Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/IR/PatternMatch.h b/linux-x64/clang/include/llvm/IR/PatternMatch.h
new file mode 100644
index 0000000..304b84b
--- /dev/null
+++ b/linux-x64/clang/include/llvm/IR/PatternMatch.h
@@ -0,0 +1,1736 @@
+//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides a simple and efficient mechanism for performing general
+// tree-based pattern matches on the LLVM IR. The power of these routines is
+// that it allows you to write concise patterns that are expressive and easy to
+// understand. The other major advantage of this is that it allows you to
+// trivially capture/bind elements in the pattern to variables. For example,
+// you can do something like this:
+//
+// Value *Exp = ...
+// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
+// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
+// m_And(m_Value(Y), m_ConstantInt(C2))))) {
+// ... Pattern is matched and variables are bound ...
+// }
+//
+// This is primarily useful to things like the instruction combiner, but can
+// also be useful for static analysis tools or code generators.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_IR_PATTERNMATCH_H
+#define LLVM_IR_PATTERNMATCH_H
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include <cstdint>
+
+namespace llvm {
+namespace PatternMatch {
+
+template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
+ return const_cast<Pattern &>(P).match(V);
+}
+
+template <typename SubPattern_t> struct OneUse_match {
+ SubPattern_t SubPattern;
+
+ OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ return V->hasOneUse() && SubPattern.match(V);
+ }
+};
+
+template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
+ return SubPattern;
+}
+
+template <typename Class> struct class_match {
+ template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
+};
+
+/// Match an arbitrary value and ignore it.
+inline class_match<Value> m_Value() { return class_match<Value>(); }
+
+/// Match an arbitrary binary operation and ignore it.
+inline class_match<BinaryOperator> m_BinOp() {
+ return class_match<BinaryOperator>();
+}
+
+/// Matches any compare instruction and ignore it.
+inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
+
+/// Match an arbitrary ConstantInt and ignore it.
+inline class_match<ConstantInt> m_ConstantInt() {
+ return class_match<ConstantInt>();
+}
+
+/// Match an arbitrary undef constant.
+inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
+
+/// Match an arbitrary Constant and ignore it.
+inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
+
+/// Matching combinators
+template <typename LTy, typename RTy> struct match_combine_or {
+ LTy L;
+ RTy R;
+
+ match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
+
+ template <typename ITy> bool match(ITy *V) {
+ if (L.match(V))
+ return true;
+ if (R.match(V))
+ return true;
+ return false;
+ }
+};
+
+template <typename LTy, typename RTy> struct match_combine_and {
+ LTy L;
+ RTy R;
+
+ match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
+
+ template <typename ITy> bool match(ITy *V) {
+ if (L.match(V))
+ if (R.match(V))
+ return true;
+ return false;
+ }
+};
+
+/// Combine two pattern matchers matching L || R
+template <typename LTy, typename RTy>
+inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
+ return match_combine_or<LTy, RTy>(L, R);
+}
+
+/// Combine two pattern matchers matching L && R
+template <typename LTy, typename RTy>
+inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
+ return match_combine_and<LTy, RTy>(L, R);
+}
+
+struct match_zero {
+ template <typename ITy> bool match(ITy *V) {
+ if (const auto *C = dyn_cast<Constant>(V))
+ return C->isNullValue();
+ return false;
+ }
+};
+
+/// Match an arbitrary zero/null constant. This includes
+/// zero_initializer for vectors and ConstantPointerNull for pointers.
+inline match_zero m_Zero() { return match_zero(); }
+
+struct apint_match {
+ const APInt *&Res;
+
+ apint_match(const APInt *&R) : Res(R) {}
+
+ template <typename ITy> bool match(ITy *V) {
+ if (auto *CI = dyn_cast<ConstantInt>(V)) {
+ Res = &CI->getValue();
+ return true;
+ }
+ if (V->getType()->isVectorTy())
+ if (const auto *C = dyn_cast<Constant>(V))
+ if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
+ Res = &CI->getValue();
+ return true;
+ }
+ return false;
+ }
+};
+// Either constexpr if or renaming ConstantFP::getValueAPF to
+// ConstantFP::getValue is needed to do it via single template
+// function for both apint/apfloat.
+struct apfloat_match {
+ const APFloat *&Res;
+ apfloat_match(const APFloat *&R) : Res(R) {}
+ template <typename ITy> bool match(ITy *V) {
+ if (auto *CI = dyn_cast<ConstantFP>(V)) {
+ Res = &CI->getValueAPF();
+ return true;
+ }
+ if (V->getType()->isVectorTy())
+ if (const auto *C = dyn_cast<Constant>(V))
+ if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
+ Res = &CI->getValueAPF();
+ return true;
+ }
+ return false;
+ }
+};
+
+/// Match a ConstantInt or splatted ConstantVector, binding the
+/// specified pointer to the contained APInt.
+inline apint_match m_APInt(const APInt *&Res) { return Res; }
+
+/// Match a ConstantFP or splatted ConstantVector, binding the
+/// specified pointer to the contained APFloat.
+inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
+
+template <int64_t Val> struct constantint_match {
+ template <typename ITy> bool match(ITy *V) {
+ if (const auto *CI = dyn_cast<ConstantInt>(V)) {
+ const APInt &CIV = CI->getValue();
+ if (Val >= 0)
+ return CIV == static_cast<uint64_t>(Val);
+ // If Val is negative, and CI is shorter than it, truncate to the right
+ // number of bits. If it is larger, then we have to sign extend. Just
+ // compare their negated values.
+ return -CIV == -Val;
+ }
+ return false;
+ }
+};
+
+/// Match a ConstantInt with a specific value.
+template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
+ return constantint_match<Val>();
+}
+
+/// This helper class is used to match scalar and vector integer constants that
+/// satisfy a specified predicate.
+/// For vector constants, undefined elements are ignored.
+template <typename Predicate> struct cst_pred_ty : public Predicate {
+ template <typename ITy> bool match(ITy *V) {
+ if (const auto *CI = dyn_cast<ConstantInt>(V))
+ return this->isValue(CI->getValue());
+ if (V->getType()->isVectorTy()) {
+ if (const auto *C = dyn_cast<Constant>(V)) {
+ if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
+ return this->isValue(CI->getValue());
+
+ // Non-splat vector constant: check each element for a match.
+ unsigned NumElts = V->getType()->getVectorNumElements();
+ assert(NumElts != 0 && "Constant vector with no elements?");
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt)
+ return false;
+ if (isa<UndefValue>(Elt))
+ continue;
+ auto *CI = dyn_cast<ConstantInt>(Elt);
+ if (!CI || !this->isValue(CI->getValue()))
+ return false;
+ }
+ return true;
+ }
+ }
+ return false;
+ }
+};
+
+/// This helper class is used to match scalar and vector constants that
+/// satisfy a specified predicate, and bind them to an APInt.
+template <typename Predicate> struct api_pred_ty : public Predicate {
+ const APInt *&Res;
+
+ api_pred_ty(const APInt *&R) : Res(R) {}
+
+ template <typename ITy> bool match(ITy *V) {
+ if (const auto *CI = dyn_cast<ConstantInt>(V))
+ if (this->isValue(CI->getValue())) {
+ Res = &CI->getValue();
+ return true;
+ }
+ if (V->getType()->isVectorTy())
+ if (const auto *C = dyn_cast<Constant>(V))
+ if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
+ if (this->isValue(CI->getValue())) {
+ Res = &CI->getValue();
+ return true;
+ }
+
+ return false;
+ }
+};
+
+/// This helper class is used to match scalar and vector floating-point
+/// constants that satisfy a specified predicate.
+/// For vector constants, undefined elements are ignored.
+template <typename Predicate> struct cstfp_pred_ty : public Predicate {
+ template <typename ITy> bool match(ITy *V) {
+ if (const auto *CF = dyn_cast<ConstantFP>(V))
+ return this->isValue(CF->getValueAPF());
+ if (V->getType()->isVectorTy()) {
+ if (const auto *C = dyn_cast<Constant>(V)) {
+ if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
+ return this->isValue(CF->getValueAPF());
+
+ // Non-splat vector constant: check each element for a match.
+ unsigned NumElts = V->getType()->getVectorNumElements();
+ assert(NumElts != 0 && "Constant vector with no elements?");
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt)
+ return false;
+ if (isa<UndefValue>(Elt))
+ continue;
+ auto *CF = dyn_cast<ConstantFP>(Elt);
+ if (!CF || !this->isValue(CF->getValueAPF()))
+ return false;
+ }
+ return true;
+ }
+ }
+ return false;
+ }
+};
+
+///////////////////////////////////////////////////////////////////////////////
+//
+// Encapsulate constant value queries for use in templated predicate matchers.
+// This allows checking if constants match using compound predicates and works
+// with vector constants, possibly with relaxed constraints. For example, ignore
+// undef values.
+//
+///////////////////////////////////////////////////////////////////////////////
+
+struct is_all_ones {
+ bool isValue(const APInt &C) { return C.isAllOnesValue(); }
+};
+/// Match an integer or vector with all bits set.
+/// For vectors, this includes constants with undefined elements.
+inline cst_pred_ty<is_all_ones> m_AllOnes() {
+ return cst_pred_ty<is_all_ones>();
+}
+
+struct is_maxsignedvalue {
+ bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
+};
+/// Match an integer or vector with values having all bits except for the high
+/// bit set (0x7f...).
+/// For vectors, this includes constants with undefined elements.
+inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
+ return cst_pred_ty<is_maxsignedvalue>();
+}
+inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
+ return V;
+}
+
+struct is_negative {
+ bool isValue(const APInt &C) { return C.isNegative(); }
+};
+/// Match an integer or vector of negative values.
+/// For vectors, this includes constants with undefined elements.
+inline cst_pred_ty<is_negative> m_Negative() {
+ return cst_pred_ty<is_negative>();
+}
+inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
+ return V;
+}
+
+struct is_nonnegative {
+ bool isValue(const APInt &C) { return C.isNonNegative(); }
+};
+/// Match an integer or vector of nonnegative values.
+/// For vectors, this includes constants with undefined elements.
