blob: 8d30bf0fb9b8b7e8f5e04863c08f76424ca10c00 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
Gilles Peskine79733992022-06-20 18:41:20 +020015 * Note that many of the constants defined in this file are embedded in
16 * the persistent key store, as part of key metadata (including usage
17 * policies). As a consequence, they must not be changed (unless the storage
18 * format version changes).
19 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +010020 * This header file only defines preprocessor macros.
21 */
22/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020023 * Copyright The Mbed TLS Contributors
Dave Rodgman16799db2023-11-02 19:47:20 +000024 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
Gilles Peskinef3b731e2018-12-12 13:38:31 +010025 */
26
27#ifndef PSA_CRYPTO_VALUES_H
28#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020029#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010030
31/** \defgroup error Error codes
32 * @{
33 */
34
David Saadab4ecc272019-02-14 13:48:10 +020035/* PSA error codes */
36
Gilles Peskine79733992022-06-20 18:41:20 +020037/* Error codes are standardized across PSA domains (framework, crypto, storage,
Gilles Peskine955993c2022-06-29 14:37:17 +020038 * etc.). Do not change the values in this section or even the expansions
39 * of each macro: it must be possible to `#include` both this header
40 * and some other PSA component's headers in the same C source,
41 * which will lead to duplicate definitions of the `PSA_SUCCESS` and
42 * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
43 * to the same sequence of tokens.
44 *
45 * If you must add a new
Gilles Peskine79733992022-06-20 18:41:20 +020046 * value, check with the Arm PSA framework group to pick one that other
47 * domains aren't already using. */
48
Gilles Peskine45873ce2023-01-04 19:50:27 +010049/* Tell uncrustify not to touch the constant definitions, otherwise
50 * it might change the spacing to something that is not PSA-compliant
51 * (e.g. adding a space after casts).
52 *
53 * *INDENT-OFF*
54 */
55
Gilles Peskinef3b731e2018-12-12 13:38:31 +010056/** The action was completed successfully. */
57#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010058
59/** An error occurred that does not correspond to any defined
60 * failure cause.
61 *
62 * Implementations may use this error code if none of the other standard
63 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020064#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010065
66/** The requested operation or a parameter is not supported
67 * by this implementation.
68 *
69 * Implementations should return this error code when an enumeration
70 * parameter such as a key type, algorithm, etc. is not recognized.
71 * If a combination of parameters is recognized and identified as
72 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** The requested action is denied by a policy.
76 *
77 * Implementations should return this error code when the parameters
78 * are recognized as valid and supported, and a policy explicitly
79 * denies the requested operation.
80 *
81 * If a subset of the parameters of a function call identify a
82 * forbidden operation, and another subset of the parameters are
83 * not valid or not supported, it is unspecified whether the function
84 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
85 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020086#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
88/** An output buffer is too small.
89 *
90 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
91 * description to determine a sufficient buffer size.
92 *
93 * Implementations should preferably return this error code only
94 * in cases when performing the operation with a larger output
95 * buffer would succeed. However implementations may return this
96 * error if a function has invalid or unsupported parameters in addition
97 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020098#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
David Saadab4ecc272019-02-14 13:48:10 +0200100/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100101 *
David Saadab4ecc272019-02-14 13:48:10 +0200102 * Implementations should return this error, when attempting
103 * to write an item (like a key) that already exists. */
104#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100105
David Saadab4ecc272019-02-14 13:48:10 +0200106/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100107 *
David Saadab4ecc272019-02-14 13:48:10 +0200108 * Implementations should return this error, if a requested item (like
109 * a key) does not exist. */
110#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100111
112/** The requested action cannot be performed in the current state.
113 *
114 * Multipart operations return this error when one of the
115 * functions is called out of sequence. Refer to the function
116 * descriptions for permitted sequencing of functions.
117 *
118 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100119 * that a key either exists or not,
120 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * as applicable.
122 *
123 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200124 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100125 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200126#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100127
128/** The parameters passed to the function are invalid.
129 *
130 * Implementations may return this error any time a parameter or
131 * combination of parameters are recognized as invalid.
132 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100133 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200134 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100135 * instead.
136 */
David Saadab4ecc272019-02-14 13:48:10 +0200137#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100138
139/** There is not enough runtime memory.
140 *
141 * If the action is carried out across multiple security realms, this
142 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200143#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100144
145/** There is not enough persistent storage.
146 *
147 * Functions that modify the key storage return this error code if
148 * there is insufficient storage space on the host media. In addition,
149 * many functions that do not otherwise access storage may return this
150 * error code if the implementation requires a mandatory log entry for
151 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200152#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100153
154/** There was a communication failure inside the implementation.
155 *
156 * This can indicate a communication failure between the application
157 * and an external cryptoprocessor or between the cryptoprocessor and
158 * an external volatile or persistent memory. A communication failure
159 * may be transient or permanent depending on the cause.
160 *
161 * \warning If a function returns this error, it is undetermined
162 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200163 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
165 * if the requested action was completed successfully in an external
166 * cryptoprocessor but there was a breakdown of communication before
167 * the cryptoprocessor could report the status to the application.
168 */
David Saadab4ecc272019-02-14 13:48:10 +0200169#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100170
171/** There was a storage failure that may have led to data loss.
172 *
173 * This error indicates that some persistent storage is corrupted.
174 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200175 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 * between the cryptoprocessor and its external storage (use
177 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
178 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
179 *
180 * Note that a storage failure does not indicate that any data that was
181 * previously read is invalid. However this previously read data may no
182 * longer be readable from storage.
183 *
184 * When a storage failure occurs, it is no longer possible to ensure
185 * the global integrity of the keystore. Depending on the global
186 * integrity guarantees offered by the implementation, access to other
187 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100188 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189 *
190 * Implementations should only use this error code to report a
191 * permanent storage corruption. However application writers should
192 * keep in mind that transient errors while reading the storage may be
193 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200194#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100195
196/** A hardware failure was detected.
197 *
198 * A hardware failure may be transient or permanent depending on the
199 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200200#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100201
202/** A tampering attempt was detected.
203 *
204 * If an application receives this error code, there is no guarantee
205 * that previously accessed or computed data was correct and remains
206 * confidential. Applications should not perform any security function
207 * and should enter a safe failure state.
208 *
209 * Implementations may return this error code if they detect an invalid
210 * state that cannot happen during normal operation and that indicates
211 * that the implementation's security guarantees no longer hold. Depending
212 * on the implementation architecture and on its security and safety goals,
213 * the implementation may forcibly terminate the application.
214 *
215 * This error code is intended as a last resort when a security breach
216 * is detected and it is unsure whether the keystore data is still
217 * protected. Implementations shall only return this error code
218 * to report an alarm from a tampering detector, to indicate that
219 * the confidentiality of stored data can no longer be guaranteed,
220 * or to indicate that the integrity of previously returned data is now
221 * considered compromised. Implementations shall not use this error code
222 * to indicate a hardware failure that merely makes it impossible to
223 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
224 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
225 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
226 * instead).
227 *
228 * This error indicates an attack against the application. Implementations
229 * shall not return this error code as a consequence of the behavior of
230 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200231#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100232
233/** There is not enough entropy to generate random data needed
234 * for the requested action.
235 *
236 * This error indicates a failure of a hardware random generator.
237 * Application writers should note that this error can be returned not
238 * only by functions whose purpose is to generate random data, such
239 * as key, IV or nonce generation, but also by functions that execute
240 * an algorithm with a randomized result, as well as functions that
241 * use randomization of intermediate computations as a countermeasure
242 * to certain attacks.
243 *
244 * Implementations should avoid returning this error after psa_crypto_init()
245 * has succeeded. Implementations should generate sufficient
246 * entropy during initialization and subsequently use a cryptographically
247 * secure pseudorandom generator (PRNG). However implementations may return
248 * this error at any time if a policy requires the PRNG to be reseeded
249 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200250#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100251
252/** The signature, MAC or hash is incorrect.
253 *
254 * Verification functions return this error if the verification
255 * calculations completed successfully, and the value to be verified
256 * was determined to be incorrect.
257 *
258 * If the value to verify has an invalid size, implementations may return
259 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200260#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100261
262/** The decrypted padding is incorrect.
263 *
264 * \warning In some protocols, when decrypting data, it is essential that
265 * the behavior of the application does not depend on whether the padding
266 * is correct, down to precise timing. Applications should prefer
267 * protocols that use authenticated encryption rather than plain
268 * encryption. If the application must perform a decryption of
269 * unauthenticated data, the application writer should take care not
270 * to reveal whether the padding is invalid.
271 *
272 * Implementations should strive to make valid and invalid padding
273 * as close as possible to indistinguishable to an external observer.
274 * In particular, the timing of a decryption operation should not
275 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200276#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100277
David Saadab4ecc272019-02-14 13:48:10 +0200278/** Return this error when there's insufficient data when attempting
279 * to read from a resource. */
280#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100281
Ronald Croncf56a0a2020-08-04 09:51:30 +0200282/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100283 */
David Saadab4ecc272019-02-14 13:48:10 +0200284#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100285
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100286/** Stored data has been corrupted.
287 *
288 * This error indicates that some persistent storage has suffered corruption.
289 * It does not indicate the following situations, which have specific error
290 * codes:
291 *
292 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
293 * - A communication error between the cryptoprocessor and its external
294 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
295 * - When the storage is in a valid state but is full - use
296 * #PSA_ERROR_INSUFFICIENT_STORAGE.
297 * - When the storage fails for other reasons - use
298 * #PSA_ERROR_STORAGE_FAILURE.
299 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
300 *
301 * \note A storage corruption does not indicate that any data that was
302 * previously read is invalid. However this previously read data might no
303 * longer be readable from storage.
304 *
305 * When a storage failure occurs, it is no longer possible to ensure the
306 * global integrity of the keystore.
307 */
308#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
309
gabor-mezei-armfe309242020-11-09 17:39:56 +0100310/** Data read from storage is not valid for the implementation.
311 *
312 * This error indicates that some data read from storage does not have a valid
313 * format. It does not indicate the following situations, which have specific
314 * error codes:
315 *
316 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
317 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
318 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
319 *
320 * This error is typically a result of either storage corruption on a
321 * cleartext storage backend, or an attempt to read data that was
322 * written by an incompatible version of the library.
323 */
324#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
325
Paul Elliott1265f002022-09-09 17:15:43 +0100326/** The function that returns this status is defined as interruptible and
327 * still has work to do, thus the user should call the function again with the
328 * same operation context until it either returns #PSA_SUCCESS or any other
329 * error. This is not an error per se, more a notification of status.
