blob: af0616cd822148581bc242f43d7f5ebaa4e13f85 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides a simple and efficient mechanism for performing general
11// tree-based pattern matches on the LLVM IR. The power of these routines is
12// that it allows you to write concise patterns that are expressive and easy to
13// understand. The other major advantage of this is that it allows you to
14// trivially capture/bind elements in the pattern to variables. For example,
15// you can do something like this:
16//
17// Value *Exp = ...
18// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
19// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20// m_And(m_Value(Y), m_ConstantInt(C2))))) {
21// ... Pattern is matched and variables are bound ...
22// }
23//
24// This is primarily useful to things like the instruction combiner, but can
25// also be useful for static analysis tools or code generators.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_IR_PATTERNMATCH_H
30#define LLVM_IR_PATTERNMATCH_H
31
32#include "llvm/ADT/APFloat.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/IR/CallSite.h"
35#include "llvm/IR/Constant.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/InstrTypes.h"
38#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
51}
52
53template <typename SubPattern_t> struct OneUse_match {
54 SubPattern_t SubPattern;
55
56 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
57
58 template <typename OpTy> bool match(OpTy *V) {
59 return V->hasOneUse() && SubPattern.match(V);
60 }
61};
62
63template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
64 return SubPattern;
65}
66
67template <typename Class> struct class_match {
68 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
69};
70
71/// Match an arbitrary value and ignore it.
72inline class_match<Value> m_Value() { return class_match<Value>(); }
73
74/// Match an arbitrary binary operation and ignore it.
75inline class_match<BinaryOperator> m_BinOp() {
76 return class_match<BinaryOperator>();
77}
78
79/// Matches any compare instruction and ignore it.
80inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
81
82/// Match an arbitrary ConstantInt and ignore it.
83inline class_match<ConstantInt> m_ConstantInt() {
84 return class_match<ConstantInt>();
85}
86
87/// Match an arbitrary undef constant.
88inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
89
90/// Match an arbitrary Constant and ignore it.
91inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
92
93/// Matching combinators
94template <typename LTy, typename RTy> struct match_combine_or {
95 LTy L;
96 RTy R;
97
98 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
99
100 template <typename ITy> bool match(ITy *V) {
101 if (L.match(V))
102 return true;
103 if (R.match(V))
104 return true;
105 return false;
106 }
107};
108
109template <typename LTy, typename RTy> struct match_combine_and {
110 LTy L;
111 RTy R;
112
113 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
114
115 template <typename ITy> bool match(ITy *V) {
116 if (L.match(V))
117 if (R.match(V))
118 return true;
119 return false;
120 }
121};
122
123/// Combine two pattern matchers matching L || R
124template <typename LTy, typename RTy>
125inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
126 return match_combine_or<LTy, RTy>(L, R);
127}
128
129/// Combine two pattern matchers matching L && R
130template <typename LTy, typename RTy>
131inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
132 return match_combine_and<LTy, RTy>(L, R);
133}
134
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100135struct apint_match {
136 const APInt *&Res;
137
138 apint_match(const APInt *&R) : Res(R) {}
139
140 template <typename ITy> bool match(ITy *V) {
141 if (auto *CI = dyn_cast<ConstantInt>(V)) {
142 Res = &CI->getValue();
143 return true;
144 }
145 if (V->getType()->isVectorTy())
146 if (const auto *C = dyn_cast<Constant>(V))
147 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
148 Res = &CI->getValue();
149 return true;
150 }
151 return false;
152 }
153};
154// Either constexpr if or renaming ConstantFP::getValueAPF to
155// ConstantFP::getValue is needed to do it via single template
156// function for both apint/apfloat.
157struct apfloat_match {
158 const APFloat *&Res;
159 apfloat_match(const APFloat *&R) : Res(R) {}
160 template <typename ITy> bool match(ITy *V) {
161 if (auto *CI = dyn_cast<ConstantFP>(V)) {
162 Res = &CI->getValueAPF();
163 return true;
164 }
165 if (V->getType()->isVectorTy())
166 if (const auto *C = dyn_cast<Constant>(V))
167 if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
168 Res = &CI->getValueAPF();
169 return true;
170 }
171 return false;
172 }
173};
174
175/// Match a ConstantInt or splatted ConstantVector, binding the
176/// specified pointer to the contained APInt.
177inline apint_match m_APInt(const APInt *&Res) { return Res; }
178
179/// Match a ConstantFP or splatted ConstantVector, binding the
180/// specified pointer to the contained APFloat.
181inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
182
183template <int64_t Val> struct constantint_match {
184 template <typename ITy> bool match(ITy *V) {
185 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
186 const APInt &CIV = CI->getValue();
187 if (Val >= 0)
188 return CIV == static_cast<uint64_t>(Val);
189 // If Val is negative, and CI is shorter than it, truncate to the right
190 // number of bits. If it is larger, then we have to sign extend. Just
191 // compare their negated values.
192 return -CIV == -Val;
193 }
194 return false;
195 }
196};
197
198/// Match a ConstantInt with a specific value.
199template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
200 return constantint_match<Val>();
201}
202
203/// This helper class is used to match scalar and vector integer constants that
204/// satisfy a specified predicate.
205/// For vector constants, undefined elements are ignored.
206template <typename Predicate> struct cst_pred_ty : public Predicate {
207 template <typename ITy> bool match(ITy *V) {
208 if (const auto *CI = dyn_cast<ConstantInt>(V))
209 return this->isValue(CI->getValue());
210 if (V->getType()->isVectorTy()) {
211 if (const auto *C = dyn_cast<Constant>(V)) {
212 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
213 return this->isValue(CI->getValue());
214
215 // Non-splat vector constant: check each element for a match.
216 unsigned NumElts = V->getType()->getVectorNumElements();
217 assert(NumElts != 0 && "Constant vector with no elements?");
218 for (unsigned i = 0; i != NumElts; ++i) {
219 Constant *Elt = C->getAggregateElement(i);
220 if (!Elt)
221 return false;
222 if (isa<UndefValue>(Elt))
223 continue;
224 auto *CI = dyn_cast<ConstantInt>(Elt);
225 if (!CI || !this->isValue(CI->getValue()))
226 return false;
227 }
228 return true;
229 }
230 }
231 return false;
232 }
233};
234
235/// This helper class is used to match scalar and vector constants that
236/// satisfy a specified predicate, and bind them to an APInt.
