Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides a simple and efficient mechanism for performing general |
| 10 | // tree-based pattern matches on the LLVM IR. The power of these routines is |
| 11 | // that it allows you to write concise patterns that are expressive and easy to |
| 12 | // understand. The other major advantage of this is that it allows you to |
| 13 | // trivially capture/bind elements in the pattern to variables. For example, |
| 14 | // you can do something like this: |
| 15 | // |
| 16 | // Value *Exp = ... |
| 17 | // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) |
| 18 | // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), |
| 19 | // m_And(m_Value(Y), m_ConstantInt(C2))))) { |
| 20 | // ... Pattern is matched and variables are bound ... |
| 21 | // } |
| 22 | // |
| 23 | // This is primarily useful to things like the instruction combiner, but can |
| 24 | // also be useful for static analysis tools or code generators. |
| 25 | // |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | |
| 28 | #ifndef LLVM_IR_PATTERNMATCH_H |
| 29 | #define LLVM_IR_PATTERNMATCH_H |
| 30 | |
| 31 | #include "llvm/ADT/APFloat.h" |
| 32 | #include "llvm/ADT/APInt.h" |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 33 | #include "llvm/IR/Constant.h" |
| 34 | #include "llvm/IR/Constants.h" |
| 35 | #include "llvm/IR/InstrTypes.h" |
| 36 | #include "llvm/IR/Instruction.h" |
| 37 | #include "llvm/IR/Instructions.h" |
| 38 | #include "llvm/IR/Intrinsics.h" |
| 39 | #include "llvm/IR/Operator.h" |
| 40 | #include "llvm/IR/Value.h" |
| 41 | #include "llvm/Support/Casting.h" |
| 42 | #include <cstdint> |
| 43 | |
| 44 | namespace llvm { |
| 45 | namespace PatternMatch { |
| 46 | |
| 47 | template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { |
| 48 | return const_cast<Pattern &>(P).match(V); |
| 49 | } |
| 50 | |
| 51 | template <typename SubPattern_t> struct OneUse_match { |
| 52 | SubPattern_t SubPattern; |
| 53 | |
| 54 | OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| 55 | |
| 56 | template <typename OpTy> bool match(OpTy *V) { |
| 57 | return V->hasOneUse() && SubPattern.match(V); |
| 58 | } |
| 59 | }; |
| 60 | |
| 61 | template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { |
| 62 | return SubPattern; |
| 63 | } |
| 64 | |
| 65 | template <typename Class> struct class_match { |
| 66 | template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } |
| 67 | }; |
| 68 | |
| 69 | /// Match an arbitrary value and ignore it. |
| 70 | inline class_match<Value> m_Value() { return class_match<Value>(); } |
| 71 | |
| 72 | /// Match an arbitrary binary operation and ignore it. |
| 73 | inline class_match<BinaryOperator> m_BinOp() { |
| 74 | return class_match<BinaryOperator>(); |
| 75 | } |
| 76 | |
| 77 | /// Matches any compare instruction and ignore it. |
| 78 | inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } |
| 79 | |
| 80 | /// Match an arbitrary ConstantInt and ignore it. |
| 81 | inline class_match<ConstantInt> m_ConstantInt() { |
| 82 | return class_match<ConstantInt>(); |
| 83 | } |
| 84 | |
| 85 | /// Match an arbitrary undef constant. |
| 86 | inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); } |
| 87 | |
| 88 | /// Match an arbitrary Constant and ignore it. |
| 89 | inline class_match<Constant> m_Constant() { return class_match<Constant>(); } |
| 90 | |
| 91 | /// Matching combinators |
| 92 | template <typename LTy, typename RTy> struct match_combine_or { |
| 93 | LTy L; |
| 94 | RTy R; |
| 95 | |
| 96 | match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| 97 | |
| 98 | template <typename ITy> bool match(ITy *V) { |
| 99 | if (L.match(V)) |
| 100 | return true; |
| 101 | if (R.match(V)) |
| 102 | return true; |
| 103 | return false; |
| 104 | } |
| 105 | }; |
| 106 | |
| 107 | template <typename LTy, typename RTy> struct match_combine_and { |
| 108 | LTy L; |
| 109 | RTy R; |
| 110 | |
| 111 | match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| 112 | |
| 113 | template <typename ITy> bool match(ITy *V) { |
| 114 | if (L.match(V)) |
| 115 | if (R.match(V)) |
| 116 | return true; |
| 117 | return false; |
| 118 | } |
| 119 | }; |
| 120 | |
| 121 | /// Combine two pattern matchers matching L || R |
| 122 | template <typename LTy, typename RTy> |
| 123 | inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { |
| 124 | return match_combine_or<LTy, RTy>(L, R); |
| 125 | } |
| 126 | |
| 127 | /// Combine two pattern matchers matching L && R |
| 128 | template <typename LTy, typename RTy> |
| 129 | inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { |
| 130 | return match_combine_and<LTy, RTy>(L, R); |
| 131 | } |
| 132 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 133 | struct apint_match { |
| 134 | const APInt *&Res; |
| 135 | |
| 136 | apint_match(const APInt *&R) : Res(R) {} |
| 137 | |
| 138 | template <typename ITy> bool match(ITy *V) { |
| 139 | if (auto *CI = dyn_cast<ConstantInt>(V)) { |
| 140 | Res = &CI->getValue(); |
| 141 | return true; |
| 142 | } |
| 143 | if (V->getType()->isVectorTy()) |
| 144 | if (const auto *C = dyn_cast<Constant>(V)) |
| 145 | if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { |
| 146 | Res = &CI->getValue(); |
| 147 | return true; |
| 148 | } |
| 149 | return false; |
| 150 | } |
| 151 | }; |
| 152 | // Either constexpr if or renaming ConstantFP::getValueAPF to |
| 153 | // ConstantFP::getValue is needed to do it via single template |
| 154 | // function for both apint/apfloat. |
| 155 | struct apfloat_match { |
| 156 | const APFloat *&Res; |
| 157 | apfloat_match(const APFloat *&R) : Res(R) {} |
| 158 | template <typename ITy> bool match(ITy *V) { |
| 159 | if (auto *CI = dyn_cast<ConstantFP>(V)) { |
| 160 | Res = &CI->getValueAPF(); |
| 161 | return true; |
| 162 | } |
| 163 | if (V->getType()->isVectorTy()) |
| 164 | if (const auto *C = dyn_cast<Constant>(V)) |
| 165 | if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) { |
| 166 | Res = &CI->getValueAPF(); |
| 167 | return true; |
| 168 | } |
| 169 | return false; |
| 170 | } |
| 171 | }; |
| 172 | |
| 173 | /// Match a ConstantInt or splatted ConstantVector, binding the |
| 174 | /// specified pointer to the contained APInt. |
| 175 | inline apint_match m_APInt(const APInt *&Res) { return Res; } |
| 176 | |
| 177 | /// Match a ConstantFP or splatted ConstantVector, binding the |
| 178 | /// specified pointer to the contained APFloat. |
| 179 | inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; } |
| 180 | |
| 181 | template <int64_t Val> struct constantint_match { |
| 182 | template <typename ITy> bool match(ITy *V) { |
| 183 | if (const auto *CI = dyn_cast<ConstantInt>(V)) { |
| 184 | const APInt &CIV = CI->getValue(); |
| 185 | if (Val >= 0) |
| 186 | return CIV == static_cast<uint64_t>(Val); |
| 187 | // If Val is negative, and CI is shorter than it, truncate to the right |
| 188 | // number of bits. If it is larger, then we have to sign extend. Just |
| 189 | // compare their negated values. |
| 190 | return -CIV == -Val; |
| 191 | } |
| 192 | return false; |
| 193 | } |
| 194 | }; |
| 195 | |
| 196 | /// Match a ConstantInt with a specific value. |
| 197 | template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { |
| 198 | return constantint_match<Val>(); |
| 199 | } |
| 200 | |
| 201 | /// This helper class is used to match scalar and vector integer constants that |
| 202 | /// satisfy a specified predicate. |
| 203 | /// For vector constants, undefined elements are ignored. |
| 204 | template <typename Predicate> struct cst_pred_ty : public Predicate { |
| 205 | template <typename ITy> bool match(ITy *V) { |
| 206 | if (const auto *CI = dyn_cast<ConstantInt>(V)) |
| 207 | return this->isValue(CI->getValue()); |
| 208 | if (V->getType()->isVectorTy()) { |
| 209 | if (const auto *C = dyn_cast<Constant>(V)) { |
| 210 | if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
| 211 | return this->isValue(CI->getValue()); |
| 212 | |
| 213 | // Non-splat vector constant: check each element for a match. |
| 214 | unsigned NumElts = V->getType()->getVectorNumElements(); |
| 215 | assert(NumElts != 0 && "Constant vector with no elements?"); |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 216 | bool HasNonUndefElements = false; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 217 | for (unsigned i = 0; i != NumElts; ++i) { |
| 218 | Constant *Elt = C->getAggregateElement(i); |
| 219 | if (!Elt) |
| 220 | return false; |
| 221 | if (isa<UndefValue>(Elt)) |
| 222 | continue; |
| 223 | auto *CI = dyn_cast<ConstantInt>(Elt); |
| 224 | if (!CI || !this->isValue(CI->getValue())) |
| 225 | return false; |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 226 | HasNonUndefElements = true; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 227 | } |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 228 | return HasNonUndefElements; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 229 | } |
| 230 | } |
| 231 | return false; |
| 232 | } |
| 233 | }; |
| 234 | |
| 235 | /// This helper class is used to match scalar and vector constants that |
| 236 | /// satisfy a specified predicate, and bind them to an APInt. |
| 237 | template <typename Predicate> struct api_pred_ty : public Predicate { |
| 238 | const APInt *&Res; |
| 239 | |
| 240 | api_pred_ty(const APInt *&R) : Res(R) {} |
| 241 | |
