Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file provides a simple and efficient mechanism for performing general |
| 11 | // tree-based pattern matches on the LLVM IR. The power of these routines is |
| 12 | // that it allows you to write concise patterns that are expressive and easy to |
| 13 | // understand. The other major advantage of this is that it allows you to |
| 14 | // trivially capture/bind elements in the pattern to variables. For example, |
| 15 | // you can do something like this: |
| 16 | // |
| 17 | // Value *Exp = ... |
| 18 | // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) |
| 19 | // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), |
| 20 | // m_And(m_Value(Y), m_ConstantInt(C2))))) { |
| 21 | // ... Pattern is matched and variables are bound ... |
| 22 | // } |
| 23 | // |
| 24 | // This is primarily useful to things like the instruction combiner, but can |
| 25 | // also be useful for static analysis tools or code generators. |
| 26 | // |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | |
| 29 | #ifndef LLVM_IR_PATTERNMATCH_H |
| 30 | #define LLVM_IR_PATTERNMATCH_H |
| 31 | |
| 32 | #include "llvm/ADT/APFloat.h" |
| 33 | #include "llvm/ADT/APInt.h" |
| 34 | #include "llvm/IR/CallSite.h" |
| 35 | #include "llvm/IR/Constant.h" |
| 36 | #include "llvm/IR/Constants.h" |
| 37 | #include "llvm/IR/InstrTypes.h" |
| 38 | #include "llvm/IR/Instruction.h" |
| 39 | #include "llvm/IR/Instructions.h" |
| 40 | #include "llvm/IR/Intrinsics.h" |
| 41 | #include "llvm/IR/Operator.h" |
| 42 | #include "llvm/IR/Value.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include <cstdint> |
| 45 | |
| 46 | namespace llvm { |
| 47 | namespace PatternMatch { |
| 48 | |
| 49 | template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { |
| 50 | return const_cast<Pattern &>(P).match(V); |
| 51 | } |
| 52 | |
| 53 | template <typename SubPattern_t> struct OneUse_match { |
| 54 | SubPattern_t SubPattern; |
| 55 | |
| 56 | OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| 57 | |
| 58 | template <typename OpTy> bool match(OpTy *V) { |
| 59 | return V->hasOneUse() && SubPattern.match(V); |
| 60 | } |
| 61 | }; |
| 62 | |
| 63 | template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { |
| 64 | return SubPattern; |
| 65 | } |
| 66 | |
| 67 | template <typename Class> struct class_match { |
| 68 | template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } |
| 69 | }; |
| 70 | |
| 71 | /// Match an arbitrary value and ignore it. |
| 72 | inline class_match<Value> m_Value() { return class_match<Value>(); } |
| 73 | |
| 74 | /// Match an arbitrary binary operation and ignore it. |
| 75 | inline class_match<BinaryOperator> m_BinOp() { |
| 76 | return class_match<BinaryOperator>(); |
| 77 | } |
| 78 | |
| 79 | /// Matches any compare instruction and ignore it. |
| 80 | inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } |
| 81 | |
| 82 | /// Match an arbitrary ConstantInt and ignore it. |
| 83 | inline class_match<ConstantInt> m_ConstantInt() { |
| 84 | return class_match<ConstantInt>(); |
| 85 | } |
| 86 | |
| 87 | /// Match an arbitrary undef constant. |
| 88 | inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); } |
| 89 | |
| 90 | /// Match an arbitrary Constant and ignore it. |
| 91 | inline class_match<Constant> m_Constant() { return class_match<Constant>(); } |
| 92 | |
| 93 | /// Matching combinators |
| 94 | template <typename LTy, typename RTy> struct match_combine_or { |
| 95 | LTy L; |
| 96 | RTy R; |
| 97 | |
| 98 | match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| 99 | |
| 100 | template <typename ITy> bool match(ITy *V) { |
| 101 | if (L.match(V)) |
| 102 | return true; |
| 103 | if (R.match(V)) |
| 104 | return true; |
| 105 | return false; |
| 106 | } |
| 107 | }; |
| 108 | |
| 109 | template <typename LTy, typename RTy> struct match_combine_and { |
| 110 | LTy L; |
| 111 | RTy R; |
| 112 | |
| 113 | match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| 114 | |
| 115 | template <typename ITy> bool match(ITy *V) { |
| 116 | if (L.match(V)) |
| 117 | if (R.match(V)) |
| 118 | return true; |
| 119 | return false; |
| 120 | } |
| 121 | }; |
| 122 | |
| 123 | /// Combine two pattern matchers matching L || R |
| 124 | template <typename LTy, typename RTy> |
| 125 | inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { |
| 126 | return match_combine_or<LTy, RTy>(L, R); |
| 127 | } |
| 128 | |
| 129 | /// Combine two pattern matchers matching L && R |
| 130 | template <typename LTy, typename RTy> |
| 131 | inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { |
| 132 | return match_combine_and<LTy, RTy>(L, R); |
| 133 | } |
| 134 | |
| 135 | struct match_zero { |
| 136 | template <typename ITy> bool match(ITy *V) { |
| 137 | if (const auto *C = dyn_cast<Constant>(V)) |
| 138 | return C->isNullValue(); |
| 139 | return false; |
| 140 | } |
| 141 | }; |
| 142 | |
| 143 | /// Match an arbitrary zero/null constant. This includes |
| 144 | /// zero_initializer for vectors and ConstantPointerNull for pointers. |
| 145 | inline match_zero m_Zero() { return match_zero(); } |
| 146 | |
| 147 | struct apint_match { |
| 148 | const APInt *&Res; |
| 149 | |
| 150 | apint_match(const APInt *&R) : Res(R) {} |
| 151 | |
| 152 | template <typename ITy> bool match(ITy *V) { |
| 153 | if (auto *CI = dyn_cast<ConstantInt>(V)) { |
| 154 | Res = &CI->getValue(); |
| 155 | return true; |
| 156 | } |
| 157 | if (V->getType()->isVectorTy()) |
| 158 | if (const auto *C = dyn_cast<Constant>(V)) |
| 159 | if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { |
| 160 | Res = &CI->getValue(); |
| 161 | return true; |
| 162 | } |
| 163 | return false; |
| 164 | } |
| 165 | }; |
| 166 | // Either constexpr if or renaming ConstantFP::getValueAPF to |
| 167 | // ConstantFP::getValue is needed to do it via single template |
| 168 | // function for both apint/apfloat. |
| 169 | struct apfloat_match { |
| 170 | const APFloat *&Res; |
| 171 | apfloat_match(const APFloat *&R) : Res(R) {} |
| 172 | template <typename ITy> bool match(ITy *V) { |
| 173 | if (auto *CI = dyn_cast<ConstantFP>(V)) { |
| 174 | Res = &CI->getValueAPF(); |
| 175 | return true; |
| 176 | } |
| 177 | if (V->getType()->isVectorTy()) |
| 178 | if (const auto *C = dyn_cast<Constant>(V)) |
| 179 | if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) { |
| 180 | Res = &CI->getValueAPF(); |
| 181 | return true; |
| 182 | } |
| 183 | return false; |
| 184 | } |
| 185 | }; |
| 186 | |
| 187 | /// Match a ConstantInt or splatted ConstantVector, binding the |
| 188 | /// specified pointer to the contained APInt. |
| 189 | inline apint_match m_APInt(const APInt *&Res) { return Res; } |
| 190 | |
| 191 | /// Match a ConstantFP or splatted ConstantVector, binding the |
| 192 | /// specified pointer to the contained APFloat. |
| 193 | inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; } |
| 194 | |
| 195 | template <int64_t Val> struct constantint_match { |
| 196 | template <typename ITy> bool match(ITy *V) { |
| 197 | if (const auto *CI = dyn_cast<ConstantInt>(V)) { |
| 198 | const APInt &CIV = CI->getValue(); |
| 199 | if (Val >= 0) |
| 200 | return CIV == static_cast<uint64_t>(Val); |
| 201 | // If Val is negative, and CI is shorter than it, truncate to the right |
| 202 | // number of bits. If it is larger, then we have to sign extend. Just |
| 203 | // compare their negated values. |
| 204 | return -CIV == -Val; |
| 205 | } |
| 206 | return false; |
| 207 | } |
| 208 | }; |
| 209 | |
| 210 | /// Match a ConstantInt with a specific value. |
| 211 | template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { |
| 212 | return constantint_match<Val>(); |
| 213 | } |
| 214 | |
| 215 | /// This helper class is used to match scalar and vector integer constants that |
| 216 | /// satisfy a specified predicate. |
| 217 | /// For vector constants, undefined elements are ignored. |
| 218 | template <typename Predicate> struct cst_pred_ty : public Predicate { |
| 219 | template <typename ITy> bool match(ITy *V) { |
| 220 | if (const auto *CI = dyn_cast<ConstantInt>(V)) |
| 221 | return this->isValue(CI->getValue()); |
| 222 | if (V->getType()->isVectorTy()) { |
| 223 | if (const auto *C = dyn_cast<Constant>(V)) { |
| 224 | if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
| 225 | return this->isValue(CI->getValue()); |
| 226 | |
| 227 | // Non-splat vector constant: check each element for a match. |
| 228 | unsigned NumElts = V->getType()->getVectorNumElements(); |