330 */
331#define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)
332
Gilles Peskine45873ce2023-01-04 19:50:27 +0100333/* *INDENT-ON* */
334
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100335/**@}*/
336
337/** \defgroup crypto_types Key and algorithm types
338 * @{
339 */
340
Gilles Peskine79733992022-06-20 18:41:20 +0200341/* Note that key type values, including ECC family and DH group values, are
342 * embedded in the persistent key store, as part of key metadata. As a
343 * consequence, they must not be changed (unless the storage format version
344 * changes).
345 */
346
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347/** An invalid key type value.
348 *
349 * Zero is not the encoding of any key type.
350 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100351#define PSA_KEY_TYPE_NONE ((psa_key_type_t) 0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100352
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100353/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100354 *
355 * Key types defined by this standard will never have the
356 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
357 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
358 * respect the bitwise structure used by standard encodings whenever practical.
359 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100360#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t) 0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361
Gilles Peskine449bd832023-01-11 14:50:10 +0100362#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t) 0x7000)
363#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t) 0x1000)
364#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t) 0x2000)
365#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t) 0x4000)
366#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t) 0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100367
Gilles Peskine449bd832023-01-11 14:50:10 +0100368#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t) 0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100370/** Whether a key type is vendor-defined.
371 *
372 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
373 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100374#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
375 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
376
377/** Whether a key type is an unstructured array of bytes.
378 *
379 * This encompasses both symmetric keys and non-key data.
380 */
381#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100382 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
383 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100384
385/** Whether a key type is asymmetric: either a key pair or a public key. */
386#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
387 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
388 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
389 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
390/** Whether a key type is the public part of a key pair. */
391#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
392 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
393/** Whether a key type is a key pair containing a private part and a public
394 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200395#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100396 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
397/** The key pair type corresponding to a public key type.
398 *
399 * You may also pass a key pair type as \p type, it will be left unchanged.
400 *
401 * \param type A public key type or key pair type.
402 *
403 * \return The corresponding key pair type.
404 * If \p type is not a public key or a key pair,
405 * the return value is undefined.
406 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200407#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100408 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
409/** The public key type corresponding to a key pair type.
410 *
411 * You may also pass a key pair type as \p type, it will be left unchanged.
412 *
413 * \param type A public key type or key pair type.
414 *
415 * \return The corresponding public key type.
416 * If \p type is not a public key or a key pair,
417 * the return value is undefined.
418 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200419#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100420 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
421
422/** Raw data.
423 *
424 * A "key" of this type cannot be used for any cryptographic operation.
425 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100426#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t) 0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100427
428/** HMAC key.
429 *
430 * The key policy determines which underlying hash algorithm the key can be
431 * used for.
432 *
433 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100434 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100435 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100436#define PSA_KEY_TYPE_HMAC ((psa_key_type_t) 0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100437
438/** A secret for key derivation.
439 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200440 * This key type is for high-entropy secrets only. For low-entropy secrets,
441 * #PSA_KEY_TYPE_PASSWORD should be used instead.
442 *
443 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
444 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
445 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100446 * The key policy determines which key derivation algorithm the key
447 * can be used for.
448 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100449#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t) 0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100450
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200451/** A low-entropy secret for password hashing or key derivation.
452 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200453 * This key type is suitable for passwords and passphrases which are typically
454 * intended to be memorizable by humans, and have a low entropy relative to
455 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200456 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200457 * for such keys. It is not suitable for passwords with extremely low entropy,
458 * such as numerical PINs.
459 *
460 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
461 * key derivation algorithms. Algorithms that accept such an input were
462 * designed to accept low-entropy secret and are known as password hashing or
463 * key stretching algorithms.
464 *
465 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
466 * key derivation algorithms, as the algorithms that take such an input expect
467 * it to be high-entropy.
468 *
469 * The key policy determines which key derivation algorithm the key can be
470 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200471 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100472#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t) 0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200473
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200474/** A secret value that can be used to verify a password hash.
475 *
476 * The key policy determines which key derivation algorithm the key
477 * can be used for, among the same permissible subset as for
478 * #PSA_KEY_TYPE_PASSWORD.
479 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100480#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t) 0x1205)
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200481
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200482/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200483 *
484 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200485 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200486 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100487#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t) 0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200488
Gilles Peskine737c6be2019-05-21 16:01:06 +0200489/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100490 *
491 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
492 * 32 bytes (AES-256).
493 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100494#define PSA_KEY_TYPE_AES ((psa_key_type_t) 0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100495
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200496/** Key for a cipher, AEAD or MAC algorithm based on the
497 * ARIA block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100498#define PSA_KEY_TYPE_ARIA ((psa_key_type_t) 0x2406)
Gilles Peskine6c12a1e2021-09-21 11:59:39 +0200499
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100500/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
501 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100502 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
503 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100504 *
505 * Note that single DES and 2-key 3DES are weak and strongly
506 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
507 * is weak and deprecated and should only be used in legacy protocols.
508 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100509#define PSA_KEY_TYPE_DES ((psa_key_type_t) 0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100510
Gilles Peskine737c6be2019-05-21 16:01:06 +0200511/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100512 * Camellia block cipher. */
Gilles Peskine449bd832023-01-11 14:50:10 +0100513#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t) 0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100514
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200515/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
516 *
517 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
518 *
Gilles Peskine14d35542022-03-10 18:36:37 +0100519 * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
520 * 12-byte nonces.
521 *
522 * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
523 * with the initial counter value 1, you can process and discard a
524 * 64-byte block before the real data.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200525 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100526#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t) 0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200527
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100528/** RSA public key.
529 *
530 * The size of an RSA key is the bit size of the modulus.
531 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100532#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t) 0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100533/** RSA key pair (private and public key).
534 *
535 * The size of an RSA key is the bit size of the modulus.
536 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100537#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t) 0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100538/** Whether a key type is an RSA key (pair or public-only). */
539#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200540 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100541
Gilles Peskine449bd832023-01-11 14:50:10 +0100542#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4100)
543#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t) 0x7100)
544#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100545/** Elliptic curve key pair.
546 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100547 * The size of an elliptic curve key is the bit size associated with the curve,
548 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
549 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
550 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100551 * \param curve A value of type ::psa_ecc_family_t that
552 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100553 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200554#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
555 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100556/** Elliptic curve public key.
557 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100558 * The size of an elliptic curve public key is the same as the corresponding
559 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
560 * `PSA_ECC_FAMILY_xxx` curve families).
561 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100562 * \param curve A value of type ::psa_ecc_family_t that
563 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100564 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100565#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
566 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
567
568/** Whether a key type is an elliptic curve key (pair or public-only). */
569#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200570 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100571 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100572/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200573#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100574 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200575 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100576/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100577#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
578 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
579 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
580
581/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100582#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
583 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100584 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
585 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100586
Przemyslaw Stekiel6d3d18b2022-01-20 22:41:17 +0100587/** Check if the curve of given family is Weierstrass elliptic curve. */
588#define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
589
Gilles Peskine228abc52019-12-03 17:24:19 +0100590/** SEC Koblitz curves over prime fields.
591 *
592 * This family comprises the following curves:
593 * secp192k1, secp224k1, secp256k1.
594 * They are defined in _Standards for Efficient Cryptography_,
595 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
596 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine6e206962024-01-03 20:59:03 +0100597 *
598 * \note For secp224k1, the bit-size is 225 (size of a private value).
Gilles Peskine44d557c2024-01-03 20:59:38 +0100599 *
600 * \note Mbed TLS only supports secp192k1 and secp256k1.
Gilles Peskine228abc52019-12-03 17:24:19 +0100601 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100602#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100603
604/** SEC random curves over prime fields.
605 *
606 * This family comprises the following curves:
Gilles Peskine2a22dac2024-01-03 20:58:55 +0100607 * secp192r1, secp224r1, secp256r1, secp384r1, secp521r1.
Gilles Peskine228abc52019-12-03 17:24:19 +0100608 * They are defined in _Standards for Efficient Cryptography_,
609 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
610 * https://www.secg.org/sec2-v2.pdf
611 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100612#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine44d557c2024-01-03 20:59:38 +0100613/* SECP160R2 (SEC2 v1, obsolete, not supported in Mbed TLS) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100614#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100615
616/** SEC Koblitz curves over binary fields.
617 *
618 * This family comprises the following curves:
619 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
620 * They are defined in _Standards for Efficient Cryptography_,
621 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
622 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine44d557c2024-01-03 20:59:38 +0100623 *
624 * \note Mbed TLS does not support any curve in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100625 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100626#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100627
628/** SEC random curves over binary fields.
629 *
630 * This family comprises the following curves:
631 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
632 * They are defined in _Standards for Efficient Cryptography_,
633 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
634 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine44d557c2024-01-03 20:59:38 +0100635 *
636 * \note Mbed TLS does not support any curve in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100637 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100638#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100639
640/** SEC additional random curves over binary fields.
641 *
642 * This family comprises the following curve:
643 * sect163r2.
644 * It is defined in _Standards for Efficient Cryptography_,
645 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
646 * https://www.secg.org/sec2-v2.pdf
Gilles Peskine44d557c2024-01-03 20:59:38 +0100647 *
648 * \note Mbed TLS does not support any curve in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100649 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100650#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100651
652/** Brainpool P random curves.
653 *
654 * This family comprises the following curves:
655 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
656 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
657 * It is defined in RFC 5639.
Gilles Peskine44d557c2024-01-03 20:59:38 +0100658 *
659 * \note Mbed TLS only supports the 256-bit, 384-bit and 512-bit curves
660 * in this family.
Gilles Peskine228abc52019-12-03 17:24:19 +0100661 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100662#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100663
664/** Curve25519 and Curve448.
665 *
666 * This family comprises the following Montgomery curves:
667 * - 255-bit: Bernstein et al.,
668 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
669 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
670 * - 448-bit: Hamburg,
671 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
672 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
673 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100674#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100675
Gilles Peskine67546802021-02-24 21:49:40 +0100676/** The twisted Edwards curves Ed25519 and Ed448.
677 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100678 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100679 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100680 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100681 *
682 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100683 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100684 * to Curve25519.
685 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
686 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
687 * to Curve448.
688 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
Gilles Peskine44d557c2024-01-03 20:59:38 +0100689 *
690 * \note Mbed TLS does not support Edwards curves yet.
Gilles Peskine67546802021-02-24 21:49:40 +0100691 */
692#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
693
Gilles Peskine449bd832023-01-11 14:50:10 +0100694#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t) 0x4200)
695#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t) 0x7200)
696#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t) 0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100697/** Diffie-Hellman key pair.
698 *
Paul Elliott75e27032020-06-03 15:17:39 +0100699 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100700 * Diffie-Hellman group to be used.
701 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200702#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
703 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100704/** Diffie-Hellman public key.
705 *
Paul Elliott75e27032020-06-03 15:17:39 +0100706 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100707 * Diffie-Hellman group to be used.
