blob: 1d6c0de8683acabb463ce1fce55e8a5e52cc0bd8 [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
Mateusz Starzyk363eb292021-05-19 17:32:44 +020036#include "mbedtls/private_access.h"
Gilles Peskinef3b731e2018-12-12 13:38:31 +010037
38/** \defgroup error Error codes
39 * @{
40 */
41
David Saadab4ecc272019-02-14 13:48:10 +020042/* PSA error codes */
43
Gilles Peskinef3b731e2018-12-12 13:38:31 +010044/** The action was completed successfully. */
45#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010046
47/** An error occurred that does not correspond to any defined
48 * failure cause.
49 *
50 * Implementations may use this error code if none of the other standard
51 * error codes are applicable. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +020052#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010053
54/** The requested operation or a parameter is not supported
55 * by this implementation.
56 *
57 * Implementations should return this error code when an enumeration
58 * parameter such as a key type, algorithm, etc. is not recognized.
59 * If a combination of parameters is recognized and identified as
60 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +020061#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010062
63/** The requested action is denied by a policy.
64 *
65 * Implementations should return this error code when the parameters
66 * are recognized as valid and supported, and a policy explicitly
67 * denies the requested operation.
68 *
69 * If a subset of the parameters of a function call identify a
70 * forbidden operation, and another subset of the parameters are
71 * not valid or not supported, it is unspecified whether the function
72 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
73 * #PSA_ERROR_INVALID_ARGUMENT. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +020074#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010075
76/** An output buffer is too small.
77 *
78 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
79 * description to determine a sufficient buffer size.
80 *
81 * Implementations should preferably return this error code only
82 * in cases when performing the operation with a larger output
83 * buffer would succeed. However implementations may return this
84 * error if a function has invalid or unsupported parameters in addition
85 * to the parameters that determine the necessary output buffer size. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +020086#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010087
David Saadab4ecc272019-02-14 13:48:10 +020088/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010089 *
David Saadab4ecc272019-02-14 13:48:10 +020090 * Implementations should return this error, when attempting
91 * to write an item (like a key) that already exists. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +020092#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010093
David Saadab4ecc272019-02-14 13:48:10 +020094/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010095 *
David Saadab4ecc272019-02-14 13:48:10 +020096 * Implementations should return this error, if a requested item (like
97 * a key) does not exist. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +020098#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010099
100/** The requested action cannot be performed in the current state.
101 *
102 * Multipart operations return this error when one of the
103 * functions is called out of sequence. Refer to the function
104 * descriptions for permitted sequencing of functions.
105 *
106 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100107 * that a key either exists or not,
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200108 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or
109 * #PSA_ERROR_DOES_NOT_EXIST as applicable.
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100110 *
111 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200112 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100113 * instead. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200114#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100115
116/** The parameters passed to the function are invalid.
117 *
118 * Implementations may return this error any time a parameter or
119 * combination of parameters are recognized as invalid.
120 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100121 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200122 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100123 * instead.
124 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200125#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100126
127/** There is not enough runtime memory.
128 *
129 * If the action is carried out across multiple security realms, this
130 * error can refer to available memory in any of the security realms. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200131#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100132
133/** There is not enough persistent storage.
134 *
135 * Functions that modify the key storage return this error code if
136 * there is insufficient storage space on the host media. In addition,
137 * many functions that do not otherwise access storage may return this
138 * error code if the implementation requires a mandatory log entry for
139 * the requested action and the log storage space is full. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200140#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100141
142/** There was a communication failure inside the implementation.
143 *
144 * This can indicate a communication failure between the application
145 * and an external cryptoprocessor or between the cryptoprocessor and
146 * an external volatile or persistent memory. A communication failure
147 * may be transient or permanent depending on the cause.
148 *
149 * \warning If a function returns this error, it is undetermined
150 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200151 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100152 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
153 * if the requested action was completed successfully in an external
154 * cryptoprocessor but there was a breakdown of communication before
155 * the cryptoprocessor could report the status to the application.
156 */
David Saadab4ecc272019-02-14 13:48:10 +0200157#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100158
159/** There was a storage failure that may have led to data loss.
160 *
161 * This error indicates that some persistent storage is corrupted.
162 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200163 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100164 * between the cryptoprocessor and its external storage (use
165 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
166 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
167 *
168 * Note that a storage failure does not indicate that any data that was
169 * previously read is invalid. However this previously read data may no
170 * longer be readable from storage.
171 *
172 * When a storage failure occurs, it is no longer possible to ensure
173 * the global integrity of the keystore. Depending on the global
174 * integrity guarantees offered by the implementation, access to other
175 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100176 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100177 *
178 * Implementations should only use this error code to report a
179 * permanent storage corruption. However application writers should
180 * keep in mind that transient errors while reading the storage may be
181 * reported using this error code. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200182#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100183
184/** A hardware failure was detected.
185 *
186 * A hardware failure may be transient or permanent depending on the
187 * cause. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200188#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100189
190/** A tampering attempt was detected.
191 *
192 * If an application receives this error code, there is no guarantee
193 * that previously accessed or computed data was correct and remains
194 * confidential. Applications should not perform any security function
195 * and should enter a safe failure state.
196 *
197 * Implementations may return this error code if they detect an invalid
198 * state that cannot happen during normal operation and that indicates
199 * that the implementation's security guarantees no longer hold. Depending
200 * on the implementation architecture and on its security and safety goals,
201 * the implementation may forcibly terminate the application.
202 *
203 * This error code is intended as a last resort when a security breach
204 * is detected and it is unsure whether the keystore data is still
205 * protected. Implementations shall only return this error code
206 * to report an alarm from a tampering detector, to indicate that
207 * the confidentiality of stored data can no longer be guaranteed,
208 * or to indicate that the integrity of previously returned data is now
209 * considered compromised. Implementations shall not use this error code
210 * to indicate a hardware failure that merely makes it impossible to
211 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
212 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
213 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
214 * instead).
215 *
216 * This error indicates an attack against the application. Implementations
217 * shall not return this error code as a consequence of the behavior of
218 * the application itself. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200219#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100220
221/** There is not enough entropy to generate random data needed
222 * for the requested action.
223 *
224 * This error indicates a failure of a hardware random generator.
225 * Application writers should note that this error can be returned not
226 * only by functions whose purpose is to generate random data, such
227 * as key, IV or nonce generation, but also by functions that execute
228 * an algorithm with a randomized result, as well as functions that
229 * use randomization of intermediate computations as a countermeasure
230 * to certain attacks.
231 *
232 * Implementations should avoid returning this error after psa_crypto_init()
233 * has succeeded. Implementations should generate sufficient
234 * entropy during initialization and subsequently use a cryptographically
235 * secure pseudorandom generator (PRNG). However implementations may return
236 * this error at any time if a policy requires the PRNG to be reseeded
237 * during normal operation. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200238#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100239
240/** The signature, MAC or hash is incorrect.
241 *
242 * Verification functions return this error if the verification
243 * calculations completed successfully, and the value to be verified
244 * was determined to be incorrect.
245 *
246 * If the value to verify has an invalid size, implementations may return
247 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200248#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100249
250/** The decrypted padding is incorrect.
251 *
252 * \warning In some protocols, when decrypting data, it is essential that
253 * the behavior of the application does not depend on whether the padding
254 * is correct, down to precise timing. Applications should prefer
255 * protocols that use authenticated encryption rather than plain
256 * encryption. If the application must perform a decryption of
257 * unauthenticated data, the application writer should take care not
258 * to reveal whether the padding is invalid.
259 *
260 * Implementations should strive to make valid and invalid padding
261 * as close as possible to indistinguishable to an external observer.
262 * In particular, the timing of a decryption operation should not
263 * depend on the validity of the padding. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200264#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100265
David Saadab4ecc272019-02-14 13:48:10 +0200266/** Return this error when there's insufficient data when attempting
267 * to read from a resource. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200268#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100269
Ronald Croncf56a0a2020-08-04 09:51:30 +0200270/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100271 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200272#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100273
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100274/** Stored data has been corrupted.