| 229 | assert(NumElts != 0 && "Constant vector with no elements?"); |
| 230 | for (unsigned i = 0; i != NumElts; ++i) { |
| 231 | Constant *Elt = C->getAggregateElement(i); |
| 232 | if (!Elt) |
| 233 | return false; |
| 234 | if (isa<UndefValue>(Elt)) |
| 235 | continue; |
| 236 | auto *CI = dyn_cast<ConstantInt>(Elt); |
| 237 | if (!CI || !this->isValue(CI->getValue())) |
| 238 | return false; |
| 239 | } |
| 240 | return true; |
| 241 | } |
| 242 | } |
| 243 | return false; |
| 244 | } |
| 245 | }; |
| 246 | |
| 247 | /// This helper class is used to match scalar and vector constants that |
| 248 | /// satisfy a specified predicate, and bind them to an APInt. |
| 249 | template <typename Predicate> struct api_pred_ty : public Predicate { |
| 250 | const APInt *&Res; |
| 251 | |
| 252 | api_pred_ty(const APInt *&R) : Res(R) {} |
| 253 | |
| 254 | template <typename ITy> bool match(ITy *V) { |
| 255 | if (const auto *CI = dyn_cast<ConstantInt>(V)) |
| 256 | if (this->isValue(CI->getValue())) { |
| 257 | Res = &CI->getValue(); |
| 258 | return true; |
| 259 | } |
| 260 | if (V->getType()->isVectorTy()) |
| 261 | if (const auto *C = dyn_cast<Constant>(V)) |
| 262 | if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
| 263 | if (this->isValue(CI->getValue())) { |
| 264 | Res = &CI->getValue(); |
| 265 | return true; |
| 266 | } |
| 267 | |
| 268 | return false; |
| 269 | } |
| 270 | }; |
| 271 | |
| 272 | /// This helper class is used to match scalar and vector floating-point |
| 273 | /// constants that satisfy a specified predicate. |
| 274 | /// For vector constants, undefined elements are ignored. |
| 275 | template <typename Predicate> struct cstfp_pred_ty : public Predicate { |
| 276 | template <typename ITy> bool match(ITy *V) { |
| 277 | if (const auto *CF = dyn_cast<ConstantFP>(V)) |
| 278 | return this->isValue(CF->getValueAPF()); |
| 279 | if (V->getType()->isVectorTy()) { |
| 280 | if (const auto *C = dyn_cast<Constant>(V)) { |
| 281 | if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
| 282 | return this->isValue(CF->getValueAPF()); |
| 283 | |
| 284 | // Non-splat vector constant: check each element for a match. |
| 285 | unsigned NumElts = V->getType()->getVectorNumElements(); |
| 286 | assert(NumElts != 0 && "Constant vector with no elements?"); |
| 287 | for (unsigned i = 0; i != NumElts; ++i) { |
| 288 | Constant *Elt = C->getAggregateElement(i); |
| 289 | if (!Elt) |
| 290 | return false; |
| 291 | if (isa<UndefValue>(Elt)) |
| 292 | continue; |
| 293 | auto *CF = dyn_cast<ConstantFP>(Elt); |
| 294 | if (!CF || !this->isValue(CF->getValueAPF())) |
| 295 | return false; |
| 296 | } |
| 297 | return true; |
| 298 | } |
| 299 | } |
| 300 | return false; |
| 301 | } |
| 302 | }; |
| 303 | |
| 304 | /////////////////////////////////////////////////////////////////////////////// |
| 305 | // |
| 306 | // Encapsulate constant value queries for use in templated predicate matchers. |
| 307 | // This allows checking if constants match using compound predicates and works |
| 308 | // with vector constants, possibly with relaxed constraints. For example, ignore |
| 309 | // undef values. |
| 310 | // |
| 311 | /////////////////////////////////////////////////////////////////////////////// |
| 312 | |
| 313 | struct is_all_ones { |
| 314 | bool isValue(const APInt &C) { return C.isAllOnesValue(); } |
| 315 | }; |
| 316 | /// Match an integer or vector with all bits set. |
| 317 | /// For vectors, this includes constants with undefined elements. |
| 318 | inline cst_pred_ty<is_all_ones> m_AllOnes() { |
| 319 | return cst_pred_ty<is_all_ones>(); |
| 320 | } |
| 321 | |
| 322 | struct is_maxsignedvalue { |
| 323 | bool isValue(const APInt &C) { return C.isMaxSignedValue(); } |
| 324 | }; |
| 325 | /// Match an integer or vector with values having all bits except for the high |
| 326 | /// bit set (0x7f...). |
| 327 | /// For vectors, this includes constants with undefined elements. |
| 328 | inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { |
| 329 | return cst_pred_ty<is_maxsignedvalue>(); |
| 330 | } |
| 331 | inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { |
| 332 | return V; |
| 333 | } |
| 334 | |
| 335 | struct is_negative { |
| 336 | bool isValue(const APInt &C) { return C.isNegative(); } |
| 337 | }; |
| 338 | /// Match an integer or vector of negative values. |
| 339 | /// For vectors, this includes constants with undefined elements. |
| 340 | inline cst_pred_ty<is_negative> m_Negative() { |
| 341 | return cst_pred_ty<is_negative>(); |
| 342 | } |
| 343 | inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { |
| 344 | return V; |
| 345 | } |
| 346 | |
| 347 | struct is_nonnegative { |
| 348 | bool isValue(const APInt &C) { return C.isNonNegative(); } |
| 349 | }; |
| 350 | /// Match an integer or vector of nonnegative values. |
| 351 | /// For vectors, this includes constants with undefined elements. |
| 352 | inline cst_pred_ty<is_nonnegative> m_NonNegative() { |
| 353 | return cst_pred_ty<is_nonnegative>(); |
| 354 | } |
| 355 | inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { |
| 356 | return V; |
| 357 | } |
| 358 | |
| 359 | struct is_one { |
| 360 | bool isValue(const APInt &C) { return C.isOneValue(); } |
| 361 | }; |
| 362 | /// Match an integer 1 or a vector with all elements equal to 1. |
| 363 | /// For vectors, this includes constants with undefined elements. |
| 364 | inline cst_pred_ty<is_one> m_One() { |
| 365 | return cst_pred_ty<is_one>(); |
| 366 | } |
| 367 | |
| 368 | struct is_power2 { |
| 369 | bool isValue(const APInt &C) { return C.isPowerOf2(); } |
| 370 | }; |
| 371 | /// Match an integer or vector power-of-2. |
| 372 | /// For vectors, this includes constants with undefined elements. |
| 373 | inline cst_pred_ty<is_power2> m_Power2() { |
| 374 | return cst_pred_ty<is_power2>(); |
| 375 | } |
| 376 | inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { |
| 377 | return V; |
| 378 | } |
| 379 | |
| 380 | struct is_power2_or_zero { |
| 381 | bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } |
| 382 | }; |
| 383 | /// Match an integer or vector of 0 or power-of-2 values. |
| 384 | /// For vectors, this includes constants with undefined elements. |
| 385 | inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { |
| 386 | return cst_pred_ty<is_power2_or_zero>(); |
| 387 | } |
| 388 | inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { |
| 389 | return V; |
| 390 | } |
| 391 | |
| 392 | struct is_sign_mask { |
| 393 | bool isValue(const APInt &C) { return C.isSignMask(); } |
| 394 | }; |
| 395 | /// Match an integer or vector with only the sign bit(s) set. |
| 396 | /// For vectors, this includes constants with undefined elements. |
| 397 | inline cst_pred_ty<is_sign_mask> m_SignMask() { |
| 398 | return cst_pred_ty<is_sign_mask>(); |
| 399 | } |
| 400 | |
| 401 | struct is_nan { |
| 402 | bool isValue(const APFloat &C) { return C.isNaN(); } |
| 403 | }; |
| 404 | /// Match an arbitrary NaN constant. This includes quiet and signalling nans. |
| 405 | /// For vectors, this includes constants with undefined elements. |
| 406 | inline cstfp_pred_ty<is_nan> m_NaN() { |
| 407 | return cstfp_pred_ty<is_nan>(); |
| 408 | } |
| 409 | |
| 410 | struct is_any_zero_fp { |
| 411 | bool isValue(const APFloat &C) { return C.isZero(); } |
| 412 | }; |
| 413 | /// Match a floating-point negative zero or positive zero. |
| 414 | /// For vectors, this includes constants with undefined elements. |
| 415 | inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { |
| 416 | return cstfp_pred_ty<is_any_zero_fp>(); |
| 417 | } |
| 418 | |
| 419 | struct is_pos_zero_fp { |
| 420 | bool isValue(const APFloat &C) { return C.isPosZero(); } |
| 421 | }; |
| 422 | /// Match a floating-point positive zero. |
| 423 | /// For vectors, this includes constants with undefined elements. |
| 424 | inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { |
| 425 | return cstfp_pred_ty<is_pos_zero_fp>(); |
| 426 | } |
| 427 | |
| 428 | struct is_neg_zero_fp { |
| 429 | bool isValue(const APFloat &C) { return C.isNegZero(); } |
| 430 | }; |
| 431 | /// Match a floating-point negative zero. |
| 432 | /// For vectors, this includes constants with undefined elements. |
| 433 | inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { |
| 434 | return cstfp_pred_ty<is_neg_zero_fp>(); |
| 435 | } |
| 436 | |
| 437 | /////////////////////////////////////////////////////////////////////////////// |
| 438 | |
| 439 | template <typename Class> struct bind_ty { |
