blob: 04b0303e85b4215e5bcb87d455b90fa89b8e810b [file] [log] [blame]
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001/**
2 * \file psa/crypto_values.h
3 *
4 * \brief PSA cryptography module: macros to build and analyze integer values.
5 *
6 * \note This file may not be included directly. Applications must
7 * include psa/crypto.h. Drivers must include the appropriate driver
8 * header file.
9 *
10 * This file contains portable definitions of macros to build and analyze
11 * values of integral types that encode properties of cryptographic keys,
12 * designations of cryptographic algorithms, and error codes returned by
13 * the library.
14 *
15 * This header file only defines preprocessor macros.
16 */
17/*
Bence Szépkúti1e148272020-08-07 13:07:28 +020018 * Copyright The Mbed TLS Contributors
Gilles Peskinef3b731e2018-12-12 13:38:31 +010019 * SPDX-License-Identifier: Apache-2.0
20 *
21 * Licensed under the Apache License, Version 2.0 (the "License"); you may
22 * not use this file except in compliance with the License.
23 * You may obtain a copy of the License at
24 *
25 * http://www.apache.org/licenses/LICENSE-2.0
26 *
27 * Unless required by applicable law or agreed to in writing, software
28 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
29 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
30 * See the License for the specific language governing permissions and
31 * limitations under the License.
Gilles Peskinef3b731e2018-12-12 13:38:31 +010032 */
33
34#ifndef PSA_CRYPTO_VALUES_H
35#define PSA_CRYPTO_VALUES_H
36
37/** \defgroup error Error codes
38 * @{
39 */
40
David Saadab4ecc272019-02-14 13:48:10 +020041/* PSA error codes */
42
Gilles Peskinef3b731e2018-12-12 13:38:31 +010043/** The action was completed successfully. */
44#define PSA_SUCCESS ((psa_status_t)0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010045
46/** An error occurred that does not correspond to any defined
47 * failure cause.
48 *
49 * Implementations may use this error code if none of the other standard
50 * error codes are applicable. */
David Saadab4ecc272019-02-14 13:48:10 +020051#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010052
53/** The requested operation or a parameter is not supported
54 * by this implementation.
55 *
56 * Implementations should return this error code when an enumeration
57 * parameter such as a key type, algorithm, etc. is not recognized.
58 * If a combination of parameters is recognized and identified as
59 * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
David Saadab4ecc272019-02-14 13:48:10 +020060#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010061
62/** The requested action is denied by a policy.
63 *
64 * Implementations should return this error code when the parameters
65 * are recognized as valid and supported, and a policy explicitly
66 * denies the requested operation.
67 *
68 * If a subset of the parameters of a function call identify a
69 * forbidden operation, and another subset of the parameters are
70 * not valid or not supported, it is unspecified whether the function
71 * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
72 * #PSA_ERROR_INVALID_ARGUMENT. */
David Saadab4ecc272019-02-14 13:48:10 +020073#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010074
75/** An output buffer is too small.
76 *
77 * Applications can call the \c PSA_xxx_SIZE macro listed in the function
78 * description to determine a sufficient buffer size.
79 *
80 * Implementations should preferably return this error code only
81 * in cases when performing the operation with a larger output
82 * buffer would succeed. However implementations may return this
83 * error if a function has invalid or unsupported parameters in addition
84 * to the parameters that determine the necessary output buffer size. */
David Saadab4ecc272019-02-14 13:48:10 +020085#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010086
David Saadab4ecc272019-02-14 13:48:10 +020087/** Asking for an item that already exists
Gilles Peskinef3b731e2018-12-12 13:38:31 +010088 *
David Saadab4ecc272019-02-14 13:48:10 +020089 * Implementations should return this error, when attempting
90 * to write an item (like a key) that already exists. */
91#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010092
David Saadab4ecc272019-02-14 13:48:10 +020093/** Asking for an item that doesn't exist
Gilles Peskinef3b731e2018-12-12 13:38:31 +010094 *
David Saadab4ecc272019-02-14 13:48:10 +020095 * Implementations should return this error, if a requested item (like
96 * a key) does not exist. */
97#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
Gilles Peskinef3b731e2018-12-12 13:38:31 +010098
99/** The requested action cannot be performed in the current state.