| 242 | template <typename ITy> bool match(ITy *V) { |
| 243 | if (const auto *CI = dyn_cast<ConstantInt>(V)) |
| 244 | if (this->isValue(CI->getValue())) { |
| 245 | Res = &CI->getValue(); |
| 246 | return true; |
| 247 | } |
| 248 | if (V->getType()->isVectorTy()) |
| 249 | if (const auto *C = dyn_cast<Constant>(V)) |
| 250 | if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
| 251 | if (this->isValue(CI->getValue())) { |
| 252 | Res = &CI->getValue(); |
| 253 | return true; |
| 254 | } |
| 255 | |
| 256 | return false; |
| 257 | } |
| 258 | }; |
| 259 | |
| 260 | /// This helper class is used to match scalar and vector floating-point |
| 261 | /// constants that satisfy a specified predicate. |
| 262 | /// For vector constants, undefined elements are ignored. |
| 263 | template <typename Predicate> struct cstfp_pred_ty : public Predicate { |
| 264 | template <typename ITy> bool match(ITy *V) { |
| 265 | if (const auto *CF = dyn_cast<ConstantFP>(V)) |
| 266 | return this->isValue(CF->getValueAPF()); |
| 267 | if (V->getType()->isVectorTy()) { |
| 268 | if (const auto *C = dyn_cast<Constant>(V)) { |
| 269 | if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
| 270 | return this->isValue(CF->getValueAPF()); |
| 271 | |
| 272 | // Non-splat vector constant: check each element for a match. |
| 273 | unsigned NumElts = V->getType()->getVectorNumElements(); |
| 274 | assert(NumElts != 0 && "Constant vector with no elements?"); |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 275 | bool HasNonUndefElements = false; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 276 | for (unsigned i = 0; i != NumElts; ++i) { |
| 277 | Constant *Elt = C->getAggregateElement(i); |
| 278 | if (!Elt) |
| 279 | return false; |
| 280 | if (isa<UndefValue>(Elt)) |
| 281 | continue; |
| 282 | auto *CF = dyn_cast<ConstantFP>(Elt); |
| 283 | if (!CF || !this->isValue(CF->getValueAPF())) |
| 284 | return false; |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 285 | HasNonUndefElements = true; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 286 | } |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 287 | return HasNonUndefElements; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 288 | } |
| 289 | } |
| 290 | return false; |
| 291 | } |
| 292 | }; |
| 293 | |
| 294 | /////////////////////////////////////////////////////////////////////////////// |
| 295 | // |
| 296 | // Encapsulate constant value queries for use in templated predicate matchers. |
| 297 | // This allows checking if constants match using compound predicates and works |
| 298 | // with vector constants, possibly with relaxed constraints. For example, ignore |
| 299 | // undef values. |
| 300 | // |
| 301 | /////////////////////////////////////////////////////////////////////////////// |
| 302 | |
| 303 | struct is_all_ones { |
| 304 | bool isValue(const APInt &C) { return C.isAllOnesValue(); } |
| 305 | }; |
| 306 | /// Match an integer or vector with all bits set. |
| 307 | /// For vectors, this includes constants with undefined elements. |
| 308 | inline cst_pred_ty<is_all_ones> m_AllOnes() { |
| 309 | return cst_pred_ty<is_all_ones>(); |
| 310 | } |
| 311 | |
| 312 | struct is_maxsignedvalue { |
| 313 | bool isValue(const APInt &C) { return C.isMaxSignedValue(); } |
| 314 | }; |
| 315 | /// Match an integer or vector with values having all bits except for the high |
| 316 | /// bit set (0x7f...). |
| 317 | /// For vectors, this includes constants with undefined elements. |
| 318 | inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { |
| 319 | return cst_pred_ty<is_maxsignedvalue>(); |
| 320 | } |
| 321 | inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { |
| 322 | return V; |
| 323 | } |
| 324 | |
| 325 | struct is_negative { |
| 326 | bool isValue(const APInt &C) { return C.isNegative(); } |
| 327 | }; |
| 328 | /// Match an integer or vector of negative values. |
| 329 | /// For vectors, this includes constants with undefined elements. |
| 330 | inline cst_pred_ty<is_negative> m_Negative() { |
| 331 | return cst_pred_ty<is_negative>(); |
| 332 | } |
| 333 | inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { |
| 334 | return V; |
| 335 | } |
| 336 | |
| 337 | struct is_nonnegative { |
| 338 | bool isValue(const APInt &C) { return C.isNonNegative(); } |
| 339 | }; |
| 340 | /// Match an integer or vector of nonnegative values. |
| 341 | /// For vectors, this includes constants with undefined elements. |
| 342 | inline cst_pred_ty<is_nonnegative> m_NonNegative() { |
| 343 | return cst_pred_ty<is_nonnegative>(); |
| 344 | } |
| 345 | inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { |
| 346 | return V; |
| 347 | } |
| 348 | |
| 349 | struct is_one { |
| 350 | bool isValue(const APInt &C) { return C.isOneValue(); } |
| 351 | }; |
| 352 | /// Match an integer 1 or a vector with all elements equal to 1. |
| 353 | /// For vectors, this includes constants with undefined elements. |
| 354 | inline cst_pred_ty<is_one> m_One() { |
| 355 | return cst_pred_ty<is_one>(); |
| 356 | } |
| 357 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 358 | struct is_zero_int { |
| 359 | bool isValue(const APInt &C) { return C.isNullValue(); } |
| 360 | }; |
| 361 | /// Match an integer 0 or a vector with all elements equal to 0. |
| 362 | /// For vectors, this includes constants with undefined elements. |
| 363 | inline cst_pred_ty<is_zero_int> m_ZeroInt() { |
| 364 | return cst_pred_ty<is_zero_int>(); |
| 365 | } |
| 366 | |
| 367 | struct is_zero { |
| 368 | template <typename ITy> bool match(ITy *V) { |
| 369 | auto *C = dyn_cast<Constant>(V); |
| 370 | return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); |
| 371 | } |
| 372 | }; |
| 373 | /// Match any null constant or a vector with all elements equal to 0. |
| 374 | /// For vectors, this includes constants with undefined elements. |
| 375 | inline is_zero m_Zero() { |
| 376 | return is_zero(); |
| 377 | } |
| 378 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 379 | struct is_power2 { |
| 380 | bool isValue(const APInt &C) { return C.isPowerOf2(); } |
| 381 | }; |
| 382 | /// Match an integer or vector power-of-2. |
| 383 | /// For vectors, this includes constants with undefined elements. |
| 384 | inline cst_pred_ty<is_power2> m_Power2() { |
| 385 | return cst_pred_ty<is_power2>(); |
| 386 | } |
| 387 | inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { |
| 388 | return V; |
| 389 | } |
| 390 | |
| 391 | struct is_power2_or_zero { |
| 392 | bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } |
| 393 | }; |
| 394 | /// Match an integer or vector of 0 or power-of-2 values. |
| 395 | /// For vectors, this includes constants with undefined elements. |
| 396 | inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { |
| 397 | return cst_pred_ty<is_power2_or_zero>(); |
| 398 | } |
| 399 | inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { |
| 400 | return V; |
| 401 | } |
| 402 | |
| 403 | struct is_sign_mask { |
| 404 | bool isValue(const APInt &C) { return C.isSignMask(); } |
| 405 | }; |
| 406 | /// Match an integer or vector with only the sign bit(s) set. |
| 407 | /// For vectors, this includes constants with undefined elements. |
| 408 | inline cst_pred_ty<is_sign_mask> m_SignMask() { |
| 409 | return cst_pred_ty<is_sign_mask>(); |
| 410 | } |
| 411 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 412 | struct is_lowbit_mask { |
| 413 | bool isValue(const APInt &C) { return C.isMask(); } |
| 414 | }; |
| 415 | /// Match an integer or vector with only the low bit(s) set. |
| 416 | /// For vectors, this includes constants with undefined elements. |
| 417 | inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { |
| 418 | return cst_pred_ty<is_lowbit_mask>(); |
| 419 | } |
| 420 | |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame^] | 421 | struct is_unsigned_less_than { |
| 422 | const APInt *Thr; |
| 423 | bool isValue(const APInt &C) { return C.ult(*Thr); } |
| 424 | }; |
| 425 | /// Match an integer or vector with every element unsigned less than the |
| 426 | /// Threshold. For vectors, this includes constants with undefined elements. |
| 427 | /// FIXME: is it worth generalizing this to simply take ICmpInst::Predicate? |
| 428 | inline cst_pred_ty<is_unsigned_less_than> |
| 429 | m_SpecificInt_ULT(const APInt &Threshold) { |
| 430 | cst_pred_ty<is_unsigned_less_than> P; |
| 431 | P.Thr = &Threshold; |
| 432 | return P; |
| 433 | } |
| 434 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 435 | struct is_nan { |
| 436 | bool isValue(const APFloat &C) { return C.isNaN(); } |
| 437 | }; |
| 438 | /// Match an arbitrary NaN constant. This includes quiet and signalling nans. |
| 439 | /// For vectors, this includes constants with undefined elements. |
| 440 | inline cstfp_pred_ty<is_nan> m_NaN() { |
| 441 | return cstfp_pred_ty<is_nan>(); |
| 442 | } |
| 443 | |
| 444 | struct is_any_zero_fp { |
| 445 | bool isValue(const APFloat &C) { return C.isZero(); } |
| 446 | }; |
| 447 | /// Match a floating-point negative zero or positive zero. |
| 448 | /// For vectors, this includes constants with undefined elements. |
| 449 | inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { |
| 450 | return cstfp_pred_ty<is_any_zero_fp>(); |
| 451 | } |
| 452 | |
| 453 | struct is_pos_zero_fp { |
| 454 | bool isValue(const APFloat &C) { return C.isPosZero(); } |
| 455 | }; |