| 440 | Class *&VR; |
| 441 | |
| 442 | bind_ty(Class *&V) : VR(V) {} |
| 443 | |
| 444 | template <typename ITy> bool match(ITy *V) { |
| 445 | if (auto *CV = dyn_cast<Class>(V)) { |
| 446 | VR = CV; |
| 447 | return true; |
| 448 | } |
| 449 | return false; |
| 450 | } |
| 451 | }; |
| 452 | |
| 453 | /// Match a value, capturing it if we match. |
| 454 | inline bind_ty<Value> m_Value(Value *&V) { return V; } |
| 455 | inline bind_ty<const Value> m_Value(const Value *&V) { return V; } |
| 456 | |
| 457 | /// Match an instruction, capturing it if we match. |
| 458 | inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } |
| 459 | /// Match a binary operator, capturing it if we match. |
| 460 | inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } |
| 461 | |
| 462 | /// Match a ConstantInt, capturing the value if we match. |
| 463 | inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } |
| 464 | |
| 465 | /// Match a Constant, capturing the value if we match. |
| 466 | inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } |
| 467 | |
| 468 | /// Match a ConstantFP, capturing the value if we match. |
| 469 | inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } |
| 470 | |
| 471 | /// Match a specified Value*. |
| 472 | struct specificval_ty { |
| 473 | const Value *Val; |
| 474 | |
| 475 | specificval_ty(const Value *V) : Val(V) {} |
| 476 | |
| 477 | template <typename ITy> bool match(ITy *V) { return V == Val; } |
| 478 | }; |
| 479 | |
| 480 | /// Match if we have a specific specified value. |
| 481 | inline specificval_ty m_Specific(const Value *V) { return V; } |
| 482 | |
| 483 | /// Match a specified floating point value or vector of all elements of |
| 484 | /// that value. |
| 485 | struct specific_fpval { |
| 486 | double Val; |
| 487 | |
| 488 | specific_fpval(double V) : Val(V) {} |
| 489 | |
| 490 | template <typename ITy> bool match(ITy *V) { |
| 491 | if (const auto *CFP = dyn_cast<ConstantFP>(V)) |
| 492 | return CFP->isExactlyValue(Val); |
| 493 | if (V->getType()->isVectorTy()) |
| 494 | if (const auto *C = dyn_cast<Constant>(V)) |
| 495 | if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
| 496 | return CFP->isExactlyValue(Val); |
| 497 | return false; |
| 498 | } |
| 499 | }; |
| 500 | |
| 501 | /// Match a specific floating point value or vector with all elements |
| 502 | /// equal to the value. |
| 503 | inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } |
| 504 | |
| 505 | /// Match a float 1.0 or vector with all elements equal to 1.0. |
| 506 | inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } |
| 507 | |
| 508 | struct bind_const_intval_ty { |
| 509 | uint64_t &VR; |
| 510 | |
| 511 | bind_const_intval_ty(uint64_t &V) : VR(V) {} |
| 512 | |
| 513 | template <typename ITy> bool match(ITy *V) { |
| 514 | if (const auto *CV = dyn_cast<ConstantInt>(V)) |
| 515 | if (CV->getValue().ule(UINT64_MAX)) { |
| 516 | VR = CV->getZExtValue(); |
| 517 | return true; |
| 518 | } |
| 519 | return false; |
| 520 | } |
| 521 | }; |
| 522 | |
| 523 | /// Match a specified integer value or vector of all elements of that |
| 524 | // value. |
| 525 | struct specific_intval { |
| 526 | uint64_t Val; |
| 527 | |
| 528 | specific_intval(uint64_t V) : Val(V) {} |
| 529 | |
| 530 | template <typename ITy> bool match(ITy *V) { |
| 531 | const auto *CI = dyn_cast<ConstantInt>(V); |
| 532 | if (!CI && V->getType()->isVectorTy()) |
| 533 | if (const auto *C = dyn_cast<Constant>(V)) |
| 534 | CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()); |
| 535 | |
| 536 | return CI && CI->getValue() == Val; |
| 537 | } |
| 538 | }; |
| 539 | |
| 540 | /// Match a specific integer value or vector with all elements equal to |
| 541 | /// the value. |
| 542 | inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); } |
| 543 | |
| 544 | /// Match a ConstantInt and bind to its value. This does not match |
| 545 | /// ConstantInts wider than 64-bits. |
| 546 | inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } |
| 547 | |
| 548 | //===----------------------------------------------------------------------===// |
| 549 | // Matcher for any binary operator. |
| 550 | // |
| 551 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
| 552 | struct AnyBinaryOp_match { |
| 553 | LHS_t L; |
| 554 | RHS_t R; |
| 555 | |
| 556 | AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 557 | |
| 558 | template <typename OpTy> bool match(OpTy *V) { |
| 559 | if (auto *I = dyn_cast<BinaryOperator>(V)) |
| 560 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| 561 | (Commutable && R.match(I->getOperand(0)) && |
| 562 | L.match(I->getOperand(1))); |
| 563 | return false; |
| 564 | } |
| 565 | }; |
| 566 | |
| 567 | template <typename LHS, typename RHS> |
| 568 | inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { |
| 569 | return AnyBinaryOp_match<LHS, RHS>(L, R); |
| 570 | } |
| 571 | |
| 572 | //===----------------------------------------------------------------------===// |
| 573 | // Matchers for specific binary operators. |
| 574 | // |
| 575 | |
| 576 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
| 577 | bool Commutable = false> |
| 578 | struct BinaryOp_match { |
| 579 | LHS_t L; |
| 580 | RHS_t R; |
| 581 | |
| 582 | BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 583 | |
| 584 | template <typename OpTy> bool match(OpTy *V) { |
| 585 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
| 586 | auto *I = cast<BinaryOperator>(V); |
| 587 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| 588 | (Commutable && R.match(I->getOperand(0)) && |
| 589 | L.match(I->getOperand(1))); |
| 590 | } |
| 591 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
| 592 | return CE->getOpcode() == Opcode && |
| 593 | ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || |
| 594 | (Commutable && R.match(CE->getOperand(0)) && |
| 595 | L.match(CE->getOperand(1)))); |
| 596 | return false; |
| 597 | } |
| 598 | }; |
| 599 | |
| 600 | template <typename LHS, typename RHS> |
| 601 | inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, |
| 602 | const RHS &R) { |
| 603 | return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); |
| 604 | } |
| 605 | |
| 606 | template <typename LHS, typename RHS> |
| 607 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, |
| 608 | const RHS &R) { |
| 609 | return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); |
| 610 | } |
| 611 | |
| 612 | template <typename LHS, typename RHS> |
| 613 | inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, |
| 614 | const RHS &R) { |
| 615 | return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); |
| 616 | } |
| 617 | |
| 618 | template <typename LHS, typename RHS> |
| 619 | inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, |
| 620 | const RHS &R) { |
| 621 | return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); |
| 622 | } |
| 623 | |
| 624 | template <typename LHS, typename RHS> |
| 625 | inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, |
| 626 | const RHS &R) { |
| 627 | return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); |
| 628 | } |
| 629 | |
| 630 | template <typename LHS, typename RHS> |
| 631 | inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, |
| 632 | const RHS &R) { |
| 633 | return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); |
| 634 | } |
| 635 | |
| 636 | template <typename LHS, typename RHS> |
| 637 | inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, |
| 638 | const RHS &R) { |
| 639 | return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); |
| 640 | } |
| 641 | |
| 642 | template <typename LHS, typename RHS> |
| 643 | inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, |
| 644 | const RHS &R) { |
| 645 | return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); |
| 646 | } |
| 647 | |
| 648 | template <typename LHS, typename RHS> |
| 649 | inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, |
| 650 | const RHS &R) { |
| 651 | return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); |
| 652 | } |
| 653 | |
| 654 | template <typename LHS, typename RHS> |
| 655 | inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, |
| 656 | const RHS &R) { |
| 657 | return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); |
| 658 | } |
| 659 | |
| 660 | template <typename LHS, typename RHS> |
| 661 | inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, |
| 662 | const RHS &R) { |
| 663 | return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); |
| 664 | } |
| 665 | |