237template <typename Predicate> struct api_pred_ty : public Predicate {
238 const APInt *&Res;
239
240 api_pred_ty(const APInt *&R) : Res(R) {}
241
242 template <typename ITy> bool match(ITy *V) {
243 if (const auto *CI = dyn_cast<ConstantInt>(V))
244 if (this->isValue(CI->getValue())) {
245 Res = &CI->getValue();
246 return true;
247 }
248 if (V->getType()->isVectorTy())
249 if (const auto *C = dyn_cast<Constant>(V))
250 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
251 if (this->isValue(CI->getValue())) {
252 Res = &CI->getValue();
253 return true;
254 }
255
256 return false;
257 }
258};
259
260/// This helper class is used to match scalar and vector floating-point
261/// constants that satisfy a specified predicate.
262/// For vector constants, undefined elements are ignored.
263template <typename Predicate> struct cstfp_pred_ty : public Predicate {
264 template <typename ITy> bool match(ITy *V) {
265 if (const auto *CF = dyn_cast<ConstantFP>(V))
266 return this->isValue(CF->getValueAPF());
267 if (V->getType()->isVectorTy()) {
268 if (const auto *C = dyn_cast<Constant>(V)) {
269 if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
270 return this->isValue(CF->getValueAPF());
271
272 // Non-splat vector constant: check each element for a match.
273 unsigned NumElts = V->getType()->getVectorNumElements();
274 assert(NumElts != 0 && "Constant vector with no elements?");
275 for (unsigned i = 0; i != NumElts; ++i) {
276 Constant *Elt = C->getAggregateElement(i);
277 if (!Elt)
278 return false;
279 if (isa<UndefValue>(Elt))
280 continue;
281 auto *CF = dyn_cast<ConstantFP>(Elt);
282 if (!CF || !this->isValue(CF->getValueAPF()))
283 return false;
284 }
285 return true;
286 }
287 }
288 return false;
289 }
290};
291
292///////////////////////////////////////////////////////////////////////////////
293//
294// Encapsulate constant value queries for use in templated predicate matchers.
295// This allows checking if constants match using compound predicates and works
296// with vector constants, possibly with relaxed constraints. For example, ignore
297// undef values.
298//
299///////////////////////////////////////////////////////////////////////////////
300
301struct is_all_ones {
302 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
303};
304/// Match an integer or vector with all bits set.
305/// For vectors, this includes constants with undefined elements.
306inline cst_pred_ty<is_all_ones> m_AllOnes() {
307 return cst_pred_ty<is_all_ones>();
308}
309
310struct is_maxsignedvalue {
311 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
312};
313/// Match an integer or vector with values having all bits except for the high
314/// bit set (0x7f...).
315/// For vectors, this includes constants with undefined elements.
316inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
317 return cst_pred_ty<is_maxsignedvalue>();
318}
319inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
320 return V;
321}
322
323struct is_negative {
324 bool isValue(const APInt &C) { return C.isNegative(); }
325};
326/// Match an integer or vector of negative values.
327/// For vectors, this includes constants with undefined elements.
328inline cst_pred_ty<is_negative> m_Negative() {
329 return cst_pred_ty<is_negative>();
330}
331inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
332 return V;
333}
334
335struct is_nonnegative {
336 bool isValue(const APInt &C) { return C.isNonNegative(); }
337};
338/// Match an integer or vector of nonnegative values.
339/// For vectors, this includes constants with undefined elements.
340inline cst_pred_ty<is_nonnegative> m_NonNegative() {
341 return cst_pred_ty<is_nonnegative>();
342}
343inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
344 return V;
345}
346
347struct is_one {
348 bool isValue(const APInt &C) { return C.isOneValue(); }
349};
350/// Match an integer 1 or a vector with all elements equal to 1.
351/// For vectors, this includes constants with undefined elements.
352inline cst_pred_ty<is_one> m_One() {
353 return cst_pred_ty<is_one>();
354}
355
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100356struct is_zero_int {
357 bool isValue(const APInt &C) { return C.isNullValue(); }
358};
359/// Match an integer 0 or a vector with all elements equal to 0.
360/// For vectors, this includes constants with undefined elements.
361inline cst_pred_ty<is_zero_int> m_ZeroInt() {
362 return cst_pred_ty<is_zero_int>();
363}
364
365struct is_zero {
366 template <typename ITy> bool match(ITy *V) {
367 auto *C = dyn_cast<Constant>(V);
368 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
369 }
370};
371/// Match any null constant or a vector with all elements equal to 0.
372/// For vectors, this includes constants with undefined elements.
373inline is_zero m_Zero() {
374 return is_zero();
375}
376
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100377struct is_power2 {
378 bool isValue(const APInt &C) { return C.isPowerOf2(); }
379};
380/// Match an integer or vector power-of-2.
381/// For vectors, this includes constants with undefined elements.
382inline cst_pred_ty<is_power2> m_Power2() {
383 return cst_pred_ty<is_power2>();
384}
385inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
386 return V;
387}
388
389struct is_power2_or_zero {
390 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
391};
392/// Match an integer or vector of 0 or power-of-2 values.
393/// For vectors, this includes constants with undefined elements.
394inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
395 return cst_pred_ty<is_power2_or_zero>();
396}
397inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
398 return V;
399}
400
401struct is_sign_mask {
402 bool isValue(const APInt &C) { return C.isSignMask(); }
403};
404/// Match an integer or vector with only the sign bit(s) set.
405/// For vectors, this includes constants with undefined elements.
406inline cst_pred_ty<is_sign_mask> m_SignMask() {
407 return cst_pred_ty<is_sign_mask>();
408}
409
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100410struct is_lowbit_mask {
411 bool isValue(const APInt &C) { return C.isMask(); }
412};
413/// Match an integer or vector with only the low bit(s) set.
414/// For vectors, this includes constants with undefined elements.
415inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
416 return cst_pred_ty<is_lowbit_mask>();
417}
418
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100419struct is_nan {
420 bool isValue(const APFloat &C) { return C.isNaN(); }
421};
422/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
423/// For vectors, this includes constants with undefined elements.