| 456 | /// Match a floating-point positive zero. |
| 457 | /// For vectors, this includes constants with undefined elements. |
| 458 | inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { |
| 459 | return cstfp_pred_ty<is_pos_zero_fp>(); |
| 460 | } |
| 461 | |
| 462 | struct is_neg_zero_fp { |
| 463 | bool isValue(const APFloat &C) { return C.isNegZero(); } |
| 464 | }; |
| 465 | /// Match a floating-point negative zero. |
| 466 | /// For vectors, this includes constants with undefined elements. |
| 467 | inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { |
| 468 | return cstfp_pred_ty<is_neg_zero_fp>(); |
| 469 | } |
| 470 | |
| 471 | /////////////////////////////////////////////////////////////////////////////// |
| 472 | |
| 473 | template <typename Class> struct bind_ty { |
| 474 | Class *&VR; |
| 475 | |
| 476 | bind_ty(Class *&V) : VR(V) {} |
| 477 | |
| 478 | template <typename ITy> bool match(ITy *V) { |
| 479 | if (auto *CV = dyn_cast<Class>(V)) { |
| 480 | VR = CV; |
| 481 | return true; |
| 482 | } |
| 483 | return false; |
| 484 | } |
| 485 | }; |
| 486 | |
| 487 | /// Match a value, capturing it if we match. |
| 488 | inline bind_ty<Value> m_Value(Value *&V) { return V; } |
| 489 | inline bind_ty<const Value> m_Value(const Value *&V) { return V; } |
| 490 | |
| 491 | /// Match an instruction, capturing it if we match. |
| 492 | inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } |
| 493 | /// Match a binary operator, capturing it if we match. |
| 494 | inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } |
| 495 | |
| 496 | /// Match a ConstantInt, capturing the value if we match. |
| 497 | inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } |
| 498 | |
| 499 | /// Match a Constant, capturing the value if we match. |
| 500 | inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } |
| 501 | |
| 502 | /// Match a ConstantFP, capturing the value if we match. |
| 503 | inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } |
| 504 | |
| 505 | /// Match a specified Value*. |
| 506 | struct specificval_ty { |
| 507 | const Value *Val; |
| 508 | |
| 509 | specificval_ty(const Value *V) : Val(V) {} |
| 510 | |
| 511 | template <typename ITy> bool match(ITy *V) { return V == Val; } |
| 512 | }; |
| 513 | |
| 514 | /// Match if we have a specific specified value. |
| 515 | inline specificval_ty m_Specific(const Value *V) { return V; } |
| 516 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 517 | /// Stores a reference to the Value *, not the Value * itself, |
| 518 | /// thus can be used in commutative matchers. |
| 519 | template <typename Class> struct deferredval_ty { |
| 520 | Class *const &Val; |
| 521 | |
| 522 | deferredval_ty(Class *const &V) : Val(V) {} |
| 523 | |
| 524 | template <typename ITy> bool match(ITy *const V) { return V == Val; } |
| 525 | }; |
| 526 | |
| 527 | /// A commutative-friendly version of m_Specific(). |
| 528 | inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } |
| 529 | inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { |
| 530 | return V; |
| 531 | } |
| 532 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 533 | /// Match a specified floating point value or vector of all elements of |
| 534 | /// that value. |
| 535 | struct specific_fpval { |
| 536 | double Val; |
| 537 | |
| 538 | specific_fpval(double V) : Val(V) {} |
| 539 | |
| 540 | template <typename ITy> bool match(ITy *V) { |
| 541 | if (const auto *CFP = dyn_cast<ConstantFP>(V)) |
| 542 | return CFP->isExactlyValue(Val); |
| 543 | if (V->getType()->isVectorTy()) |
| 544 | if (const auto *C = dyn_cast<Constant>(V)) |
| 545 | if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
| 546 | return CFP->isExactlyValue(Val); |
| 547 | return false; |
| 548 | } |
| 549 | }; |
| 550 | |
| 551 | /// Match a specific floating point value or vector with all elements |
| 552 | /// equal to the value. |
| 553 | inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } |
| 554 | |
| 555 | /// Match a float 1.0 or vector with all elements equal to 1.0. |
| 556 | inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } |
| 557 | |
| 558 | struct bind_const_intval_ty { |
| 559 | uint64_t &VR; |
| 560 | |
| 561 | bind_const_intval_ty(uint64_t &V) : VR(V) {} |
| 562 | |
| 563 | template <typename ITy> bool match(ITy *V) { |
| 564 | if (const auto *CV = dyn_cast<ConstantInt>(V)) |
| 565 | if (CV->getValue().ule(UINT64_MAX)) { |
| 566 | VR = CV->getZExtValue(); |
| 567 | return true; |
| 568 | } |
| 569 | return false; |
| 570 | } |
| 571 | }; |
| 572 | |
| 573 | /// Match a specified integer value or vector of all elements of that |
| 574 | // value. |
| 575 | struct specific_intval { |
| 576 | uint64_t Val; |
| 577 | |
| 578 | specific_intval(uint64_t V) : Val(V) {} |
| 579 | |
| 580 | template <typename ITy> bool match(ITy *V) { |
| 581 | const auto *CI = dyn_cast<ConstantInt>(V); |
| 582 | if (!CI && V->getType()->isVectorTy()) |
| 583 | if (const auto *C = dyn_cast<Constant>(V)) |
| 584 | CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()); |
| 585 | |
| 586 | return CI && CI->getValue() == Val; |
| 587 | } |
| 588 | }; |
| 589 | |
| 590 | /// Match a specific integer value or vector with all elements equal to |
| 591 | /// the value. |
| 592 | inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); } |
| 593 | |
| 594 | /// Match a ConstantInt and bind to its value. This does not match |
| 595 | /// ConstantInts wider than 64-bits. |
| 596 | inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } |
| 597 | |
| 598 | //===----------------------------------------------------------------------===// |
| 599 | // Matcher for any binary operator. |
| 600 | // |
| 601 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
| 602 | struct AnyBinaryOp_match { |
| 603 | LHS_t L; |
| 604 | RHS_t R; |
| 605 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 606 | // The evaluation order is always stable, regardless of Commutability. |
| 607 | // The LHS is always matched first. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 608 | AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 609 | |
| 610 | template <typename OpTy> bool match(OpTy *V) { |
| 611 | if (auto *I = dyn_cast<BinaryOperator>(V)) |
| 612 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 613 | (Commutable && L.match(I->getOperand(1)) && |
| 614 | R.match(I->getOperand(0))); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 615 | return false; |
| 616 | } |
| 617 | }; |
| 618 | |
| 619 | template <typename LHS, typename RHS> |
| 620 | inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { |
| 621 | return AnyBinaryOp_match<LHS, RHS>(L, R); |
| 622 | } |
| 623 | |
| 624 | //===----------------------------------------------------------------------===// |
| 625 | // Matchers for specific binary operators. |
| 626 | // |
| 627 | |
| 628 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
| 629 | bool Commutable = false> |
| 630 | struct BinaryOp_match { |
| 631 | LHS_t L; |
| 632 | RHS_t R; |
| 633 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 634 | // The evaluation order is always stable, regardless of Commutability. |
| 635 | // The LHS is always matched first. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 636 | BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 637 | |
| 638 | template <typename OpTy> bool match(OpTy *V) { |
| 639 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 640 | auto *I = cast<BinaryOperator>(V); |
| 641 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 642 | (Commutable && L.match(I->getOperand(1)) && |
| 643 | R.match(I->getOperand(0))); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 644 | } |
| 645 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
| 646 | return CE->getOpcode() == Opcode && |
| 647 | ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 648 | (Commutable && L.match(CE->getOperand(1)) && |
| 649 | R.match(CE->getOperand(0)))); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 650 | return false; |
| 651 | } |
| 652 | }; |
| 653 | |
| 654 | template <typename LHS, typename RHS> |
| 655 | inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, |
| 656 | const RHS &R) { |
| 657 | return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); |
| 658 | } |
| 659 | |
| 660 | template <typename LHS, typename RHS> |
| 661 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, |
| 662 | const RHS &R) { |
| 663 | return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); |
| 664 | } |
| 665 | |
| 666 | template <typename LHS, typename RHS> |
| 667 | inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, |
| 668 | const RHS &R) { |
| 669 | return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); |
| 670 | } |
| 671 | |
| 672 | template <typename LHS, typename RHS> |
| 673 | inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, |
| 674 | const RHS &R) { |
| 675 | return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); |
| 676 | } |
| 677 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 678 | template <typename Op_t> struct FNeg_match { |
| 679 | Op_t X; |
| 680 | |
| 681 | FNeg_match(const Op_t &Op) : X(Op) {} |
| 682 | template <typename OpTy> bool match(OpTy *V) { |
| 683 | auto *FPMO = dyn_cast<FPMathOperator>(V); |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame^] | 684 | if (!FPMO) return false; |
| 685 | |