| 666 | template <typename LHS, typename RHS> |
| 667 | inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, |
| 668 | const RHS &R) { |
| 669 | return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); |
| 670 | } |
| 671 | |
| 672 | template <typename LHS, typename RHS> |
| 673 | inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, |
| 674 | const RHS &R) { |
| 675 | return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); |
| 676 | } |
| 677 | |
| 678 | template <typename LHS, typename RHS> |
| 679 | inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, |
| 680 | const RHS &R) { |
| 681 | return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); |
| 682 | } |
| 683 | |
| 684 | template <typename LHS, typename RHS> |
| 685 | inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, |
| 686 | const RHS &R) { |
| 687 | return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); |
| 688 | } |
| 689 | |
| 690 | template <typename LHS, typename RHS> |
| 691 | inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, |
| 692 | const RHS &R) { |
| 693 | return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); |
| 694 | } |
| 695 | |
| 696 | template <typename LHS, typename RHS> |
| 697 | inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, |
| 698 | const RHS &R) { |
| 699 | return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); |
| 700 | } |
| 701 | |
| 702 | template <typename LHS, typename RHS> |
| 703 | inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, |
| 704 | const RHS &R) { |
| 705 | return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); |
| 706 | } |
| 707 | |
| 708 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
| 709 | unsigned WrapFlags = 0> |
| 710 | struct OverflowingBinaryOp_match { |
| 711 | LHS_t L; |
| 712 | RHS_t R; |
| 713 | |
| 714 | OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) |
| 715 | : L(LHS), R(RHS) {} |
| 716 | |
| 717 | template <typename OpTy> bool match(OpTy *V) { |
| 718 | if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { |
| 719 | if (Op->getOpcode() != Opcode) |
| 720 | return false; |
| 721 | if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap && |
| 722 | !Op->hasNoUnsignedWrap()) |
| 723 | return false; |
| 724 | if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap && |
| 725 | !Op->hasNoSignedWrap()) |
| 726 | return false; |
| 727 | return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); |
| 728 | } |
| 729 | return false; |
| 730 | } |
| 731 | }; |
| 732 | |
| 733 | template <typename LHS, typename RHS> |
| 734 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 735 | OverflowingBinaryOperator::NoSignedWrap> |
| 736 | m_NSWAdd(const LHS &L, const RHS &R) { |
| 737 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 738 | OverflowingBinaryOperator::NoSignedWrap>( |
| 739 | L, R); |
| 740 | } |
| 741 | template <typename LHS, typename RHS> |
| 742 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 743 | OverflowingBinaryOperator::NoSignedWrap> |
| 744 | m_NSWSub(const LHS &L, const RHS &R) { |
| 745 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 746 | OverflowingBinaryOperator::NoSignedWrap>( |
| 747 | L, R); |
| 748 | } |
| 749 | template <typename LHS, typename RHS> |
| 750 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 751 | OverflowingBinaryOperator::NoSignedWrap> |
| 752 | m_NSWMul(const LHS &L, const RHS &R) { |
| 753 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 754 | OverflowingBinaryOperator::NoSignedWrap>( |
| 755 | L, R); |
| 756 | } |
| 757 | template <typename LHS, typename RHS> |
| 758 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 759 | OverflowingBinaryOperator::NoSignedWrap> |
| 760 | m_NSWShl(const LHS &L, const RHS &R) { |
| 761 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 762 | OverflowingBinaryOperator::NoSignedWrap>( |
| 763 | L, R); |
| 764 | } |
| 765 | |
| 766 | template <typename LHS, typename RHS> |
| 767 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 768 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 769 | m_NUWAdd(const LHS &L, const RHS &R) { |
| 770 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| 771 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 772 | L, R); |
| 773 | } |
| 774 | template <typename LHS, typename RHS> |
| 775 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 776 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 777 | m_NUWSub(const LHS &L, const RHS &R) { |
| 778 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| 779 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 780 | L, R); |
| 781 | } |
| 782 | template <typename LHS, typename RHS> |
| 783 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 784 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 785 | m_NUWMul(const LHS &L, const RHS &R) { |
| 786 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| 787 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 788 | L, R); |
| 789 | } |
| 790 | template <typename LHS, typename RHS> |
| 791 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 792 | OverflowingBinaryOperator::NoUnsignedWrap> |
| 793 | m_NUWShl(const LHS &L, const RHS &R) { |
| 794 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| 795 | OverflowingBinaryOperator::NoUnsignedWrap>( |
| 796 | L, R); |
| 797 | } |
| 798 | |
| 799 | //===----------------------------------------------------------------------===// |
| 800 | // Class that matches a group of binary opcodes. |
| 801 | // |
| 802 | template <typename LHS_t, typename RHS_t, typename Predicate> |
| 803 | struct BinOpPred_match : Predicate { |
| 804 | LHS_t L; |
| 805 | RHS_t R; |
| 806 | |
| 807 | BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 808 | |
| 809 | template <typename OpTy> bool match(OpTy *V) { |
| 810 | if (auto *I = dyn_cast<Instruction>(V)) |
| 811 | return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && |
| 812 | R.match(I->getOperand(1)); |
| 813 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
| 814 | return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && |
| 815 | R.match(CE->getOperand(1)); |
| 816 | return false; |
| 817 | } |
| 818 | }; |
| 819 | |
| 820 | struct is_shift_op { |
| 821 | bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } |
| 822 | }; |
| 823 | |
| 824 | struct is_right_shift_op { |
| 825 | bool isOpType(unsigned Opcode) { |
| 826 | return Opcode == Instruction::LShr || Opcode == Instruction::AShr; |
| 827 | } |
| 828 | }; |
| 829 | |
| 830 | struct is_logical_shift_op { |
| 831 | bool isOpType(unsigned Opcode) { |
| 832 | return Opcode == Instruction::LShr || Opcode == Instruction::Shl; |
| 833 | } |
| 834 | }; |
| 835 | |
| 836 | struct is_bitwiselogic_op { |
| 837 | bool isOpType(unsigned Opcode) { |
| 838 | return Instruction::isBitwiseLogicOp(Opcode); |
| 839 | } |
| 840 | }; |
| 841 | |
| 842 | struct is_idiv_op { |
| 843 | bool isOpType(unsigned Opcode) { |
| 844 | return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; |
| 845 | } |
| 846 | }; |
| 847 | |
| 848 | /// Matches shift operations. |
| 849 | template <typename LHS, typename RHS> |
| 850 | inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, |
| 851 | const RHS &R) { |
| 852 | return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); |
| 853 | } |
| 854 | |
| 855 | /// Matches logical shift operations. |
| 856 | template <typename LHS, typename RHS> |
| 857 | inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, |
| 858 | const RHS &R) { |
| 859 | return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); |
| 860 | } |
| 861 | |
| 862 | /// Matches logical shift operations. |
| 863 | template <typename LHS, typename RHS> |
| 864 | inline BinOpPred_match<LHS, RHS, is_logical_shift_op> |
| 865 | m_LogicalShift(const LHS &L, const RHS &R) { |
| 866 | return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); |
| 867 | } |
| 868 | |
| 869 | /// Matches bitwise logic operations. |
| 870 | template <typename LHS, typename RHS> |
| 871 | inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> |
| 872 | m_BitwiseLogic(const LHS &L, const RHS &R) { |
| 873 | return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); |
| 874 | } |
| 875 | |
| 876 | /// Matches integer division operations. |
| 877 | template <typename LHS, typename RHS> |
| 878 | inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, |
| 879 | const RHS &R) { |
| 880 | return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); |
| 881 | } |
| 882 | |