275 *
276 * This error indicates that some persistent storage has suffered corruption.
277 * It does not indicate the following situations, which have specific error
278 * codes:
279 *
280 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
281 * - A communication error between the cryptoprocessor and its external
282 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
283 * - When the storage is in a valid state but is full - use
284 * #PSA_ERROR_INSUFFICIENT_STORAGE.
285 * - When the storage fails for other reasons - use
286 * #PSA_ERROR_STORAGE_FAILURE.
287 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
288 *
289 * \note A storage corruption does not indicate that any data that was
290 * previously read is invalid. However this previously read data might no
291 * longer be readable from storage.
292 *
293 * When a storage failure occurs, it is no longer possible to ensure the
294 * global integrity of the keystore.
295 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200296#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100297
gabor-mezei-armfe309242020-11-09 17:39:56 +0100298/** Data read from storage is not valid for the implementation.
299 *
300 * This error indicates that some data read from storage does not have a valid
301 * format. It does not indicate the following situations, which have specific
302 * error codes:
303 *
304 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
305 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
306 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
307 *
308 * This error is typically a result of either storage corruption on a
309 * cleartext storage backend, or an attempt to read data that was
310 * written by an incompatible version of the library.
311 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200312#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
gabor-mezei-armfe309242020-11-09 17:39:56 +0100313
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100314/**@}*/
315
316/** \defgroup crypto_types Key and algorithm types
317 * @{
318 */
319
320/** An invalid key type value.
321 *
322 * Zero is not the encoding of any key type.
323 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200324#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100325
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100326/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100327 *
328 * Key types defined by this standard will never have the
329 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
330 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
331 * respect the bitwise structure used by standard encodings whenever practical.
332 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200333#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100334
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200335#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
336#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
337#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
338#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
339#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100340
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200341#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100342
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100343/** Whether a key type is vendor-defined.
344 *
345 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
346 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100347#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200348 (((type)&PSA_KEY_TYPE_VENDOR_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100349
350/** Whether a key type is an unstructured array of bytes.
351 *
352 * This encompasses both symmetric keys and non-key data.
353 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200354#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
355 (((type)&PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
356 ((type)&PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100357
358/** Whether a key type is asymmetric: either a key pair or a public key. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200359#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
360 (((type)&PSA_KEY_TYPE_CATEGORY_MASK & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type)&PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
368 (((type)&PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200412 * This key type is for high-entropy secrets only. For low-entropy secrets,
413 * #PSA_KEY_TYPE_PASSWORD should be used instead.
414 *
415 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
416 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
417 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 * The key policy determines which key derivation algorithm the key
419 * can be used for.
420 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200421#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100422
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200423/** A low-entropy secret for password hashing or key derivation.
424 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200425 * This key type is suitable for passwords and passphrases which are typically
426 * intended to be memorizable by humans, and have a low entropy relative to
427 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200428 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200429 * for such keys. It is not suitable for passwords with extremely low entropy,
430 * such as numerical PINs.
431 *
432 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
433 * key derivation algorithms. Algorithms that accept such an input were
434 * designed to accept low-entropy secret and are known as password hashing or
435 * key stretching algorithms.
436 *
437 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
438 * key derivation algorithms, as the algorithms that take such an input expect
439 * it to be high-entropy.
440 *
441 * The key policy determines which key derivation algorithm the key can be
442 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200443 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200444#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200445
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200446/** A secret value that can be used to verify a password hash.
447 *
448 * The key policy determines which key derivation algorithm the key
449 * can be used for, among the same permissible subset as for
450 * #PSA_KEY_TYPE_PASSWORD.
451 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200452#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200453
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200454/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200455 *
456 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200457 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200458 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200459#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200460
Gilles Peskine737c6be2019-05-21 16:01:06 +0200461/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100462 *
463 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
464 * 32 bytes (AES-256).
465 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200466#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100467
468/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
469 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100470 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
471 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100472 *
473 * Note that single DES and 2-key 3DES are weak and strongly
474 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
475 * is weak and deprecated and should only be used in legacy protocols.
476 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200477#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100478
Gilles Peskine737c6be2019-05-21 16:01:06 +0200479/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100480 * Camellia block cipher. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200481#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100482
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200483/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
484 *
485 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
486 *
487 * Implementations must support 12-byte nonces, may support 8-byte nonces,
488 * and should reject other sizes.
489 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200490#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200491
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100492/** RSA public key.
493 *
494 * The size of an RSA key is the bit size of the modulus.
495 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200496#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100497/** RSA key pair (private and public key).
498 *
499 * The size of an RSA key is the bit size of the modulus.
500 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200501#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100502/** Whether a key type is an RSA key (pair or public-only). */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200503#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200504 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100505
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200506#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
507#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
508#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100509/** Elliptic curve key pair.
510 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100511 * The size of an elliptic curve key is the bit size associated with the curve,
512 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
513 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
514 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100515 * \param curve A value of type ::psa_ecc_family_t that
516 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100517 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200518#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200519 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100520/** Elliptic curve public key.
521 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100522 * The size of an elliptic curve public key is the same as the corresponding
523 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
524 * `PSA_ECC_FAMILY_xxx` curve families).
525 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100526 * \param curve A value of type ::psa_ecc_family_t that
527 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100528 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200529#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100530 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
531
532/** Whether a key type is an elliptic curve key (pair or public-only). */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200533#define PSA_KEY_TYPE_IS_ECC(type) \
534 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100535 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100536/** Whether a key type is an elliptic curve key pair. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200537#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
538 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100539/** Whether a key type is an elliptic curve public key. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200540#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
541 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100542 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
543
544/** Extract the curve from an elliptic curve key type. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200545#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
546 ((psa_ecc_family_t)(PSA_KEY_TYPE_IS_ECC(type) ? \
547 ((type)&PSA_KEY_TYPE_ECC_CURVE_MASK) : \
548 0))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100549
Gilles Peskine228abc52019-12-03 17:24:19 +0100550/** SEC Koblitz curves over prime fields.
551 *
552 * This family comprises the following curves:
553 * secp192k1, secp224k1, secp256k1.
554 * They are defined in _Standards for Efficient Cryptography_,
555 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
556 * https://www.secg.org/sec2-v2.pdf
557 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200558#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t)0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100559
560/** SEC random curves over prime fields.
561 *
562 * This family comprises the following curves:
563 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
564 * They are defined in _Standards for Efficient Cryptography_,
565 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
566 * https://www.secg.org/sec2-v2.pdf
567 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200568#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t)0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100569/* SECP160R2 (SEC2 v1, obsolete) */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200570#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t)0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100571
572/** SEC Koblitz curves over binary fields.
573 *
574 * This family comprises the following curves:
575 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
576 * They are defined in _Standards for Efficient Cryptography_,
577 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
578 * https://www.secg.org/sec2-v2.pdf
579 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200580#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t)0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100581
582/** SEC random curves over binary fields.
583 *
584 * This family comprises the following curves:
585 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
586 * They are defined in _Standards for Efficient Cryptography_,
587 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
588 * https://www.secg.org/sec2-v2.pdf
589 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200590#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t)0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100591
592/** SEC additional random curves over binary fields.
593 *
594 * This family comprises the following curve:
595 * sect163r2.
596 * It is defined in _Standards for Efficient Cryptography_,
597 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
598 * https://www.secg.org/sec2-v2.pdf
599 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200600#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t)0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100601
602/** Brainpool P random curves.
603 *
604 * This family comprises the following curves:
605 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
606 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
607 * It is defined in RFC 5639.
608 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200609#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t)0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100610
611/** Curve25519 and Curve448.
612 *
613 * This family comprises the following Montgomery curves:
614 * - 255-bit: Bernstein et al.,
615 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
616 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
617 * - 448-bit: Hamburg,
618 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
619 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
620 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200621#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t)0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100622
Gilles Peskine67546802021-02-24 21:49:40 +0100623/** The twisted Edwards curves Ed25519 and Ed448.
624 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100625 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100626 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100627 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100628 *
629 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100630 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100631 * to Curve25519.
632 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
633 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
634 * to Curve448.
