to sign a message.
2567 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002568 * This flag allows the key to be used for a MAC calculation operation or for
2569 * an asymmetric message signature operation, if otherwise permitted by the
2570 * key’s type and policy.
2571 *
2572 * For a key pair, this concerns the private key.
2573 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002574#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002575
2576/** Whether the key may be used to verify a message.
2577 *
2578 * This flag allows the key to be used for a MAC verification operation or for
2579 * an asymmetric message signature verification operation, if otherwise
2580 * permitted by the key’s type and policy.
2581 *
2582 * For a key pair, this concerns the public key.
2583 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002584#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002585
2586/** Whether the key may be used to sign a message.
2587 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002588 * This flag allows the key to be used for a MAC calculation operation
2589 * or for an asymmetric signature operation,
2590 * if otherwise permitted by the key's type and policy.
2591 *
2592 * For a key pair, this concerns the private key.
2593 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002594#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002595
2596/** Whether the key may be used to verify a message signature.
2597 *
2598 * This flag allows the key to be used for a MAC verification operation
2599 * or for an asymmetric signature verification operation,
Tom Cosgrove1797b052022-12-04 17:19:59 +00002600 * if otherwise permitted by the key's type and policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002601 *
2602 * For a key pair, this concerns the public key.
2603 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002604#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002605
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002606/** Whether the key may be used to derive other keys or produce a password
2607 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002608 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002609 * This flag allows the key to be used for a key derivation operation or for
Tom Cosgrove1797b052022-12-04 17:19:59 +00002610 * a key agreement operation, if otherwise permitted by the key's type and
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002611 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002612 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002613 * If this flag is present on all keys used in calls to
2614 * psa_key_derivation_input_key() for a key derivation operation, then it
2615 * permits calling psa_key_derivation_output_bytes() or
2616 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002617 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002618#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002619
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002620/** Whether the key may be used to verify the result of a key derivation,
2621 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002622 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002623 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002624 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002625 * This flag allows the key to be used in a key derivation operation, if
Tom Cosgrove1797b052022-12-04 17:19:59 +00002626 * otherwise permitted by the key's type and policy.
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002627 *
2628 * If this flag is present on all keys used in calls to
2629 * psa_key_derivation_input_key() for a key derivation operation, then it
2630 * permits calling psa_key_derivation_verify_bytes() or
2631 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002632 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002633#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t) 0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002634
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002635/**@}*/
2636
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002637/** \defgroup derivation Key derivation
2638 * @{
2639 */
2640
Gilles Peskine79733992022-06-20 18:41:20 +02002641/* Key input steps are not embedded in the persistent storage, so you can
2642 * change them if needed: it's only an ABI change. */
2643
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002644/** A secret input for key derivation.
2645 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002646 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2647 * (passed to psa_key_derivation_input_key())
2648 * or the shared secret resulting from a key agreement
2649 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002650 *
2651 * The secret can also be a direct input (passed to
2652 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002653 * may not be used to derive keys: the operation will only allow
2654 * psa_key_derivation_output_bytes(),
2655 * psa_key_derivation_verify_bytes(), or
2656 * psa_key_derivation_verify_key(), but not
2657 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002658 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002659#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002660
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002661/** A low-entropy secret input for password hashing / key stretching.
2662 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002663 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2664 * psa_key_derivation_input_key()) or a direct input (passed to
2665 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2666 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2667 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002668 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002669 * The secret can also be a direct input (passed to
2670 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002671 * may not be used to derive keys: the operation will only allow
2672 * psa_key_derivation_output_bytes(),
2673 * psa_key_derivation_verify_bytes(), or
2674 * psa_key_derivation_verify_key(), but not
2675 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002676 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002677#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t) 0x0102)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002678
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002679/** A high-entropy additional secret input for key derivation.
2680 *
2681 * This is typically the shared secret resulting from a key agreement obtained
2682 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2683 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2684 * a direct input passed to `psa_key_derivation_input_bytes()`.
2685 */
2686#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
Gilles Peskine449bd832023-01-11 14:50:10 +01002687 ((psa_key_derivation_step_t) 0x0103)
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002688
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002689/** A label for key derivation.
2690 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002691 * This should be a direct input.
2692 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002693 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002694#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002695
2696/** A salt for key derivation.
2697 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002698 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002699 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2700 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002701 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002702#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002703
2704/** An information string for key derivation.
2705 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002706 * This should be a direct input.
2707 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002708 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002709#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002710
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002711/** A seed for key derivation.
2712 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002713 * This should be a direct input.
2714 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002715 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002716#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002717
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002718/** A cost parameter for password hashing / key stretching.
2719 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002720 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002721 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002722#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t) 0x0205)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002723
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002724/**@}*/
2725
Bence Szépkútib639d432021-04-21 10:33:54 +02002726/** \defgroup helper_macros Helper macros
2727 * @{
2728 */
2729
2730/* Helper macros */
2731
2732/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2733 * regardless of the tag length they encode.
2734 *
2735 * \param aead_alg_1 An AEAD algorithm identifier.
2736 * \param aead_alg_2 An AEAD algorithm identifier.
2737 *
2738 * \return 1 if both identifiers refer to the same AEAD algorithm,
2739 * 0 otherwise.
2740 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2741 * a supported AEAD algorithm.
2742 */
2743#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2744 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2745 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2746
2747/**@}*/
2748
Paul Elliott1265f002022-09-09 17:15:43 +01002749/**@}*/
2750
2751/** \defgroup interruptible Interruptible operations
2752 * @{
2753 */
2754
2755/** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2756 * the maximum number of ops allowed to be executed by an interruptible
2757 * function in a single call.
2758 */
Paul Elliottab7c5c82023-02-03 15:49:42 +00002759#define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
Paul Elliott1265f002022-09-09 17:15:43 +01002760
2761/**@}*/
2762
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002763#endif /* PSA_CRYPTO_VALUES_H */