424inline cstfp_pred_ty<is_nan> m_NaN() {
425 return cstfp_pred_ty<is_nan>();
426}
427
428struct is_any_zero_fp {
429 bool isValue(const APFloat &C) { return C.isZero(); }
430};
431/// Match a floating-point negative zero or positive zero.
432/// For vectors, this includes constants with undefined elements.
433inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
434 return cstfp_pred_ty<is_any_zero_fp>();
435}
436
437struct is_pos_zero_fp {
438 bool isValue(const APFloat &C) { return C.isPosZero(); }
439};
440/// Match a floating-point positive zero.
441/// For vectors, this includes constants with undefined elements.
442inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
443 return cstfp_pred_ty<is_pos_zero_fp>();
444}
445
446struct is_neg_zero_fp {
447 bool isValue(const APFloat &C) { return C.isNegZero(); }
448};
449/// Match a floating-point negative zero.
450/// For vectors, this includes constants with undefined elements.
451inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
452 return cstfp_pred_ty<is_neg_zero_fp>();
453}
454
455///////////////////////////////////////////////////////////////////////////////
456
457template <typename Class> struct bind_ty {
458 Class *&VR;
459
460 bind_ty(Class *&V) : VR(V) {}
461
462 template <typename ITy> bool match(ITy *V) {
463 if (auto *CV = dyn_cast<Class>(V)) {
464 VR = CV;
465 return true;
466 }
467 return false;
468 }
469};
470
471/// Match a value, capturing it if we match.
472inline bind_ty<Value> m_Value(Value *&V) { return V; }
473inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
474
475/// Match an instruction, capturing it if we match.
476inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
477/// Match a binary operator, capturing it if we match.
478inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
479
480/// Match a ConstantInt, capturing the value if we match.
481inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
482
483/// Match a Constant, capturing the value if we match.
484inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
485
486/// Match a ConstantFP, capturing the value if we match.
487inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
488
489/// Match a specified Value*.
490struct specificval_ty {
491 const Value *Val;
492
493 specificval_ty(const Value *V) : Val(V) {}
494
495 template <typename ITy> bool match(ITy *V) { return V == Val; }
496};
497
498/// Match if we have a specific specified value.
499inline specificval_ty m_Specific(const Value *V) { return V; }
500
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100501/// Stores a reference to the Value *, not the Value * itself,
502/// thus can be used in commutative matchers.
503template <typename Class> struct deferredval_ty {
504 Class *const &Val;
505
506 deferredval_ty(Class *const &V) : Val(V) {}
507
508 template <typename ITy> bool match(ITy *const V) { return V == Val; }
509};
510
511/// A commutative-friendly version of m_Specific().
512inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
513inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
514 return V;
515}
516
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100517/// Match a specified floating point value or vector of all elements of
518/// that value.
519struct specific_fpval {
520 double Val;
521
522 specific_fpval(double V) : Val(V) {}
523
524 template <typename ITy> bool match(ITy *V) {
525 if (const auto *CFP = dyn_cast<ConstantFP>(V))
526 return CFP->isExactlyValue(Val);
527 if (V->getType()->isVectorTy())
528 if (const auto *C = dyn_cast<Constant>(V))
529 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
530 return CFP->isExactlyValue(Val);
531 return false;
532 }
533};
534
535/// Match a specific floating point value or vector with all elements
536/// equal to the value.
537inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
538
539/// Match a float 1.0 or vector with all elements equal to 1.0.
540inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
541
542struct bind_const_intval_ty {
543 uint64_t &VR;
544
545 bind_const_intval_ty(uint64_t &V) : VR(V) {}
546
547 template <typename ITy> bool match(ITy *V) {
548 if (const auto *CV = dyn_cast<ConstantInt>(V))
549 if (CV->getValue().ule(UINT64_MAX)) {
550 VR = CV->getZExtValue();
551 return true;
552 }
553 return false;
554 }
555};
556
557/// Match a specified integer value or vector of all elements of that
558// value.
559struct specific_intval {
560 uint64_t Val;
561
562 specific_intval(uint64_t V) : Val(V) {}
563
564 template <typename ITy> bool match(ITy *V) {
565 const auto *CI = dyn_cast<ConstantInt>(V);
566 if (!CI && V->getType()->isVectorTy())
567 if (const auto *C = dyn_cast<Constant>(V))
568 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
569
570 return CI && CI->getValue() == Val;
571 }
572};
573
574/// Match a specific integer value or vector with all elements equal to
575/// the value.
576inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
577
578/// Match a ConstantInt and bind to its value. This does not match
579/// ConstantInts wider than 64-bits.
580inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
581
582//===----------------------------------------------------------------------===//
583// Matcher for any binary operator.
584//
585template <typename LHS_t, typename RHS_t, bool Commutable = false>
586struct AnyBinaryOp_match {
587 LHS_t L;
588 RHS_t R;
589
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100590 // The evaluation order is always stable, regardless of Commutability.
591 // The LHS is always matched first.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100592 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
593
594 template <typename OpTy> bool match(OpTy *V) {
595 if (auto *I = dyn_cast<BinaryOperator>(V))
596 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100597 (Commutable && L.match(I->getOperand(1)) &&
598 R.match(I->getOperand(0)));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100599 return false;
600 }
601};
602
603template <typename LHS, typename RHS>
604inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
605 return AnyBinaryOp_match<LHS, RHS>(L, R);
606}
607
608//===----------------------------------------------------------------------===//
609// Matchers for specific binary operators.
610//
611
612template <typename LHS_t, typename RHS_t, unsigned Opcode,
613 bool Commutable = false>
614struct BinaryOp_match {
615 LHS_t L;
616 RHS_t R;
617
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100618 // The evaluation order is always stable, regardless of Commutability.
619 // The LHS is always matched first.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100620 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
621
622 template <typename OpTy> bool match(OpTy *V) {
623 if (V->getValueID() == Value::InstructionVal + Opcode) {
624 auto *I = cast<BinaryOperator>(V);
625 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100626 (Commutable && L.match(I->getOperand(1)) &&
627 R.match(I->getOperand(0)));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100628 }
629 if (auto *CE = dyn_cast<ConstantExpr>(V))
630 return CE->getOpcode() == Opcode &&
631 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100632 (Commutable && L.match(CE->getOperand(1)) &&
633 R.match(CE->getOperand(0))));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100634 return false;
635 }
636};
637
638template <typename LHS, typename RHS>
639inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
640 const RHS &R) {
641 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
642}
643
644template <typename LHS, typename RHS>
645inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
646 const RHS &R) {
647 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
648}
649
650template <typename LHS, typename RHS>
651inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
652 const RHS &R) {
653 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
654}
655
656template <typename LHS, typename RHS>
657inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
658 const RHS &R) {
659 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
660}
661
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100662/// Match 'fneg X' as 'fsub -0.0, X'.