635 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
636 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200637#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t)0x42)
Gilles Peskine67546802021-02-24 21:49:40 +0100638
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200639#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
640#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
641#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100642/** Diffie-Hellman key pair.
643 *
Paul Elliott75e27032020-06-03 15:17:39 +0100644 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100645 * Diffie-Hellman group to be used.
646 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200647#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200648 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100649/** Diffie-Hellman public key.
650 *
Paul Elliott75e27032020-06-03 15:17:39 +0100651 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100652 * Diffie-Hellman group to be used.
653 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200654#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200655 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
656
657/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200658#define PSA_KEY_TYPE_IS_DH(type) \
659 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200660 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
661/** Whether a key type is a Diffie-Hellman key pair. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200662#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
663 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200664/** Whether a key type is a Diffie-Hellman public key. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200665#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
666 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200667
668/** Extract the group from a Diffie-Hellman key type. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200669#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
670 ((psa_dh_family_t)(PSA_KEY_TYPE_IS_DH(type) ? \
671 ((type)&PSA_KEY_TYPE_DH_GROUP_MASK) : \
672 0))
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200673
Gilles Peskine228abc52019-12-03 17:24:19 +0100674/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
675 *
676 * This family includes groups with the following key sizes (in bits):
677 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
678 * all of these sizes or only a subset.
679 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200680#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t)0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100681
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200682#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100683/** The block size of a block cipher.
684 *
685 * \param type A cipher key type (value of type #psa_key_type_t).
686 *
687 * \return The block size for a block cipher, or 1 for a stream cipher.
688 * The return value is undefined if \p type is not a supported
689 * cipher key type.
690 *
691 * \note It is possible to build stream cipher algorithms on top of a block
692 * cipher, for example CTR mode (#PSA_ALG_CTR).
693 * This macro only takes the key type into account, so it cannot be
694 * used to determine the size of the data that #psa_cipher_update()
695 * might buffer for future processing in general.
696 *
697 * \note This macro returns a compile-time constant if its argument is one.
698 *
699 * \warning This macro may evaluate its argument multiple times.
700 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200701#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
702 (((type)&PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
703 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
704 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100705
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100706/** Vendor-defined algorithm flag.
707 *
708 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
709 * bit set. Vendors who define additional algorithms must use an encoding with
710 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
711 * used by standard encodings whenever practical.
712 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200713#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100714
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200715#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
716#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
717#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
718#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
719#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
720#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
721#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
722#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
723#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100724
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100725/** Whether an algorithm is vendor-defined.
726 *
727 * See also #PSA_ALG_VENDOR_FLAG.
728 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200729#define PSA_ALG_IS_VENDOR_DEFINED(alg) (((alg)&PSA_ALG_VENDOR_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100730
731/** Whether the specified algorithm is a hash algorithm.
732 *
733 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
734 *
735 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
736 * This macro may return either 0 or 1 if \p alg is not a supported
737 * algorithm identifier.
738 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200739#define PSA_ALG_IS_HASH(alg) \
740 (((alg)&PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100741
742/** Whether the specified algorithm is a MAC algorithm.
743 *
744 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
745 *
746 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
747 * This macro may return either 0 or 1 if \p alg is not a supported
748 * algorithm identifier.
749 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200750#define PSA_ALG_IS_MAC(alg) \
751 (((alg)&PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100752
753/** Whether the specified algorithm is a symmetric cipher algorithm.
754 *
755 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
756 *
757 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
758 * This macro may return either 0 or 1 if \p alg is not a supported
759 * algorithm identifier.
760 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200761#define PSA_ALG_IS_CIPHER(alg) \
762 (((alg)&PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100763
764/** Whether the specified algorithm is an authenticated encryption
765 * with associated data (AEAD) algorithm.
766 *
767 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
768 *
769 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
770 * This macro may return either 0 or 1 if \p alg is not a supported
771 * algorithm identifier.
772 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200773#define PSA_ALG_IS_AEAD(alg) \
774 (((alg)&PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100775
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200776/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200777 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100778 *
779 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
780 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200781 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100782 * This macro may return either 0 or 1 if \p alg is not a supported
783 * algorithm identifier.
784 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200785#define PSA_ALG_IS_SIGN(alg) \
786 (((alg)&PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100787
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200788/** Whether the specified algorithm is an asymmetric encryption algorithm,
789 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100790 *
791 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
792 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200793 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100794 * This macro may return either 0 or 1 if \p alg is not a supported
795 * algorithm identifier.
796 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200797#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
798 (((alg)&PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100799
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100800/** Whether the specified algorithm is a key agreement algorithm.
801 *
802 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
803 *
804 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
805 * This macro may return either 0 or 1 if \p alg is not a supported
806 * algorithm identifier.
807 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200808#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
809 (((alg)&PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100810
811/** Whether the specified algorithm is a key derivation algorithm.
812 *
813 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
814 *
815 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
816 * This macro may return either 0 or 1 if \p alg is not a supported
817 * algorithm identifier.
818 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200819#define PSA_ALG_IS_KEY_DERIVATION(alg) \
820 (((alg)&PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100821
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200822/** Whether the specified algorithm is a key stretching / password hashing
823 * algorithm.
824 *
825 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200826 * that is suitable for use with a low-entropy secret such as a password.
827 * Equivalently, it's a key derivation algorithm that uses a
828 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200829 *
830 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
831 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +0100832 * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200833 * otherwise. This macro may return either 0 or 1 if \p alg is not a
834 * supported algorithm identifier.
835 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200836#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
837 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
838 (alg)&PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200839
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200840#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100841/** MD5 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200842#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100843/** PSA_ALG_RIPEMD160 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200844#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100845/** SHA1 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200846#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100847/** SHA2-224 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200848#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100849/** SHA2-256 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200850#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100851/** SHA2-384 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200852#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100853/** SHA2-512 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200854#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100855/** SHA2-512/224 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200856#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100857/** SHA2-512/256 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200858#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100859/** SHA3-224 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200860#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100861/** SHA3-256 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200862#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100863/** SHA3-384 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200864#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100865/** SHA3-512 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200866#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100867/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100868 *
869 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
870 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
871 * has the same output size and a (theoretically) higher security strength.
872 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200873#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100874
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100875/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100876 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100877 * This value may be used to form the algorithm usage field of a policy
878 * for a signature algorithm that is parametrized by a hash. The key
879 * may then be used to perform operations using the same signature
880 * algorithm parametrized with any supported hash.
881 *
882 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100883 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100884 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100885 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100886 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
887 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100888 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200889 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100890 * ```
891 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100892 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100893 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
894 * call to sign or verify a message may use a different hash.
895 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200896 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
897 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
898 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100899 * ```
900 *
901 * This value may not be used to build other algorithms that are
902 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100903 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100904 *
905 * This value may not be used to build an algorithm specification to
906 * perform an operation. It is only valid to build policies.
907 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200908#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100909
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200910#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
911#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100912/** Macro to build an HMAC algorithm.
913 *
914 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
915 *
916 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
917 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
918 *
919 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100920 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100921 * hash algorithm.
922 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200923#define PSA_ALG_HMAC(hash_alg) \
924 (PSA_ALG_HMAC_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100925
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200926#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
927 (PSA_ALG_CATEGORY_HASH | ((hmac_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100928
929/** Whether the specified algorithm is an HMAC algorithm.
930 *
931 * HMAC is a family of MAC algorithms that are based on a hash function.
932 *
933 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
934 *
935 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
936 * This macro may return either 0 or 1 if \p alg is not a supported
937 * algorithm identifier.
938 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200939#define PSA_ALG_IS_HMAC(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100940 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
941 PSA_ALG_HMAC_BASE)
942
943/* In the encoding of a MAC algorithm, the bits corresponding to
944 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
945 * truncated. As an exception, the value 0 means the untruncated algorithm,
946 * whatever its length is. The length is encoded in 6 bits, so it can
947 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
948 * to full length is correctly encoded as 0 and any non-trivial truncation
949 * is correctly encoded as a value between 1 and 63. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200950#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
951#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100952
Steven Cooremand927ed72021-02-22 19:59:35 +0100953/* In the encoding of a MAC algorithm, the bit corresponding to
954 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100955 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
956 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100957 * same base class and having a (potentially truncated) MAC length greater or
958 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200959#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +0100960
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100961/** Macro to build a truncated MAC algorithm.