| 883 | //===----------------------------------------------------------------------===// |
| 884 | // Class that matches exact binary ops. |
| 885 | // |
| 886 | template <typename SubPattern_t> struct Exact_match { |
| 887 | SubPattern_t SubPattern; |
| 888 | |
| 889 | Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| 890 | |
| 891 | template <typename OpTy> bool match(OpTy *V) { |
| 892 | if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) |
| 893 | return PEO->isExact() && SubPattern.match(V); |
| 894 | return false; |
| 895 | } |
| 896 | }; |
| 897 | |
| 898 | template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { |
| 899 | return SubPattern; |
| 900 | } |
| 901 | |
| 902 | //===----------------------------------------------------------------------===// |
| 903 | // Matchers for CmpInst classes |
| 904 | // |
| 905 | |
| 906 | template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, |
| 907 | bool Commutable = false> |
| 908 | struct CmpClass_match { |
| 909 | PredicateTy &Predicate; |
| 910 | LHS_t L; |
| 911 | RHS_t R; |
| 912 | |
| 913 | CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) |
| 914 | : Predicate(Pred), L(LHS), R(RHS) {} |
| 915 | |
| 916 | template <typename OpTy> bool match(OpTy *V) { |
| 917 | if (auto *I = dyn_cast<Class>(V)) |
| 918 | if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| 919 | (Commutable && R.match(I->getOperand(0)) && |
| 920 | L.match(I->getOperand(1)))) { |
| 921 | Predicate = I->getPredicate(); |
| 922 | return true; |
| 923 | } |
| 924 | return false; |
| 925 | } |
| 926 | }; |
| 927 | |
| 928 | template <typename LHS, typename RHS> |
| 929 | inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> |
| 930 | m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| 931 | return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); |
| 932 | } |
| 933 | |
| 934 | template <typename LHS, typename RHS> |
| 935 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> |
| 936 | m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| 937 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); |
| 938 | } |
| 939 | |
| 940 | template <typename LHS, typename RHS> |
| 941 | inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> |
| 942 | m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| 943 | return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); |
| 944 | } |
| 945 | |
| 946 | //===----------------------------------------------------------------------===// |
| 947 | // Matchers for SelectInst classes |
| 948 | // |
| 949 | |
| 950 | template <typename Cond_t, typename LHS_t, typename RHS_t> |
| 951 | struct SelectClass_match { |
| 952 | Cond_t C; |
| 953 | LHS_t L; |
| 954 | RHS_t R; |
| 955 | |
| 956 | SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS) |
| 957 | : C(Cond), L(LHS), R(RHS) {} |
| 958 | |
| 959 | template <typename OpTy> bool match(OpTy *V) { |
| 960 | if (auto *I = dyn_cast<SelectInst>(V)) |
| 961 | return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) && |
| 962 | R.match(I->getOperand(2)); |
| 963 | return false; |
| 964 | } |
| 965 | }; |
| 966 | |
| 967 | template <typename Cond, typename LHS, typename RHS> |
| 968 | inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L, |
| 969 | const RHS &R) { |
| 970 | return SelectClass_match<Cond, LHS, RHS>(C, L, R); |
| 971 | } |
| 972 | |
| 973 | /// This matches a select of two constants, e.g.: |
| 974 | /// m_SelectCst<-1, 0>(m_Value(V)) |
| 975 | template <int64_t L, int64_t R, typename Cond> |
| 976 | inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>> |
| 977 | m_SelectCst(const Cond &C) { |
| 978 | return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); |
| 979 | } |
| 980 | |
| 981 | //===----------------------------------------------------------------------===// |
| 982 | // Matchers for InsertElementInst classes |
| 983 | // |
| 984 | |
| 985 | template <typename Val_t, typename Elt_t, typename Idx_t> |
| 986 | struct InsertElementClass_match { |
| 987 | Val_t V; |
| 988 | Elt_t E; |
| 989 | Idx_t I; |
| 990 | |
| 991 | InsertElementClass_match(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) |
| 992 | : V(Val), E(Elt), I(Idx) {} |
| 993 | |
| 994 | template <typename OpTy> bool match(OpTy *VV) { |
| 995 | if (auto *II = dyn_cast<InsertElementInst>(VV)) |
| 996 | return V.match(II->getOperand(0)) && E.match(II->getOperand(1)) && |
| 997 | I.match(II->getOperand(2)); |
| 998 | return false; |
| 999 | } |
| 1000 | }; |
| 1001 | |
| 1002 | template <typename Val_t, typename Elt_t, typename Idx_t> |
| 1003 | inline InsertElementClass_match<Val_t, Elt_t, Idx_t> |
| 1004 | m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { |
| 1005 | return InsertElementClass_match<Val_t, Elt_t, Idx_t>(Val, Elt, Idx); |
| 1006 | } |
| 1007 | |
| 1008 | //===----------------------------------------------------------------------===// |
| 1009 | // Matchers for ExtractElementInst classes |
| 1010 | // |
| 1011 | |
| 1012 | template <typename Val_t, typename Idx_t> struct ExtractElementClass_match { |
| 1013 | Val_t V; |
| 1014 | Idx_t I; |
| 1015 | |
| 1016 | ExtractElementClass_match(const Val_t &Val, const Idx_t &Idx) |
| 1017 | : V(Val), I(Idx) {} |
| 1018 | |
| 1019 | template <typename OpTy> bool match(OpTy *VV) { |
| 1020 | if (auto *II = dyn_cast<ExtractElementInst>(VV)) |
| 1021 | return V.match(II->getOperand(0)) && I.match(II->getOperand(1)); |
| 1022 | return false; |
| 1023 | } |
| 1024 | }; |
| 1025 | |
| 1026 | template <typename Val_t, typename Idx_t> |
| 1027 | inline ExtractElementClass_match<Val_t, Idx_t> |
| 1028 | m_ExtractElement(const Val_t &Val, const Idx_t &Idx) { |
| 1029 | return ExtractElementClass_match<Val_t, Idx_t>(Val, Idx); |
| 1030 | } |
| 1031 | |
| 1032 | //===----------------------------------------------------------------------===// |
| 1033 | // Matchers for ShuffleVectorInst classes |
| 1034 | // |
| 1035 | |
| 1036 | template <typename V1_t, typename V2_t, typename Mask_t> |
| 1037 | struct ShuffleVectorClass_match { |
| 1038 | V1_t V1; |
| 1039 | V2_t V2; |
| 1040 | Mask_t M; |
| 1041 | |
| 1042 | ShuffleVectorClass_match(const V1_t &v1, const V2_t &v2, const Mask_t &m) |
| 1043 | : V1(v1), V2(v2), M(m) {} |
| 1044 | |
| 1045 | template <typename OpTy> bool match(OpTy *V) { |
| 1046 | if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) |
| 1047 | return V1.match(SI->getOperand(0)) && V2.match(SI->getOperand(1)) && |
| 1048 | M.match(SI->getOperand(2)); |
| 1049 | return false; |
| 1050 | } |
| 1051 | }; |
| 1052 | |
| 1053 | template <typename V1_t, typename V2_t, typename Mask_t> |
| 1054 | inline ShuffleVectorClass_match<V1_t, V2_t, Mask_t> |
| 1055 | m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) { |
| 1056 | return ShuffleVectorClass_match<V1_t, V2_t, Mask_t>(v1, v2, m); |
| 1057 | } |
| 1058 | |
| 1059 | //===----------------------------------------------------------------------===// |
| 1060 | // Matchers for CastInst classes |
| 1061 | // |
| 1062 | |
| 1063 | template <typename Op_t, unsigned Opcode> struct CastClass_match { |
| 1064 | Op_t Op; |
| 1065 | |
| 1066 | CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| 1067 | |
| 1068 | template <typename OpTy> bool match(OpTy *V) { |
| 1069 | if (auto *O = dyn_cast<Operator>(V)) |
| 1070 | return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); |
| 1071 | return false; |
| 1072 | } |
| 1073 | }; |
| 1074 | |
| 1075 | /// Matches BitCast. |
| 1076 | template <typename OpTy> |
| 1077 | inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { |
| 1078 | return CastClass_match<OpTy, Instruction::BitCast>(Op); |
| 1079 | } |
| 1080 | |
| 1081 | /// Matches PtrToInt. |
| 1082 | template <typename OpTy> |
| 1083 | inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { |
| 1084 | return CastClass_match<OpTy, Instruction::PtrToInt>(Op); |
| 1085 | } |
| 1086 | |
| 1087 | /// Matches Trunc. |
| 1088 | template <typename OpTy> |
| 1089 | inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { |
| 1090 | return CastClass_match<OpTy, Instruction::Trunc>(Op); |
| 1091 | } |
| 1092 | |
| 1093 | /// Matches SExt. |
| 1094 | template <typename OpTy> |
| 1095 | inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { |
| 1096 | return CastClass_match<OpTy, Instruction::SExt>(Op); |
| 1097 | } |
| 1098 | |
| 1099 | /// Matches ZExt. |
| 1100 | template <typename OpTy> |
| 1101 | inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { |
| 1102 | return CastClass_match<OpTy, Instruction::ZExt>(Op); |
| 1103 | } |
| 1104 | |
| 1105 | template <typename OpTy> |