663template <typename RHS>
664inline BinaryOp_match<cstfp_pred_ty<is_neg_zero_fp>, RHS, Instruction::FSub>
665m_FNeg(const RHS &X) {
666 return m_FSub(m_NegZeroFP(), X);
667}
668
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100669template <typename LHS, typename RHS>
670inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
671 const RHS &R) {
672 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
673}
674
675template <typename LHS, typename RHS>
676inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
677 const RHS &R) {
678 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
679}
680
681template <typename LHS, typename RHS>
682inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
683 const RHS &R) {
684 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
685}
686
687template <typename LHS, typename RHS>
688inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
689 const RHS &R) {
690 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
691}
692
693template <typename LHS, typename RHS>
694inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
695 const RHS &R) {
696 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
697}
698
699template <typename LHS, typename RHS>
700inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
701 const RHS &R) {
702 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
703}
704
705template <typename LHS, typename RHS>
706inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
707 const RHS &R) {
708 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
709}
710
711template <typename LHS, typename RHS>
712inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
713 const RHS &R) {
714 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
715}
716
717template <typename LHS, typename RHS>
718inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
719 const RHS &R) {
720 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
721}
722
723template <typename LHS, typename RHS>
724inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
725 const RHS &R) {
726 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
727}
728
729template <typename LHS, typename RHS>
730inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
731 const RHS &R) {
732 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
733}
734
735template <typename LHS, typename RHS>
736inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
737 const RHS &R) {
738 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
739}
740
741template <typename LHS, typename RHS>
742inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
743 const RHS &R) {
744 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
745}
746
747template <typename LHS, typename RHS>
748inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
749 const RHS &R) {
750 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
751}
752
753template <typename LHS_t, typename RHS_t, unsigned Opcode,
754 unsigned WrapFlags = 0>
755struct OverflowingBinaryOp_match {
756 LHS_t L;
757 RHS_t R;
758
759 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
760 : L(LHS), R(RHS) {}
761
762 template <typename OpTy> bool match(OpTy *V) {
763 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
764 if (Op->getOpcode() != Opcode)
765 return false;
766 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
767 !Op->hasNoUnsignedWrap())
768 return false;
769 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
770 !Op->hasNoSignedWrap())
771 return false;
772 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
773 }
774 return false;
775 }
776};
777
778template <typename LHS, typename RHS>
779inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
780 OverflowingBinaryOperator::NoSignedWrap>
781m_NSWAdd(const LHS &L, const RHS &R) {
782 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
783 OverflowingBinaryOperator::NoSignedWrap>(
784 L, R);
785}
786template <typename LHS, typename RHS>
787inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
788 OverflowingBinaryOperator::NoSignedWrap>
789m_NSWSub(const LHS &L, const RHS &R) {
790 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
791 OverflowingBinaryOperator::NoSignedWrap>(
792 L, R);
793}
794template <typename LHS, typename RHS>
795inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
796 OverflowingBinaryOperator::NoSignedWrap>
797m_NSWMul(const LHS &L, const RHS &R) {
798 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
799 OverflowingBinaryOperator::NoSignedWrap>(
800 L, R);
801}
802template <typename LHS, typename RHS>
803inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
804 OverflowingBinaryOperator::NoSignedWrap>
805m_NSWShl(const LHS &L, const RHS &R) {
806 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
807 OverflowingBinaryOperator::NoSignedWrap>(
808 L, R);
809}
810
811template <typename LHS, typename RHS>
812inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
813 OverflowingBinaryOperator::NoUnsignedWrap>
814m_NUWAdd(const LHS &L, const RHS &R) {
815 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
816 OverflowingBinaryOperator::NoUnsignedWrap>(
817 L, R);
818}
819template <typename LHS, typename RHS>
820inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
821 OverflowingBinaryOperator::NoUnsignedWrap>
822m_NUWSub(const LHS &L, const RHS &R) {
823 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
824 OverflowingBinaryOperator::NoUnsignedWrap>(
825 L, R);
826}
827template <typename LHS, typename RHS>
828inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
829 OverflowingBinaryOperator::NoUnsignedWrap>
830m_NUWMul(const LHS &L, const RHS &R) {
831 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
832 OverflowingBinaryOperator::NoUnsignedWrap>(
833 L, R);
834}
835template <typename LHS, typename RHS>
836inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
837 OverflowingBinaryOperator::NoUnsignedWrap>
838m_NUWShl(const LHS &L, const RHS &R) {
839 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
840 OverflowingBinaryOperator::NoUnsignedWrap>(
841 L, R);
842}
843
844//===----------------------------------------------------------------------===//
845// Class that matches a group of binary opcodes.
846//
847template <typename LHS_t, typename RHS_t, typename Predicate>
848struct BinOpPred_match : Predicate {
849 LHS_t L;
850 RHS_t R;
851
852 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
853
854 template <typename OpTy> bool match(OpTy *V) {
855 if (auto *I = dyn_cast<Instruction>(V))
856 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
857 R.match(I->getOperand(1));
858 if (auto *CE = dyn_cast<ConstantExpr>(V))
859 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
860 R.match(CE->getOperand(1));
861 return false;
862 }
863};
864
865struct is_shift_op {
866 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
867};
868
869struct is_right_shift_op {
870 bool isOpType(unsigned Opcode) {
871 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
872 }
873};
874
875struct is_logical_shift_op {
876 bool isOpType(unsigned Opcode) {
877 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
878 }
879};
880
881struct is_bitwiselogic_op {
882 bool isOpType(unsigned Opcode) {
883 return Instruction::isBitwiseLogicOp(Opcode);
884 }
885};
886
887struct is_idiv_op {
888 bool isOpType(unsigned Opcode) {
889 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
890 }
891};
892
893/// Matches shift operations.
894template <typename LHS, typename RHS>
895inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
896 const RHS &R) {
897 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
898}
899
900/// Matches logical shift operations.