708 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200709#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
710 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
711
712/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
713#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200714 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200715 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
716/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200717#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200718 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200719 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200720/** Whether a key type is a Diffie-Hellman public key. */
721#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
722 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
723 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
724
725/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100726#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
727 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskine449bd832023-01-11 14:50:10 +0100728 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
729 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200730
Gilles Peskine228abc52019-12-03 17:24:19 +0100731/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
732 *
733 * This family includes groups with the following key sizes (in bits):
734 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
735 * all of these sizes or only a subset.
736 */
Paul Elliott75e27032020-06-03 15:17:39 +0100737#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100738
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100739#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100740 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100741/** The block size of a block cipher.
742 *
743 * \param type A cipher key type (value of type #psa_key_type_t).
744 *
745 * \return The block size for a block cipher, or 1 for a stream cipher.
746 * The return value is undefined if \p type is not a supported
747 * cipher key type.
748 *
749 * \note It is possible to build stream cipher algorithms on top of a block
750 * cipher, for example CTR mode (#PSA_ALG_CTR).
751 * This macro only takes the key type into account, so it cannot be
752 * used to determine the size of the data that #psa_cipher_update()
753 * might buffer for future processing in general.
754 *
755 * \note This macro returns a compile-time constant if its argument is one.
756 *
757 * \warning This macro may evaluate its argument multiple times.
758 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100759#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100760 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100761 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine449bd832023-01-11 14:50:10 +0100762 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100763
Gilles Peskine79733992022-06-20 18:41:20 +0200764/* Note that algorithm values are embedded in the persistent key store,
765 * as part of key metadata. As a consequence, they must not be changed
766 * (unless the storage format version changes).
767 */
768
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100769/** Vendor-defined algorithm flag.
770 *
771 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
772 * bit set. Vendors who define additional algorithms must use an encoding with
773 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
774 * used by standard encodings whenever practical.
775 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100776#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t) 0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100777
Gilles Peskine449bd832023-01-11 14:50:10 +0100778#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t) 0x7f000000)
779#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t) 0x02000000)
780#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t) 0x03000000)
781#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t) 0x04000000)
782#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t) 0x05000000)
783#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t) 0x06000000)
784#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t) 0x07000000)
785#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t) 0x08000000)
786#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t) 0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100787
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100788/** Whether an algorithm is vendor-defined.
789 *
790 * See also #PSA_ALG_VENDOR_FLAG.
791 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100792#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
793 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
794
795/** Whether the specified algorithm is a hash algorithm.
796 *
797 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
798 *
799 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
800 * This macro may return either 0 or 1 if \p alg is not a supported
801 * algorithm identifier.
802 */
803#define PSA_ALG_IS_HASH(alg) \
804 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
805
806/** Whether the specified algorithm is a MAC algorithm.
807 *
808 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
809 *
810 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
811 * This macro may return either 0 or 1 if \p alg is not a supported
812 * algorithm identifier.
813 */
814#define PSA_ALG_IS_MAC(alg) \
815 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
816
817/** Whether the specified algorithm is a symmetric cipher algorithm.
818 *
819 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
820 *
821 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
822 * This macro may return either 0 or 1 if \p alg is not a supported
823 * algorithm identifier.
824 */
825#define PSA_ALG_IS_CIPHER(alg) \
826 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
827
828/** Whether the specified algorithm is an authenticated encryption
829 * with associated data (AEAD) algorithm.
830 *
831 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
832 *
833 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
834 * This macro may return either 0 or 1 if \p alg is not a supported
835 * algorithm identifier.
836 */
837#define PSA_ALG_IS_AEAD(alg) \
838 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
839
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200840/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200841 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100842 *
843 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
844 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200845 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100846 * This macro may return either 0 or 1 if \p alg is not a supported
847 * algorithm identifier.
848 */
849#define PSA_ALG_IS_SIGN(alg) \
850 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
851
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200852/** Whether the specified algorithm is an asymmetric encryption algorithm,
853 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100854 *
855 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
856 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200857 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100858 * This macro may return either 0 or 1 if \p alg is not a supported
859 * algorithm identifier.
860 */
861#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
862 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
863
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864/** Whether the specified algorithm is a key agreement algorithm.
865 *
866 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
867 *
868 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
869 * This macro may return either 0 or 1 if \p alg is not a supported
870 * algorithm identifier.
871 */
872#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100873 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100874
875/** Whether the specified algorithm is a key derivation algorithm.
876 *
877 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
878 *
879 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
880 * This macro may return either 0 or 1 if \p alg is not a supported
881 * algorithm identifier.
882 */
883#define PSA_ALG_IS_KEY_DERIVATION(alg) \
884 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
885
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200886/** Whether the specified algorithm is a key stretching / password hashing
887 * algorithm.
888 *
889 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200890 * that is suitable for use with a low-entropy secret such as a password.
891 * Equivalently, it's a key derivation algorithm that uses a
892 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200893 *
894 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
895 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100896 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200897 * otherwise. This macro may return either 0 or 1 if \p alg is not a
898 * supported algorithm identifier.
899 */
900#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
901 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
902 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
903
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200904/** An invalid algorithm identifier value. */
Gilles Peskinea6516072023-01-04 19:52:38 +0100905/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200906#define PSA_ALG_NONE ((psa_algorithm_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +0100907/* *INDENT-ON* */
Mateusz Starzyk359b5ab2021-08-26 12:52:56 +0200908
Gilles Peskine449bd832023-01-11 14:50:10 +0100909#define PSA_ALG_HASH_MASK ((psa_algorithm_t) 0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100910/** MD5 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100911#define PSA_ALG_MD5 ((psa_algorithm_t) 0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100912/** PSA_ALG_RIPEMD160 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100913#define PSA_ALG_RIPEMD160 ((psa_algorithm_t) 0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100914/** SHA1 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100915#define PSA_ALG_SHA_1 ((psa_algorithm_t) 0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100916/** SHA2-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100917#define PSA_ALG_SHA_224 ((psa_algorithm_t) 0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100918/** SHA2-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100919#define PSA_ALG_SHA_256 ((psa_algorithm_t) 0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100920/** SHA2-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100921#define PSA_ALG_SHA_384 ((psa_algorithm_t) 0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100922/** SHA2-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100923#define PSA_ALG_SHA_512 ((psa_algorithm_t) 0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100924/** SHA2-512/224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100925#define PSA_ALG_SHA_512_224 ((psa_algorithm_t) 0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100926/** SHA2-512/256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100927#define PSA_ALG_SHA_512_256 ((psa_algorithm_t) 0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100928/** SHA3-224 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100929#define PSA_ALG_SHA3_224 ((psa_algorithm_t) 0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100930/** SHA3-256 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100931#define PSA_ALG_SHA3_256 ((psa_algorithm_t) 0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100932/** SHA3-384 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100933#define PSA_ALG_SHA3_384 ((psa_algorithm_t) 0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100934/** SHA3-512 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100935#define PSA_ALG_SHA3_512 ((psa_algorithm_t) 0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100936/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100937 *
938 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
939 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
940 * has the same output size and a (theoretically) higher security strength.
941 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100942#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t) 0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100943
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100944/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100945 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100946 * This value may be used to form the algorithm usage field of a policy
947 * for a signature algorithm that is parametrized by a hash. The key
948 * may then be used to perform operations using the same signature
949 * algorithm parametrized with any supported hash.
950 *
951 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskineacd2d0e2021-10-04 18:10:38 +0200952 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100953 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100954 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100955 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
956 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100957 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200958 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100959 * ```
960 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100961 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100962 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
963 * call to sign or verify a message may use a different hash.
964 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200965 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
966 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
967 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100968 * ```
969 *
970 * This value may not be used to build other algorithms that are
971 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100972 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100973 *
974 * This value may not be used to build an algorithm specification to
975 * perform an operation. It is only valid to build policies.
976 */
Gilles Peskine449bd832023-01-11 14:50:10 +0100977#define PSA_ALG_ANY_HASH ((psa_algorithm_t) 0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100978
Gilles Peskine449bd832023-01-11 14:50:10 +0100979#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t) 0x00c00000)
980#define PSA_ALG_HMAC_BASE ((psa_algorithm_t) 0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100981/** Macro to build an HMAC algorithm.
982 *
983 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
984 *
985 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
986 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
987 *
988 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100989 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100990 * hash algorithm.
991 */
992#define PSA_ALG_HMAC(hash_alg) \
993 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
994
995#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
996 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
997
998/** Whether the specified algorithm is an HMAC algorithm.
999 *
1000 * HMAC is a family of MAC algorithms that are based on a hash function.
1001 *
1002 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1003 *
1004 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
1005 * This macro may return either 0 or 1 if \p alg is not a supported
1006 * algorithm identifier.
1007 */
1008#define PSA_ALG_IS_HMAC(alg) \
1009 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1010 PSA_ALG_HMAC_BASE)
1011
1012/* In the encoding of a MAC algorithm, the bits corresponding to
1013 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1014 * truncated. As an exception, the value 0 means the untruncated algorithm,
1015 * whatever its length is. The length is encoded in 6 bits, so it can
1016 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1017 * to full length is correctly encoded as 0 and any non-trivial truncation
1018 * is correctly encoded as a value between 1 and 63. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001019#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001020#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001021
Steven Cooremand927ed72021-02-22 19:59:35 +01001022/* In the encoding of a MAC algorithm, the bit corresponding to
1023 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001024 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1025 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001026 * same base class and having a (potentially truncated) MAC length greater or
1027 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001028#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001029
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001030/** Macro to build a truncated MAC algorithm.
1031 *
1032 * A truncated MAC algorithm is identical to the corresponding MAC
1033 * algorithm except that the MAC value for the truncated algorithm
1034 * consists of only the first \p mac_length bytes of the MAC value
1035 * for the untruncated algorithm.
1036 *
1037 * \note This macro may allow constructing algorithm identifiers that
1038 * are not valid, either because the specified length is larger
1039 * than the untruncated MAC or because the specified length is
1040 * smaller than permitted by the implementation.
1041 *
1042 * \note It is implementation-defined whether a truncated MAC that
1043 * is truncated to the same length as the MAC of the untruncated
1044 * algorithm is considered identical to the untruncated algorithm
1045 * for policy comparison purposes.
1046 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001047 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001048 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001049 * is true). This may be a truncated or untruncated
1050 * MAC algorithm.
1051 * \param mac_length Desired length of the truncated MAC in bytes.
1052 * This must be at most the full length of the MAC
1053 * and must be at least an implementation-specified
1054 * minimum. The implementation-specified minimum
1055 * shall not be zero.
1056 *
1057 * \return The corresponding MAC algorithm with the specified
1058 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001059 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001060 * MAC algorithm or if \p mac_length is too small or
1061 * too large for the specified MAC algorithm.
1062 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001063#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1064 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1065 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001066 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1067
1068/** Macro to build the base MAC algorithm corresponding to a truncated
1069 * MAC algorithm.
1070 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001071 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001072 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001073 * is true). This may be a truncated or untruncated
1074 * MAC algorithm.