| 686 | if (FPMO->getOpcode() == Instruction::FNeg) |
| 687 | return X.match(FPMO->getOperand(0)); |
| 688 | |
| 689 | if (FPMO->getOpcode() == Instruction::FSub) { |
| 690 | if (FPMO->hasNoSignedZeros()) { |
| 691 | // With 'nsz', any zero goes. |
| 692 | if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) |
| 693 | return false; |
| 694 | } else { |
| 695 | // Without 'nsz', we need fsub -0.0, X exactly. |
| 696 | if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) |
| 697 | return false; |
| 698 | } |
| 699 | |
| 700 | return X.match(FPMO->getOperand(1)); |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 701 | } |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame^] | 702 | |
| 703 | return false; |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 704 | } |
| 705 | }; |
| 706 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 707 | /// Match 'fneg X' as 'fsub -0.0, X'. |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 708 | template <typename OpTy> |
| 709 | inline FNeg_match<OpTy> |
| 710 | m_FNeg(const OpTy &X) { |
| 711 | return FNeg_match<OpTy>(X); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 712 | } |
| 713 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 714 | /// Match 'fneg X' as 'fsub +-0.0, X'. |
| 715 | template <typename RHS> |
| 716 | inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> |
| 717 | m_FNegNSZ(const RHS &X) { |
| 718 | return m_FSub(m_AnyZeroFP(), X); |
| 719 | } |
| 720 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 721 | template <typename LHS, typename RHS> |
| 722 | inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, |
| 723 | const RHS &R) { |
| 724 | return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); |
| 725 | } |
| 726 | |
| 727 | template <typename LHS, typename RHS> |
| 728 | inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, |
| 729 | const RHS &R) { |
| 730 | return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); |
| 731 | } |
| 732 | |
| 733 | template <typename LHS, typename RHS> |
| 734 | inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, |
| 735 | const RHS &R) { |
| 736 | return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); |
| 737 | } |
| 738 | |
| 739 | template <typename LHS, typename RHS> |
| 740 | inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, |
| 741 | const RHS &R) { |
| 742 | return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); |
| 743 | } |
| 744 | |
| 745 | template <typename LHS, typename RHS> |
| 746 | inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, |
| 747 | const RHS &R) { |
| 748 | return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); |
| 749 | } |
| 750 | |
| 751 | template <typename LHS, typename RHS> |
| 752 | inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, |
| 753 | const RHS &R) { |
| 754 | return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); |
| 755 | } |
| 756 | |
| 757 | template <typename LHS, typename RHS> |
| 758 | inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, |
| 759 | const RHS &R) { |
| 760 | return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); |
| 761 | } |
| 762 | |
| 763 | template <typename LHS, typename RHS> |
| 764 | inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, |
| 765 | const RHS &R) { |
| 766 | return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); |
| 767 | } |
| 768 | |
| 769 | template <typename LHS, typename RHS> |
| 770 | inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, |
| 771 | const RHS &R) { |
| 772 | return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); |
| 773 | } |
| 774 | |
| 775 | template <typename LHS, typename RHS> |
| 776 | inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, |
| 777 | const RHS &R) { |
| 778 | return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); |
| 779 | } |
| 780 | |
| 781 | template <typename LHS, typename RHS> |
| 782 | inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, |
| 783 | const RHS &R) { |
| 784 | return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); |
| 785 | } |
| 786 | |
| 787 | template <typename LHS, typename RHS> |
| 788 | inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, |
| 789 | const RHS &R) { |
| 790 | return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); |
| 791 | } |
| 792 | |
| 793 | template <typename LHS, typename RHS> |
| 794 | inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, |
| 795 | const RHS &R) { |
| 796 | return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); |
| 797 | } |
| 798 | |
| 799 | template <typename LHS, typename RHS> |
| 800 | inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, |
| 801 | const RHS &R) { |
| 802 | return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); |
| 803 | } |
| 804 | |
| 805 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
| 806 | unsigned WrapFlags = 0> |
| 807 | struct OverflowingBinaryOp_match { |
| 808 | LHS_t L; |
| 809 | RHS_t R; |
| 810 | |
| 811 | OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) |
| 812 | : L(LHS), R(RHS) {} |
| 813 | |
| 814 | template <typename OpTy> bool match(OpTy *V) { |
| 815 | if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { |
| 816 | if (Op->getOpcode() != Opcode) |
| 817 | return false; |
| 818 | if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap && |
| 819 | !Op->hasNoUnsignedWrap()) |
| 820 | return false; |
| 821 | if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap && |
| 822 | !Op->hasNoSignedWrap()) |
| 823 | return false; |
| 824 | return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); |
| 825 | } |
| 826 | return false; |
| 827 | } |
| 828 | }; |
| 829 | |
| 830 | template <typename LHS, typename RHS> |
| 831 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 832 | OverflowingBinaryOperator::NoSignedWrap> |
| 833 | m_NSWAdd(const LHS &L, const RHS &R) { |
| 834 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 835 | OverflowingBinaryOperator::NoSignedWrap>( |
| 836 | L, R); |
| 837 | } |
| 838 | template <typename LHS, typename RHS> |
| 839 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 840 | OverflowingBinaryOperator::NoSignedWrap> |
| 841 | m_NSWSub(const LHS &L, const RHS &R) { |
| 842 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 843 | OverflowingBinaryOperator::NoSignedWrap>( |
| 844 | L, R); |
| 845 | } |
| 846 | template <typename LHS, typename RHS> |
| 847 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 848 | OverflowingBinaryOperator::NoSignedWrap> |
| 849 | m_NSWMul(const LHS &L, const RHS &R) { |
| 850 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 851 | OverflowingBinaryOperator::NoSignedWrap>( |
| 852 | L, R); |
| 853 | } |
| 854 | template <typename LHS, typename RHS> |
| 855 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 856 | OverflowingBinaryOperator::NoSignedWrap> |
| 857 | m_NSWShl(const LHS &L, const RHS &R) { |
| 858 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 859 | OverflowingBinaryOperator::NoSignedWrap>( |
| 860 | L, R); |
| 861 | } |
| 862 | |
| 863 | template <typename LHS, typename RHS> |
| 864 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 865 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 866 | m_NUWAdd(const LHS &L, const RHS &R) { |
| 867 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 868 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 869 | L, R); |
| 870 | } |
| 871 | template <typename LHS, typename RHS> |
| 872 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 873 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 874 | m_NUWSub(const LHS &L, const RHS &R) { |
| 875 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 876 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 877 | L, R); |
| 878 | } |
| 879 | template <typename LHS, typename RHS> |
| 880 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 881 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 882 | m_NUWMul(const LHS &L, const RHS &R) { |
| 883 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 884 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 885 | L, R); |
| 886 | } |
| 887 | template <typename LHS, typename RHS> |
| 888 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 889 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 890 | m_NUWShl(const LHS &L, const RHS &R) { |
| 891 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 892 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 893 | L, R); |
| 894 | } |
| 895 | |
| 896 | //===----------------------------------------------------------------------===// |
| 897 | // Class that matches a group of binary opcodes. |
| 898 | // |
| 899 | template <typename LHS_t, typename RHS_t, typename Predicate> |
| 900 | struct BinOpPred_match : Predicate { |
| 901 | LHS_t L; |
| 902 | RHS_t R; |
| 903 | |
| 904 | BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 905 | |
| 906 | template <typename OpTy> bool match(OpTy *V) { |
| 907 | if (auto *I = dyn_cast<Instruction>(V)) |
| 908 | return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && |
| 909 | R.match(I->getOperand(1)); |
| 910 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
| 911 | return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && |
| 912 | R.match(CE->getOperand(1)); |
| 913 | return false; |
| 914 | } |
| 915 | }; |
| 916 | |
| 917 | struct is_shift_op { |