962 *
963 * A truncated MAC algorithm is identical to the corresponding MAC
964 * algorithm except that the MAC value for the truncated algorithm
965 * consists of only the first \p mac_length bytes of the MAC value
966 * for the untruncated algorithm.
967 *
968 * \note This macro may allow constructing algorithm identifiers that
969 * are not valid, either because the specified length is larger
970 * than the untruncated MAC or because the specified length is
971 * smaller than permitted by the implementation.
972 *
973 * \note It is implementation-defined whether a truncated MAC that
974 * is truncated to the same length as the MAC of the untruncated
975 * algorithm is considered identical to the untruncated algorithm
976 * for policy comparison purposes.
977 *
Gilles Peskine434899f2018-10-19 11:30:26 +0200978 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100979 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100980 * is true). This may be a truncated or untruncated
981 * MAC algorithm.
982 * \param mac_length Desired length of the truncated MAC in bytes.
983 * This must be at most the full length of the MAC
984 * and must be at least an implementation-specified
985 * minimum. The implementation-specified minimum
986 * shall not be zero.
987 *
988 * \return The corresponding MAC algorithm with the specified
989 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +0100990 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100991 * MAC algorithm or if \p mac_length is too small or
992 * too large for the specified MAC algorithm.
993 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +0200994#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
995 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
996 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
997 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & \
998 PSA_ALG_MAC_TRUNCATION_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100999
1000/** Macro to build the base MAC algorithm corresponding to a truncated
1001 * MAC algorithm.
1002 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001003 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001004 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001005 * is true). This may be a truncated or untruncated
1006 * MAC algorithm.
1007 *
1008 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001009 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001010 * MAC algorithm.
1011 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001012#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1013 ((mac_alg) & \
1014 ~(PSA_ALG_MAC_TRUNCATION_MASK | PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001015
1016/** Length to which a MAC algorithm is truncated.
1017 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001018 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001019 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001020 * is true).
1021 *
1022 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001023 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1024 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001025 * MAC algorithm.
1026 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001027#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1028 (((mac_alg)&PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001029
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001030/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001031 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001032 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001033 * sharing the same base algorithm, and where the (potentially truncated) MAC
1034 * length of the specific algorithm is equal to or larger then the wildcard
1035 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001036 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001037 * \note When setting the minimum required MAC length to less than the
1038 * smallest MAC length allowed by the base algorithm, this effectively
1039 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001040 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001041 * \param mac_alg A MAC algorithm identifier (value of type
1042 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1043 * is true).
1044 * \param min_mac_length Desired minimum length of the message authentication
1045 * code in bytes. This must be at most the untruncated
1046 * length of the MAC and must be at least 1.
1047 *
1048 * \return The corresponding MAC wildcard algorithm with the
1049 * specified minimum length.
1050 * \return Unspecified if \p mac_alg is not a supported MAC
1051 * algorithm or if \p min_mac_length is less than 1 or
1052 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001053 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001054#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1055 (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1056 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001057
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001058#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001059/** The CBC-MAC construction over a block cipher
1060 *
1061 * \warning CBC-MAC is insecure in many cases.
1062 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1063 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001064#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001065/** The CMAC construction over a block cipher */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001066#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001067
1068/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1069 *
1070 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1071 *
1072 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1073 * This macro may return either 0 or 1 if \p alg is not a supported
1074 * algorithm identifier.
1075 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001076#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001077 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1078 PSA_ALG_CIPHER_MAC_BASE)
1079
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001080#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1081#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001082
1083/** Whether the specified algorithm is a stream cipher.
1084 *
1085 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1086 * by applying a bitwise-xor with a stream of bytes that is generated
1087 * from a key.
1088 *
1089 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1090 *
1091 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1092 * This macro may return either 0 or 1 if \p alg is not a supported
1093 * algorithm identifier or if it is not a symmetric cipher algorithm.
1094 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001095#define PSA_ALG_IS_STREAM_CIPHER(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001096 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001097 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001098
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001099/** The stream cipher mode of a stream cipher algorithm.
1100 *
1101 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001102 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001103 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001104#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001105
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001106/** The CTR stream cipher mode.
1107 *
1108 * CTR is a stream cipher which is built from a block cipher.
1109 * The underlying block cipher is determined by the key type.
1110 * For example, to use AES-128-CTR, use this algorithm with
1111 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1112 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001113#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001114
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001115/** The CFB stream cipher mode.
1116 *
1117 * The underlying block cipher is determined by the key type.
1118 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001119#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001120
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001121/** The OFB stream cipher mode.
1122 *
1123 * The underlying block cipher is determined by the key type.
1124 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001125#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001126
1127/** The XTS cipher mode.
1128 *
1129 * XTS is a cipher mode which is built from a block cipher. It requires at
1130 * least one full block of input, but beyond this minimum the input
1131 * does not need to be a whole number of blocks.
1132 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001133#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001134
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001135/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1136 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001137 * \warning ECB mode does not protect the confidentiality of the encrypted data
1138 * except in extremely narrow circumstances. It is recommended that applications
1139 * only use ECB if they need to construct an operating mode that the
1140 * implementation does not provide. Implementations are encouraged to provide
1141 * the modes that applications need in preference to supporting direct access
1142 * to ECB.
1143 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001144 * The underlying block cipher is determined by the key type.
1145 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001146 * This symmetric cipher mode can only be used with messages whose lengths are a
1147 * multiple of the block size of the chosen block cipher.
1148 *
1149 * ECB mode does not accept an initialization vector (IV). When using a
1150 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1151 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001152 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001153#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001154
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001155/** The CBC block cipher chaining mode, with no padding.
1156 *
1157 * The underlying block cipher is determined by the key type.
1158 *
1159 * This symmetric cipher mode can only be used with messages whose lengths
1160 * are whole number of blocks for the chosen block cipher.
1161 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001162#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001163
1164/** The CBC block cipher chaining mode with PKCS#7 padding.
1165 *
1166 * The underlying block cipher is determined by the key type.
1167 *
1168 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1169 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001170#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001171
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001172#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
Gilles Peskine679693e2019-05-06 15:10:16 +02001173
1174/** Whether the specified algorithm is an AEAD mode on a block cipher.
1175 *
1176 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1177 *
1178 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1179 * a block cipher, 0 otherwise.
1180 * This macro may return either 0 or 1 if \p alg is not a supported
1181 * algorithm identifier.
1182 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001183#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
Gilles Peskine679693e2019-05-06 15:10:16 +02001184 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1185 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1186
Gilles Peskine9153ec02019-02-15 13:02:02 +01001187/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001188 *
1189 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001190 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001191#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001192
1193/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001194 *
1195 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001196 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001197#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001198
1199/** The Chacha20-Poly1305 AEAD algorithm.
1200 *
1201 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001202 *
1203 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1204 * and should reject other sizes.
1205 *
1206 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001207 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001208#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001209
1210/* In the encoding of a AEAD algorithm, the bits corresponding to
1211 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1212 * The constants for default lengths follow this encoding.
1213 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001214#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1215#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001216
Steven Cooremand927ed72021-02-22 19:59:35 +01001217/* In the encoding of an AEAD algorithm, the bit corresponding to
1218 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001219 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1220 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001221 * same base class and having a tag length greater than or equal to the one
1222 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001223#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
Steven Cooremand927ed72021-02-22 19:59:35 +01001224
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001225/** Macro to build a shortened AEAD algorithm.
1226 *
1227 * A shortened AEAD algorithm is similar to the corresponding AEAD
1228 * algorithm, but has an authentication tag that consists of fewer bytes.
1229 * Depending on the algorithm, the tag length may affect the calculation
1230 * of the ciphertext.
1231 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001232 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001233 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001234 * is true).
1235 * \param tag_length Desired length of the authentication tag in bytes.