+inline cst_pred_ty<is_nonnegative> m_NonNegative() {
+ return cst_pred_ty<is_nonnegative>();
+}
+inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
+ return V;
+}
+
+struct is_one {
+ bool isValue(const APInt &C) { return C.isOneValue(); }
+};
+/// Match an integer 1 or a vector with all elements equal to 1.
+/// For vectors, this includes constants with undefined elements.
+inline cst_pred_ty<is_one> m_One() {
+ return cst_pred_ty<is_one>();
+}
+
+struct is_power2 {
+ bool isValue(const APInt &C) { return C.isPowerOf2(); }
+};
+/// Match an integer or vector power-of-2.
+/// For vectors, this includes constants with undefined elements.
+inline cst_pred_ty<is_power2> m_Power2() {
+ return cst_pred_ty<is_power2>();
+}
+inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
+ return V;
+}
+
+struct is_power2_or_zero {
+ bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
+};
+/// Match an integer or vector of 0 or power-of-2 values.
+/// For vectors, this includes constants with undefined elements.
+inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
+ return cst_pred_ty<is_power2_or_zero>();
+}
+inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
+ return V;
+}
+
+struct is_sign_mask {
+ bool isValue(const APInt &C) { return C.isSignMask(); }
+};
+/// Match an integer or vector with only the sign bit(s) set.
+/// For vectors, this includes constants with undefined elements.
+inline cst_pred_ty<is_sign_mask> m_SignMask() {
+ return cst_pred_ty<is_sign_mask>();
+}
+
+struct is_nan {
+ bool isValue(const APFloat &C) { return C.isNaN(); }
+};
+/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
+/// For vectors, this includes constants with undefined elements.
+inline cstfp_pred_ty<is_nan> m_NaN() {
+ return cstfp_pred_ty<is_nan>();
+}
+
+struct is_any_zero_fp {
+ bool isValue(const APFloat &C) { return C.isZero(); }
+};
+/// Match a floating-point negative zero or positive zero.
+/// For vectors, this includes constants with undefined elements.
+inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
+ return cstfp_pred_ty<is_any_zero_fp>();
+}
+
+struct is_pos_zero_fp {
+ bool isValue(const APFloat &C) { return C.isPosZero(); }
+};
+/// Match a floating-point positive zero.
+/// For vectors, this includes constants with undefined elements.
+inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
+ return cstfp_pred_ty<is_pos_zero_fp>();
+}
+
+struct is_neg_zero_fp {
+ bool isValue(const APFloat &C) { return C.isNegZero(); }
+};
+/// Match a floating-point negative zero.
+/// For vectors, this includes constants with undefined elements.
+inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
+ return cstfp_pred_ty<is_neg_zero_fp>();
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+template <typename Class> struct bind_ty {
+ Class *&VR;
+
+ bind_ty(Class *&V) : VR(V) {}
+
+ template <typename ITy> bool match(ITy *V) {
+ if (auto *CV = dyn_cast<Class>(V)) {
+ VR = CV;
+ return true;
+ }
+ return false;
+ }
+};
+
+/// Match a value, capturing it if we match.
+inline bind_ty<Value> m_Value(Value *&V) { return V; }
+inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
+
+/// Match an instruction, capturing it if we match.
+inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
+/// Match a binary operator, capturing it if we match.
+inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
+
+/// Match a ConstantInt, capturing the value if we match.
+inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
+
+/// Match a Constant, capturing the value if we match.
+inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
+
+/// Match a ConstantFP, capturing the value if we match.
+inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
+
+/// Match a specified Value*.
+struct specificval_ty {
+ const Value *Val;
+
+ specificval_ty(const Value *V) : Val(V) {}
+
+ template <typename ITy> bool match(ITy *V) { return V == Val; }
+};
+
+/// Match if we have a specific specified value.
+inline specificval_ty m_Specific(const Value *V) { return V; }
+
+/// Match a specified floating point value or vector of all elements of
+/// that value.
+struct specific_fpval {
+ double Val;
+
+ specific_fpval(double V) : Val(V) {}
+
+ template <typename ITy> bool match(ITy *V) {
+ if (const auto *CFP = dyn_cast<ConstantFP>(V))
+ return CFP->isExactlyValue(Val);
+ if (V->getType()->isVectorTy())
+ if (const auto *C = dyn_cast<Constant>(V))
+ if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
+ return CFP->isExactlyValue(Val);
+ return false;
+ }
+};
+
+/// Match a specific floating point value or vector with all elements
+/// equal to the value.
+inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
+
+/// Match a float 1.0 or vector with all elements equal to 1.0.
+inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
+
+struct bind_const_intval_ty {
+ uint64_t &VR;
+
+ bind_const_intval_ty(uint64_t &V) : VR(V) {}
+
+ template <typename ITy> bool match(ITy *V) {
+ if (const auto *CV = dyn_cast<ConstantInt>(V))
+ if (CV->getValue().ule(UINT64_MAX)) {
+ VR = CV->getZExtValue();
+ return true;
+ }
+ return false;
+ }
+};
+
+/// Match a specified integer value or vector of all elements of that
+// value.