| 918 | bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } |
| 919 | }; |
| 920 | |
| 921 | struct is_right_shift_op { |
| 922 | bool isOpType(unsigned Opcode) { |
| 923 | return Opcode == Instruction::LShr || Opcode == Instruction::AShr; |
| 924 | } |
| 925 | }; |
| 926 | |
| 927 | struct is_logical_shift_op { |
| 928 | bool isOpType(unsigned Opcode) { |
| 929 | return Opcode == Instruction::LShr || Opcode == Instruction::Shl; |
| 930 | } |
| 931 | }; |
| 932 | |
| 933 | struct is_bitwiselogic_op { |
| 934 | bool isOpType(unsigned Opcode) { |
| 935 | return Instruction::isBitwiseLogicOp(Opcode); |
| 936 | } |
| 937 | }; |
| 938 | |
| 939 | struct is_idiv_op { |
| 940 | bool isOpType(unsigned Opcode) { |
| 941 | return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; |
| 942 | } |
| 943 | }; |
| 944 | |
| 945 | /// Matches shift operations. |
| 946 | template <typename LHS, typename RHS> |
| 947 | inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, |
| 948 | const RHS &R) { |
| 949 | return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); |
| 950 | } |
| 951 | |
| 952 | /// Matches logical shift operations. |
| 953 | template <typename LHS, typename RHS> |
| 954 | inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, |
| 955 | const RHS &R) { |
| 956 | return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); |
| 957 | } |
| 958 | |
| 959 | /// Matches logical shift operations. |
| 960 | template <typename LHS, typename RHS> |
| 961 | inline BinOpPred_match<LHS, RHS, is_logical_shift_op> |
| 962 | m_LogicalShift(const LHS &L, const RHS &R) { |
| 963 | return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); |
| 964 | } |
| 965 | |
| 966 | /// Matches bitwise logic operations. |
| 967 | template <typename LHS, typename RHS> |
| 968 | inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> |
| 969 | m_BitwiseLogic(const LHS &L, const RHS &R) { |
| 970 | return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); |
| 971 | } |
| 972 | |
| 973 | /// Matches integer division operations. |
| 974 | template <typename LHS, typename RHS> |
| 975 | inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, |
| 976 | const RHS &R) { |
| 977 | return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); |
| 978 | } |
| 979 | |
| 980 | //===----------------------------------------------------------------------===// |
| 981 | // Class that matches exact binary ops. |
| 982 | // |
| 983 | template <typename SubPattern_t> struct Exact_match { |
| 984 | SubPattern_t SubPattern; |
| 985 | |
| 986 | Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| 987 | |
| 988 | template <typename OpTy> bool match(OpTy *V) { |
| 989 | if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) |
| 990 | return PEO->isExact() && SubPattern.match(V); |
| 991 | return false; |
| 992 | } |
| 993 | }; |
| 994 | |
| 995 | template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { |
| 996 | return SubPattern; |
| 997 | } |
| 998 | |
| 999 | //===----------------------------------------------------------------------===// |
| 1000 | // Matchers for CmpInst classes |
| 1001 | // |
| 1002 | |
| 1003 | template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, |
| 1004 | bool Commutable = false> |
| 1005 | struct CmpClass_match { |
| 1006 | PredicateTy &Predicate; |
| 1007 | LHS_t L; |
| 1008 | RHS_t R; |
| 1009 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1010 | // The evaluation order is always stable, regardless of Commutability. |
| 1011 | // The LHS is always matched first. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1012 | CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) |
| 1013 | : Predicate(Pred), L(LHS), R(RHS) {} |
| 1014 | |
| 1015 | template <typename OpTy> bool match(OpTy *V) { |
| 1016 | if (auto *I = dyn_cast<Class>(V)) |
| 1017 | if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1018 | (Commutable && L.match(I->getOperand(1)) && |
| 1019 | R.match(I->getOperand(0)))) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1020 | Predicate = I->getPredicate(); |
| 1021 | return true; |
| 1022 | } |
| 1023 | return false; |
| 1024 | } |
| 1025 | }; |
| 1026 | |
| 1027 | template <typename LHS, typename RHS> |
| 1028 | inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> |
| 1029 | m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| 1030 | return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); |
| 1031 | } |
| 1032 | |
| 1033 | template <typename LHS, typename RHS> |
| 1034 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> |
| 1035 | m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| 1036 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); |
| 1037 | } |
| 1038 | |
| 1039 | template <typename LHS, typename RHS> |
| 1040 | inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> |
| 1041 | m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| 1042 | return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); |
| 1043 | } |
| 1044 | |
| 1045 | //===----------------------------------------------------------------------===// |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1046 | // Matchers for instructions with a given opcode and number of operands. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1047 | // |
| 1048 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1049 | /// Matches instructions with Opcode and three operands. |
| 1050 | template <typename T0, unsigned Opcode> struct OneOps_match { |
| 1051 | T0 Op1; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1052 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1053 | OneOps_match(const T0 &Op1) : Op1(Op1) {} |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1054 | |
| 1055 | template <typename OpTy> bool match(OpTy *V) { |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1056 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 1057 | auto *I = cast<Instruction>(V); |
| 1058 | return Op1.match(I->getOperand(0)); |
| 1059 | } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1060 | return false; |
| 1061 | } |
| 1062 | }; |
| 1063 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1064 | /// Matches instructions with Opcode and three operands. |
| 1065 | template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { |
| 1066 | T0 Op1; |
| 1067 | T1 Op2; |
| 1068 | |
| 1069 | TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} |
| 1070 | |
| 1071 | template <typename OpTy> bool match(OpTy *V) { |
| 1072 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 1073 | auto *I = cast<Instruction>(V); |
| 1074 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); |
| 1075 | } |
| 1076 | return false; |
| 1077 | } |
| 1078 | }; |
| 1079 | |
| 1080 | /// Matches instructions with Opcode and three operands. |
| 1081 | template <typename T0, typename T1, typename T2, unsigned Opcode> |
| 1082 | struct ThreeOps_match { |
| 1083 | T0 Op1; |
| 1084 | T1 Op2; |
| 1085 | T2 Op3; |
| 1086 | |
| 1087 | ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) |
| 1088 | : Op1(Op1), Op2(Op2), Op3(Op3) {} |
| 1089 | |
| 1090 | template <typename OpTy> bool match(OpTy *V) { |
| 1091 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 1092 | auto *I = cast<Instruction>(V); |
| 1093 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
| 1094 | Op3.match(I->getOperand(2)); |
| 1095 | } |
| 1096 | return false; |
| 1097 | } |
| 1098 | }; |
| 1099 | |
| 1100 | /// Matches SelectInst. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1101 | template <typename Cond, typename LHS, typename RHS> |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1102 | inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> |
| 1103 | m_Select(const Cond &C, const LHS &L, const RHS &R) { |
| 1104 | return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1105 | } |
| 1106 | |
| 1107 | /// This matches a select of two constants, e.g.: |
| 1108 | /// m_SelectCst<-1, 0>(m_Value(V)) |
| 1109 | template <int64_t L, int64_t R, typename Cond> |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1110 | inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, |
| 1111 | Instruction::Select> |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1112 | m_SelectCst(const Cond &C) { |
| 1113 | return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); |
| 1114 | } |
| 1115 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1116 | /// Matches InsertElementInst. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1117 | template <typename Val_t, typename Elt_t, typename Idx_t> |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1118 | inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1119 | m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1120 | return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( |
| 1121 | Val, Elt, Idx); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1122 | } |
| 1123 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1124 | /// Matches ExtractElementInst. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1125 | template <typename Val_t, typename Idx_t> |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1126 | inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1127 | m_ExtractElement(const Val_t &Val, const Idx_t &Idx) { |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1128 | return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1129 | } |