901template <typename LHS, typename RHS>
902inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
903 const RHS &R) {
904 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
905}
906
907/// Matches logical shift operations.
908template <typename LHS, typename RHS>
909inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
910m_LogicalShift(const LHS &L, const RHS &R) {
911 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
912}
913
914/// Matches bitwise logic operations.
915template <typename LHS, typename RHS>
916inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
917m_BitwiseLogic(const LHS &L, const RHS &R) {
918 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
919}
920
921/// Matches integer division operations.
922template <typename LHS, typename RHS>
923inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
924 const RHS &R) {
925 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
926}
927
928//===----------------------------------------------------------------------===//
929// Class that matches exact binary ops.
930//
931template <typename SubPattern_t> struct Exact_match {
932 SubPattern_t SubPattern;
933
934 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
935
936 template <typename OpTy> bool match(OpTy *V) {
937 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
938 return PEO->isExact() && SubPattern.match(V);
939 return false;
940 }
941};
942
943template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
944 return SubPattern;
945}
946
947//===----------------------------------------------------------------------===//
948// Matchers for CmpInst classes
949//
950
951template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
952 bool Commutable = false>
953struct CmpClass_match {
954 PredicateTy &Predicate;
955 LHS_t L;
956 RHS_t R;
957
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100958 // The evaluation order is always stable, regardless of Commutability.
959 // The LHS is always matched first.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100960 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
961 : Predicate(Pred), L(LHS), R(RHS) {}
962
963 template <typename OpTy> bool match(OpTy *V) {
964 if (auto *I = dyn_cast<Class>(V))
965 if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100966 (Commutable && L.match(I->getOperand(1)) &&
967 R.match(I->getOperand(0)))) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100968 Predicate = I->getPredicate();
969 return true;
970 }
971 return false;
972 }
973};
974
975template <typename LHS, typename RHS>
976inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
977m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
978 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
979}
980
981template <typename LHS, typename RHS>
982inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
983m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
984 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
985}
986
987template <typename LHS, typename RHS>
988inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
989m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
990 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
991}
992
993//===----------------------------------------------------------------------===//
994// Matchers for SelectInst classes
995//
996
997template <typename Cond_t, typename LHS_t, typename RHS_t>
998struct SelectClass_match {
999 Cond_t C;
1000 LHS_t L;
1001 RHS_t R;
1002
1003 SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
1004 : C(Cond), L(LHS), R(RHS) {}
1005
1006 template <typename OpTy> bool match(OpTy *V) {
1007 if (auto *I = dyn_cast<SelectInst>(V))
1008 return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
1009 R.match(I->getOperand(2));
1010 return false;
1011 }
1012};
1013
1014template <typename Cond, typename LHS, typename RHS>
1015inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
1016 const RHS &R) {
1017 return SelectClass_match<Cond, LHS, RHS>(C, L, R);
1018}
1019
1020/// This matches a select of two constants, e.g.:
1021/// m_SelectCst<-1, 0>(m_Value(V))
1022template <int64_t L, int64_t R, typename Cond>
1023inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
1024m_SelectCst(const Cond &C) {
1025 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1026}
1027
1028//===----------------------------------------------------------------------===//
1029// Matchers for InsertElementInst classes
1030//
1031
1032template <typename Val_t, typename Elt_t, typename Idx_t>
1033struct InsertElementClass_match {
1034 Val_t V;
1035 Elt_t E;
1036 Idx_t I;
1037
1038 InsertElementClass_match(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
1039 : V(Val), E(Elt), I(Idx) {}
1040
1041 template <typename OpTy> bool match(OpTy *VV) {
1042 if (auto *II = dyn_cast<InsertElementInst>(VV))
1043 return V.match(II->getOperand(0)) && E.match(II->getOperand(1)) &&
1044 I.match(II->getOperand(2));
1045 return false;
1046 }
1047};
1048
1049template <typename Val_t, typename Elt_t, typename Idx_t>
1050inline InsertElementClass_match<Val_t, Elt_t, Idx_t>
1051m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1052 return InsertElementClass_match<Val_t, Elt_t, Idx_t>(Val, Elt, Idx);
1053}
1054
1055//===----------------------------------------------------------------------===//
1056// Matchers for ExtractElementInst classes
1057//
1058
1059template <typename Val_t, typename Idx_t> struct ExtractElementClass_match {
1060 Val_t V;
1061 Idx_t I;
1062
1063 ExtractElementClass_match(const Val_t &Val, const Idx_t &Idx)
1064 : V(Val), I(Idx) {}
1065
1066 template <typename OpTy> bool match(OpTy *VV) {
1067 if (auto *II = dyn_cast<ExtractElementInst>(VV))
1068 return V.match(II->getOperand(0)) && I.match(II->getOperand(1));
1069 return false;
1070 }
1071};
1072
1073template <typename Val_t, typename Idx_t>
1074inline ExtractElementClass_match<Val_t, Idx_t>
1075m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1076 return ExtractElementClass_match<Val_t, Idx_t>(Val, Idx);
1077}
1078
1079//===----------------------------------------------------------------------===//
1080// Matchers for ShuffleVectorInst classes
1081//
1082
1083template <typename V1_t, typename V2_t, typename Mask_t>
1084struct ShuffleVectorClass_match {
1085 V1_t V1;
1086 V2_t V2;
1087 Mask_t M;
1088
1089 ShuffleVectorClass_match(const V1_t &v1, const V2_t &v2, const Mask_t &m)
1090 : V1(v1), V2(v2), M(m) {}
1091
1092 template <typename OpTy> bool match(OpTy *V) {
1093 if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
1094 return V1.match(SI->getOperand(0)) && V2.match(SI->getOperand(1)) &&
1095 M.match(SI->getOperand(2));
1096 return false;
1097 }
1098};
1099
1100template <typename V1_t, typename V2_t, typename Mask_t>
1101inline ShuffleVectorClass_match<V1_t, V2_t, Mask_t>
1102m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1103 return ShuffleVectorClass_match<V1_t, V2_t, Mask_t>(v1, v2, m);
1104}
1105
1106//===----------------------------------------------------------------------===//
1107// Matchers for CastInst classes
1108//
1109
1110template <typename Op_t, unsigned Opcode> struct CastClass_match {
1111 Op_t Op;
1112
1113 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1114
1115 template <typename OpTy> bool match(OpTy *V) {
1116 if (auto *O = dyn_cast<Operator>(V))
1117 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1118 return false;
1119 }
1120};
1121
1122/// Matches BitCast.