+struct specific_intval {
+ uint64_t Val;
+
+ specific_intval(uint64_t V) : Val(V) {}
+
+ template <typename ITy> bool match(ITy *V) {
+ const auto *CI = dyn_cast<ConstantInt>(V);
+ if (!CI && V->getType()->isVectorTy())
+ if (const auto *C = dyn_cast<Constant>(V))
+ CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
+
+ return CI && CI->getValue() == Val;
+ }
+};
+
+/// Match a specific integer value or vector with all elements equal to
+/// the value.
+inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
+
+/// Match a ConstantInt and bind to its value. This does not match
+/// ConstantInts wider than 64-bits.
+inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
+
+//===----------------------------------------------------------------------===//
+// Matcher for any binary operator.
+//
+template <typename LHS_t, typename RHS_t, bool Commutable = false>
+struct AnyBinaryOp_match {
+ LHS_t L;
+ RHS_t R;
+
+ AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *I = dyn_cast<BinaryOperator>(V))
+ return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
+ (Commutable && R.match(I->getOperand(0)) &&
+ L.match(I->getOperand(1)));
+ return false;
+ }
+};
+
+template <typename LHS, typename RHS>
+inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
+ return AnyBinaryOp_match<LHS, RHS>(L, R);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for specific binary operators.
+//
+
+template <typename LHS_t, typename RHS_t, unsigned Opcode,
+ bool Commutable = false>
+struct BinaryOp_match {
+ LHS_t L;
+ RHS_t R;
+
+ BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (V->getValueID() == Value::InstructionVal + Opcode) {
+ auto *I = cast<BinaryOperator>(V);
+ return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
+ (Commutable && R.match(I->getOperand(0)) &&
+ L.match(I->getOperand(1)));
+ }
+ if (auto *CE = dyn_cast<ConstantExpr>(V))
+ return CE->getOpcode() == Opcode &&
+ ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
+ (Commutable && R.match(CE->getOperand(0)) &&
+ L.match(CE->getOperand(1))));
+ return false;
+ }
+};
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
+}
+
+template <typename LHS_t, typename RHS_t, unsigned Opcode,
+ unsigned WrapFlags = 0>
+struct OverflowingBinaryOp_match {
+ LHS_t L;
+ RHS_t R;
+
+ OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
+ : L(LHS), R(RHS) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
+ if (Op->getOpcode() != Opcode)
+ return false;
+ if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
+ !Op->hasNoUnsignedWrap())
+ return false;
+ if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
+ !Op->hasNoSignedWrap())
+ return false;
+ return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
+ }
+ return false;
+ }
+};
+
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
+ OverflowingBinaryOperator::NoSignedWrap>
+m_NSWAdd(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
+ OverflowingBinaryOperator::NoSignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
+ OverflowingBinaryOperator::NoSignedWrap>
+m_NSWSub(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
+ OverflowingBinaryOperator::NoSignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
+ OverflowingBinaryOperator::NoSignedWrap>
+m_NSWMul(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
+ OverflowingBinaryOperator::NoSignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
+ OverflowingBinaryOperator::NoSignedWrap>
+m_NSWShl(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
+ OverflowingBinaryOperator::NoSignedWrap>(
+ L, R);
+}
+
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
+ OverflowingBinaryOperator::NoUnsignedWrap>
+m_NUWAdd(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
+ OverflowingBinaryOperator::NoUnsignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
+ OverflowingBinaryOperator::NoUnsignedWrap>
+m_NUWSub(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
+ OverflowingBinaryOperator::NoUnsignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
+ OverflowingBinaryOperator::NoUnsignedWrap>
+m_NUWMul(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
+ OverflowingBinaryOperator::NoUnsignedWrap>(
+ L, R);
+}
+template <typename LHS, typename RHS>
+inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
+ OverflowingBinaryOperator::NoUnsignedWrap>
+m_NUWShl(const LHS &L, const RHS &R) {
+ return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
+ OverflowingBinaryOperator::NoUnsignedWrap>(
+ L, R);
+}
+
+//===----------------------------------------------------------------------===//
+// Class that matches a group of binary opcodes.
+//
+template <typename LHS_t, typename RHS_t, typename Predicate>
+struct BinOpPred_match : Predicate {
+ LHS_t L;
+ RHS_t R;
+
+ BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *I = dyn_cast<Instruction>(V))
+ return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
+ R.match(I->getOperand(1));
+ if (auto *CE = dyn_cast<ConstantExpr>(V))
+ return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
+ R.match(CE->getOperand(1));
+ return false;
+ }
+};
+
+struct is_shift_op {
+ bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
+};
+
+struct is_right_shift_op {
+ bool isOpType(unsigned Opcode) {
+ return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
+ }
+};
+
+struct is_logical_shift_op {
+ bool isOpType(unsigned Opcode) {
+ return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
+ }
+};
+
+struct is_bitwiselogic_op {
+ bool isOpType(unsigned Opcode) {
+ return Instruction::isBitwiseLogicOp(Opcode);
+ }
+};
+
+struct is_idiv_op {
+ bool isOpType(unsigned Opcode) {
+ return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
+ }
+};
+
+/// Matches shift operations.
+template <typename LHS, typename RHS>
+inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
+ const RHS &R) {
+ return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
+}
+
+/// Matches logical shift operations.
+template <typename LHS, typename RHS>
+inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
+ const RHS &R) {
+ return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
+}
+
+/// Matches logical shift operations.