| 1130 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1131 | /// Matches ShuffleVectorInst. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1132 | template <typename V1_t, typename V2_t, typename Mask_t> |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1133 | inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector> |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1134 | m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) { |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 1135 | return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2, |
| 1136 | m); |
| 1137 | } |
| 1138 | |
| 1139 | /// Matches LoadInst. |
| 1140 | template <typename OpTy> |
| 1141 | inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { |
| 1142 | return OneOps_match<OpTy, Instruction::Load>(Op); |
| 1143 | } |
| 1144 | |
| 1145 | /// Matches StoreInst. |
| 1146 | template <typename ValueOpTy, typename PointerOpTy> |
| 1147 | inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> |
| 1148 | m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { |
| 1149 | return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, |
| 1150 | PointerOp); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1151 | } |
| 1152 | |
| 1153 | //===----------------------------------------------------------------------===// |
| 1154 | // Matchers for CastInst classes |
| 1155 | // |
| 1156 | |
| 1157 | template <typename Op_t, unsigned Opcode> struct CastClass_match { |
| 1158 | Op_t Op; |
| 1159 | |
| 1160 | CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| 1161 | |
| 1162 | template <typename OpTy> bool match(OpTy *V) { |
| 1163 | if (auto *O = dyn_cast<Operator>(V)) |
| 1164 | return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); |
| 1165 | return false; |
| 1166 | } |
| 1167 | }; |
| 1168 | |
| 1169 | /// Matches BitCast. |
| 1170 | template <typename OpTy> |
| 1171 | inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { |
| 1172 | return CastClass_match<OpTy, Instruction::BitCast>(Op); |
| 1173 | } |
| 1174 | |
| 1175 | /// Matches PtrToInt. |
| 1176 | template <typename OpTy> |
| 1177 | inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { |
| 1178 | return CastClass_match<OpTy, Instruction::PtrToInt>(Op); |
| 1179 | } |
| 1180 | |
| 1181 | /// Matches Trunc. |
| 1182 | template <typename OpTy> |
| 1183 | inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { |
| 1184 | return CastClass_match<OpTy, Instruction::Trunc>(Op); |
| 1185 | } |
| 1186 | |
| 1187 | /// Matches SExt. |
| 1188 | template <typename OpTy> |
| 1189 | inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { |
| 1190 | return CastClass_match<OpTy, Instruction::SExt>(Op); |
| 1191 | } |
| 1192 | |
| 1193 | /// Matches ZExt. |
| 1194 | template <typename OpTy> |
| 1195 | inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { |
| 1196 | return CastClass_match<OpTy, Instruction::ZExt>(Op); |
| 1197 | } |
| 1198 | |
| 1199 | template <typename OpTy> |
| 1200 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
| 1201 | CastClass_match<OpTy, Instruction::SExt>> |
| 1202 | m_ZExtOrSExt(const OpTy &Op) { |
| 1203 | return m_CombineOr(m_ZExt(Op), m_SExt(Op)); |
| 1204 | } |
| 1205 | |
| 1206 | /// Matches UIToFP. |
| 1207 | template <typename OpTy> |
| 1208 | inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { |
| 1209 | return CastClass_match<OpTy, Instruction::UIToFP>(Op); |
| 1210 | } |
| 1211 | |
| 1212 | /// Matches SIToFP. |
| 1213 | template <typename OpTy> |
| 1214 | inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { |
| 1215 | return CastClass_match<OpTy, Instruction::SIToFP>(Op); |
| 1216 | } |
| 1217 | |
| 1218 | /// Matches FPTrunc |
| 1219 | template <typename OpTy> |
| 1220 | inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { |
| 1221 | return CastClass_match<OpTy, Instruction::FPTrunc>(Op); |
| 1222 | } |
| 1223 | |
| 1224 | /// Matches FPExt |
| 1225 | template <typename OpTy> |
| 1226 | inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { |
| 1227 | return CastClass_match<OpTy, Instruction::FPExt>(Op); |
| 1228 | } |
| 1229 | |
| 1230 | //===----------------------------------------------------------------------===// |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1231 | // Matchers for control flow. |
| 1232 | // |
| 1233 | |
| 1234 | struct br_match { |
| 1235 | BasicBlock *&Succ; |
| 1236 | |
| 1237 | br_match(BasicBlock *&Succ) : Succ(Succ) {} |
| 1238 | |
| 1239 | template <typename OpTy> bool match(OpTy *V) { |
| 1240 | if (auto *BI = dyn_cast<BranchInst>(V)) |
| 1241 | if (BI->isUnconditional()) { |
| 1242 | Succ = BI->getSuccessor(0); |
| 1243 | return true; |
| 1244 | } |
| 1245 | return false; |
| 1246 | } |
| 1247 | }; |
| 1248 | |
| 1249 | inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } |
| 1250 | |
| 1251 | template <typename Cond_t> struct brc_match { |
| 1252 | Cond_t Cond; |
| 1253 | BasicBlock *&T, *&F; |
| 1254 | |
| 1255 | brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) |
| 1256 | : Cond(C), T(t), F(f) {} |
| 1257 | |
| 1258 | template <typename OpTy> bool match(OpTy *V) { |
| 1259 | if (auto *BI = dyn_cast<BranchInst>(V)) |
| 1260 | if (BI->isConditional() && Cond.match(BI->getCondition())) { |
| 1261 | T = BI->getSuccessor(0); |
| 1262 | F = BI->getSuccessor(1); |
| 1263 | return true; |
| 1264 | } |
| 1265 | return false; |
| 1266 | } |
| 1267 | }; |
| 1268 | |
| 1269 | template <typename Cond_t> |
| 1270 | inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { |
| 1271 | return brc_match<Cond_t>(C, T, F); |
| 1272 | } |
| 1273 | |
| 1274 | //===----------------------------------------------------------------------===// |
| 1275 | // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). |
| 1276 | // |
| 1277 | |
| 1278 | template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, |
| 1279 | bool Commutable = false> |
| 1280 | struct MaxMin_match { |
| 1281 | LHS_t L; |
| 1282 | RHS_t R; |
| 1283 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1284 | // The evaluation order is always stable, regardless of Commutability. |
| 1285 | // The LHS is always matched first. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1286 | MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 1287 | |
| 1288 | template <typename OpTy> bool match(OpTy *V) { |
| 1289 | // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". |
| 1290 | auto *SI = dyn_cast<SelectInst>(V); |
| 1291 | if (!SI) |
| 1292 | return false; |
| 1293 | auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); |
| 1294 | if (!Cmp) |
| 1295 | return false; |
| 1296 | // At this point we have a select conditioned on a comparison. Check that |
| 1297 | // it is the values returned by the select that are being compared. |
| 1298 | Value *TrueVal = SI->getTrueValue(); |
| 1299 | Value *FalseVal = SI->getFalseValue(); |
| 1300 | Value *LHS = Cmp->getOperand(0); |
| 1301 | Value *RHS = Cmp->getOperand(1); |
| 1302 | if ((TrueVal != LHS || FalseVal != RHS) && |
| 1303 | (TrueVal != RHS || FalseVal != LHS)) |
| 1304 | return false; |
| 1305 | typename CmpInst_t::Predicate Pred = |
| 1306 | LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
| 1307 | // Does "(x pred y) ? x : y" represent the desired max/min operation? |
| 1308 | if (!Pred_t::match(Pred)) |
| 1309 | return false; |
| 1310 | // It does! Bind the operands. |
| 1311 | return (L.match(LHS) && R.match(RHS)) || |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1312 | (Commutable && L.match(RHS) && R.match(LHS)); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1313 | } |
| 1314 | }; |
| 1315 | |
| 1316 | /// Helper class for identifying signed max predicates. |
| 1317 | struct smax_pred_ty { |
| 1318 | static bool match(ICmpInst::Predicate Pred) { |
| 1319 | return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
| 1320 | } |
| 1321 | }; |
| 1322 | |
| 1323 | /// Helper class for identifying signed min predicates. |
| 1324 | struct smin_pred_ty { |
| 1325 | static bool match(ICmpInst::Predicate Pred) { |
| 1326 | return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; |
| 1327 | } |
| 1328 | }; |
| 1329 | |
| 1330 | /// Helper class for identifying unsigned max predicates. |
| 1331 | struct umax_pred_ty { |
| 1332 | static bool match(ICmpInst::Predicate Pred) { |
| 1333 | return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; |
| 1334 | } |
| 1335 | }; |
| 1336 | |
| 1337 | /// Helper class for identifying unsigned min predicates. |
| 1338 | struct umin_pred_ty { |
| 1339 | static bool match(ICmpInst::Predicate Pred) { |
| 1340 | return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; |
| 1341 | } |
| 1342 | }; |
| 1343 | |
| 1344 | /// Helper class for identifying ordered max predicates. |
| 1345 | struct ofmax_pred_ty { |
| 1346 | static bool match(FCmpInst::Predicate Pred) { |
| 1347 | return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; |
| 1348 | } |
| 1349 | }; |
| 1350 | |
| 1351 | /// Helper class for identifying ordered min predicates. |
| 1352 | struct ofmin_pred_ty { |
| 1353 | static bool match(FCmpInst::Predicate Pred) { |
| 1354 | return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; |
| 1355 | } |
| 1356 | }; |
| 1357 | |
| 1358 | /// Helper class for identifying unordered max predicates. |
| 1359 | struct ufmax_pred_ty { |
| 1360 | static bool match(FCmpInst::Predicate Pred) { |