1236 *
1237 * \return The corresponding AEAD algorithm with the specified
1238 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001239 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001240 * AEAD algorithm or if \p tag_length is not valid
1241 * for the specified AEAD algorithm.
1242 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001243#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
1244 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1245 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
1246 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001247 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1248
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001249/** Retrieve the tag length of a specified AEAD algorithm
1250 *
1251 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001252 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001253 * is true).
1254 *
1255 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001256 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001257 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001258 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001259#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1260 (((aead_alg)&PSA_ALG_AEAD_TAG_LENGTH_MASK) >> PSA_AEAD_TAG_LENGTH_OFFSET)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001261
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001262/** Calculate the corresponding AEAD algorithm with the default tag length.
1263 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001264 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001265 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001266 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001267 * \return The corresponding AEAD algorithm with the default
1268 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001269 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001270#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
1271 (PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1272 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1273 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE( \
1274 aead_alg, PSA_ALG_CHACHA20_POLY1305) 0)
1275#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1276 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1277 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
1278 ref:
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001279
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001280/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001281 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001282 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001283 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001284 * algorithm is equal to or larger then the minimum tag length specified by the
1285 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001286 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001287 * \note When setting the minimum required tag length to less than the
1288 * smallest tag length allowed by the base algorithm, this effectively
1289 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001290 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001291 * \param aead_alg An AEAD algorithm identifier (value of type
1292 * #psa_algorithm_t such that
1293 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1294 * \param min_tag_length Desired minimum length of the authentication tag in
1295 * bytes. This must be at least 1 and at most the largest
1296 * allowed tag length of the algorithm.
1297 *
1298 * \return The corresponding AEAD wildcard algorithm with the
1299 * specified minimum length.
1300 * \return Unspecified if \p aead_alg is not a supported
1301 * AEAD algorithm or if \p min_tag_length is less than 1
1302 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001303 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001304#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001305 (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1306 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001307
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001308#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001309/** RSA PKCS#1 v1.5 signature with hashing.
1310 *
1311 * This is the signature scheme defined by RFC 8017
1312 * (PKCS#1: RSA Cryptography Specifications) under the name
1313 * RSASSA-PKCS1-v1_5.
1314 *
1315 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1316 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001317 * This includes #PSA_ALG_ANY_HASH
1318 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001319 *
1320 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001321 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001322 * hash algorithm.
1323 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001324#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1325 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001326/** Raw PKCS#1 v1.5 signature.
1327 *
1328 * The input to this algorithm is the DigestInfo structure used by
1329 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1330 * steps 3&ndash;6.
1331 */
1332#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001333#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001334 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1335
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001336#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001337/** RSA PSS signature with hashing.
1338 *
1339 * This is the signature scheme defined by RFC 8017
1340 * (PKCS#1: RSA Cryptography Specifications) under the name
1341 * RSASSA-PSS, with the message generation function MGF1, and with
1342 * a salt length equal to the length of the hash. The specified
1343 * hash algorithm is used to hash the input message, to create the
1344 * salted hash, and for the mask generation.
1345 *
1346 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1347 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001348 * This includes #PSA_ALG_ANY_HASH
1349 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001350 *
1351 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001352 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001353 * hash algorithm.
1354 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001355#define PSA_ALG_RSA_PSS(hash_alg) \
1356 (PSA_ALG_RSA_PSS_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
1357#define PSA_ALG_IS_RSA_PSS(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001358 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1359
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001360#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001361/** ECDSA signature with hashing.
1362 *
1363 * This is the ECDSA signature scheme defined by ANSI X9.62,
1364 * with a random per-message secret number (*k*).
1365 *
1366 * The representation of the signature as a byte string consists of
1367 * the concatentation of the signature values *r* and *s*. Each of
1368 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1369 * of the base point of the curve in octets. Each value is represented
1370 * in big-endian order (most significant octet first).
1371 *
1372 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1373 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001374 * This includes #PSA_ALG_ANY_HASH
1375 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001376 *
1377 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001378 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001379 * hash algorithm.
1380 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001381#define PSA_ALG_ECDSA(hash_alg) \
1382 (PSA_ALG_ECDSA_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001383/** ECDSA signature without hashing.
1384 *
1385 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1386 * without specifying a hash algorithm. This algorithm may only be
1387 * used to sign or verify a sequence of bytes that should be an
1388 * already-calculated hash. Note that the input is padded with
1389 * zeros on the left or truncated on the left as required to fit
1390 * the curve size.
1391 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001392#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1393#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001394/** Deterministic ECDSA signature with hashing.
1395 *
1396 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1397 *
1398 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1399 *
1400 * Note that when this algorithm is used for verification, signatures
1401 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1402 * same private key are accepted. In other words,
1403 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1404 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1405 *
1406 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1407 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001408 * This includes #PSA_ALG_ANY_HASH
1409 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001410 *
1411 * \return The corresponding deterministic ECDSA signature
1412 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001413 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001414 * hash algorithm.
1415 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001416#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1417 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
1418#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
1419#define PSA_ALG_IS_ECDSA(alg) \
1420 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001421 PSA_ALG_ECDSA_BASE)
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001422#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
1423 (((alg)&PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
1424#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001425 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001426#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001427 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1428
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001429/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1430 * using standard parameters.
1431 *
1432 * Contexts are not supported in the current version of this specification
1433 * because there is no suitable signature interface that can take the
1434 * context as a parameter. A future version of this specification may add
1435 * suitable functions and extend this algorithm to support contexts.
1436 *
1437 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1438 * In this specification, the following curves are supported:
1439 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1440 * in RFC 8032.
1441 * The curve is Edwards25519.
1442 * The hash function used internally is SHA-512.
1443 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1444 * in RFC 8032.
1445 * The curve is Edwards448.
1446 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001447 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001448 *
1449 * This algorithm can be used with psa_sign_message() and
1450 * psa_verify_message(). Since there is no prehashing, it cannot be used
1451 * with psa_sign_hash() or psa_verify_hash().
1452 *
1453 * The signature format is the concatenation of R and S as defined by
1454 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1455 * string for Ed448).
1456 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001457#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001458
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001459#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1460#define PSA_ALG_IS_HASH_EDDSA(alg) \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001461 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1462
1463/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001464 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001465 *
1466 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1467 *
1468 * This algorithm is Ed25519 as specified in RFC 8032.
1469 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001470 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001471 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001472 *
1473 * This is a hash-and-sign algorithm: to calculate a signature,
1474 * you can either:
1475 * - call psa_sign_message() on the message;
1476 * - or calculate the SHA-512 hash of the message
1477 * with psa_hash_compute()
1478 * or with a multi-part hash operation started with psa_hash_setup(),
1479 * using the hash algorithm #PSA_ALG_SHA_512,
1480 * then sign the calculated hash with psa_sign_hash().
1481 * Verifying a signature is similar, using psa_verify_message() or
1482 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001483 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001484#define PSA_ALG_ED25519PH \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001485 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1486
1487/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1488 * using SHAKE256 and the Edwards448 curve.
1489 *
1490 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1491 *
1492 * This algorithm is Ed448 as specified in RFC 8032.
1493 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001494 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001495 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001496 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001497 *
1498 * This is a hash-and-sign algorithm: to calculate a signature,
1499 * you can either:
1500 * - call psa_sign_message() on the message;
1501 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1502 * with psa_hash_compute()
1503 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001504 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001505 * then sign the calculated hash with psa_sign_hash().
1506 * Verifying a signature is similar, using psa_verify_message() or
1507 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001508 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001509#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001510 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001511
Gilles Peskine6d400852021-02-24 21:39:52 +01001512/* Default definition, to be overridden if the library is extended with
1513 * more hash-and-sign algorithms that we want to keep out of this header
1514 * file. */
1515#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1516
Gilles Peskined35b4892019-01-14 16:02:15 +01001517/** Whether the specified algorithm is a hash-and-sign algorithm.
1518 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001519 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1520 * structured in two parts: first the calculation of a hash in a way that
1521 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001522 * hash value and the key.
1523 *
1524 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1525 *
1526 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1527 * This macro may return either 0 or 1 if \p alg is not a supported
1528 * algorithm identifier.