100 *
101 * Multipart operations return this error when one of the
102 * functions is called out of sequence. Refer to the function
103 * descriptions for permitted sequencing of functions.
104 *
105 * Implementations shall not return this error code to indicate
Adrian L. Shaw67e1c7a2019-05-14 15:24:21 +0100106 * that a key either exists or not,
107 * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100108 * as applicable.
109 *
110 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200111 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100112 * instead. */
David Saadab4ecc272019-02-14 13:48:10 +0200113#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100114
115/** The parameters passed to the function are invalid.
116 *
117 * Implementations may return this error any time a parameter or
118 * combination of parameters are recognized as invalid.
119 *
Adrian L. Shawd56456c2019-05-15 11:36:13 +0100120 * Implementations shall not return this error code to indicate that a
Ronald Croncf56a0a2020-08-04 09:51:30 +0200121 * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100122 * instead.
123 */
David Saadab4ecc272019-02-14 13:48:10 +0200124#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100125
126/** There is not enough runtime memory.
127 *
128 * If the action is carried out across multiple security realms, this
129 * error can refer to available memory in any of the security realms. */
David Saadab4ecc272019-02-14 13:48:10 +0200130#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100131
132/** There is not enough persistent storage.
133 *
134 * Functions that modify the key storage return this error code if
135 * there is insufficient storage space on the host media. In addition,
136 * many functions that do not otherwise access storage may return this
137 * error code if the implementation requires a mandatory log entry for
138 * the requested action and the log storage space is full. */
David Saadab4ecc272019-02-14 13:48:10 +0200139#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100140
141/** There was a communication failure inside the implementation.
142 *
143 * This can indicate a communication failure between the application
144 * and an external cryptoprocessor or between the cryptoprocessor and
145 * an external volatile or persistent memory. A communication failure
146 * may be transient or permanent depending on the cause.
147 *
148 * \warning If a function returns this error, it is undetermined
149 * whether the requested action has completed or not. Implementations
Gilles Peskinebe061332019-07-18 13:52:30 +0200150 * should return #PSA_SUCCESS on successful completion whenever
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100151 * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
152 * if the requested action was completed successfully in an external
153 * cryptoprocessor but there was a breakdown of communication before
154 * the cryptoprocessor could report the status to the application.
155 */
David Saadab4ecc272019-02-14 13:48:10 +0200156#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100157
158/** There was a storage failure that may have led to data loss.
159 *
160 * This error indicates that some persistent storage is corrupted.
161 * It should not be used for a corruption of volatile memory
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200162 * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100163 * between the cryptoprocessor and its external storage (use
164 * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
165 * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
166 *
167 * Note that a storage failure does not indicate that any data that was
168 * previously read is invalid. However this previously read data may no
169 * longer be readable from storage.
170 *
171 * When a storage failure occurs, it is no longer possible to ensure
172 * the global integrity of the keystore. Depending on the global
173 * integrity guarantees offered by the implementation, access to other
174 * data may or may not fail even if the data is still readable but
Gilles Peskinebf7a98b2019-02-22 16:42:11 +0100175 * its integrity cannot be guaranteed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100176 *
177 * Implementations should only use this error code to report a
178 * permanent storage corruption. However application writers should
179 * keep in mind that transient errors while reading the storage may be
180 * reported using this error code. */
David Saadab4ecc272019-02-14 13:48:10 +0200181#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100182
183/** A hardware failure was detected.
184 *
185 * A hardware failure may be transient or permanent depending on the
186 * cause. */
David Saadab4ecc272019-02-14 13:48:10 +0200187#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100188
189/** A tampering attempt was detected.
190 *
191 * If an application receives this error code, there is no guarantee
192 * that previously accessed or computed data was correct and remains
193 * confidential. Applications should not perform any security function
194 * and should enter a safe failure state.
195 *
196 * Implementations may return this error code if they detect an invalid
197 * state that cannot happen during normal operation and that indicates
198 * that the implementation's security guarantees no longer hold. Depending
199 * on the implementation architecture and on its security and safety goals,
200 * the implementation may forcibly terminate the application.