| 1361 | return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; |
| 1362 | } |
| 1363 | }; |
| 1364 | |
| 1365 | /// Helper class for identifying unordered min predicates. |
| 1366 | struct ufmin_pred_ty { |
| 1367 | static bool match(FCmpInst::Predicate Pred) { |
| 1368 | return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; |
| 1369 | } |
| 1370 | }; |
| 1371 | |
| 1372 | template <typename LHS, typename RHS> |
| 1373 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, |
| 1374 | const RHS &R) { |
| 1375 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); |
| 1376 | } |
| 1377 | |
| 1378 | template <typename LHS, typename RHS> |
| 1379 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, |
| 1380 | const RHS &R) { |
| 1381 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); |
| 1382 | } |
| 1383 | |
| 1384 | template <typename LHS, typename RHS> |
| 1385 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, |
| 1386 | const RHS &R) { |
| 1387 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); |
| 1388 | } |
| 1389 | |
| 1390 | template <typename LHS, typename RHS> |
| 1391 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, |
| 1392 | const RHS &R) { |
| 1393 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); |
| 1394 | } |
| 1395 | |
| 1396 | /// Match an 'ordered' floating point maximum function. |
| 1397 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 1398 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 1399 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
| 1400 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 1401 | /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. |
| 1402 | /// |
| 1403 | /// max(L, R) iff L and R are not NaN |
| 1404 | /// m_OrdFMax(L, R) = R iff L or R are NaN |
| 1405 | template <typename LHS, typename RHS> |
| 1406 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, |
| 1407 | const RHS &R) { |
| 1408 | return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); |
| 1409 | } |
| 1410 | |
| 1411 | /// Match an 'ordered' floating point minimum function. |
| 1412 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 1413 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 1414 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
| 1415 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 1416 | /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. |
| 1417 | /// |
| 1418 | /// min(L, R) iff L and R are not NaN |
| 1419 | /// m_OrdFMin(L, R) = R iff L or R are NaN |
| 1420 | template <typename LHS, typename RHS> |
| 1421 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, |
| 1422 | const RHS &R) { |
| 1423 | return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); |
| 1424 | } |
| 1425 | |
| 1426 | /// Match an 'unordered' floating point maximum function. |
| 1427 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 1428 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 1429 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
| 1430 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 1431 | /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. |
| 1432 | /// |
| 1433 | /// max(L, R) iff L and R are not NaN |
| 1434 | /// m_UnordFMax(L, R) = L iff L or R are NaN |
| 1435 | template <typename LHS, typename RHS> |
| 1436 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> |
| 1437 | m_UnordFMax(const LHS &L, const RHS &R) { |
| 1438 | return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); |
| 1439 | } |
| 1440 | |
| 1441 | /// Match an 'unordered' floating point minimum function. |
| 1442 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 1443 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 1444 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
| 1445 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 1446 | /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. |
| 1447 | /// |
| 1448 | /// min(L, R) iff L and R are not NaN |
| 1449 | /// m_UnordFMin(L, R) = L iff L or R are NaN |
| 1450 | template <typename LHS, typename RHS> |
| 1451 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> |
| 1452 | m_UnordFMin(const LHS &L, const RHS &R) { |
| 1453 | return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); |
| 1454 | } |
| 1455 | |
| 1456 | //===----------------------------------------------------------------------===// |
| 1457 | // Matchers for overflow check patterns: e.g. (a + b) u< a |
| 1458 | // |
| 1459 | |
| 1460 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
| 1461 | struct UAddWithOverflow_match { |
| 1462 | LHS_t L; |
| 1463 | RHS_t R; |
| 1464 | Sum_t S; |
| 1465 | |
| 1466 | UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) |
| 1467 | : L(L), R(R), S(S) {} |
| 1468 | |
| 1469 | template <typename OpTy> bool match(OpTy *V) { |
| 1470 | Value *ICmpLHS, *ICmpRHS; |
| 1471 | ICmpInst::Predicate Pred; |
| 1472 | if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) |
| 1473 | return false; |
| 1474 | |
| 1475 | Value *AddLHS, *AddRHS; |
| 1476 | auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); |
| 1477 | |
| 1478 | // (a + b) u< a, (a + b) u< b |
| 1479 | if (Pred == ICmpInst::ICMP_ULT) |
| 1480 | if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) |
| 1481 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
| 1482 | |
| 1483 | // a >u (a + b), b >u (a + b) |
| 1484 | if (Pred == ICmpInst::ICMP_UGT) |
| 1485 | if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) |
| 1486 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
| 1487 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 1488 | // Match special-case for increment-by-1. |
| 1489 | if (Pred == ICmpInst::ICMP_EQ) { |
| 1490 | // (a + 1) == 0 |
| 1491 | // (1 + a) == 0 |
| 1492 | if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && |
| 1493 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
| 1494 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
| 1495 | // 0 == (a + 1) |
| 1496 | // 0 == (1 + a) |
| 1497 | if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && |
| 1498 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
| 1499 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
| 1500 | } |
| 1501 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1502 | return false; |
| 1503 | } |
| 1504 | }; |
| 1505 | |
| 1506 | /// Match an icmp instruction checking for unsigned overflow on addition. |
| 1507 | /// |
| 1508 | /// S is matched to the addition whose result is being checked for overflow, and |
| 1509 | /// L and R are matched to the LHS and RHS of S. |
| 1510 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
| 1511 | UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> |
| 1512 | m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { |
| 1513 | return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); |
| 1514 | } |
| 1515 | |
| 1516 | template <typename Opnd_t> struct Argument_match { |
| 1517 | unsigned OpI; |
| 1518 | Opnd_t Val; |
| 1519 | |
| 1520 | Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} |
| 1521 | |
| 1522 | template <typename OpTy> bool match(OpTy *V) { |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 1523 | // FIXME: Should likely be switched to use `CallBase`. |
| 1524 | if (const auto *CI = dyn_cast<CallInst>(V)) |
| 1525 | return Val.match(CI->getArgOperand(OpI)); |
| 1526 | return false; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1527 | } |
| 1528 | }; |
| 1529 | |
| 1530 | /// Match an argument. |
| 1531 | template <unsigned OpI, typename Opnd_t> |
| 1532 | inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { |
| 1533 | return Argument_match<Opnd_t>(OpI, Op); |
| 1534 | } |
| 1535 | |
| 1536 | /// Intrinsic matchers. |
| 1537 | struct IntrinsicID_match { |
| 1538 | unsigned ID; |
| 1539 | |
| 1540 | IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} |
| 1541 | |
| 1542 | template <typename OpTy> bool match(OpTy *V) { |
| 1543 | if (const auto *CI = dyn_cast<CallInst>(V)) |
| 1544 | if (const auto *F = CI->getCalledFunction()) |
| 1545 | return F->getIntrinsicID() == ID; |
| 1546 | return false; |
| 1547 | } |
| 1548 | }; |
| 1549 | |
| 1550 | /// Intrinsic matches are combinations of ID matchers, and argument |
| 1551 | /// matchers. Higher arity matcher are defined recursively in terms of and-ing |
| 1552 | /// them with lower arity matchers. Here's some convenient typedefs for up to |
| 1553 | /// several arguments, and more can be added as needed |
| 1554 | template <typename T0 = void, typename T1 = void, typename T2 = void, |
| 1555 | typename T3 = void, typename T4 = void, typename T5 = void, |
| 1556 | typename T6 = void, typename T7 = void, typename T8 = void, |
| 1557 | typename T9 = void, typename T10 = void> |
| 1558 | struct m_Intrinsic_Ty; |
| 1559 | template <typename T0> struct m_Intrinsic_Ty<T0> { |
| 1560 | using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; |
| 1561 | }; |
| 1562 | template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { |
| 1563 | using Ty = |
| 1564 | match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; |
| 1565 | }; |
| 1566 | template <typename T0, typename T1, typename T2> |
| 1567 | struct m_Intrinsic_Ty<T0, T1, T2> { |
| 1568 | using Ty = |
| 1569 | match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, |
| 1570 | Argument_match<T2>>; |
| 1571 | }; |
| 1572 | template <typename T0, typename T1, typename T2, typename T3> |
| 1573 | struct m_Intrinsic_Ty<T0, T1, T2, T3> { |