1529 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001530#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1531 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
1532 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001533 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001534
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001535/** Whether the specified algorithm is a signature algorithm that can be used
1536 * with psa_sign_message() and psa_verify_message().
1537 *
1538 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1539 *
1540 * \return 1 if alg is a signature algorithm that can be used to sign a
gabor-mezei-arm36658e42021-04-20 12:08:36 +02001541 * message. 0 if \p alg is a signature algorithm that can only be used
1542 * to sign an already-calculated hash. 0 if \p alg is not a signature
1543 * algorithm. This macro can return either 0 or 1 if \p alg is not a
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001544 * supported algorithm identifier.
1545 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001546#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
1547 (PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_PURE_EDDSA)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001548
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001549/** Get the hash used by a hash-and-sign signature algorithm.
1550 *
1551 * A hash-and-sign algorithm is a signature algorithm which is
1552 * composed of two phases: first a hashing phase which does not use
1553 * the key and produces a hash of the input message, then a signing
1554 * phase which only uses the hash and the key and not the message
1555 * itself.
1556 *
1557 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1558 * #PSA_ALG_IS_SIGN(\p alg) is true).
1559 *
1560 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1561 * algorithm.
1562 * \return 0 if \p alg is a signature algorithm that does not
1563 * follow the hash-and-sign structure.
1564 * \return Unspecified if \p alg is not a signature algorithm or
1565 * if it is not supported by the implementation.
1566 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001567#define PSA_ALG_SIGN_GET_HASH(alg) \
1568 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1569 ((alg)&PSA_ALG_HASH_MASK) == 0 ? \
1570 /*"raw" algorithm*/ 0 : \
1571 ((alg)&PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1572 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001573
1574/** RSA PKCS#1 v1.5 encryption.
1575 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001576#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001577
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001578#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001579/** RSA OAEP encryption.
1580 *
1581 * This is the encryption scheme defined by RFC 8017
1582 * (PKCS#1: RSA Cryptography Specifications) under the name
1583 * RSAES-OAEP, with the message generation function MGF1.
1584 *
1585 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1586 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1587 * for MGF1.
1588 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001589 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001590 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001591 * hash algorithm.
1592 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001593#define PSA_ALG_RSA_OAEP(hash_alg) \
1594 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
1595#define PSA_ALG_IS_RSA_OAEP(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001596 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001597#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1598 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1599 ((alg)&PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1600 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001601
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001602#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001603/** Macro to build an HKDF algorithm.
1604 *
1605 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1606 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001607 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001608 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001609 * It is optional; if omitted, the derivation uses an empty salt.
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001610 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract"
1611 * step.
1612 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand"
1613 * step. You must pass #PSA_KEY_DERIVATION_INPUT_SALT before
1614 * #PSA_KEY_DERIVATION_INPUT_SECRET. You may pass #PSA_KEY_DERIVATION_INPUT_INFO
1615 * at any time after steup and before starting to generate output.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001616 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001617 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1618 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1619 *
1620 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001621 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001622 * hash algorithm.
1623 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001624#define PSA_ALG_HKDF(hash_alg) \
1625 (PSA_ALG_HKDF_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001626/** Whether the specified algorithm is an HKDF algorithm.
1627 *
1628 * HKDF is a family of key derivation algorithms that are based on a hash
1629 * function and the HMAC construction.
1630 *
1631 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1632 *
1633 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1634 * This macro may return either 0 or 1 if \c alg is not a supported
1635 * key derivation algorithm identifier.
1636 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001637#define PSA_ALG_IS_HKDF(alg) (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1638#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1639 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001640
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001641#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001642/** Macro to build a TLS-1.2 PRF algorithm.
1643 *
1644 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1645 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1646 * used with either SHA-256 or SHA-384.
1647 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001648 * This key derivation algorithm uses the following inputs, which must be
1649 * passed in the order given here:
1650 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001651 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1652 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001653 *
1654 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001655 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001656 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001657 *
1658 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1659 * TLS 1.2 PRF using HMAC-SHA-256.
1660 *
1661 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1662 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1663 *
1664 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001665 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001666 * hash algorithm.
1667 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001668#define PSA_ALG_TLS12_PRF(hash_alg) \
1669 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001670
1671/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1672 *
1673 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1674 *
1675 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1676 * This macro may return either 0 or 1 if \c alg is not a supported
1677 * key derivation algorithm identifier.
1678 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001679#define PSA_ALG_IS_TLS12_PRF(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001680 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001681#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1682 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001683
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001684#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001685/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1686 *
1687 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1688 * from the PreSharedKey (PSK) through the application of padding
1689 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1690 * The latter is based on HMAC and can be used with either SHA-256
1691 * or SHA-384.
1692 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001693 * This key derivation algorithm uses the following inputs, which must be
1694 * passed in the order given here:
1695 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001696 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1697 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001698 *
1699 * For the application to TLS-1.2, the seed (which is
1700 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1701 * ClientHello.Random + ServerHello.Random,
1702 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001703 *
1704 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1705 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1706 *
1707 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1708 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1709 *
1710 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001711 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001712 * hash algorithm.
1713 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001714#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1715 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001716
1717/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1718 *
1719 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1720 *
1721 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1722 * This macro may return either 0 or 1 if \c alg is not a supported
1723 * key derivation algorithm identifier.
1724 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001725#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001726 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001727#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1728 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg)&PSA_ALG_HASH_MASK))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001729
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001730/* This flag indicates whether the key derivation algorithm is suitable for
1731 * use on low-entropy secrets such as password - these algorithms are also
1732 * known as key stretching or password hashing schemes. These are also the
1733 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001734 *
1735 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001736 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001737#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001738
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001739#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001740/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001741 *
1742 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001743 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1744 * HMAC with the specified hash.
1745 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1746 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001747 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001748 * This key derivation algorithm uses the following inputs, which must be
1749 * provided in the following order:
1750 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001751 * This input step must be used exactly once.
1752 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1753 * This input step must be used one or more times; if used several times, the
1754 * inputs will be concatenated. This can be used to build the final salt
1755 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001756 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001757 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001758 *
1759 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1760 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1761 *
1762 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1763 * \return Unspecified if \p hash_alg is not a supported
1764 * hash algorithm.
1765 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001766#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1767 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg)&PSA_ALG_HASH_MASK))
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001768
1769/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1770 *
1771 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1772 *
1773 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1774 * This macro may return either 0 or 1 if \c alg is not a supported
1775 * key derivation algorithm identifier.
1776 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001777#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001778 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001779
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001780/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1781 *
1782 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1783 * This macro specifies the PBKDF2 algorithm constructed using the
1784 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1785 *
1786 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02001787 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001788 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001789#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001790
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001791#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1792#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001793
Gilles Peskine6843c292019-01-18 16:44:49 +01001794/** Macro to build a combined algorithm that chains a key agreement with
1795 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001796 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001797 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1798 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1799 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1800 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001801 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001802 * \return The corresponding key agreement and derivation
1803 * algorithm.
1804 * \return Unspecified if \p ka_alg is not a supported
1805 * key agreement algorithm or \p kdf_alg is not a
1806 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001807 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001808#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001809
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001810#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1811 (((alg)&PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001812
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001813#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1814 (((alg)&PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001815
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001816/** Whether the specified algorithm is a raw key agreement algorithm.
1817 *
1818 * A raw key agreement algorithm is one that does not specify
1819 * a key derivation function.
1820 * Usually, raw key agreement algorithms are constructed directly with
1821 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001822 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001823 *
1824 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1825 *
1826 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1827 * This macro may return either 0 or 1 if \p alg is not a supported
1828 * algorithm identifier.
1829 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001830#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
1831 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001832 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001833
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001834#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001835 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1836
1837/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001838 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001839 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001840 * `g^{ab}` in big-endian format.
1841 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1842 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001843 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001844#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001845
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001846/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1847 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001848 * This includes the raw finite field Diffie-Hellman algorithm as well as
1849 * finite-field Diffie-Hellman followed by any supporter key derivation
1850 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001851 *
1852 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1853 *
1854 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1855 * This macro may return either 0 or 1 if \c alg is not a supported
1856 * key agreement algorithm identifier.