1075 *
1076 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001077 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001078 * MAC algorithm.
1079 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001080#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1081 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1082 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001083
1084/** Length to which a MAC algorithm is truncated.
1085 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001086 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001087 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001088 * is true).
1089 *
1090 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001091 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1092 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001093 * MAC algorithm.
1094 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001095#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1096 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001097
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001098/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001099 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001100 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001101 * sharing the same base algorithm, and where the (potentially truncated) MAC
1102 * length of the specific algorithm is equal to or larger then the wildcard
1103 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001104 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001105 * \note When setting the minimum required MAC length to less than the
1106 * smallest MAC length allowed by the base algorithm, this effectively
1107 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001108 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001109 * \param mac_alg A MAC algorithm identifier (value of type
1110 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1111 * is true).
1112 * \param min_mac_length Desired minimum length of the message authentication
1113 * code in bytes. This must be at most the untruncated
1114 * length of the MAC and must be at least 1.
1115 *
1116 * \return The corresponding MAC wildcard algorithm with the
1117 * specified minimum length.
1118 * \return Unspecified if \p mac_alg is not a supported MAC
1119 * algorithm or if \p min_mac_length is less than 1 or
1120 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001121 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001122#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001123 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1124 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001125
Gilles Peskine449bd832023-01-11 14:50:10 +01001126#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t) 0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001127/** The CBC-MAC construction over a block cipher
1128 *
1129 * \warning CBC-MAC is insecure in many cases.
1130 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1131 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001132#define PSA_ALG_CBC_MAC ((psa_algorithm_t) 0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001133/** The CMAC construction over a block cipher */
Gilles Peskine449bd832023-01-11 14:50:10 +01001134#define PSA_ALG_CMAC ((psa_algorithm_t) 0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001135
1136/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1137 *
1138 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1139 *
1140 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1141 * This macro may return either 0 or 1 if \p alg is not a supported
1142 * algorithm identifier.
1143 */
1144#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1145 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1146 PSA_ALG_CIPHER_MAC_BASE)
1147
Gilles Peskine449bd832023-01-11 14:50:10 +01001148#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t) 0x00800000)
1149#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001150
1151/** Whether the specified algorithm is a stream cipher.
1152 *
1153 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1154 * by applying a bitwise-xor with a stream of bytes that is generated
1155 * from a key.
1156 *
1157 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1158 *
1159 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1160 * This macro may return either 0 or 1 if \p alg is not a supported
1161 * algorithm identifier or if it is not a symmetric cipher algorithm.
1162 */
1163#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1164 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Gilles Peskine449bd832023-01-11 14:50:10 +01001165 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001166
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001167/** The stream cipher mode of a stream cipher algorithm.
1168 *
1169 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001170 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001171 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001172#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t) 0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001173
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001174/** The CTR stream cipher mode.
1175 *
1176 * CTR is a stream cipher which is built from a block cipher.
1177 * The underlying block cipher is determined by the key type.
1178 * For example, to use AES-128-CTR, use this algorithm with
1179 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1180 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001181#define PSA_ALG_CTR ((psa_algorithm_t) 0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001182
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001183/** The CFB stream cipher mode.
1184 *
1185 * The underlying block cipher is determined by the key type.
1186 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001187#define PSA_ALG_CFB ((psa_algorithm_t) 0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001188
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001189/** The OFB stream cipher mode.
1190 *
1191 * The underlying block cipher is determined by the key type.
1192 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001193#define PSA_ALG_OFB ((psa_algorithm_t) 0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001194
1195/** The XTS cipher mode.
1196 *
1197 * XTS is a cipher mode which is built from a block cipher. It requires at
1198 * least one full block of input, but beyond this minimum the input
1199 * does not need to be a whole number of blocks.
1200 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001201#define PSA_ALG_XTS ((psa_algorithm_t) 0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001202
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001203/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1204 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001205 * \warning ECB mode does not protect the confidentiality of the encrypted data
1206 * except in extremely narrow circumstances. It is recommended that applications
1207 * only use ECB if they need to construct an operating mode that the
1208 * implementation does not provide. Implementations are encouraged to provide
1209 * the modes that applications need in preference to supporting direct access
1210 * to ECB.
1211 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001212 * The underlying block cipher is determined by the key type.
1213 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001214 * This symmetric cipher mode can only be used with messages whose lengths are a
1215 * multiple of the block size of the chosen block cipher.
1216 *
1217 * ECB mode does not accept an initialization vector (IV). When using a
1218 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1219 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001220 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001221#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t) 0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001222
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001223/** The CBC block cipher chaining mode, with no padding.
1224 *
1225 * The underlying block cipher is determined by the key type.
1226 *
1227 * This symmetric cipher mode can only be used with messages whose lengths
1228 * are whole number of blocks for the chosen block cipher.
1229 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001230#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t) 0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001231
1232/** The CBC block cipher chaining mode with PKCS#7 padding.
1233 *
1234 * The underlying block cipher is determined by the key type.
1235 *
1236 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1237 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001238#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t) 0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001239
Gilles Peskine449bd832023-01-11 14:50:10 +01001240#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t) 0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001241
1242/** Whether the specified algorithm is an AEAD mode on a block cipher.
1243 *
1244 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1245 *
1246 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1247 * a block cipher, 0 otherwise.
1248 * This macro may return either 0 or 1 if \p alg is not a supported
1249 * algorithm identifier.
1250 */
1251#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1252 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1253 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1254
Gilles Peskine9153ec02019-02-15 13:02:02 +01001255/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001256 *
1257 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001258 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001259#define PSA_ALG_CCM ((psa_algorithm_t) 0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001260
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001261/** The CCM* cipher mode without authentication.
1262 *
1263 * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1264 * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1265 *
1266 * The underlying block cipher is determined by the key type.
1267 *
1268 * Currently only 13-byte long IV's are supported.
1269 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001270#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t) 0x04c01300)
Mateusz Starzyk594215b2021-10-14 12:23:06 +02001271
Gilles Peskine9153ec02019-02-15 13:02:02 +01001272/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001273 *
1274 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001275 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001276#define PSA_ALG_GCM ((psa_algorithm_t) 0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001277
1278/** The Chacha20-Poly1305 AEAD algorithm.
1279 *
1280 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001281 *
1282 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1283 * and should reject other sizes.
1284 *
1285 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001286 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001287#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t) 0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001288
Tom Cosgrovece7f18c2022-07-28 05:50:56 +01001289/* In the encoding of an AEAD algorithm, the bits corresponding to
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001290 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1291 * The constants for default lengths follow this encoding.
1292 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001293#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t) 0x003f0000)
Bence Szépkútia2945512020-12-03 21:40:17 +01001294#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001295
Steven Cooremand927ed72021-02-22 19:59:35 +01001296/* In the encoding of an AEAD algorithm, the bit corresponding to
1297 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001298 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1299 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001300 * same base class and having a tag length greater than or equal to the one
1301 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Gilles Peskine449bd832023-01-11 14:50:10 +01001302#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t) 0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001303
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001304/** Macro to build a shortened AEAD algorithm.
1305 *
1306 * A shortened AEAD algorithm is similar to the corresponding AEAD
1307 * algorithm, but has an authentication tag that consists of fewer bytes.
1308 * Depending on the algorithm, the tag length may affect the calculation
1309 * of the ciphertext.
1310 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001311 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001312 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001313 * is true).
1314 * \param tag_length Desired length of the authentication tag in bytes.
1315 *
1316 * \return The corresponding AEAD algorithm with the specified
1317 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001318 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001319 * AEAD algorithm or if \p tag_length is not valid
1320 * for the specified AEAD algorithm.
1321 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001322#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001323 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1324 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001325 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskine449bd832023-01-11 14:50:10 +01001326 PSA_ALG_AEAD_TAG_LENGTH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001327
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001328/** Retrieve the tag length of a specified AEAD algorithm
1329 *
1330 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001331 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001332 * is true).
1333 *
1334 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001335 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001336 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001337 */
1338#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1339 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
Gilles Peskine449bd832023-01-11 14:50:10 +01001340 PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001341
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001342/** Calculate the corresponding AEAD algorithm with the default tag length.
1343 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001344 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001345 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001346 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001347 * \return The corresponding AEAD algorithm with the default
1348 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001349 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001350#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001351 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001352 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1353 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1354 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001355 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001356#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1357 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1358 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001359 ref :
1360
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001361/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001362 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001363 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001364 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001365 * algorithm is equal to or larger then the minimum tag length specified by the
1366 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001367 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001368 * \note When setting the minimum required tag length to less than the
1369 * smallest tag length allowed by the base algorithm, this effectively
1370 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001371 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001372 * \param aead_alg An AEAD algorithm identifier (value of type
1373 * #psa_algorithm_t such that
1374 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1375 * \param min_tag_length Desired minimum length of the authentication tag in
1376 * bytes. This must be at least 1 and at most the largest
1377 * allowed tag length of the algorithm.
1378 *
1379 * \return The corresponding AEAD wildcard algorithm with the
1380 * specified minimum length.
1381 * \return Unspecified if \p aead_alg is not a supported
1382 * AEAD algorithm or if \p min_tag_length is less than 1
1383 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001384 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001385#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001386 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1387 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001388
Gilles Peskine449bd832023-01-11 14:50:10 +01001389#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t) 0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001390/** RSA PKCS#1 v1.5 signature with hashing.
1391 *
1392 * This is the signature scheme defined by RFC 8017
1393 * (PKCS#1: RSA Cryptography Specifications) under the name
1394 * RSASSA-PKCS1-v1_5.
1395 *
1396 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1397 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001398 * This includes #PSA_ALG_ANY_HASH
1399 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001400 *
1401 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001402 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001403 * hash algorithm.
1404 */
1405#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1406 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1407/** Raw PKCS#1 v1.5 signature.
1408 *
1409 * The input to this algorithm is the DigestInfo structure used by
1410 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1411 * steps 3&ndash;6.
1412 */
1413#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1414#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1415 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1416
Gilles Peskine449bd832023-01-11 14:50:10 +01001417#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t) 0x06000300)
1418#define PSA_ALG_RSA_PSS_ANY_SALT_BASE ((psa_algorithm_t) 0x06001300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001419/** RSA PSS signature with hashing.
1420 *
1421 * This is the signature scheme defined by RFC 8017
1422 * (PKCS#1: RSA Cryptography Specifications) under the name
1423 * RSASSA-PSS, with the message generation function MGF1, and with
Tuvshinzaya Erdenekhuu44baacd2022-06-17 10:25:05 +01001424 * a salt length equal to the length of the hash, or the largest
1425 * possible salt length for the algorithm and key size if that is
1426 * smaller than the hash length. The specified hash algorithm is
1427 * used to hash the input message, to create the salted hash, and
1428 * for the mask generation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001429 *
1430 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1431 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001432 * This includes #PSA_ALG_ANY_HASH
1433 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001434 *
1435 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001436 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001437 * hash algorithm.