| 1106 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
| 1107 | CastClass_match<OpTy, Instruction::SExt>> |
| 1108 | m_ZExtOrSExt(const OpTy &Op) { |
| 1109 | return m_CombineOr(m_ZExt(Op), m_SExt(Op)); |
| 1110 | } |
| 1111 | |
| 1112 | /// Matches UIToFP. |
| 1113 | template <typename OpTy> |
| 1114 | inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { |
| 1115 | return CastClass_match<OpTy, Instruction::UIToFP>(Op); |
| 1116 | } |
| 1117 | |
| 1118 | /// Matches SIToFP. |
| 1119 | template <typename OpTy> |
| 1120 | inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { |
| 1121 | return CastClass_match<OpTy, Instruction::SIToFP>(Op); |
| 1122 | } |
| 1123 | |
| 1124 | /// Matches FPTrunc |
| 1125 | template <typename OpTy> |
| 1126 | inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { |
| 1127 | return CastClass_match<OpTy, Instruction::FPTrunc>(Op); |
| 1128 | } |
| 1129 | |
| 1130 | /// Matches FPExt |
| 1131 | template <typename OpTy> |
| 1132 | inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { |
| 1133 | return CastClass_match<OpTy, Instruction::FPExt>(Op); |
| 1134 | } |
| 1135 | |
| 1136 | //===----------------------------------------------------------------------===// |
| 1137 | // Matcher for LoadInst classes |
| 1138 | // |
| 1139 | |
| 1140 | template <typename Op_t> struct LoadClass_match { |
| 1141 | Op_t Op; |
| 1142 | |
| 1143 | LoadClass_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| 1144 | |
| 1145 | template <typename OpTy> bool match(OpTy *V) { |
| 1146 | if (auto *LI = dyn_cast<LoadInst>(V)) |
| 1147 | return Op.match(LI->getPointerOperand()); |
| 1148 | return false; |
| 1149 | } |
| 1150 | }; |
| 1151 | |
| 1152 | /// Matches LoadInst. |
| 1153 | template <typename OpTy> inline LoadClass_match<OpTy> m_Load(const OpTy &Op) { |
| 1154 | return LoadClass_match<OpTy>(Op); |
| 1155 | } |
| 1156 | |
| 1157 | //===----------------------------------------------------------------------===// |
| 1158 | // Matchers for unary operators |
| 1159 | // |
| 1160 | |
| 1161 | template <typename LHS_t> struct neg_match { |
| 1162 | LHS_t L; |
| 1163 | |
| 1164 | neg_match(const LHS_t &LHS) : L(LHS) {} |
| 1165 | |
| 1166 | template <typename OpTy> bool match(OpTy *V) { |
| 1167 | if (auto *O = dyn_cast<Operator>(V)) |
| 1168 | if (O->getOpcode() == Instruction::Sub) |
| 1169 | return matchIfNeg(O->getOperand(0), O->getOperand(1)); |
| 1170 | return false; |
| 1171 | } |
| 1172 | |
| 1173 | private: |
| 1174 | bool matchIfNeg(Value *LHS, Value *RHS) { |
| 1175 | return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) || |
| 1176 | isa<ConstantAggregateZero>(LHS)) && |
| 1177 | L.match(RHS); |
| 1178 | } |
| 1179 | }; |
| 1180 | |
| 1181 | /// Match an integer negate. |
| 1182 | template <typename LHS> inline neg_match<LHS> m_Neg(const LHS &L) { return L; } |
| 1183 | |
| 1184 | template <typename LHS_t> struct fneg_match { |
| 1185 | LHS_t L; |
| 1186 | |
| 1187 | fneg_match(const LHS_t &LHS) : L(LHS) {} |
| 1188 | |
| 1189 | template <typename OpTy> bool match(OpTy *V) { |
| 1190 | if (auto *O = dyn_cast<Operator>(V)) |
| 1191 | if (O->getOpcode() == Instruction::FSub) |
| 1192 | return matchIfFNeg(O->getOperand(0), O->getOperand(1)); |
| 1193 | return false; |
| 1194 | } |
| 1195 | |
| 1196 | private: |
| 1197 | bool matchIfFNeg(Value *LHS, Value *RHS) { |
| 1198 | if (const auto *C = dyn_cast<Constant>(LHS)) |
| 1199 | return C->isNegativeZeroValue() && L.match(RHS); |
| 1200 | return false; |
| 1201 | } |
| 1202 | }; |
| 1203 | |
| 1204 | /// Match a floating point negate. |
| 1205 | template <typename LHS> inline fneg_match<LHS> m_FNeg(const LHS &L) { |
| 1206 | return L; |
| 1207 | } |
| 1208 | |
| 1209 | //===----------------------------------------------------------------------===// |
| 1210 | // Matchers for control flow. |
| 1211 | // |
| 1212 | |
| 1213 | struct br_match { |
| 1214 | BasicBlock *&Succ; |
| 1215 | |
| 1216 | br_match(BasicBlock *&Succ) : Succ(Succ) {} |
| 1217 | |
| 1218 | template <typename OpTy> bool match(OpTy *V) { |
| 1219 | if (auto *BI = dyn_cast<BranchInst>(V)) |
| 1220 | if (BI->isUnconditional()) { |
| 1221 | Succ = BI->getSuccessor(0); |
| 1222 | return true; |
| 1223 | } |
| 1224 | return false; |
| 1225 | } |
| 1226 | }; |
| 1227 | |
| 1228 | inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } |
| 1229 | |
| 1230 | template <typename Cond_t> struct brc_match { |
| 1231 | Cond_t Cond; |
| 1232 | BasicBlock *&T, *&F; |
| 1233 | |
| 1234 | brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) |
| 1235 | : Cond(C), T(t), F(f) {} |
| 1236 | |
| 1237 | template <typename OpTy> bool match(OpTy *V) { |
| 1238 | if (auto *BI = dyn_cast<BranchInst>(V)) |
| 1239 | if (BI->isConditional() && Cond.match(BI->getCondition())) { |
| 1240 | T = BI->getSuccessor(0); |
| 1241 | F = BI->getSuccessor(1); |
| 1242 | return true; |
| 1243 | } |
| 1244 | return false; |
| 1245 | } |
| 1246 | }; |
| 1247 | |
| 1248 | template <typename Cond_t> |
| 1249 | inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { |
| 1250 | return brc_match<Cond_t>(C, T, F); |
| 1251 | } |
| 1252 | |
| 1253 | //===----------------------------------------------------------------------===// |
| 1254 | // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). |
| 1255 | // |
| 1256 | |
| 1257 | template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, |
| 1258 | bool Commutable = false> |
| 1259 | struct MaxMin_match { |
| 1260 | LHS_t L; |
| 1261 | RHS_t R; |
| 1262 | |
| 1263 | MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| 1264 | |
| 1265 | template <typename OpTy> bool match(OpTy *V) { |
| 1266 | // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". |
| 1267 | auto *SI = dyn_cast<SelectInst>(V); |
| 1268 | if (!SI) |
| 1269 | return false; |
| 1270 | auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); |
| 1271 | if (!Cmp) |
| 1272 | return false; |
| 1273 | // At this point we have a select conditioned on a comparison. Check that |
| 1274 | // it is the values returned by the select that are being compared. |
| 1275 | Value *TrueVal = SI->getTrueValue(); |
| 1276 | Value *FalseVal = SI->getFalseValue(); |
| 1277 | Value *LHS = Cmp->getOperand(0); |
| 1278 | Value *RHS = Cmp->getOperand(1); |
| 1279 | if ((TrueVal != LHS || FalseVal != RHS) && |
| 1280 | (TrueVal != RHS || FalseVal != LHS)) |
| 1281 | return false; |
| 1282 | typename CmpInst_t::Predicate Pred = |
| 1283 | LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
| 1284 | // Does "(x pred y) ? x : y" represent the desired max/min operation? |
| 1285 | if (!Pred_t::match(Pred)) |
| 1286 | return false; |
| 1287 | // It does! Bind the operands. |
| 1288 | return (L.match(LHS) && R.match(RHS)) || |
| 1289 | (Commutable && R.match(LHS) && L.match(RHS)); |
| 1290 | } |
| 1291 | }; |
| 1292 | |
| 1293 | /// Helper class for identifying signed max predicates. |
| 1294 | struct smax_pred_ty { |
| 1295 | static bool match(ICmpInst::Predicate Pred) { |
| 1296 | return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
| 1297 | } |
| 1298 | }; |
| 1299 | |
| 1300 | /// Helper class for identifying signed min predicates. |
| 1301 | struct smin_pred_ty { |
| 1302 | static bool match(ICmpInst::Predicate Pred) { |
| 1303 | return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; |
| 1304 | } |
| 1305 | }; |
| 1306 | |
| 1307 | /// Helper class for identifying unsigned max predicates. |
| 1308 | struct umax_pred_ty { |
| 1309 | static bool match(ICmpInst::Predicate Pred) { |
| 1310 | return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; |
| 1311 | } |
| 1312 | }; |
| 1313 | |
| 1314 | /// Helper class for identifying unsigned min predicates. |
| 1315 | struct umin_pred_ty { |
| 1316 | static bool match(ICmpInst::Predicate Pred) { |
| 1317 | return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; |
| 1318 | } |
| 1319 | }; |
| 1320 | |
| 1321 | /// Helper class for identifying ordered max predicates. |
| 1322 | struct ofmax_pred_ty { |
| 1323 | static bool match(FCmpInst::Predicate Pred) { |
| 1324 | return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; |
| 1325 | } |
| 1326 | }; |
| 1327 | |
| 1328 | /// Helper class for identifying ordered min predicates. |
| 1329 | struct ofmin_pred_ty { |
| 1330 | static bool match(FCmpInst::Predicate Pred) { |
| 1331 | return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; |
| 1332 | } |
| 1333 | }; |
| 1334 | |
| 1335 | /// Helper class for identifying unordered max predicates. |