1857 */
1858#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001859 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001860
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001861/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1862 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001863 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001864 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1865 * `m` is the bit size associated with the curve, i.e. the bit size of the
1866 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1867 * the byte containing the most significant bit of the shared secret
1868 * is padded with zero bits. The byte order is either little-endian
1869 * or big-endian depending on the curve type.
1870 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001871 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001872 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1873 * in little-endian byte order.
1874 * The bit size is 448 for Curve448 and 255 for Curve25519.
1875 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001876 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001877 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1878 * in big-endian byte order.
1879 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1880 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001881 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001882 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1883 * in big-endian byte order.
1884 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001885 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001886#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001887
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001888/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1889 * algorithm.
1890 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001891 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1892 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1893 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001894 *
1895 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1896 *
1897 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1898 * 0 otherwise.
1899 * This macro may return either 0 or 1 if \c alg is not a supported
1900 * key agreement algorithm identifier.
1901 */
1902#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001903 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001904
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001905/** Whether the specified algorithm encoding is a wildcard.
1906 *
1907 * Wildcard values may only be used to set the usage algorithm field in
1908 * a policy, not to perform an operation.
1909 *
1910 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1911 *
1912 * \return 1 if \c alg is a wildcard algorithm encoding.
1913 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1914 * an operation).
1915 * \return This macro may return either 0 or 1 if \c alg is not a supported
1916 * algorithm identifier.
1917 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001918#define PSA_ALG_IS_WILDCARD(alg) \
1919 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1920 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1921 PSA_ALG_IS_MAC(alg) ? \
1922 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1923 PSA_ALG_IS_AEAD(alg) ? \
1924 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1925 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001926
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001927/** Get the hash used by a composite algorithm.
1928 *
1929 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1930 *
1931 * \return The underlying hash algorithm if alg is a composite algorithm that
1932 * uses a hash algorithm.
1933 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02001934 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001935 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001936#define PSA_ALG_GET_HASH(alg) \
1937 (((alg)&0x000000ff) == 0 ? ((psa_algorithm_t)0) : \
1938 0x02000000 | ((alg)&0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001939
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001940/**@}*/
1941
1942/** \defgroup key_lifetimes Key lifetimes
1943 * @{
1944 */
1945
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001946/** The default lifetime for volatile keys.
1947 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02001948 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001949 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001950 *
1951 * A key with this lifetime is typically stored in the RAM area of the
1952 * PSA Crypto subsystem. However this is an implementation choice.
1953 * If an implementation stores data about the key in a non-volatile memory,
1954 * it must release all the resources associated with the key and erase the
1955 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001956 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001957#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001958
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001959/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001960 *
1961 * A persistent key remains in storage until it is explicitly destroyed or
1962 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02001963 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001964 * provide their own mechanism (for example to perform a factory reset,
1965 * to prepare for device refurbishment, or to uninstall an application).
1966 *
1967 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02001968 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02001969 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001970 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001971#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001972
Gilles Peskineaff11812020-05-04 19:03:10 +02001973/** The persistence level of volatile keys.
1974 *
1975 * See ::psa_key_persistence_t for more information.
1976 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001977#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02001978
1979/** The default persistence level for persistent keys.
1980 *
1981 * See ::psa_key_persistence_t for more information.
1982 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001983#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02001984
1985/** A persistence level indicating that a key is never destroyed.
1986 *
1987 * See ::psa_key_persistence_t for more information.
1988 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001989#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001990
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001991#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
1992 ((psa_key_persistence_t)((lifetime)&0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001993
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02001994#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02001995 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01001996
1997/** Whether a key lifetime indicates that the key is volatile.
1998 *
1999 * A volatile key is automatically destroyed by the implementation when
2000 * the application instance terminates. In particular, a volatile key
2001 * is automatically destroyed on a power reset of the device.
2002 *
2003 * A key that is not volatile is persistent. Persistent keys are
2004 * preserved until the application explicitly destroys them or until an
2005 * implementation-specific device management event occurs (for example,
2006 * a factory reset).
2007 *
2008 * \param lifetime The lifetime value to query (value of type
2009 * ::psa_key_lifetime_t).
2010 *
2011 * \return \c 1 if the key is volatile, otherwise \c 0.
2012 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002013#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2014 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002015
Gilles Peskined133bb22021-04-21 20:05:59 +02002016/** Whether a key lifetime indicates that the key is read-only.
2017 *
2018 * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2019 * They must be created through platform-specific means that bypass the API.
2020 *
2021 * Some platforms may offer ways to destroy read-only keys. For example,
Gilles Peskine91466c82021-06-07 23:21:50 +02002022 * consider a platform with multiple levels of privilege, where a
2023 * low-privilege application can use a key but is not allowed to destroy
2024 * it, and the platform exposes the key to the application with a read-only
2025 * lifetime. High-privilege code can destroy the key even though the
2026 * application sees the key as read-only.
Gilles Peskined133bb22021-04-21 20:05:59 +02002027 *
2028 * \param lifetime The lifetime value to query (value of type
2029 * ::psa_key_lifetime_t).
2030 *
2031 * \return \c 1 if the key is read-only, otherwise \c 0.
2032 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002033#define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime) \
Gilles Peskined133bb22021-04-21 20:05:59 +02002034 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2035 PSA_KEY_PERSISTENCE_READ_ONLY)
2036
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002037/** Construct a lifetime from a persistence level and a location.
2038 *
2039 * \param persistence The persistence level
2040 * (value of type ::psa_key_persistence_t).
2041 * \param location The location indicator
2042 * (value of type ::psa_key_location_t).
2043 *
2044 * \return The constructed lifetime value.
2045 */
2046#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2047 ((location) << 8 | (persistence))
2048
Gilles Peskineaff11812020-05-04 19:03:10 +02002049/** The local storage area for persistent keys.
2050 *
2051 * This storage area is available on all systems that can store persistent
2052 * keys without delegating the storage to a third-party cryptoprocessor.
2053 *
2054 * See ::psa_key_location_t for more information.
2055 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002056#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002057
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002058#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002059
Gilles Peskine4a231b82019-05-06 18:56:14 +02002060/** The minimum value for a key identifier chosen by the application.
2061 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002062#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002063/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002064 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002065#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002066/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002067 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002068#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002069/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002070 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002071#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002072
2073#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2074
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002075# define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t)0)
2076# define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2077# define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002078
2079/** Utility to initialize a key identifier at runtime.
2080 *
2081 * \param unused Unused parameter.
2082 * \param key_id Identifier of the key.
2083 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002084static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(unsigned int unused,
2085 psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002086{
2087 (void)unused;
2088
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002089 return key_id;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002090}
2091
2092/** Compare two key identifiers.
2093 *
2094 * \param id1 First key identifier.
2095 * \param id2 Second key identifier.
2096 *
2097 * \return Non-zero if the two key identifier are equal, zero otherwise.
2098 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002099static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2100 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002101{
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002102 return id1 == id2;
Ronald Cron7424f0d2020-09-14 16:17:41 +02002103}
2104
Ronald Cronc4d1b512020-07-31 11:26:37 +02002105/** Check whether a key identifier is null.
2106 *
2107 * \param key Key identifier.
2108 *
2109 * \return Non-zero if the key identifier is null, zero otherwise.
2110 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002111static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002112{
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002113 return key == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002114}
2115
Ronald Cron7424f0d2020-09-14 16:17:41 +02002116#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2117
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002118# define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2119# define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).key_id)
2120# define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).owner)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002121
2122/** Utility to initialize a key identifier at runtime.
2123 *
2124 * \param owner_id Identifier of the key owner.
2125 * \param key_id Identifier of the key.
2126 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002127static inline mbedtls_svc_key_id_t
2128mbedtls_svc_key_id_make(mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002129{
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002130 return ((mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2131 .MBEDTLS_PRIVATE(owner) = owner_id });
Ronald Cron7424f0d2020-09-14 16:17:41 +02002132}
2133
2134/** Compare two key identifiers.