1438 */
1439#define PSA_ALG_RSA_PSS(hash_alg) \
1440 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001441
1442/** RSA PSS signature with hashing with relaxed verification.
1443 *
1444 * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1445 * but allows an arbitrary salt length (including \c 0) when verifying a
1446 * signature.
1447 *
1448 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1449 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1450 * This includes #PSA_ALG_ANY_HASH
1451 * when specifying the algorithm in a usage policy.
1452 *
1453 * \return The corresponding RSA PSS signature algorithm.
1454 * \return Unspecified if \p hash_alg is not a supported
1455 * hash algorithm.
1456 */
1457#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
1458 (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1459
1460/** Whether the specified algorithm is RSA PSS with standard salt.
1461 *
1462 * \param alg An algorithm value or an algorithm policy wildcard.
1463 *
1464 * \return 1 if \p alg is of the form
1465 * #PSA_ALG_RSA_PSS(\c hash_alg),
1466 * where \c hash_alg is a hash algorithm or
1467 * #PSA_ALG_ANY_HASH. 0 otherwise.
1468 * This macro may return either 0 or 1 if \p alg is not
1469 * a supported algorithm identifier or policy.
1470 */
1471#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001472 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1473
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001474/** Whether the specified algorithm is RSA PSS with any salt.
1475 *
1476 * \param alg An algorithm value or an algorithm policy wildcard.
1477 *
1478 * \return 1 if \p alg is of the form
1479 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1480 * where \c hash_alg is a hash algorithm or
1481 * #PSA_ALG_ANY_HASH. 0 otherwise.
1482 * This macro may return either 0 or 1 if \p alg is not
1483 * a supported algorithm identifier or policy.
1484 */
1485#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
1486 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1487
1488/** Whether the specified algorithm is RSA PSS.
1489 *
1490 * This includes any of the RSA PSS algorithm variants, regardless of the
1491 * constraints on salt length.
1492 *
1493 * \param alg An algorithm value or an algorithm policy wildcard.
1494 *
1495 * \return 1 if \p alg is of the form
1496 * #PSA_ALG_RSA_PSS(\c hash_alg) or
1497 * #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1498 * where \c hash_alg is a hash algorithm or
1499 * #PSA_ALG_ANY_HASH. 0 otherwise.
1500 * This macro may return either 0 or 1 if \p alg is not
1501 * a supported algorithm identifier or policy.
1502 */
1503#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef6892de2021-10-08 16:28:32 +02001504 (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) || \
1505 PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
Gilles Peskineacd2d0e2021-10-04 18:10:38 +02001506
Gilles Peskine449bd832023-01-11 14:50:10 +01001507#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t) 0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001508/** ECDSA signature with hashing.
1509 *
1510 * This is the ECDSA signature scheme defined by ANSI X9.62,
1511 * with a random per-message secret number (*k*).
1512 *
1513 * The representation of the signature as a byte string consists of
Shaun Case8b0ecbc2021-12-20 21:14:10 -08001514 * the concatenation of the signature values *r* and *s*. Each of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001515 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1516 * of the base point of the curve in octets. Each value is represented
1517 * in big-endian order (most significant octet first).
1518 *
1519 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1520 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001521 * This includes #PSA_ALG_ANY_HASH
1522 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001523 *
1524 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001525 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001526 * hash algorithm.
1527 */
1528#define PSA_ALG_ECDSA(hash_alg) \
1529 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1530/** ECDSA signature without hashing.
1531 *
1532 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1533 * without specifying a hash algorithm. This algorithm may only be
1534 * used to sign or verify a sequence of bytes that should be an
1535 * already-calculated hash. Note that the input is padded with
1536 * zeros on the left or truncated on the left as required to fit
1537 * the curve size.
1538 */
1539#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Gilles Peskine449bd832023-01-11 14:50:10 +01001540#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t) 0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001541/** Deterministic ECDSA signature with hashing.
1542 *
1543 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1544 *
1545 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1546 *
1547 * Note that when this algorithm is used for verification, signatures
1548 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1549 * same private key are accepted. In other words,
1550 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1551 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1552 *
1553 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1554 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001555 * This includes #PSA_ALG_ANY_HASH
1556 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001557 *
1558 * \return The corresponding deterministic ECDSA signature
1559 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001560 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001561 * hash algorithm.
1562 */
1563#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1564 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Gilles Peskine449bd832023-01-11 14:50:10 +01001565#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001566#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001567 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001568 PSA_ALG_ECDSA_BASE)
1569#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001570 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001571#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1572 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1573#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1574 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1575
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001576/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1577 * using standard parameters.
1578 *
1579 * Contexts are not supported in the current version of this specification
1580 * because there is no suitable signature interface that can take the
1581 * context as a parameter. A future version of this specification may add
1582 * suitable functions and extend this algorithm to support contexts.
1583 *
1584 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1585 * In this specification, the following curves are supported:
1586 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1587 * in RFC 8032.
1588 * The curve is Edwards25519.
1589 * The hash function used internally is SHA-512.
1590 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1591 * in RFC 8032.
1592 * The curve is Edwards448.
1593 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001594 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001595 *
1596 * This algorithm can be used with psa_sign_message() and
1597 * psa_verify_message(). Since there is no prehashing, it cannot be used
1598 * with psa_sign_hash() or psa_verify_hash().
1599 *
1600 * The signature format is the concatenation of R and S as defined by
1601 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1602 * string for Ed448).
1603 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001604#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001605
Gilles Peskine449bd832023-01-11 14:50:10 +01001606#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t) 0x06000900)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001607#define PSA_ALG_IS_HASH_EDDSA(alg) \
1608 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1609
1610/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001611 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001612 *
1613 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1614 *
1615 * This algorithm is Ed25519 as specified in RFC 8032.
1616 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001617 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001618 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001619 *
1620 * This is a hash-and-sign algorithm: to calculate a signature,
1621 * you can either:
1622 * - call psa_sign_message() on the message;
1623 * - or calculate the SHA-512 hash of the message
1624 * with psa_hash_compute()
1625 * or with a multi-part hash operation started with psa_hash_setup(),
1626 * using the hash algorithm #PSA_ALG_SHA_512,
1627 * then sign the calculated hash with psa_sign_hash().
1628 * Verifying a signature is similar, using psa_verify_message() or
1629 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001630 */
1631#define PSA_ALG_ED25519PH \
1632 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1633
1634/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1635 * using SHAKE256 and the Edwards448 curve.
1636 *
1637 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1638 *
1639 * This algorithm is Ed448 as specified in RFC 8032.
1640 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001641 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001642 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001643 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001644 *
1645 * This is a hash-and-sign algorithm: to calculate a signature,
1646 * you can either:
1647 * - call psa_sign_message() on the message;
1648 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1649 * with psa_hash_compute()
1650 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001651 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001652 * then sign the calculated hash with psa_sign_hash().
1653 * Verifying a signature is similar, using psa_verify_message() or
1654 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001655 */
1656#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001657 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001658
Gilles Peskine6d400852021-02-24 21:39:52 +01001659/* Default definition, to be overridden if the library is extended with
1660 * more hash-and-sign algorithms that we want to keep out of this header
1661 * file. */
1662#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1663
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001664/** Whether the specified algorithm is a signature algorithm that can be used
1665 * with psa_sign_hash() and psa_verify_hash().
1666 *
1667 * This encompasses all strict hash-and-sign algorithms categorized by
1668 * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1669 * paradigm more loosely:
1670 * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1671 * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1672 *
1673 * \param alg An algorithm identifier (value of type psa_algorithm_t).
1674 *
1675 * \return 1 if alg is a signature algorithm that can be used to sign a
1676 * hash. 0 if alg is a signature algorithm that can only be used
1677 * to sign a message. 0 if alg is not a signature algorithm.
1678 * This macro can return either 0 or 1 if alg is not a
1679 * supported algorithm identifier.
1680 */
1681#define PSA_ALG_IS_SIGN_HASH(alg) \
1682 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1683 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
1684 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1685
1686/** Whether the specified algorithm is a signature algorithm that can be used
1687 * with psa_sign_message() and psa_verify_message().
1688 *
1689 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1690 *
1691 * \return 1 if alg is a signature algorithm that can be used to sign a
1692 * message. 0 if \p alg is a signature algorithm that can only be used
1693 * to sign an already-calculated hash. 0 if \p alg is not a signature
1694 * algorithm. This macro can return either 0 or 1 if \p alg is not a
1695 * supported algorithm identifier.
1696 */
1697#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01001698 (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
Gilles Peskinef2fe31a2021-09-22 16:42:02 +02001699
Gilles Peskined35b4892019-01-14 16:02:15 +01001700/** Whether the specified algorithm is a hash-and-sign algorithm.
1701 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001702 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1703 * structured in two parts: first the calculation of a hash in a way that
1704 * does not depend on the key, then the calculation of a signature from the
Gilles Peskinef7b41372021-09-22 16:15:05 +02001705 * hash value and the key. Hash-and-sign algorithms encode the hash
1706 * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1707 * to extract this algorithm.
1708 *
1709 * Thus, for a hash-and-sign algorithm,
1710 * `psa_sign_message(key, alg, input, ...)` is equivalent to
1711 * ```
1712 * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1713 * psa_sign_hash(key, alg, hash, ..., signature, ...);
1714 * ```
1715 * Most usefully, separating the hash from the signature allows the hash
1716 * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1717 * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1718 * calculating the hash and then calling psa_verify_hash().
Gilles Peskined35b4892019-01-14 16:02:15 +01001719 *
1720 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1721 *
1722 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1723 * This macro may return either 0 or 1 if \p alg is not a supported
1724 * algorithm identifier.
1725 */
1726#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
Gilles Peskinef7b41372021-09-22 16:15:05 +02001727 (PSA_ALG_IS_SIGN_HASH(alg) && \
1728 ((alg) & PSA_ALG_HASH_MASK) != 0)
Gilles Peskined35b4892019-01-14 16:02:15 +01001729
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001730/** Get the hash used by a hash-and-sign signature algorithm.
1731 *
1732 * A hash-and-sign algorithm is a signature algorithm which is
1733 * composed of two phases: first a hashing phase which does not use
1734 * the key and produces a hash of the input message, then a signing
1735 * phase which only uses the hash and the key and not the message
1736 * itself.
1737 *
1738 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1739 * #PSA_ALG_IS_SIGN(\p alg) is true).
1740 *
1741 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1742 * algorithm.
1743 * \return 0 if \p alg is a signature algorithm that does not
1744 * follow the hash-and-sign structure.
1745 * \return Unspecified if \p alg is not a signature algorithm or
1746 * if it is not supported by the implementation.
1747 */
1748#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001749 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001750 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1751 0)
1752
1753/** RSA PKCS#1 v1.5 encryption.