| 1336 | struct ufmax_pred_ty { |
| 1337 | static bool match(FCmpInst::Predicate Pred) { |
| 1338 | return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; |
| 1339 | } |
| 1340 | }; |
| 1341 | |
| 1342 | /// Helper class for identifying unordered min predicates. |
| 1343 | struct ufmin_pred_ty { |
| 1344 | static bool match(FCmpInst::Predicate Pred) { |
| 1345 | return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; |
| 1346 | } |
| 1347 | }; |
| 1348 | |
| 1349 | template <typename LHS, typename RHS> |
| 1350 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, |
| 1351 | const RHS &R) { |
| 1352 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); |
| 1353 | } |
| 1354 | |
| 1355 | template <typename LHS, typename RHS> |
| 1356 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, |
| 1357 | const RHS &R) { |
| 1358 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); |
| 1359 | } |
| 1360 | |
| 1361 | template <typename LHS, typename RHS> |
| 1362 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, |
| 1363 | const RHS &R) { |
| 1364 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); |
| 1365 | } |
| 1366 | |
| 1367 | template <typename LHS, typename RHS> |
| 1368 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, |
| 1369 | const RHS &R) { |
| 1370 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); |
| 1371 | } |
| 1372 | |
| 1373 | /// Match an 'ordered' floating point maximum function. |
| 1374 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 1375 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 1376 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
| 1377 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 1378 | /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. |
| 1379 | /// |
| 1380 | /// max(L, R) iff L and R are not NaN |
| 1381 | /// m_OrdFMax(L, R) = R iff L or R are NaN |
| 1382 | template <typename LHS, typename RHS> |
| 1383 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, |
| 1384 | const RHS &R) { |
| 1385 | return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); |
| 1386 | } |
| 1387 | |
| 1388 | /// Match an 'ordered' floating point minimum function. |
| 1389 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 1390 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 1391 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
| 1392 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 1393 | /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. |
| 1394 | /// |
| 1395 | /// min(L, R) iff L and R are not NaN |
| 1396 | /// m_OrdFMin(L, R) = R iff L or R are NaN |
| 1397 | template <typename LHS, typename RHS> |
| 1398 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, |
| 1399 | const RHS &R) { |
| 1400 | return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); |
| 1401 | } |
| 1402 | |
| 1403 | /// Match an 'unordered' floating point maximum function. |
| 1404 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 1405 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 1406 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
| 1407 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 1408 | /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. |
| 1409 | /// |
| 1410 | /// max(L, R) iff L and R are not NaN |
| 1411 | /// m_UnordFMax(L, R) = L iff L or R are NaN |
| 1412 | template <typename LHS, typename RHS> |
| 1413 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> |
| 1414 | m_UnordFMax(const LHS &L, const RHS &R) { |
| 1415 | return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); |
| 1416 | } |
| 1417 | |
| 1418 | /// Match an 'unordered' floating point minimum function. |
| 1419 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
| 1420 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| 1421 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
| 1422 | /// semantics. In the presence of 'NaN' we have to preserve the original |
| 1423 | /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. |
| 1424 | /// |
| 1425 | /// min(L, R) iff L and R are not NaN |
| 1426 | /// m_UnordFMin(L, R) = L iff L or R are NaN |
| 1427 | template <typename LHS, typename RHS> |
| 1428 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> |
| 1429 | m_UnordFMin(const LHS &L, const RHS &R) { |
| 1430 | return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); |
| 1431 | } |
| 1432 | |
| 1433 | //===----------------------------------------------------------------------===// |
| 1434 | // Matchers for overflow check patterns: e.g. (a + b) u< a |
| 1435 | // |
| 1436 | |
| 1437 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
| 1438 | struct UAddWithOverflow_match { |
| 1439 | LHS_t L; |
| 1440 | RHS_t R; |
| 1441 | Sum_t S; |
| 1442 | |
| 1443 | UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) |
| 1444 | : L(L), R(R), S(S) {} |
| 1445 | |
| 1446 | template <typename OpTy> bool match(OpTy *V) { |
| 1447 | Value *ICmpLHS, *ICmpRHS; |
| 1448 | ICmpInst::Predicate Pred; |
| 1449 | if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) |
| 1450 | return false; |
| 1451 | |
| 1452 | Value *AddLHS, *AddRHS; |
| 1453 | auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); |
| 1454 | |
| 1455 | // (a + b) u< a, (a + b) u< b |
| 1456 | if (Pred == ICmpInst::ICMP_ULT) |
| 1457 | if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) |
| 1458 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
| 1459 | |
| 1460 | // a >u (a + b), b >u (a + b) |
| 1461 | if (Pred == ICmpInst::ICMP_UGT) |
| 1462 | if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) |
| 1463 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
| 1464 | |
| 1465 | return false; |
| 1466 | } |
| 1467 | }; |
| 1468 | |
| 1469 | /// Match an icmp instruction checking for unsigned overflow on addition. |
| 1470 | /// |
| 1471 | /// S is matched to the addition whose result is being checked for overflow, and |
| 1472 | /// L and R are matched to the LHS and RHS of S. |
| 1473 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
| 1474 | UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> |
| 1475 | m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { |
| 1476 | return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); |
| 1477 | } |
| 1478 | |
| 1479 | template <typename Opnd_t> struct Argument_match { |
| 1480 | unsigned OpI; |
| 1481 | Opnd_t Val; |
| 1482 | |
| 1483 | Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} |
| 1484 | |
| 1485 | template <typename OpTy> bool match(OpTy *V) { |
| 1486 | CallSite CS(V); |
| 1487 | return CS.isCall() && Val.match(CS.getArgument(OpI)); |
| 1488 | } |
| 1489 | }; |
| 1490 | |
| 1491 | /// Match an argument. |
| 1492 | template <unsigned OpI, typename Opnd_t> |
| 1493 | inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { |
| 1494 | return Argument_match<Opnd_t>(OpI, Op); |
| 1495 | } |
| 1496 | |
| 1497 | /// Intrinsic matchers. |
| 1498 | struct IntrinsicID_match { |
| 1499 | unsigned ID; |
| 1500 | |
| 1501 | IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} |
| 1502 | |
| 1503 | template <typename OpTy> bool match(OpTy *V) { |
| 1504 | if (const auto *CI = dyn_cast<CallInst>(V)) |
| 1505 | if (const auto *F = CI->getCalledFunction()) |
| 1506 | return F->getIntrinsicID() == ID; |
| 1507 | return false; |
| 1508 | } |
| 1509 | }; |
| 1510 | |
| 1511 | /// Intrinsic matches are combinations of ID matchers, and argument |
| 1512 | /// matchers. Higher arity matcher are defined recursively in terms of and-ing |
| 1513 | /// them with lower arity matchers. Here's some convenient typedefs for up to |
| 1514 | /// several arguments, and more can be added as needed |
| 1515 | template <typename T0 = void, typename T1 = void, typename T2 = void, |
| 1516 | typename T3 = void, typename T4 = void, typename T5 = void, |
| 1517 | typename T6 = void, typename T7 = void, typename T8 = void, |
| 1518 | typename T9 = void, typename T10 = void> |
| 1519 | struct m_Intrinsic_Ty; |
| 1520 | template <typename T0> struct m_Intrinsic_Ty<T0> { |
| 1521 | using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; |
| 1522 | }; |
| 1523 | template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { |
| 1524 | using Ty = |
| 1525 | match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; |
| 1526 | }; |
| 1527 | template <typename T0, typename T1, typename T2> |
| 1528 | struct m_Intrinsic_Ty<T0, T1, T2> { |
| 1529 | using Ty = |
| 1530 | match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, |
| 1531 | Argument_match<T2>>; |
| 1532 | }; |