2135 *
2136 * \param id1 First key identifier.
2137 * \param id2 Second key identifier.
2138 *
2139 * \return Non-zero if the two key identifier are equal, zero otherwise.
2140 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002141static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2142 mbedtls_svc_key_id_t id2)
Ronald Cron7424f0d2020-09-14 16:17:41 +02002143{
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002144 return (
2145 (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id))&&mbedtls_key_owner_id_equal(
2146 id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner)));
Ronald Cron7424f0d2020-09-14 16:17:41 +02002147}
2148
Ronald Cronc4d1b512020-07-31 11:26:37 +02002149/** Check whether a key identifier is null.
2150 *
2151 * \param key Key identifier.
2152 *
2153 * \return Non-zero if the key identifier is null, zero otherwise.
2154 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002155static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
Ronald Cronc4d1b512020-07-31 11:26:37 +02002156{
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002157 return key.MBEDTLS_PRIVATE(key_id) == 0;
Ronald Cronc4d1b512020-07-31 11:26:37 +02002158}
2159
Ronald Cron7424f0d2020-09-14 16:17:41 +02002160#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskine4a231b82019-05-06 18:56:14 +02002161
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002162/**@}*/
2163
2164/** \defgroup policy Key policies
2165 * @{
2166 */
2167
2168/** Whether the key may be exported.
2169 *
2170 * A public key or the public part of a key pair may always be exported
2171 * regardless of the value of this permission flag.
2172 *
2173 * If a key does not have export permission, implementations shall not
2174 * allow the key to be exported in plain form from the cryptoprocessor,
2175 * whether through psa_export_key() or through a proprietary interface.
2176 * The key may however be exportable in a wrapped form, i.e. in a form
2177 * where it is encrypted by another key.
2178 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002179#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002180
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002181/** Whether the key may be copied.
2182 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002183 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002184 * with the same policy or a more restrictive policy.
2185 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002186 * For lifetimes for which the key is located in a secure element which
2187 * enforce the non-exportability of keys, copying a key outside the secure
2188 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2189 * Copying the key inside the secure element is permitted with just
2190 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2191 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002192 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2193 * is sufficient to permit the copy.
2194 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002195#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002196
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002197/** Whether the key may be used to encrypt a message.
2198 *
2199 * This flag allows the key to be used for a symmetric encryption operation,
2200 * for an AEAD encryption-and-authentication operation,
2201 * or for an asymmetric encryption operation,
2202 * if otherwise permitted by the key's type and policy.
2203 *
2204 * For a key pair, this concerns the public key.
2205 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002206#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002207
2208/** Whether the key may be used to decrypt a message.
2209 *
2210 * This flag allows the key to be used for a symmetric decryption operation,
2211 * for an AEAD decryption-and-verification operation,
2212 * or for an asymmetric decryption operation,
2213 * if otherwise permitted by the key's type and policy.
2214 *
2215 * For a key pair, this concerns the private key.
2216 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002217#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002218
2219/** Whether the key may be used to sign a message.
2220 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002221 * This flag allows the key to be used for a MAC calculation operation or for
2222 * an asymmetric message signature operation, if otherwise permitted by the
2223 * key’s type and policy.
2224 *
2225 * For a key pair, this concerns the private key.
2226 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002227#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002228
2229/** Whether the key may be used to verify a message.
2230 *
2231 * This flag allows the key to be used for a MAC verification operation or for
2232 * an asymmetric message signature verification operation, if otherwise
2233 * permitted by the key’s type and policy.
2234 *
2235 * For a key pair, this concerns the public key.
2236 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002237#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002238
2239/** Whether the key may be used to sign a message.
2240 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002241 * This flag allows the key to be used for a MAC calculation operation
2242 * or for an asymmetric signature operation,
2243 * if otherwise permitted by the key's type and policy.
2244 *
2245 * For a key pair, this concerns the private key.
2246 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002247#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002248
2249/** Whether the key may be used to verify a message signature.
2250 *
2251 * This flag allows the key to be used for a MAC verification operation
2252 * or for an asymmetric signature verification operation,
2253 * if otherwise permitted by by the key's type and policy.
2254 *
2255 * For a key pair, this concerns the public key.
2256 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002257#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002258
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002259/** Whether the key may be used to derive other keys or produce a password
2260 * hash.
Andrew Thoelke52d18cd2021-06-25 11:03:57 +01002261 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002262 * This flag allows the key to be used for a key derivation operation or for
2263 * a key agreement operation, if otherwise permitted by by the key's type and
2264 * policy.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002265 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002266 * If this flag is present on all keys used in calls to
2267 * psa_key_derivation_input_key() for a key derivation operation, then it
2268 * permits calling psa_key_derivation_output_bytes() or
2269 * psa_key_derivation_output_key() at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002270 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002271#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002272
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002273/** Whether the key may be used to verify the result of a key derivation,
2274 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002275 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002276 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002277 *
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002278 * This flag allows the key to be used in a key derivation operation, if
2279 * otherwise permitted by by the key's type and policy.
2280 *
2281 * If this flag is present on all keys used in calls to
2282 * psa_key_derivation_input_key() for a key derivation operation, then it
2283 * permits calling psa_key_derivation_verify_bytes() or
2284 * psa_key_derivation_verify_key() at the end of the operation.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002285 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002286#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002287
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002288/**@}*/
2289
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002290/** \defgroup derivation Key derivation
2291 * @{
2292 */
2293
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002294/** A secret input for key derivation.
2295 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002296 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2297 * (passed to psa_key_derivation_input_key())
2298 * or the shared secret resulting from a key agreement
2299 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002300 *
2301 * The secret can also be a direct input (passed to
2302 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002303 * may not be used to derive keys: the operation will only allow
2304 * psa_key_derivation_output_bytes(),
2305 * psa_key_derivation_verify_bytes(), or
2306 * psa_key_derivation_verify_key(), but not
2307 * psa_key_derivation_output_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002308 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002309#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002310
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002311/** A low-entropy secret input for password hashing / key stretching.
2312 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002313 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2314 * psa_key_derivation_input_key()) or a direct input (passed to
2315 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2316 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2317 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002318 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002319 * The secret can also be a direct input (passed to
2320 * key_derivation_input_bytes()). In this case, the derivation operation
Andrew Thoelkea0f4b592021-06-24 16:47:14 +01002321 * may not be used to derive keys: the operation will only allow
2322 * psa_key_derivation_output_bytes(),
2323 * psa_key_derivation_verify_bytes(), or
2324 * psa_key_derivation_verify_key(), but not
2325 * psa_key_derivation_output_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002326 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002327#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002328
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002329/** A label for key derivation.
2330 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002331 * This should be a direct input.
2332 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002333 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002334#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002335
2336/** A salt for key derivation.
2337 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002338 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002339 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2340 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002341 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002342#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002343
2344/** An information string for key derivation.
2345 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002346 * This should be a direct input.
2347 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002348 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002349#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002350
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002351/** A seed for key derivation.
2352 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002353 * This should be a direct input.
2354 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002355 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002356#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002357
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002358/** A cost parameter for password hashing / key stretching.
2359 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002360 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002361 */
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002362#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002363
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002364/**@}*/
2365
Bence Szépkútib639d432021-04-21 10:33:54 +02002366/** \defgroup helper_macros Helper macros
2367 * @{
2368 */
2369
2370/* Helper macros */
2371
2372/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2373 * regardless of the tag length they encode.
2374 *
2375 * \param aead_alg_1 An AEAD algorithm identifier.
2376 * \param aead_alg_2 An AEAD algorithm identifier.
2377 *
2378 * \return 1 if both identifiers refer to the same AEAD algorithm,
2379 * 0 otherwise.
2380 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2381 * a supported AEAD algorithm.
2382 */
2383#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
Mateusz Starzykc0eabdc2021-08-03 14:09:02 +02002384 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2385 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
2386 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
Bence Szépkútib639d432021-04-21 10:33:54 +02002387
2388/**@}*/
2389
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002390#endif /* PSA_CRYPTO_VALUES_H */