+template <typename LHS, typename RHS>
+inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
+m_LogicalShift(const LHS &L, const RHS &R) {
+ return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
+}
+
+/// Matches bitwise logic operations.
+template <typename LHS, typename RHS>
+inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
+m_BitwiseLogic(const LHS &L, const RHS &R) {
+ return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
+}
+
+/// Matches integer division operations.
+template <typename LHS, typename RHS>
+inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
+ const RHS &R) {
+ return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
+}
+
+//===----------------------------------------------------------------------===//
+// Class that matches exact binary ops.
+//
+template <typename SubPattern_t> struct Exact_match {
+ SubPattern_t SubPattern;
+
+ Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
+ return PEO->isExact() && SubPattern.match(V);
+ return false;
+ }
+};
+
+template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
+ return SubPattern;
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for CmpInst classes
+//
+
+template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
+ bool Commutable = false>
+struct CmpClass_match {
+ PredicateTy &Predicate;
+ LHS_t L;
+ RHS_t R;
+
+ CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
+ : Predicate(Pred), L(LHS), R(RHS) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *I = dyn_cast<Class>(V))
+ if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
+ (Commutable && R.match(I->getOperand(0)) &&
+ L.match(I->getOperand(1)))) {
+ Predicate = I->getPredicate();
+ return true;
+ }
+ return false;
+ }
+};
+
+template <typename LHS, typename RHS>
+inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
+m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
+ return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
+}
+
+template <typename LHS, typename RHS>
+inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
+m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
+ return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
+}
+
+template <typename LHS, typename RHS>
+inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
+m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
+ return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for SelectInst classes
+//
+
+template <typename Cond_t, typename LHS_t, typename RHS_t>
+struct SelectClass_match {
+ Cond_t C;
+ LHS_t L;
+ RHS_t R;
+
+ SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
+ : C(Cond), L(LHS), R(RHS) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *I = dyn_cast<SelectInst>(V))
+ return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
+ R.match(I->getOperand(2));
+ return false;
+ }
+};
+
+template <typename Cond, typename LHS, typename RHS>
+inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
+ const RHS &R) {
+ return SelectClass_match<Cond, LHS, RHS>(C, L, R);
+}
+
+/// This matches a select of two constants, e.g.:
+/// m_SelectCst<-1, 0>(m_Value(V))
+template <int64_t L, int64_t R, typename Cond>
+inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
+m_SelectCst(const Cond &C) {
+ return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for InsertElementInst classes
+//
+
+template <typename Val_t, typename Elt_t, typename Idx_t>
+struct InsertElementClass_match {
+ Val_t V;
+ Elt_t E;
+ Idx_t I;
+
+ InsertElementClass_match(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
+ : V(Val), E(Elt), I(Idx) {}
+
+ template <typename OpTy> bool match(OpTy *VV) {
+ if (auto *II = dyn_cast<InsertElementInst>(VV))
+ return V.match(II->getOperand(0)) && E.match(II->getOperand(1)) &&
+ I.match(II->getOperand(2));
+ return false;
+ }
+};
+
+template <typename Val_t, typename Elt_t, typename Idx_t>
+inline InsertElementClass_match<Val_t, Elt_t, Idx_t>
+m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
+ return InsertElementClass_match<Val_t, Elt_t, Idx_t>(Val, Elt, Idx);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for ExtractElementInst classes
+//
+
+template <typename Val_t, typename Idx_t> struct ExtractElementClass_match {
+ Val_t V;
+ Idx_t I;
+
+ ExtractElementClass_match(const Val_t &Val, const Idx_t &Idx)
+ : V(Val), I(Idx) {}
+
+ template <typename OpTy> bool match(OpTy *VV) {
+ if (auto *II = dyn_cast<ExtractElementInst>(VV))
+ return V.match(II->getOperand(0)) && I.match(II->getOperand(1));
+ return false;
+ }
+};
+
+template <typename Val_t, typename Idx_t>
+inline ExtractElementClass_match<Val_t, Idx_t>
+m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
+ return ExtractElementClass_match<Val_t, Idx_t>(Val, Idx);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for ShuffleVectorInst classes
+//
+
+template <typename V1_t, typename V2_t, typename Mask_t>
+struct ShuffleVectorClass_match {
+ V1_t V1;
+ V2_t V2;
+ Mask_t M;
+
+ ShuffleVectorClass_match(const V1_t &v1, const V2_t &v2, const Mask_t &m)
+ : V1(v1), V2(v2), M(m) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
+ return V1.match(SI->getOperand(0)) && V2.match(SI->getOperand(1)) &&
+ M.match(SI->getOperand(2));
+ return false;
+ }
+};
+
+template <typename V1_t, typename V2_t, typename Mask_t>
+inline ShuffleVectorClass_match<V1_t, V2_t, Mask_t>
+m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
+ return ShuffleVectorClass_match<V1_t, V2_t, Mask_t>(v1, v2, m);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for CastInst classes
+//
+
+template <typename Op_t, unsigned Opcode> struct CastClass_match {
+ Op_t Op;
+
+ CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *O = dyn_cast<Operator>(V))
+ return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
+ return false;
+ }
+};
+
+/// Matches BitCast.
+template <typename OpTy>
+inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::BitCast>(Op);
+}
+
+/// Matches PtrToInt.