1123template <typename OpTy>
1124inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1125 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1126}
1127
1128/// Matches PtrToInt.
1129template <typename OpTy>
1130inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1131 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1132}
1133
1134/// Matches Trunc.
1135template <typename OpTy>
1136inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1137 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1138}
1139
1140/// Matches SExt.
1141template <typename OpTy>
1142inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1143 return CastClass_match<OpTy, Instruction::SExt>(Op);
1144}
1145
1146/// Matches ZExt.
1147template <typename OpTy>
1148inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1149 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1150}
1151
1152template <typename OpTy>
1153inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1154 CastClass_match<OpTy, Instruction::SExt>>
1155m_ZExtOrSExt(const OpTy &Op) {
1156 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1157}
1158
1159/// Matches UIToFP.
1160template <typename OpTy>
1161inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1162 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1163}
1164
1165/// Matches SIToFP.
1166template <typename OpTy>
1167inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1168 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1169}
1170
1171/// Matches FPTrunc
1172template <typename OpTy>
1173inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1174 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1175}
1176
1177/// Matches FPExt
1178template <typename OpTy>
1179inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1180 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1181}
1182
1183//===----------------------------------------------------------------------===//
1184// Matcher for LoadInst classes
1185//
1186
1187template <typename Op_t> struct LoadClass_match {
1188 Op_t Op;
1189
1190 LoadClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1191
1192 template <typename OpTy> bool match(OpTy *V) {
1193 if (auto *LI = dyn_cast<LoadInst>(V))
1194 return Op.match(LI->getPointerOperand());
1195 return false;
1196 }
1197};
1198
1199/// Matches LoadInst.
1200template <typename OpTy> inline LoadClass_match<OpTy> m_Load(const OpTy &Op) {
1201 return LoadClass_match<OpTy>(Op);
1202}
1203
1204//===----------------------------------------------------------------------===//
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001205// Matcher for StoreInst classes
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001206//
1207
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001208template <typename ValueOp_t, typename PointerOp_t> struct StoreClass_match {
1209 ValueOp_t ValueOp;
1210 PointerOp_t PointerOp;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001211
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001212 StoreClass_match(const ValueOp_t &ValueOpMatch,
1213 const PointerOp_t &PointerOpMatch) :
1214 ValueOp(ValueOpMatch), PointerOp(PointerOpMatch) {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001215
1216 template <typename OpTy> bool match(OpTy *V) {
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001217 if (auto *LI = dyn_cast<StoreInst>(V))
1218 return ValueOp.match(LI->getValueOperand()) &&
1219 PointerOp.match(LI->getPointerOperand());
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001220 return false;
1221 }
1222};
1223
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001224/// Matches StoreInst.
1225template <typename ValueOpTy, typename PointerOpTy>
1226inline StoreClass_match<ValueOpTy, PointerOpTy>
1227m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1228 return StoreClass_match<ValueOpTy, PointerOpTy>(ValueOp, PointerOp);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001229}
1230
1231//===----------------------------------------------------------------------===//
1232// Matchers for control flow.
1233//
1234
1235struct br_match {
1236 BasicBlock *&Succ;
1237
1238 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1239
1240 template <typename OpTy> bool match(OpTy *V) {
1241 if (auto *BI = dyn_cast<BranchInst>(V))
1242 if (BI->isUnconditional()) {
1243 Succ = BI->getSuccessor(0);
1244 return true;
1245 }
1246 return false;
1247 }
1248};
1249
1250inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1251
1252template <typename Cond_t> struct brc_match {
1253 Cond_t Cond;
1254 BasicBlock *&T, *&F;
1255
1256 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1257 : Cond(C), T(t), F(f) {}
1258
1259 template <typename OpTy> bool match(OpTy *V) {
1260 if (auto *BI = dyn_cast<BranchInst>(V))
1261 if (BI->isConditional() && Cond.match(BI->getCondition())) {
1262 T = BI->getSuccessor(0);
1263 F = BI->getSuccessor(1);
1264 return true;
1265 }
1266 return false;
1267 }
1268};
1269
1270template <typename Cond_t>
1271inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1272 return brc_match<Cond_t>(C, T, F);
1273}
1274
1275//===----------------------------------------------------------------------===//
1276// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1277//
1278
1279template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1280 bool Commutable = false>
1281struct MaxMin_match {
1282 LHS_t L;
1283 RHS_t R;
1284
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001285 // The evaluation order is always stable, regardless of Commutability.
1286 // The LHS is always matched first.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001287 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1288
1289 template <typename OpTy> bool match(OpTy *V) {
1290 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1291 auto *SI = dyn_cast<SelectInst>(V);
1292 if (!SI)
1293 return false;
1294 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1295 if (!Cmp)
1296 return false;
1297 // At this point we have a select conditioned on a comparison. Check that
1298 // it is the values returned by the select that are being compared.
1299 Value *TrueVal = SI->getTrueValue();
1300 Value *FalseVal = SI->getFalseValue();
1301 Value *LHS = Cmp->getOperand(0);
1302 Value *RHS = Cmp->getOperand(1);
1303 if ((TrueVal != LHS || FalseVal != RHS) &&
1304 (TrueVal != RHS || FalseVal != LHS))
1305 return false;
1306 typename CmpInst_t::Predicate Pred =
1307 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1308 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1309 if (!Pred_t::match(Pred))
1310 return false;
1311 // It does! Bind the operands.
1312 return (L.match(LHS) && R.match(RHS)) ||
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001313 (Commutable && L.match(RHS) && R.match(LHS));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001314 }
1315};
1316
1317/// Helper class for identifying signed max predicates.
1318struct smax_pred_ty {
1319 static bool match(ICmpInst::Predicate Pred) {
1320 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1321 }
1322};
1323
1324/// Helper class for identifying signed min predicates.
1325struct smin_pred_ty {
1326 static bool match(ICmpInst::Predicate Pred) {
1327 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1328 }
1329};
1330
1331/// Helper class for identifying unsigned max predicates.
1332struct umax_pred_ty {
1333 static bool match(ICmpInst::Predicate Pred) {
1334 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1335 }
1336};
1337
1338/// Helper class for identifying unsigned min predicates.