201 *
202 * This error code is intended as a last resort when a security breach
203 * is detected and it is unsure whether the keystore data is still
204 * protected. Implementations shall only return this error code
205 * to report an alarm from a tampering detector, to indicate that
206 * the confidentiality of stored data can no longer be guaranteed,
207 * or to indicate that the integrity of previously returned data is now
208 * considered compromised. Implementations shall not use this error code
209 * to indicate a hardware failure that merely makes it impossible to
210 * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
211 * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
212 * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
213 * instead).
214 *
215 * This error indicates an attack against the application. Implementations
216 * shall not return this error code as a consequence of the behavior of
217 * the application itself. */
Gilles Peskine4b3eb692019-05-16 21:35:18 +0200218#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100219
220/** There is not enough entropy to generate random data needed
221 * for the requested action.
222 *
223 * This error indicates a failure of a hardware random generator.
224 * Application writers should note that this error can be returned not
225 * only by functions whose purpose is to generate random data, such
226 * as key, IV or nonce generation, but also by functions that execute
227 * an algorithm with a randomized result, as well as functions that
228 * use randomization of intermediate computations as a countermeasure
229 * to certain attacks.
230 *
231 * Implementations should avoid returning this error after psa_crypto_init()
232 * has succeeded. Implementations should generate sufficient
233 * entropy during initialization and subsequently use a cryptographically
234 * secure pseudorandom generator (PRNG). However implementations may return
235 * this error at any time if a policy requires the PRNG to be reseeded
236 * during normal operation. */
David Saadab4ecc272019-02-14 13:48:10 +0200237#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100238
239/** The signature, MAC or hash is incorrect.
240 *
241 * Verification functions return this error if the verification
242 * calculations completed successfully, and the value to be verified
243 * was determined to be incorrect.
244 *
245 * If the value to verify has an invalid size, implementations may return
246 * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
David Saadab4ecc272019-02-14 13:48:10 +0200247#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100248
249/** The decrypted padding is incorrect.
250 *
251 * \warning In some protocols, when decrypting data, it is essential that
252 * the behavior of the application does not depend on whether the padding
253 * is correct, down to precise timing. Applications should prefer
254 * protocols that use authenticated encryption rather than plain
255 * encryption. If the application must perform a decryption of
256 * unauthenticated data, the application writer should take care not
257 * to reveal whether the padding is invalid.
258 *
259 * Implementations should strive to make valid and invalid padding
260 * as close as possible to indistinguishable to an external observer.
261 * In particular, the timing of a decryption operation should not
262 * depend on the validity of the padding. */
David Saadab4ecc272019-02-14 13:48:10 +0200263#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100264
David Saadab4ecc272019-02-14 13:48:10 +0200265/** Return this error when there's insufficient data when attempting
266 * to read from a resource. */
267#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100268
Ronald Croncf56a0a2020-08-04 09:51:30 +0200269/** The key identifier is not valid. See also :ref:\`key-handles\`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100270 */
David Saadab4ecc272019-02-14 13:48:10 +0200271#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100272
gabor-mezei-arm3d8b4f52020-11-09 16:36:46 +0100273/** Stored data has been corrupted.
274 *
275 * This error indicates that some persistent storage has suffered corruption.
276 * It does not indicate the following situations, which have specific error
277 * codes:
278 *
279 * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
280 * - A communication error between the cryptoprocessor and its external
281 * storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
282 * - When the storage is in a valid state but is full - use
283 * #PSA_ERROR_INSUFFICIENT_STORAGE.
284 * - When the storage fails for other reasons - use
285 * #PSA_ERROR_STORAGE_FAILURE.
286 * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
287 *
288 * \note A storage corruption does not indicate that any data that was
289 * previously read is invalid. However this previously read data might no
290 * longer be readable from storage.
291 *
292 * When a storage failure occurs, it is no longer possible to ensure the
293 * global integrity of the keystore.
294 */
295#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
296
gabor-mezei-armfe309242020-11-09 17:39:56 +0100297/** Data read from storage is not valid for the implementation.
298 *
299 * This error indicates that some data read from storage does not have a valid
300 * format. It does not indicate the following situations, which have specific
301 * error codes:
302 *
303 * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
304 * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
305 * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
306 *
307 * This error is typically a result of either storage corruption on a
308 * cleartext storage backend, or an attempt to read data that was
309 * written by an incompatible version of the library.