1754 */
Gilles Peskine449bd832023-01-11 14:50:10 +01001755#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t) 0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001756
Gilles Peskine449bd832023-01-11 14:50:10 +01001757#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t) 0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001758/** RSA OAEP encryption.
1759 *
1760 * This is the encryption scheme defined by RFC 8017
1761 * (PKCS#1: RSA Cryptography Specifications) under the name
1762 * RSAES-OAEP, with the message generation function MGF1.
1763 *
1764 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1765 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1766 * for MGF1.
1767 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001768 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001769 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001770 * hash algorithm.
1771 */
1772#define PSA_ALG_RSA_OAEP(hash_alg) \
1773 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1774#define PSA_ALG_IS_RSA_OAEP(alg) \
1775 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1776#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1777 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1778 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1779 0)
1780
Gilles Peskine449bd832023-01-11 14:50:10 +01001781#define PSA_ALG_HKDF_BASE ((psa_algorithm_t) 0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001782/** Macro to build an HKDF algorithm.
1783 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001784 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001785 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001786 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001787 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001788 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001789 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1790 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1791 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1792 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001793 * starting to generate output.
1794 *
Przemek Stekiel73f97d42022-06-03 09:05:08 +02001795 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1796 * if the salt is longer than the block size of the hash algorithm; then
1797 * pad with null bytes up to the block size. As a result, it is possible
1798 * for distinct salt inputs to result in the same outputs. To ensure
1799 * unique outputs, it is recommended to use a fixed length for salt values.
1800 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001801 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1802 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1803 *
1804 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001805 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001806 * hash algorithm.
1807 */
1808#define PSA_ALG_HKDF(hash_alg) \
1809 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1810/** Whether the specified algorithm is an HKDF algorithm.
1811 *
1812 * HKDF is a family of key derivation algorithms that are based on a hash
1813 * function and the HMAC construction.
1814 *
1815 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1816 *
1817 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1818 * This macro may return either 0 or 1 if \c alg is not a supported
1819 * key derivation algorithm identifier.
1820 */
1821#define PSA_ALG_IS_HKDF(alg) \
1822 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1823#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1824 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1825
Gilles Peskine449bd832023-01-11 14:50:10 +01001826#define PSA_ALG_HKDF_EXTRACT_BASE ((psa_algorithm_t) 0x08000400)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001827/** Macro to build an HKDF-Extract algorithm.
1828 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001829 * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001830 * HKDF-Extract using HMAC-SHA-256.
1831 *
1832 * This key derivation algorithm uses the following inputs:
Przemek Stekielb398d862022-05-18 15:43:54 +02001833 * - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001834 * - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1835 * "extract" step.
Przemek Stekielb398d862022-05-18 15:43:54 +02001836 * The inputs are mandatory and must be passed in the order above.
1837 * Each input may only be passed once.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001838 *
1839 * \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1840 * should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1841 * as a separate algorithm for the sake of protocols that use it as a
1842 * building block. It may also be a slight performance optimization
1843 * in applications that use HKDF with the same salt and key but many
1844 * different info strings.
1845 *
Przemek Stekielb398d862022-05-18 15:43:54 +02001846 * \warning HKDF processes the salt as follows: first hash it with hash_alg
1847 * if the salt is longer than the block size of the hash algorithm; then
1848 * pad with null bytes up to the block size. As a result, it is possible
1849 * for distinct salt inputs to result in the same outputs. To ensure
1850 * unique outputs, it is recommended to use a fixed length for salt values.
1851 *
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001852 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1853 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1854 *
1855 * \return The corresponding HKDF-Extract algorithm.
1856 * \return Unspecified if \p hash_alg is not a supported
1857 * hash algorithm.
1858 */
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001859#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
1860 (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1861/** Whether the specified algorithm is an HKDF-Extract algorithm.
1862 *
1863 * HKDF-Extract is a family of key derivation algorithms that are based
1864 * on a hash function and the HMAC construction.
1865 *
1866 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1867 *
1868 * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1869 * This macro may return either 0 or 1 if \c alg is not a supported
1870 * key derivation algorithm identifier.
1871 */
1872#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
1873 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1874
Gilles Peskine449bd832023-01-11 14:50:10 +01001875#define PSA_ALG_HKDF_EXPAND_BASE ((psa_algorithm_t) 0x08000500)
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001876/** Macro to build an HKDF-Expand algorithm.
1877 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001878 * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001879 * HKDF-Expand using HMAC-SHA-256.
1880 *
1881 * This key derivation algorithm uses the following inputs:
Przemek Stekiel459ee352022-06-02 11:16:52 +02001882 * - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001883 * - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1884 *
1885 * The inputs are mandatory and must be passed in the order above.
1886 * Each input may only be passed once.
1887 *
1888 * \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1889 * should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1890 * a separate algorithm for the sake of protocols that use it as a building
1891 * block. It may also be a slight performance optimization in applications
1892 * that use HKDF with the same salt and key but many different info strings.
1893 *
1894 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1895 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1896 *
1897 * \return The corresponding HKDF-Expand algorithm.
1898 * \return Unspecified if \p hash_alg is not a supported
1899 * hash algorithm.
1900 */
1901#define PSA_ALG_HKDF_EXPAND(hash_alg) \
1902 (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Przemek Stekielebf62812022-05-11 14:16:05 +02001903/** Whether the specified algorithm is an HKDF-Expand algorithm.
Przemek Stekiel6b6ce322022-05-10 12:38:27 +02001904 *
1905 * HKDF-Expand is a family of key derivation algorithms that are based
1906 * on a hash function and the HMAC construction.
1907 *
1908 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1909 *
1910 * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1911 * This macro may return either 0 or 1 if \c alg is not a supported
1912 * key derivation algorithm identifier.
1913 */
1914#define PSA_ALG_IS_HKDF_EXPAND(alg) \
1915 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1916
Przemek Stekiela29b4882022-06-02 11:37:03 +02001917/** Whether the specified algorithm is an HKDF or HKDF-Extract or
1918 * HKDF-Expand algorithm.
1919 *
1920 *
1921 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1922 *
1923 * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1924 * This macro may return either 0 or 1 if \c alg is not a supported
1925 * key derivation algorithm identifier.
1926 */
1927#define PSA_ALG_IS_ANY_HKDF(alg) \
1928 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE || \
1929 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE || \
1930 ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1931
Gilles Peskine449bd832023-01-11 14:50:10 +01001932#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t) 0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001933/** Macro to build a TLS-1.2 PRF algorithm.
1934 *
1935 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1936 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1937 * used with either SHA-256 or SHA-384.
1938 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001939 * This key derivation algorithm uses the following inputs, which must be
1940 * passed in the order given here:
1941 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001942 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1943 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001944 *
1945 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001946 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001947 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001948 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08001949 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001950 * TLS 1.2 PRF using HMAC-SHA-256.
1951 *
1952 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1953 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1954 *
1955 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001956 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001957 * hash algorithm.
1958 */
1959#define PSA_ALG_TLS12_PRF(hash_alg) \
1960 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1961
1962/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1963 *
1964 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1965 *
1966 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1967 * This macro may return either 0 or 1 if \c alg is not a supported
1968 * key derivation algorithm identifier.
1969 */
1970#define PSA_ALG_IS_TLS12_PRF(alg) \
1971 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1972#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1973 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1974
Gilles Peskine449bd832023-01-11 14:50:10 +01001975#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t) 0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001976/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1977 *
1978 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1979 * from the PreSharedKey (PSK) through the application of padding
1980 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1981 * The latter is based on HMAC and can be used with either SHA-256
1982 * or SHA-384.
1983 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001984 * This key derivation algorithm uses the following inputs, which must be
1985 * passed in the order given here:
1986 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001987 * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1988 * computation of the premaster secret. This input is optional;
1989 * if omitted, it defaults to a string of null bytes with the same length
1990 * as the secret (PSK) input.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001991 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1992 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001993 *
1994 * For the application to TLS-1.2, the seed (which is
1995 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1996 * ClientHello.Random + ServerHello.Random,
Przemek Stekiel37c81c42022-04-07 13:38:53 +02001997 * the label is "master secret" or "extended master secret" and
1998 * the other secret depends on the key exchange specified in the cipher suite:
1999 * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
2000 * PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
2001 * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
2002 * (RFC 5489, Section 2), the other secret should be the output of the
2003 * PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
2004 * The recommended way to pass this input is to use a key derivation
2005 * algorithm constructed as
2006 * PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
2007 * and to call psa_key_derivation_key_agreement(). Alternatively,
2008 * this input may be an output of `psa_raw_key_agreement()` passed with
2009 * psa_key_derivation_input_bytes(), or an equivalent input passed with
2010 * psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
2011 * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2012 * should be the 48-byte client challenge (the PreMasterSecret of
2013 * (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2014 * a 46-byte random string chosen by the client. On the server, this is
2015 * typically an output of psa_asymmetric_decrypt() using
2016 * PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2017 * with `psa_key_derivation_input_bytes()`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002018 *
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002019 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002020 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2021 *
2022 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2023 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2024 *
2025 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01002026 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002027 * hash algorithm.
2028 */
2029#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
2030 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2031
2032/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2033 *
2034 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2035 *
2036 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2037 * This macro may return either 0 or 1 if \c alg is not a supported
2038 * key derivation algorithm identifier.
2039 */
2040#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
2041 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2042#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
2043 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2044
Andrzej Kurek1fafb1f2022-09-16 07:19:49 -04002045/* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2046 * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2047 * will use to derive the session secret, as defined by step 2 of
2048 * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2049 * Uses PSA_ALG_SHA_256.
2050 * This function takes a single input:
2051 * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2052 * The only supported curve is secp256r1 (the 256-bit curve in
2053 * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
Andrzej Kureke09aff82022-09-26 10:59:31 -04002054 * The output has to be read as a single chunk of 32 bytes, defined as
2055 * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002056 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002057#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t) 0x08000609)
Andrzej Kurek08d34b82022-07-29 10:00:16 -04002058
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002059/* This flag indicates whether the key derivation algorithm is suitable for
2060 * use on low-entropy secrets such as password - these algorithms are also
2061 * known as key stretching or password hashing schemes. These are also the
2062 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02002063 *
2064 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002065 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002066#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t) 0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02002067
Gilles Peskine449bd832023-01-11 14:50:10 +01002068#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t) 0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002069/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002070 *
2071 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002072 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2073 * HMAC with the specified hash.
Pengyu Lvc1ecb252022-11-08 18:17:00 +08002074 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002075 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002076 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002077 * This key derivation algorithm uses the following inputs, which must be
2078 * provided in the following order:
2079 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002080 * This input step must be used exactly once.