1339struct umin_pred_ty {
1340 static bool match(ICmpInst::Predicate Pred) {
1341 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1342 }
1343};
1344
1345/// Helper class for identifying ordered max predicates.
1346struct ofmax_pred_ty {
1347 static bool match(FCmpInst::Predicate Pred) {
1348 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1349 }
1350};
1351
1352/// Helper class for identifying ordered min predicates.
1353struct ofmin_pred_ty {
1354 static bool match(FCmpInst::Predicate Pred) {
1355 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1356 }
1357};
1358
1359/// Helper class for identifying unordered max predicates.
1360struct ufmax_pred_ty {
1361 static bool match(FCmpInst::Predicate Pred) {
1362 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1363 }
1364};
1365
1366/// Helper class for identifying unordered min predicates.
1367struct ufmin_pred_ty {
1368 static bool match(FCmpInst::Predicate Pred) {
1369 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1370 }
1371};
1372
1373template <typename LHS, typename RHS>
1374inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1375 const RHS &R) {
1376 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1377}
1378
1379template <typename LHS, typename RHS>
1380inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1381 const RHS &R) {
1382 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1383}
1384
1385template <typename LHS, typename RHS>
1386inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1387 const RHS &R) {
1388 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1389}
1390
1391template <typename LHS, typename RHS>
1392inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1393 const RHS &R) {
1394 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1395}
1396
1397/// Match an 'ordered' floating point maximum function.
1398/// Floating point has one special value 'NaN'. Therefore, there is no total
1399/// order. However, if we can ignore the 'NaN' value (for example, because of a
1400/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1401/// semantics. In the presence of 'NaN' we have to preserve the original
1402/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1403///
1404/// max(L, R) iff L and R are not NaN
1405/// m_OrdFMax(L, R) = R iff L or R are NaN
1406template <typename LHS, typename RHS>
1407inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1408 const RHS &R) {
1409 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1410}
1411
1412/// Match an 'ordered' floating point minimum function.
1413/// Floating point has one special value 'NaN'. Therefore, there is no total
1414/// order. However, if we can ignore the 'NaN' value (for example, because of a
1415/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1416/// semantics. In the presence of 'NaN' we have to preserve the original
1417/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1418///
1419/// min(L, R) iff L and R are not NaN
1420/// m_OrdFMin(L, R) = R iff L or R are NaN
1421template <typename LHS, typename RHS>
1422inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1423 const RHS &R) {
1424 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1425}
1426
1427/// Match an 'unordered' floating point maximum function.
1428/// Floating point has one special value 'NaN'. Therefore, there is no total
1429/// order. However, if we can ignore the 'NaN' value (for example, because of a
1430/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1431/// semantics. In the presence of 'NaN' we have to preserve the original
1432/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1433///
1434/// max(L, R) iff L and R are not NaN
1435/// m_UnordFMax(L, R) = L iff L or R are NaN
1436template <typename LHS, typename RHS>
1437inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1438m_UnordFMax(const LHS &L, const RHS &R) {
1439 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1440}
1441
1442/// Match an 'unordered' floating point minimum function.
1443/// Floating point has one special value 'NaN'. Therefore, there is no total
1444/// order. However, if we can ignore the 'NaN' value (for example, because of a
1445/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1446/// semantics. In the presence of 'NaN' we have to preserve the original
1447/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1448///
1449/// min(L, R) iff L and R are not NaN
1450/// m_UnordFMin(L, R) = L iff L or R are NaN
1451template <typename LHS, typename RHS>
1452inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1453m_UnordFMin(const LHS &L, const RHS &R) {
1454 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1455}
1456
1457//===----------------------------------------------------------------------===//
1458// Matchers for overflow check patterns: e.g. (a + b) u< a
1459//
1460
1461template <typename LHS_t, typename RHS_t, typename Sum_t>
1462struct UAddWithOverflow_match {
1463 LHS_t L;
1464 RHS_t R;
1465 Sum_t S;
1466
1467 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1468 : L(L), R(R), S(S) {}
1469
1470 template <typename OpTy> bool match(OpTy *V) {
1471 Value *ICmpLHS, *ICmpRHS;
1472 ICmpInst::Predicate Pred;
1473 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1474 return false;
1475
1476 Value *AddLHS, *AddRHS;
1477 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1478
1479 // (a + b) u< a, (a + b) u< b
1480 if (Pred == ICmpInst::ICMP_ULT)
1481 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1482 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1483
1484 // a >u (a + b), b >u (a + b)
1485 if (Pred == ICmpInst::ICMP_UGT)
1486 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1487 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1488
1489 return false;
1490 }
1491};
1492
1493/// Match an icmp instruction checking for unsigned overflow on addition.
1494///
1495/// S is matched to the addition whose result is being checked for overflow, and
1496/// L and R are matched to the LHS and RHS of S.
1497template <typename LHS_t, typename RHS_t, typename Sum_t>
1498UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1499m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1500 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1501}
1502
1503template <typename Opnd_t> struct Argument_match {
1504 unsigned OpI;
1505 Opnd_t Val;
1506
1507 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1508
1509 template <typename OpTy> bool match(OpTy *V) {
1510 CallSite CS(V);
1511 return CS.isCall() && Val.match(CS.getArgument(OpI));
1512 }
1513};
1514
1515/// Match an argument.
1516template <unsigned OpI, typename Opnd_t>
1517inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1518 return Argument_match<Opnd_t>(OpI, Op);
1519}
1520
1521/// Intrinsic matchers.