| 1574 | using Ty = |
| 1575 | match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, |
| 1576 | Argument_match<T3>>; |
| 1577 | }; |
| 1578 | |
| 1579 | /// Match intrinsic calls like this: |
| 1580 | /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) |
| 1581 | template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { |
| 1582 | return IntrinsicID_match(IntrID); |
| 1583 | } |
| 1584 | |
| 1585 | template <Intrinsic::ID IntrID, typename T0> |
| 1586 | inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { |
| 1587 | return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); |
| 1588 | } |
| 1589 | |
| 1590 | template <Intrinsic::ID IntrID, typename T0, typename T1> |
| 1591 | inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, |
| 1592 | const T1 &Op1) { |
| 1593 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); |
| 1594 | } |
| 1595 | |
| 1596 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> |
| 1597 | inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty |
| 1598 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { |
| 1599 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); |
| 1600 | } |
| 1601 | |
| 1602 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
| 1603 | typename T3> |
| 1604 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty |
| 1605 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { |
| 1606 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); |
| 1607 | } |
| 1608 | |
| 1609 | // Helper intrinsic matching specializations. |
| 1610 | template <typename Opnd0> |
| 1611 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { |
| 1612 | return m_Intrinsic<Intrinsic::bitreverse>(Op0); |
| 1613 | } |
| 1614 | |
| 1615 | template <typename Opnd0> |
| 1616 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { |
| 1617 | return m_Intrinsic<Intrinsic::bswap>(Op0); |
| 1618 | } |
| 1619 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1620 | template <typename Opnd0> |
| 1621 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { |
| 1622 | return m_Intrinsic<Intrinsic::fabs>(Op0); |
| 1623 | } |
| 1624 | |
| 1625 | template <typename Opnd0> |
| 1626 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { |
| 1627 | return m_Intrinsic<Intrinsic::canonicalize>(Op0); |
| 1628 | } |
| 1629 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1630 | template <typename Opnd0, typename Opnd1> |
| 1631 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, |
| 1632 | const Opnd1 &Op1) { |
| 1633 | return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); |
| 1634 | } |
| 1635 | |
| 1636 | template <typename Opnd0, typename Opnd1> |
| 1637 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, |
| 1638 | const Opnd1 &Op1) { |
| 1639 | return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); |
| 1640 | } |
| 1641 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1642 | //===----------------------------------------------------------------------===// |
| 1643 | // Matchers for two-operands operators with the operators in either order |
| 1644 | // |
| 1645 | |
| 1646 | /// Matches a BinaryOperator with LHS and RHS in either order. |
| 1647 | template <typename LHS, typename RHS> |
| 1648 | inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { |
| 1649 | return AnyBinaryOp_match<LHS, RHS, true>(L, R); |
| 1650 | } |
| 1651 | |
| 1652 | /// Matches an ICmp with a predicate over LHS and RHS in either order. |
| 1653 | /// Does not swap the predicate. |
| 1654 | template <typename LHS, typename RHS> |
| 1655 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> |
| 1656 | m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| 1657 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, |
| 1658 | R); |
| 1659 | } |
| 1660 | |
| 1661 | /// Matches a Add with LHS and RHS in either order. |
| 1662 | template <typename LHS, typename RHS> |
| 1663 | inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, |
| 1664 | const RHS &R) { |
| 1665 | return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); |
| 1666 | } |
| 1667 | |
| 1668 | /// Matches a Mul with LHS and RHS in either order. |
| 1669 | template <typename LHS, typename RHS> |
| 1670 | inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, |
| 1671 | const RHS &R) { |
| 1672 | return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); |
| 1673 | } |
| 1674 | |
| 1675 | /// Matches an And with LHS and RHS in either order. |
| 1676 | template <typename LHS, typename RHS> |
| 1677 | inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, |
| 1678 | const RHS &R) { |
| 1679 | return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); |
| 1680 | } |
| 1681 | |
| 1682 | /// Matches an Or with LHS and RHS in either order. |
| 1683 | template <typename LHS, typename RHS> |
| 1684 | inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, |
| 1685 | const RHS &R) { |
| 1686 | return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
| 1687 | } |
| 1688 | |
| 1689 | /// Matches an Xor with LHS and RHS in either order. |
| 1690 | template <typename LHS, typename RHS> |
| 1691 | inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, |
| 1692 | const RHS &R) { |
| 1693 | return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); |
| 1694 | } |
| 1695 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1696 | /// Matches a 'Neg' as 'sub 0, V'. |
| 1697 | template <typename ValTy> |
| 1698 | inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> |
| 1699 | m_Neg(const ValTy &V) { |
| 1700 | return m_Sub(m_ZeroInt(), V); |
| 1701 | } |
| 1702 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1703 | /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. |
| 1704 | template <typename ValTy> |
| 1705 | inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true> |
| 1706 | m_Not(const ValTy &V) { |
| 1707 | return m_c_Xor(V, m_AllOnes()); |
| 1708 | } |
| 1709 | |
| 1710 | /// Matches an SMin with LHS and RHS in either order. |
| 1711 | template <typename LHS, typename RHS> |
| 1712 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> |
| 1713 | m_c_SMin(const LHS &L, const RHS &R) { |
| 1714 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); |
| 1715 | } |
| 1716 | /// Matches an SMax with LHS and RHS in either order. |
| 1717 | template <typename LHS, typename RHS> |
| 1718 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> |
| 1719 | m_c_SMax(const LHS &L, const RHS &R) { |
| 1720 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); |
| 1721 | } |
| 1722 | /// Matches a UMin with LHS and RHS in either order. |
| 1723 | template <typename LHS, typename RHS> |
| 1724 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> |
| 1725 | m_c_UMin(const LHS &L, const RHS &R) { |
| 1726 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); |
| 1727 | } |
| 1728 | /// Matches a UMax with LHS and RHS in either order. |
| 1729 | template <typename LHS, typename RHS> |
| 1730 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> |
| 1731 | m_c_UMax(const LHS &L, const RHS &R) { |
| 1732 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); |
| 1733 | } |
| 1734 | |
| 1735 | /// Matches FAdd with LHS and RHS in either order. |
| 1736 | template <typename LHS, typename RHS> |
| 1737 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> |
| 1738 | m_c_FAdd(const LHS &L, const RHS &R) { |
| 1739 | return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); |
| 1740 | } |
| 1741 | |
| 1742 | /// Matches FMul with LHS and RHS in either order. |
| 1743 | template <typename LHS, typename RHS> |
| 1744 | inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> |
| 1745 | m_c_FMul(const LHS &L, const RHS &R) { |
| 1746 | return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); |
| 1747 | } |
| 1748 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1749 | template <typename Opnd_t> struct Signum_match { |
| 1750 | Opnd_t Val; |
| 1751 | Signum_match(const Opnd_t &V) : Val(V) {} |
| 1752 | |
| 1753 | template <typename OpTy> bool match(OpTy *V) { |
| 1754 | unsigned TypeSize = V->getType()->getScalarSizeInBits(); |
| 1755 | if (TypeSize == 0) |
| 1756 | return false; |
| 1757 | |
| 1758 | unsigned ShiftWidth = TypeSize - 1; |
| 1759 | Value *OpL = nullptr, *OpR = nullptr; |
| 1760 | |
| 1761 | // This is the representation of signum we match: |
| 1762 | // |
| 1763 | // signum(x) == (x >> 63) | (-x >>u 63) |
| 1764 | // |
| 1765 | // An i1 value is its own signum, so it's correct to match |
| 1766 | // |
| 1767 | // signum(x) == (x >> 0) | (-x >>u 0) |
| 1768 | // |
| 1769 | // for i1 values. |
| 1770 | |
| 1771 | auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); |
| 1772 | auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); |
| 1773 | auto Signum = m_Or(LHS, RHS); |
| 1774 | |
| 1775 | return Signum.match(V) && OpL == OpR && Val.match(OpL); |
| 1776 | } |
| 1777 | }; |
| 1778 | |
| 1779 | /// Matches a signum pattern. |
| 1780 | /// |
| 1781 | /// signum(x) = |
| 1782 | /// x > 0 -> 1 |
| 1783 | /// x == 0 -> 0 |
| 1784 | /// x < 0 -> -1 |
| 1785 | template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { |
| 1786 | return Signum_match<Val_t>(V); |
| 1787 | } |
| 1788 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1789 | } // end namespace PatternMatch |
| 1790 | } // end namespace llvm |
| 1791 | |
| 1792 | #endif // LLVM_IR_PATTERNMATCH_H |