| 1533 | template <typename T0, typename T1, typename T2, typename T3> |
| 1534 | struct m_Intrinsic_Ty<T0, T1, T2, T3> { |
| 1535 | using Ty = |
| 1536 | match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, |
| 1537 | Argument_match<T3>>; |
| 1538 | }; |
| 1539 | |
| 1540 | /// Match intrinsic calls like this: |
| 1541 | /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) |
| 1542 | template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { |
| 1543 | return IntrinsicID_match(IntrID); |
| 1544 | } |
| 1545 | |
| 1546 | template <Intrinsic::ID IntrID, typename T0> |
| 1547 | inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { |
| 1548 | return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); |
| 1549 | } |
| 1550 | |
| 1551 | template <Intrinsic::ID IntrID, typename T0, typename T1> |
| 1552 | inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, |
| 1553 | const T1 &Op1) { |
| 1554 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); |
| 1555 | } |
| 1556 | |
| 1557 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> |
| 1558 | inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty |
| 1559 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { |
| 1560 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); |
| 1561 | } |
| 1562 | |
| 1563 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
| 1564 | typename T3> |
| 1565 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty |
| 1566 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { |
| 1567 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); |
| 1568 | } |
| 1569 | |
| 1570 | // Helper intrinsic matching specializations. |
| 1571 | template <typename Opnd0> |
| 1572 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { |
| 1573 | return m_Intrinsic<Intrinsic::bitreverse>(Op0); |
| 1574 | } |
| 1575 | |
| 1576 | template <typename Opnd0> |
| 1577 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { |
| 1578 | return m_Intrinsic<Intrinsic::bswap>(Op0); |
| 1579 | } |
| 1580 | |
| 1581 | template <typename Opnd0, typename Opnd1> |
| 1582 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, |
| 1583 | const Opnd1 &Op1) { |
| 1584 | return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); |
| 1585 | } |
| 1586 | |
| 1587 | template <typename Opnd0, typename Opnd1> |
| 1588 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, |
| 1589 | const Opnd1 &Op1) { |
| 1590 | return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); |
| 1591 | } |
| 1592 | |
| 1593 | template <typename Opnd_t> struct Signum_match { |
| 1594 | Opnd_t Val; |
| 1595 | Signum_match(const Opnd_t &V) : Val(V) {} |
| 1596 | |
| 1597 | template <typename OpTy> bool match(OpTy *V) { |
| 1598 | unsigned TypeSize = V->getType()->getScalarSizeInBits(); |
| 1599 | if (TypeSize == 0) |
| 1600 | return false; |
| 1601 | |
| 1602 | unsigned ShiftWidth = TypeSize - 1; |
| 1603 | Value *OpL = nullptr, *OpR = nullptr; |
| 1604 | |
| 1605 | // This is the representation of signum we match: |
| 1606 | // |
| 1607 | // signum(x) == (x >> 63) | (-x >>u 63) |
| 1608 | // |
| 1609 | // An i1 value is its own signum, so it's correct to match |
| 1610 | // |
| 1611 | // signum(x) == (x >> 0) | (-x >>u 0) |
| 1612 | // |
| 1613 | // for i1 values. |
| 1614 | |
| 1615 | auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); |
| 1616 | auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); |
| 1617 | auto Signum = m_Or(LHS, RHS); |
| 1618 | |
| 1619 | return Signum.match(V) && OpL == OpR && Val.match(OpL); |
| 1620 | } |
| 1621 | }; |
| 1622 | |
| 1623 | /// Matches a signum pattern. |
| 1624 | /// |
| 1625 | /// signum(x) = |
| 1626 | /// x > 0 -> 1 |
| 1627 | /// x == 0 -> 0 |
| 1628 | /// x < 0 -> -1 |
| 1629 | template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { |
| 1630 | return Signum_match<Val_t>(V); |
| 1631 | } |
| 1632 | |
| 1633 | //===----------------------------------------------------------------------===// |
| 1634 | // Matchers for two-operands operators with the operators in either order |
| 1635 | // |
| 1636 | |
| 1637 | /// Matches a BinaryOperator with LHS and RHS in either order. |
| 1638 | template <typename LHS, typename RHS> |
| 1639 | inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { |
| 1640 | return AnyBinaryOp_match<LHS, RHS, true>(L, R); |
| 1641 | } |
| 1642 | |
| 1643 | /// Matches an ICmp with a predicate over LHS and RHS in either order. |
| 1644 | /// Does not swap the predicate. |
| 1645 | template <typename LHS, typename RHS> |
| 1646 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> |
| 1647 | m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| 1648 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, |
| 1649 | R); |
| 1650 | } |
| 1651 | |
| 1652 | /// Matches a Add with LHS and RHS in either order. |
| 1653 | template <typename LHS, typename RHS> |
| 1654 | inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, |
| 1655 | const RHS &R) { |
| 1656 | return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); |
| 1657 | } |
| 1658 | |
| 1659 | /// Matches a Mul with LHS and RHS in either order. |
| 1660 | template <typename LHS, typename RHS> |
| 1661 | inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, |
| 1662 | const RHS &R) { |
| 1663 | return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); |
| 1664 | } |
| 1665 | |
| 1666 | /// Matches an And with LHS and RHS in either order. |
| 1667 | template <typename LHS, typename RHS> |
| 1668 | inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, |
| 1669 | const RHS &R) { |
| 1670 | return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); |
| 1671 | } |
| 1672 | |
| 1673 | /// Matches an Or with LHS and RHS in either order. |
| 1674 | template <typename LHS, typename RHS> |
| 1675 | inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, |
| 1676 | const RHS &R) { |
| 1677 | return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
| 1678 | } |
| 1679 | |
| 1680 | /// Matches an Xor with LHS and RHS in either order. |
| 1681 | template <typename LHS, typename RHS> |
| 1682 | inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, |
| 1683 | const RHS &R) { |
| 1684 | return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); |
| 1685 | } |
| 1686 | |
| 1687 | /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. |
| 1688 | template <typename ValTy> |
| 1689 | inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true> |
| 1690 | m_Not(const ValTy &V) { |
| 1691 | return m_c_Xor(V, m_AllOnes()); |
| 1692 | } |
| 1693 | |
| 1694 | /// Matches an SMin with LHS and RHS in either order. |
| 1695 | template <typename LHS, typename RHS> |
| 1696 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> |
| 1697 | m_c_SMin(const LHS &L, const RHS &R) { |
| 1698 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); |
| 1699 | } |
| 1700 | /// Matches an SMax with LHS and RHS in either order. |
| 1701 | template <typename LHS, typename RHS> |
| 1702 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> |
| 1703 | m_c_SMax(const LHS &L, const RHS &R) { |
| 1704 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); |
| 1705 | } |
| 1706 | /// Matches a UMin with LHS and RHS in either order. |
| 1707 | template <typename LHS, typename RHS> |
| 1708 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> |
| 1709 | m_c_UMin(const LHS &L, const RHS &R) { |
| 1710 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); |
| 1711 | } |
| 1712 | /// Matches a UMax with LHS and RHS in either order. |
| 1713 | template <typename LHS, typename RHS> |
| 1714 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> |
| 1715 | m_c_UMax(const LHS &L, const RHS &R) { |
| 1716 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); |
| 1717 | } |
| 1718 | |
| 1719 | /// Matches FAdd with LHS and RHS in either order. |
| 1720 | template <typename LHS, typename RHS> |
| 1721 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> |
| 1722 | m_c_FAdd(const LHS &L, const RHS &R) { |
| 1723 | return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); |
| 1724 | } |
| 1725 | |
| 1726 | /// Matches FMul with LHS and RHS in either order. |
| 1727 | template <typename LHS, typename RHS> |
| 1728 | inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> |
| 1729 | m_c_FMul(const LHS &L, const RHS &R) { |
| 1730 | return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); |
| 1731 | } |
| 1732 | |
| 1733 | } // end namespace PatternMatch |
| 1734 | } // end namespace llvm |
| 1735 | |
| 1736 | #endif // LLVM_IR_PATTERNMATCH_H |