1522struct IntrinsicID_match {
1523 unsigned ID;
1524
1525 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1526
1527 template <typename OpTy> bool match(OpTy *V) {
1528 if (const auto *CI = dyn_cast<CallInst>(V))
1529 if (const auto *F = CI->getCalledFunction())
1530 return F->getIntrinsicID() == ID;
1531 return false;
1532 }
1533};
1534
1535/// Intrinsic matches are combinations of ID matchers, and argument
1536/// matchers. Higher arity matcher are defined recursively in terms of and-ing
1537/// them with lower arity matchers. Here's some convenient typedefs for up to
1538/// several arguments, and more can be added as needed
1539template <typename T0 = void, typename T1 = void, typename T2 = void,
1540 typename T3 = void, typename T4 = void, typename T5 = void,
1541 typename T6 = void, typename T7 = void, typename T8 = void,
1542 typename T9 = void, typename T10 = void>
1543struct m_Intrinsic_Ty;
1544template <typename T0> struct m_Intrinsic_Ty<T0> {
1545 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1546};
1547template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1548 using Ty =
1549 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1550};
1551template <typename T0, typename T1, typename T2>
1552struct m_Intrinsic_Ty<T0, T1, T2> {
1553 using Ty =
1554 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1555 Argument_match<T2>>;
1556};
1557template <typename T0, typename T1, typename T2, typename T3>
1558struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1559 using Ty =
1560 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1561 Argument_match<T3>>;
1562};
1563
1564/// Match intrinsic calls like this:
1565/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1566template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1567 return IntrinsicID_match(IntrID);
1568}
1569
1570template <Intrinsic::ID IntrID, typename T0>
1571inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1572 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1573}
1574
1575template <Intrinsic::ID IntrID, typename T0, typename T1>
1576inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1577 const T1 &Op1) {
1578 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1579}
1580
1581template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1582inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1583m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1584 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1585}
1586
1587template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1588 typename T3>
1589inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1590m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1591 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1592}
1593
1594// Helper intrinsic matching specializations.
1595template <typename Opnd0>
1596inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1597 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1598}
1599
1600template <typename Opnd0>
1601inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1602 return m_Intrinsic<Intrinsic::bswap>(Op0);
1603}
1604
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001605template <typename Opnd0>
1606inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1607 return m_Intrinsic<Intrinsic::fabs>(Op0);
1608}
1609
1610template <typename Opnd0>
1611inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1612 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1613}
1614
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001615template <typename Opnd0, typename Opnd1>
1616inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1617 const Opnd1 &Op1) {
1618 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1619}
1620
1621template <typename Opnd0, typename Opnd1>
1622inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1623 const Opnd1 &Op1) {
1624 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1625}
1626
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001627//===----------------------------------------------------------------------===//
1628// Matchers for two-operands operators with the operators in either order
1629//
1630
1631/// Matches a BinaryOperator with LHS and RHS in either order.
1632template <typename LHS, typename RHS>
1633inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1634 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1635}
1636
1637/// Matches an ICmp with a predicate over LHS and RHS in either order.
1638/// Does not swap the predicate.
1639template <typename LHS, typename RHS>
1640inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1641m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1642 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1643 R);
1644}
1645
1646/// Matches a Add with LHS and RHS in either order.
1647template <typename LHS, typename RHS>
1648inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1649 const RHS &R) {
1650 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1651}
1652
1653/// Matches a Mul with LHS and RHS in either order.
1654template <typename LHS, typename RHS>
1655inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1656 const RHS &R) {
1657 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1658}
1659
1660/// Matches an And with LHS and RHS in either order.
1661template <typename LHS, typename RHS>
1662inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1663 const RHS &R) {
1664 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1665}
1666
1667/// Matches an Or with LHS and RHS in either order.
1668template <typename LHS, typename RHS>
1669inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1670 const RHS &R) {
1671 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1672}
1673
1674/// Matches an Xor with LHS and RHS in either order.
1675template <typename LHS, typename RHS>
1676inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1677 const RHS &R) {
1678 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1679}
1680
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001681/// Matches a 'Neg' as 'sub 0, V'.
1682template <typename ValTy>
1683inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1684m_Neg(const ValTy &V) {
1685 return m_Sub(m_ZeroInt(), V);
1686}
1687
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001688/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1689template <typename ValTy>
1690inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1691m_Not(const ValTy &V) {
1692 return m_c_Xor(V, m_AllOnes());
1693}
1694
1695/// Matches an SMin with LHS and RHS in either order.
1696template <typename LHS, typename RHS>
1697inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1698m_c_SMin(const LHS &L, const RHS &R) {
1699 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1700}
1701/// Matches an SMax with LHS and RHS in either order.
1702template <typename LHS, typename RHS>
1703inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1704m_c_SMax(const LHS &L, const RHS &R) {
1705 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1706}
1707/// Matches a UMin with LHS and RHS in either order.
1708template <typename LHS, typename RHS>
1709inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1710m_c_UMin(const LHS &L, const RHS &R) {
1711 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1712}
1713/// Matches a UMax with LHS and RHS in either order.
1714template <typename LHS, typename RHS>
1715inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1716m_c_UMax(const LHS &L, const RHS &R) {
1717 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1718}
1719
1720/// Matches FAdd with LHS and RHS in either order.
1721template <typename LHS, typename RHS>
1722inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1723m_c_FAdd(const LHS &L, const RHS &R) {
1724 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1725}
1726
1727/// Matches FMul with LHS and RHS in either order.
1728template <typename LHS, typename RHS>
1729inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1730m_c_FMul(const LHS &L, const RHS &R) {
1731 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1732}
1733
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001734template <typename Opnd_t> struct Signum_match {
1735 Opnd_t Val;
1736 Signum_match(const Opnd_t &V) : Val(V) {}
1737
1738 template <typename OpTy> bool match(OpTy *V) {
1739 unsigned TypeSize = V->getType()->getScalarSizeInBits();
1740 if (TypeSize == 0)
1741 return false;
1742
1743 unsigned ShiftWidth = TypeSize - 1;
1744 Value *OpL = nullptr, *OpR = nullptr;
1745
1746 // This is the representation of signum we match:
1747 //
1748 // signum(x) == (x >> 63) | (-x >>u 63)
1749 //
1750 // An i1 value is its own signum, so it's correct to match
1751 //
1752 // signum(x) == (x >> 0) | (-x >>u 0)
1753 //
1754 // for i1 values.
1755
1756 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1757 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1758 auto Signum = m_Or(LHS, RHS);
1759
1760 return Signum.match(V) && OpL == OpR && Val.match(OpL);
1761 }
1762};
1763
1764/// Matches a signum pattern.
1765///
1766/// signum(x) =
1767/// x > 0 -> 1
1768/// x == 0 -> 0
1769/// x < 0 -> -1
1770template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1771 return Signum_match<Val_t>(V);
1772}
1773
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001774} // end namespace PatternMatch
1775} // end namespace llvm
1776
1777#endif // LLVM_IR_PATTERNMATCH_H