+template <typename OpTy>
+inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
+}
+
+/// Matches Trunc.
+template <typename OpTy>
+inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::Trunc>(Op);
+}
+
+/// Matches SExt.
+template <typename OpTy>
+inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::SExt>(Op);
+}
+
+/// Matches ZExt.
+template <typename OpTy>
+inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::ZExt>(Op);
+}
+
+template <typename OpTy>
+inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
+ CastClass_match<OpTy, Instruction::SExt>>
+m_ZExtOrSExt(const OpTy &Op) {
+ return m_CombineOr(m_ZExt(Op), m_SExt(Op));
+}
+
+/// Matches UIToFP.
+template <typename OpTy>
+inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::UIToFP>(Op);
+}
+
+/// Matches SIToFP.
+template <typename OpTy>
+inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::SIToFP>(Op);
+}
+
+/// Matches FPTrunc
+template <typename OpTy>
+inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
+}
+
+/// Matches FPExt
+template <typename OpTy>
+inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
+ return CastClass_match<OpTy, Instruction::FPExt>(Op);
+}
+
+//===----------------------------------------------------------------------===//
+// Matcher for LoadInst classes
+//
+
+template <typename Op_t> struct LoadClass_match {
+ Op_t Op;
+
+ LoadClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *LI = dyn_cast<LoadInst>(V))
+ return Op.match(LI->getPointerOperand());
+ return false;
+ }
+};
+
+/// Matches LoadInst.
+template <typename OpTy> inline LoadClass_match<OpTy> m_Load(const OpTy &Op) {
+ return LoadClass_match<OpTy>(Op);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for unary operators
+//
+
+template <typename LHS_t> struct neg_match {
+ LHS_t L;
+
+ neg_match(const LHS_t &LHS) : L(LHS) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *O = dyn_cast<Operator>(V))
+ if (O->getOpcode() == Instruction::Sub)
+ return matchIfNeg(O->getOperand(0), O->getOperand(1));
+ return false;
+ }
+
+private:
+ bool matchIfNeg(Value *LHS, Value *RHS) {
+ return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
+ isa<ConstantAggregateZero>(LHS)) &&
+ L.match(RHS);
+ }
+};
+
+/// Match an integer negate.
+template <typename LHS> inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
+
+template <typename LHS_t> struct fneg_match {
+ LHS_t L;
+
+ fneg_match(const LHS_t &LHS) : L(LHS) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *O = dyn_cast<Operator>(V))
+ if (O->getOpcode() == Instruction::FSub)
+ return matchIfFNeg(O->getOperand(0), O->getOperand(1));
+ return false;
+ }
+
+private:
+ bool matchIfFNeg(Value *LHS, Value *RHS) {
+ if (const auto *C = dyn_cast<Constant>(LHS))
+ return C->isNegativeZeroValue() && L.match(RHS);
+ return false;
+ }
+};
+
+/// Match a floating point negate.
+template <typename LHS> inline fneg_match<LHS> m_FNeg(const LHS &L) {
+ return L;
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for control flow.
+//
+
+struct br_match {
+ BasicBlock *&Succ;
+
+ br_match(BasicBlock *&Succ) : Succ(Succ) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *BI = dyn_cast<BranchInst>(V))
+ if (BI->isUnconditional()) {
+ Succ = BI->getSuccessor(0);
+ return true;
+ }
+ return false;
+ }
+};
+
+inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
+
+template <typename Cond_t> struct brc_match {
+ Cond_t Cond;
+ BasicBlock *&T, *&F;
+
+ brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
+ : Cond(C), T(t), F(f) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (auto *BI = dyn_cast<BranchInst>(V))
+ if (BI->isConditional() && Cond.match(BI->getCondition())) {
+ T = BI->getSuccessor(0);
+ F = BI->getSuccessor(1);
+ return true;
+ }
+ return false;
+ }
+};
+
+template <typename Cond_t>
+inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
+ return brc_match<Cond_t>(C, T, F);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
+//
+
+template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
+ bool Commutable = false>
+struct MaxMin_match {
+ LHS_t L;
+ RHS_t R;
+
+ MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
+ auto *SI = dyn_cast<SelectInst>(V);
+ if (!SI)
+ return false;
+ auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
+ if (!Cmp)
+ return false;
+ // At this point we have a select conditioned on a comparison. Check that
+ // it is the values returned by the select that are being compared.
+ Value *TrueVal = SI->getTrueValue();
+ Value *FalseVal = SI->getFalseValue();
+ Value *LHS = Cmp->getOperand(0);
+ Value *RHS = Cmp->getOperand(1);
+ if ((TrueVal != LHS || FalseVal != RHS) &&
+ (TrueVal != RHS || FalseVal != LHS))
+ return false;
+ typename CmpInst_t::Predicate Pred =
+ LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
+ // Does "(x pred y) ? x : y" represent the desired max/min operation?
+ if (!Pred_t::match(Pred))
+ return false;
+ // It does! Bind the operands.
+ return (L.match(LHS) && R.match(RHS)) ||
+ (Commutable && R.match(LHS) && L.match(RHS));
+ }
+};
+
+/// Helper class for identifying signed max predicates.