2081 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2082 * This input step must be used one or more times; if used several times, the
2083 * inputs will be concatenated. This can be used to build the final salt
2084 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02002085 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002086 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02002087 *
2088 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
2089 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
2090 *
2091 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
2092 * \return Unspecified if \p hash_alg is not a supported
2093 * hash algorithm.
2094 */
2095#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
2096 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2097
2098/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2099 *
2100 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2101 *
2102 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2103 * This macro may return either 0 or 1 if \c alg is not a supported
2104 * key derivation algorithm identifier.
2105 */
2106#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
2107 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Kusumit Ghoderao10cc6bd2023-05-24 12:35:14 +05302108#define PSA_ALG_PBKDF2_HMAC_GET_HASH(pbkdf2_alg) \
2109 (PSA_ALG_CATEGORY_HASH | ((pbkdf2_alg) & PSA_ALG_HASH_MASK))
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002110/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2111 *
2112 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2113 * This macro specifies the PBKDF2 algorithm constructed using the
2114 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2115 *
2116 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02002117 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002118 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002119#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t) 0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02002120
Kusumit Ghoderao9ab03c32023-07-27 21:14:05 +05302121#define PSA_ALG_IS_PBKDF2(kdf_alg) \
2122 (PSA_ALG_IS_PBKDF2_HMAC(kdf_alg) || \
Kusumit Ghoderao9928ca12023-08-16 11:48:27 +05302123 ((kdf_alg) == PSA_ALG_PBKDF2_AES_CMAC_PRF_128))
Kusumit Ghoderao9ab03c32023-07-27 21:14:05 +05302124
Gilles Peskine449bd832023-01-11 14:50:10 +01002125#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t) 0xfe00ffff)
2126#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t) 0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002127
Gilles Peskine6843c292019-01-18 16:44:49 +01002128/** Macro to build a combined algorithm that chains a key agreement with
2129 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002130 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002131 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
2132 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2133 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
2134 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002135 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002136 * \return The corresponding key agreement and derivation
2137 * algorithm.
2138 * \return Unspecified if \p ka_alg is not a supported
2139 * key agreement algorithm or \p kdf_alg is not a
2140 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002141 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002142#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
2143 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002144
2145#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
2146 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2147
Gilles Peskine6843c292019-01-18 16:44:49 +01002148#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
2149 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002150
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002151/** Whether the specified algorithm is a raw key agreement algorithm.
2152 *
2153 * A raw key agreement algorithm is one that does not specify
2154 * a key derivation function.
2155 * Usually, raw key agreement algorithms are constructed directly with
2156 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02002157 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002158 *
2159 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2160 *
2161 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2162 * This macro may return either 0 or 1 if \p alg is not a supported
2163 * algorithm identifier.
2164 */
Gilles Peskine6843c292019-01-18 16:44:49 +01002165#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01002166 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
2167 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01002168
2169#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
2170 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2171
2172/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002173 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002174 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002175 * `g^{ab}` in big-endian format.
2176 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2177 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002178 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002179#define PSA_ALG_FFDH ((psa_algorithm_t) 0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002180
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002181/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2182 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002183 * This includes the raw finite field Diffie-Hellman algorithm as well as
2184 * finite-field Diffie-Hellman followed by any supporter key derivation
2185 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002186 *
2187 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2188 *
2189 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2190 * This macro may return either 0 or 1 if \c alg is not a supported
2191 * key agreement algorithm identifier.
2192 */
2193#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002194 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002195
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002196/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2197 *
Gilles Peskine6843c292019-01-18 16:44:49 +01002198 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002199 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2200 * `m` is the bit size associated with the curve, i.e. the bit size of the
2201 * order of the curve's coordinate field. When `m` is not a multiple of 8,
2202 * the byte containing the most significant bit of the shared secret
2203 * is padded with zero bits. The byte order is either little-endian
2204 * or big-endian depending on the curve type.
2205 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01002206 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002207 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2208 * in little-endian byte order.
2209 * The bit size is 448 for Curve448 and 255 for Curve25519.
2210 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002211 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002212 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2213 * in big-endian byte order.
2214 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2215 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01002216 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002217 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2218 * in big-endian byte order.
2219 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002220 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002221#define PSA_ALG_ECDH ((psa_algorithm_t) 0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01002222
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002223/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2224 * algorithm.
2225 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01002226 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2227 * elliptic curve Diffie-Hellman followed by any supporter key derivation
2228 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002229 *
2230 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2231 *
2232 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2233 * 0 otherwise.
2234 * This macro may return either 0 or 1 if \c alg is not a supported
2235 * key agreement algorithm identifier.
2236 */
2237#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01002238 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002239
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002240/** Whether the specified algorithm encoding is a wildcard.
2241 *
2242 * Wildcard values may only be used to set the usage algorithm field in
2243 * a policy, not to perform an operation.
2244 *
2245 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2246 *
2247 * \return 1 if \c alg is a wildcard algorithm encoding.
2248 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2249 * an operation).
2250 * \return This macro may return either 0 or 1 if \c alg is not a supported
2251 * algorithm identifier.
2252 */
Steven Cooremand927ed72021-02-22 19:59:35 +01002253#define PSA_ALG_IS_WILDCARD(alg) \
2254 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
2255 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
2256 PSA_ALG_IS_MAC(alg) ? \
2257 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
2258 PSA_ALG_IS_AEAD(alg) ? \
2259 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01002260 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01002261
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002262/** Get the hash used by a composite algorithm.
2263 *
2264 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2265 *
2266 * \return The underlying hash algorithm if alg is a composite algorithm that
2267 * uses a hash algorithm.
2268 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02002269 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002270 */
2271#define PSA_ALG_GET_HASH(alg) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002272 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02002273
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002274/**@}*/
2275
2276/** \defgroup key_lifetimes Key lifetimes
2277 * @{
2278 */
2279
Gilles Peskine79733992022-06-20 18:41:20 +02002280/* Note that location and persistence level values are embedded in the
2281 * persistent key store, as part of key metadata. As a consequence, they
2282 * must not be changed (unless the storage format version changes).
2283 */
2284
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002285/** The default lifetime for volatile keys.
2286 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002287 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002288 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002289 *
2290 * A key with this lifetime is typically stored in the RAM area of the
2291 * PSA Crypto subsystem. However this is an implementation choice.
2292 * If an implementation stores data about the key in a non-volatile memory,
2293 * it must release all the resources associated with the key and erase the
2294 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002295 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002296#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002297
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002298/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002299 *
2300 * A persistent key remains in storage until it is explicitly destroyed or
2301 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002302 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002303 * provide their own mechanism (for example to perform a factory reset,
2304 * to prepare for device refurbishment, or to uninstall an application).
2305 *
2306 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002307 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002308 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002309 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002310#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002311
Gilles Peskineaff11812020-05-04 19:03:10 +02002312/** The persistence level of volatile keys.
2313 *
2314 * See ::psa_key_persistence_t for more information.
2315 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002316#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002317
2318/** The default persistence level for persistent keys.
2319 *
2320 * See ::psa_key_persistence_t for more information.
2321 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002322#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002323
2324/** A persistence level indicating that a key is never destroyed.
2325 *
2326 * See ::psa_key_persistence_t for more information.
2327 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002328#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002329
2330#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002331 ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002332
2333#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine449bd832023-01-11 14:50:10 +01002334 ((psa_key_location_t) ((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002335
2336/** Whether a key lifetime indicates that the key is volatile.
2337 *
2338 * A volatile key is automatically destroyed by the implementation when
2339 * the application instance terminates. In particular, a volatile key
2340 * is automatically destroyed on a power reset of the device.
2341 *
2342 * A key that is not volatile is persistent. Persistent keys are
2343 * preserved until the application explicitly destroys them or until an
2344 * implementation-specific device management event occurs (for example,
2345 * a factory reset).
2346 *
2347 * \param lifetime The lifetime value to query (value of type
2348 * ::psa_key_lifetime_t).
2349 *
2350 * \return \c 1 if the key is volatile, otherwise \c 0.
2351 */
2352#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2353 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002354 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002355
Gilles Peskined133bb22021-04-21 20:05:59 +02002356/** Whether a key lifetime indicates that the key is read-only.
2357 *
2358 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2359 * They must be created through platform-specific means that bypass the API.
2360 *
2361 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002362 * consider a platform with multiple levels of privilege, where a
2363 * low-privilege application can use a key but is not allowed to destroy
2364 * it, and the platform exposes the key to the application with a read-only
2365 * lifetime. High-privilege code can destroy the key even though the
2366 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002367 *
2368 * \param lifetime The lifetime value to query (value of type
2369 * ::psa_key_lifetime_t).
2370 *
2371 * \return \c 1 if the key is read-only, otherwise \c 0.
2372 */
2373#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
2374 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2375 PSA_KEY_PERSISTENCE_READ_ONLY)
2376
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002377/** Construct a lifetime from a persistence level and a location.
2378 *
2379 * \param persistence The persistence level
2380 * (value of type ::psa_key_persistence_t).
2381 * \param location The location indicator
2382 * (value of type ::psa_key_location_t).
2383 *
2384 * \return The constructed lifetime value.
2385 */
2386#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2387 ((location) << 8 | (persistence))
2388
Gilles Peskineaff11812020-05-04 19:03:10 +02002389/** The local storage area for persistent keys.
2390 *
2391 * This storage area is available on all systems that can store persistent
2392 * keys without delegating the storage to a third-party cryptoprocessor.
2393 *
2394 * See ::psa_key_location_t for more information.
2395 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002396#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002397
Gilles Peskine449bd832023-01-11 14:50:10 +01002398#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t) 0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002399
Gilles Peskine79733992022-06-20 18:41:20 +02002400/* Note that key identifier values are embedded in the
2401 * persistent key store, as part of key metadata. As a consequence, they
2402 * must not be changed (unless the storage format version changes).
2403 */
2404
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002405/** The null key identifier.
2406 */
Gilles Peskinea6516072023-01-04 19:52:38 +01002407/* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
Mateusz Starzykc5c5b932021-08-26 13:32:30 +02002408#define PSA_KEY_ID_NULL ((psa_key_id_t)0)
Gilles Peskinea6516072023-01-04 19:52:38 +01002409/* *INDENT-ON* */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002410/** The minimum value for a key identifier chosen by the application.
2411 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002412#define PSA_KEY_ID_USER_MIN ((psa_key_id_t) 0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002413/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002414 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002415#define PSA_KEY_ID_USER_MAX ((psa_key_id_t) 0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002416/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002417 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002418#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t) 0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002419/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002420 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002421#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t) 0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002422
Ronald Cron7424f0d2020-09-14 16:17:41 +02002423
2424#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2425
Gilles Peskine449bd832023-01-11 14:50:10 +01002426#define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2427#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2428#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002429
2430/** Utility to initialize a key identifier at runtime.
2431 *
2432 * \param unused Unused parameter.
2433 * \param key_id Identifier of the key.