+struct smax_pred_ty {
+ static bool match(ICmpInst::Predicate Pred) {
+ return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
+ }
+};
+
+/// Helper class for identifying signed min predicates.
+struct smin_pred_ty {
+ static bool match(ICmpInst::Predicate Pred) {
+ return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
+ }
+};
+
+/// Helper class for identifying unsigned max predicates.
+struct umax_pred_ty {
+ static bool match(ICmpInst::Predicate Pred) {
+ return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
+ }
+};
+
+/// Helper class for identifying unsigned min predicates.
+struct umin_pred_ty {
+ static bool match(ICmpInst::Predicate Pred) {
+ return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
+ }
+};
+
+/// Helper class for identifying ordered max predicates.
+struct ofmax_pred_ty {
+ static bool match(FCmpInst::Predicate Pred) {
+ return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
+ }
+};
+
+/// Helper class for identifying ordered min predicates.
+struct ofmin_pred_ty {
+ static bool match(FCmpInst::Predicate Pred) {
+ return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
+ }
+};
+
+/// Helper class for identifying unordered max predicates.
+struct ufmax_pred_ty {
+ static bool match(FCmpInst::Predicate Pred) {
+ return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
+ }
+};
+
+/// Helper class for identifying unordered min predicates.
+struct ufmin_pred_ty {
+ static bool match(FCmpInst::Predicate Pred) {
+ return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
+ }
+};
+
+template <typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
+ const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
+ const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
+ const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
+}
+
+template <typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
+ const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
+}
+
+/// Match an 'ordered' floating point maximum function.
+/// Floating point has one special value 'NaN'. Therefore, there is no total
+/// order. However, if we can ignore the 'NaN' value (for example, because of a
+/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
+/// semantics. In the presence of 'NaN' we have to preserve the original
+/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
+///
+/// max(L, R) iff L and R are not NaN
+/// m_OrdFMax(L, R) = R iff L or R are NaN
+template <typename LHS, typename RHS>
+inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
+ const RHS &R) {
+ return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
+}
+
+/// Match an 'ordered' floating point minimum function.
+/// Floating point has one special value 'NaN'. Therefore, there is no total
+/// order. However, if we can ignore the 'NaN' value (for example, because of a
+/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
+/// semantics. In the presence of 'NaN' we have to preserve the original
+/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
+///
+/// min(L, R) iff L and R are not NaN
+/// m_OrdFMin(L, R) = R iff L or R are NaN
+template <typename LHS, typename RHS>
+inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
+ const RHS &R) {
+ return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
+}
+
+/// Match an 'unordered' floating point maximum function.
+/// Floating point has one special value 'NaN'. Therefore, there is no total
+/// order. However, if we can ignore the 'NaN' value (for example, because of a
+/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
+/// semantics. In the presence of 'NaN' we have to preserve the original
+/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
+///
+/// max(L, R) iff L and R are not NaN
+/// m_UnordFMax(L, R) = L iff L or R are NaN
+template <typename LHS, typename RHS>
+inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
+m_UnordFMax(const LHS &L, const RHS &R) {
+ return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
+}
+
+/// Match an 'unordered' floating point minimum function.
+/// Floating point has one special value 'NaN'. Therefore, there is no total
+/// order. However, if we can ignore the 'NaN' value (for example, because of a
+/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
+/// semantics. In the presence of 'NaN' we have to preserve the original
+/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
+///
+/// min(L, R) iff L and R are not NaN
+/// m_UnordFMin(L, R) = L iff L or R are NaN
+template <typename LHS, typename RHS>
+inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
+m_UnordFMin(const LHS &L, const RHS &R) {
+ return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for overflow check patterns: e.g. (a + b) u< a
+//
+
+template <typename LHS_t, typename RHS_t, typename Sum_t>
+struct UAddWithOverflow_match {
+ LHS_t L;
+ RHS_t R;
+ Sum_t S;
+
+ UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
+ : L(L), R(R), S(S) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ Value *ICmpLHS, *ICmpRHS;
+ ICmpInst::Predicate Pred;
+ if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
+ return false;
+
+ Value *AddLHS, *AddRHS;
+ auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
+
+ // (a + b) u< a, (a + b) u< b
+ if (Pred == ICmpInst::ICMP_ULT)
+ if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
+ return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
+
+ // a >u (a + b), b >u (a + b)
+ if (Pred == ICmpInst::ICMP_UGT)
+ if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
+ return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
+
+ return false;
+ }
+};
+
+/// Match an icmp instruction checking for unsigned overflow on addition.
+///
+/// S is matched to the addition whose result is being checked for overflow, and
+/// L and R are matched to the LHS and RHS of S.
+template <typename LHS_t, typename RHS_t, typename Sum_t>
+UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
+m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
+ return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
+}
+
+template <typename Opnd_t> struct Argument_match {
+ unsigned OpI;
+ Opnd_t Val;
+
+ Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ CallSite CS(V);
+ return CS.isCall() && Val.match(CS.getArgument(OpI));
+ }
+};
+
+/// Match an argument.
+template <unsigned OpI, typename Opnd_t>
+inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
+ return Argument_match<Opnd_t>(OpI, Op);
+}
+
+/// Intrinsic matchers.
+struct IntrinsicID_match {
+ unsigned ID;
+
+ IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ if (const auto *CI = dyn_cast<CallInst>(V))
+ if (const auto *F = CI->getCalledFunction())
+ return F->getIntrinsicID() == ID;
+ return false;
+ }
+};
+
+/// Intrinsic matches are combinations of ID matchers, and argument
+/// matchers. Higher arity matcher are defined recursively in terms of and-ing
+/// them with lower arity matchers. Here's some convenient typedefs for up to
+/// several arguments, and more can be added as needed
+template <typename T0 = void, typename T1 = void, typename T2 = void,
+ typename T3 = void, typename T4 = void, typename T5 = void,
+ typename T6 = void, typename T7 = void, typename T8 = void,
+ typename T9 = void, typename T10 = void>
+struct m_Intrinsic_Ty;
+template <typename T0> struct m_Intrinsic_Ty<T0> {
+ using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
+};
+template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
+ using Ty =
+ match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
+};
+template <typename T0, typename T1, typename T2>
+struct m_Intrinsic_Ty<T0, T1, T2> {
+ using Ty =
+ match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
+ Argument_match<T2>>;
+};
+template <typename T0, typename T1, typename T2, typename T3>
+struct m_Intrinsic_Ty<T0, T1, T2, T3> {
+ using Ty =
+ match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
+ Argument_match<T3>>;
+};
+
+/// Match intrinsic calls like this:
+/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
+template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
+ return IntrinsicID_match(IntrID);
+}
+
+template <Intrinsic::ID IntrID, typename T0>
+inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
+ return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
+}
+
+template <Intrinsic::ID IntrID, typename T0, typename T1>
+inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
+ const T1 &Op1) {
+ return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
+}
+
+template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
+inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
+m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
+ return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
+}
+
+template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
+ typename T3>
+inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
+m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
+ return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
+}
+
+// Helper intrinsic matching specializations.
+template <typename Opnd0>
+inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
+ return m_Intrinsic<Intrinsic::bitreverse>(Op0);
+}
+
+template <typename Opnd0>
+inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
+ return m_Intrinsic<Intrinsic::bswap>(Op0);
+}
+
+template <typename Opnd0, typename Opnd1>
+inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
+ const Opnd1 &Op1) {
+ return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
+}
+
+template <typename Opnd0, typename Opnd1>
+inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
+ const Opnd1 &Op1) {
+ return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
+}
+
+template <typename Opnd_t> struct Signum_match {
+ Opnd_t Val;
+ Signum_match(const Opnd_t &V) : Val(V) {}
+
+ template <typename OpTy> bool match(OpTy *V) {
+ unsigned TypeSize = V->getType()->getScalarSizeInBits();
+ if (TypeSize == 0)
+ return false;
+
+ unsigned ShiftWidth = TypeSize - 1;
+ Value *OpL = nullptr, *OpR = nullptr;
+
+ // This is the representation of signum we match:
+ //
+ // signum(x) == (x >> 63) | (-x >>u 63)
+ //
+ // An i1 value is its own signum, so it's correct to match
+ //
+ // signum(x) == (x >> 0) | (-x >>u 0)
+ //
+ // for i1 values.
+
+ auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
+ auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
+ auto Signum = m_Or(LHS, RHS);
+
+ return Signum.match(V) && OpL == OpR && Val.match(OpL);
+ }
+};
+
+/// Matches a signum pattern.
+///
+/// signum(x) =
+/// x > 0 -> 1
+/// x == 0 -> 0
+/// x < 0 -> -1
+template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
+ return Signum_match<Val_t>(V);
+}
+
+//===----------------------------------------------------------------------===//
+// Matchers for two-operands operators with the operators in either order
+//
+
+/// Matches a BinaryOperator with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
+ return AnyBinaryOp_match<LHS, RHS, true>(L, R);
+}
+
+/// Matches an ICmp with a predicate over LHS and RHS in either order.
+/// Does not swap the predicate.
+template <typename LHS, typename RHS>
+inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
+m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
+ return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
+ R);
+}
+
+/// Matches a Add with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
+}
+
+/// Matches a Mul with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
+}
+
+/// Matches an And with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
+}
+
+/// Matches an Or with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
+}
+
+/// Matches an Xor with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
+ const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
+}
+
+/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
+template <typename ValTy>
+inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
+m_Not(const ValTy &V) {
+ return m_c_Xor(V, m_AllOnes());
+}
+
+/// Matches an SMin with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
+m_c_SMin(const LHS &L, const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
+}
+/// Matches an SMax with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
+m_c_SMax(const LHS &L, const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
+}
+/// Matches a UMin with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
+m_c_UMin(const LHS &L, const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
+}
+/// Matches a UMax with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
+m_c_UMax(const LHS &L, const RHS &R) {
+ return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
+}
+
+/// Matches FAdd with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
+m_c_FAdd(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
+}
+
+/// Matches FMul with LHS and RHS in either order.
+template <typename LHS, typename RHS>
+inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
+m_c_FMul(const LHS &L, const RHS &R) {
+ return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
+}
+
+} // end namespace PatternMatch
+} // end namespace llvm
+
+#endif // LLVM_IR_PATTERNMATCH_H