2434 */
2435static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002436 unsigned int unused, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002437{
Gilles Peskine449bd832023-01-11 14:50:10 +01002438 (void) unused;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002439
Gilles Peskine449bd832023-01-11 14:50:10 +01002440 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002441}
2442
2443/** Compare two key identifiers.
2444 *
2445 * \param id1 First key identifier.
2446 * \param id2 Second key identifier.
2447 *
2448 * \return Non-zero if the two key identifier are equal, zero otherwise.
2449 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002450static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2451 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002452{
Gilles Peskine449bd832023-01-11 14:50:10 +01002453 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002454}
2455
Ronald Cronc4d1b512020-07-31 11:26:37 +02002456/** Check whether a key identifier is null.
2457 *
2458 * \param key Key identifier.
2459 *
2460 * \return Non-zero if the key identifier is null, zero otherwise.
2461 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002462static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002463{
Gilles Peskine449bd832023-01-11 14:50:10 +01002464 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002465}
2466
Ronald Cron7424f0d2020-09-14 16:17:41 +02002467#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2468
Gilles Peskine449bd832023-01-11 14:50:10 +01002469#define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2470#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2471#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
Ronald Cron7424f0d2020-09-14 16:17:41 +02002472
2473/** Utility to initialize a key identifier at runtime.
2474 *
2475 * \param owner_id Identifier of the key owner.
2476 * \param key_id Identifier of the key.
2477 */
2478static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
Gilles Peskine449bd832023-01-11 14:50:10 +01002479 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002480{
Gilles Peskine449bd832023-01-11 14:50:10 +01002481 return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2482 .MBEDTLS_PRIVATE(owner) = owner_id };
Ronald Cron7424f0d2020-09-14 16:17:41 +02002483}
2484
2485/** Compare two key identifiers.
2486 *
2487 * \param id1 First key identifier.
2488 * \param id2 Second key identifier.
2489 *
2490 * \return Non-zero if the two key identifier are equal, zero otherwise.
2491 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002492static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2493 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002494{
Gilles Peskine449bd832023-01-11 14:50:10 +01002495 return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2496 mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
Ronald Cron7424f0d2020-09-14 16:17:41 +02002497}
2498
Ronald Cronc4d1b512020-07-31 11:26:37 +02002499/** Check whether a key identifier is null.
2500 *
2501 * \param key Key identifier.
2502 *
2503 * \return Non-zero if the key identifier is null, zero otherwise.
2504 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002505static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002506{
Gilles Peskine449bd832023-01-11 14:50:10 +01002507 return key.MBEDTLS_PRIVATE(key_id) == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002508}
2509
Ronald Cron7424f0d2020-09-14 16:17:41 +02002510#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002511
2512/**@}*/
2513
2514/** \defgroup policy Key policies
2515 * @{
2516 */
2517
Gilles Peskine79733992022-06-20 18:41:20 +02002518/* Note that key usage flags are embedded in the
2519 * persistent key store, as part of key metadata. As a consequence, they
2520 * must not be changed (unless the storage format version changes).
2521 */
2522
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002523/** Whether the key may be exported.
2524 *
2525 * A public key or the public part of a key pair may always be exported
2526 * regardless of the value of this permission flag.
2527 *
2528 * If a key does not have export permission, implementations shall not
2529 * allow the key to be exported in plain form from the cryptoprocessor,
2530 * whether through psa_export_key() or through a proprietary interface.
2531 * The key may however be exportable in a wrapped form, i.e. in a form
2532 * where it is encrypted by another key.
2533 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002534#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t) 0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002535
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002536/** Whether the key may be copied.
2537 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002538 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002539 * with the same policy or a more restrictive policy.
2540 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002541 * For lifetimes for which the key is located in a secure element which
2542 * enforce the non-exportability of keys, copying a key outside the secure
2543 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2544 * Copying the key inside the secure element is permitted with just
2545 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2546 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002547 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2548 * is sufficient to permit the copy.
2549 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002550#define PSA_KEY_USAGE_COPY ((psa_key_usage_t) 0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002551
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002552/** Whether the key may be used to encrypt a message.
2553 *
2554 * This flag allows the key to be used for a symmetric encryption operation,
2555 * for an AEAD encryption-and-authentication operation,
2556 * or for an asymmetric encryption operation,
2557 * if otherwise permitted by the key's type and policy.
2558 *
2559 * For a key pair, this concerns the public key.
2560 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002561#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t) 0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002562
2563/** Whether the key may be used to decrypt a message.
2564 *
2565 * This flag allows the key to be used for a symmetric decryption operation,
2566 * for an AEAD decryption-and-verification operation,
2567 * or for an asymmetric decryption operation,
2568 * if otherwise permitted by the key's type and policy.
2569 *
2570 * For a key pair, this concerns the private key.
2571 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002572#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t) 0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002573
2574/** Whether the key may be used to sign a message.
2575 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002576 * This flag allows the key to be used for a MAC calculation operation or for
2577 * an asymmetric message signature operation, if otherwise permitted by the
2578 * key’s type and policy.
2579 *
2580 * For a key pair, this concerns the private key.
2581 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002582#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t) 0x00000400)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002583
2584/** Whether the key may be used to verify a message.
2585 *
2586 * This flag allows the key to be used for a MAC verification operation or for
2587 * an asymmetric message signature verification operation, if otherwise
2588 * permitted by the key’s type and policy.
2589 *
2590 * For a key pair, this concerns the public key.
2591 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002592#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t) 0x00000800)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002593
2594/** Whether the key may be used to sign a message.
2595 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002596 * This flag allows the key to be used for a MAC calculation operation
2597 * or for an asymmetric signature operation,
2598 * if otherwise permitted by the key's type and policy.
2599 *
2600 * For a key pair, this concerns the private key.
2601 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002602#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t) 0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002603
2604/** Whether the key may be used to verify a message signature.
2605 *
2606 * This flag allows the key to be used for a MAC verification operation
2607 * or for an asymmetric signature verification operation,
Tom Cosgrove1797b052022-12-04 17:19:59 +00002608 * if otherwise permitted by the key's type and policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002609 *
2610 * For a key pair, this concerns the public key.
2611 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002612#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t) 0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002613
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002614/** Whether the key may be used to derive other keys or produce a password
2615 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002616 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002617 * This flag allows the key to be used for a key derivation operation or for
Tom Cosgrove1797b052022-12-04 17:19:59 +00002618 * a key agreement operation, if otherwise permitted by the key's type and
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002619 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002620 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002621 * If this flag is present on all keys used in calls to
2622 * psa_key_derivation_input_key() for a key derivation operation, then it
2623 * permits calling psa_key_derivation_output_bytes() or
2624 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002625 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002626#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t) 0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002627
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002628/** Whether the key may be used to verify the result of a key derivation,
2629 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002630 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002631 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002632 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002633 * This flag allows the key to be used in a key derivation operation, if
Tom Cosgrove1797b052022-12-04 17:19:59 +00002634 * otherwise permitted by the key's type and policy.
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002635 *
2636 * If this flag is present on all keys used in calls to
2637 * psa_key_derivation_input_key() for a key derivation operation, then it
2638 * permits calling psa_key_derivation_verify_bytes() or
2639 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002640 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002641#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t) 0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002642
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002643/**@}*/
2644
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002645/** \defgroup derivation Key derivation
2646 * @{
2647 */
2648
Gilles Peskine79733992022-06-20 18:41:20 +02002649/* Key input steps are not embedded in the persistent storage, so you can
2650 * change them if needed: it's only an ABI change. */
2651
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002652/** A secret input for key derivation.
2653 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002654 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2655 * (passed to psa_key_derivation_input_key())
2656 * or the shared secret resulting from a key agreement
2657 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002658 *
2659 * The secret can also be a direct input (passed to
2660 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002661 * may not be used to derive keys: the operation will only allow
2662 * psa_key_derivation_output_bytes(),
2663 * psa_key_derivation_verify_bytes(), or
2664 * psa_key_derivation_verify_key(), but not
2665 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002666 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002667#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t) 0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002668
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002669/** A low-entropy secret input for password hashing / key stretching.
2670 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002671 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2672 * psa_key_derivation_input_key()) or a direct input (passed to
2673 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2674 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2675 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002676 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002677 * The secret can also be a direct input (passed to
2678 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002679 * may not be used to derive keys: the operation will only allow
2680 * psa_key_derivation_output_bytes(),
2681 * psa_key_derivation_verify_bytes(), or
2682 * psa_key_derivation_verify_key(), but not
2683 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002684 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002685#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t) 0x0102)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002686
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002687/** A high-entropy additional secret input for key derivation.
2688 *
2689 * This is typically the shared secret resulting from a key agreement obtained
2690 * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2691 * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2692 * a direct input passed to `psa_key_derivation_input_bytes()`.
2693 */
2694#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
Gilles Peskine449bd832023-01-11 14:50:10 +01002695 ((psa_key_derivation_step_t) 0x0103)
Przemek Stekiel37c81c42022-04-07 13:38:53 +02002696
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002697/** A label for key derivation.
2698 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002699 * This should be a direct input.
2700 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002701 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002702#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t) 0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002703
2704/** A salt for key derivation.
2705 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002706 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002707 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2708 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002709 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002710#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t) 0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002711
2712/** An information string for key derivation.
2713 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002714 * This should be a direct input.
2715 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002716 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002717#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t) 0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002718
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002719/** A seed for key derivation.
2720 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002721 * This should be a direct input.
2722 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002723 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002724#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t) 0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002725
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002726/** A cost parameter for password hashing / key stretching.
2727 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002728 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002729 */
Gilles Peskine449bd832023-01-11 14:50:10 +01002730#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t) 0x0205)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002731
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002732/**@}*/
2733
Bence Szépkútib639d432021-04-21 10:33:54 +02002734/** \defgroup helper_macros Helper macros
2735 * @{
2736 */
2737
2738/* Helper macros */
2739
2740/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2741 * regardless of the tag length they encode.
2742 *
2743 * \param aead_alg_1 An AEAD algorithm identifier.
2744 * \param aead_alg_2 An AEAD algorithm identifier.
2745 *
2746 * \return 1 if both identifiers refer to the same AEAD algorithm,
2747 * 0 otherwise.
2748 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2749 * a supported AEAD algorithm.
2750 */
2751#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2752 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2753 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2754
2755/**@}*/
2756
Paul Elliott1265f002022-09-09 17:15:43 +01002757/**@}*/
2758
2759/** \defgroup interruptible Interruptible operations
2760 * @{
2761 */
2762
2763/** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2764 * the maximum number of ops allowed to be executed by an interruptible
2765 * function in a single call.
2766 */
Paul Elliottab7c5c82023-02-03 15:49:42 +00002767#define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
Paul Elliott1265f002022-09-09 17:15:43 +01002768
2769/**@}*/
2770
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002771#endif /* PSA_CRYPTO_VALUES_H */