310 */
311#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
312
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100313/**@}*/
314
315/** \defgroup crypto_types Key and algorithm types
316 * @{
317 */
318
319/** An invalid key type value.
320 *
321 * Zero is not the encoding of any key type.
322 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100323#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100324
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100325/** Vendor-defined key type flag.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100326 *
327 * Key types defined by this standard will never have the
328 * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
329 * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
330 * respect the bitwise structure used by standard encodings whenever practical.
331 */
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100332#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x8000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100333
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100334#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7000)
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100335#define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x1000)
336#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x2000)
337#define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x4000)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100338#define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x7000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100339
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100340#define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x3000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100341
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100342/** Whether a key type is vendor-defined.
343 *
344 * See also #PSA_KEY_TYPE_VENDOR_FLAG.
345 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100346#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
347 (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
348
349/** Whether a key type is an unstructured array of bytes.
350 *
351 * This encompasses both symmetric keys and non-key data.
352 */
353#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100354 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
355 ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100356
357/** Whether a key type is asymmetric: either a key pair or a public key. */
358#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
359 (((type) & PSA_KEY_TYPE_CATEGORY_MASK \
360 & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \
361 PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
362/** Whether a key type is the public part of a key pair. */
363#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
364 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
365/** Whether a key type is a key pair containing a private part and a public
366 * part. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200367#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100368 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
369/** The key pair type corresponding to a public key type.
370 *
371 * You may also pass a key pair type as \p type, it will be left unchanged.
372 *
373 * \param type A public key type or key pair type.
374 *
375 * \return The corresponding key pair type.
376 * If \p type is not a public key or a key pair,
377 * the return value is undefined.
378 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200379#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100380 ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
381/** The public key type corresponding to a key pair type.
382 *
383 * You may also pass a key pair type as \p type, it will be left unchanged.
384 *
385 * \param type A public key type or key pair type.
386 *
387 * \return The corresponding public key type.
388 * If \p type is not a public key or a key pair,
389 * the return value is undefined.
390 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200391#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100392 ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
393
394/** Raw data.
395 *
396 * A "key" of this type cannot be used for any cryptographic operation.
397 * Applications may use this type to store arbitrary data in the keystore. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100398#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100399
400/** HMAC key.
401 *
402 * The key policy determines which underlying hash algorithm the key can be
403 * used for.
404 *
405 * HMAC keys should generally have the same size as the underlying hash.
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100406 * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100407 * \c alg is the HMAC algorithm or the underlying hash algorithm. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100408#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100409
410/** A secret for key derivation.
411 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200412 * This key type is for high-entropy secrets only. For low-entropy secrets,
413 * #PSA_KEY_TYPE_PASSWORD should be used instead.
414 *
415 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
416 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
417 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100418 * The key policy determines which key derivation algorithm the key
419 * can be used for.
420 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100421#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100422
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200423/** A low-entropy secret for password hashing or key derivation.
424 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200425 * This key type is suitable for passwords and passphrases which are typically
426 * intended to be memorizable by humans, and have a low entropy relative to
427 * their size. It can be used for randomly generated or derived keys with
Manuel Pégourié-Gonnardf9a68ad2021-05-07 12:11:38 +0200428 * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200429 * for such keys. It is not suitable for passwords with extremely low entropy,
430 * such as numerical PINs.
431 *
432 * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
433 * key derivation algorithms. Algorithms that accept such an input were
434 * designed to accept low-entropy secret and are known as password hashing or
435 * key stretching algorithms.
436 *
437 * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
438 * key derivation algorithms, as the algorithms that take such an input expect
439 * it to be high-entropy.
440 *
441 * The key policy determines which key derivation algorithm the key can be
442 * used for, among the permissible subset defined above.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200443 */
Manuel Pégourié-Gonnardc16033e2021-04-30 11:59:40 +0200444#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200445
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200446/** A secret value that can be used to verify a password hash.
447 *
448 * The key policy determines which key derivation algorithm the key
449 * can be used for, among the same permissible subset as for
450 * #PSA_KEY_TYPE_PASSWORD.
451 */
452#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
453
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200454/** A secret value that can be used in when computing a password hash.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200455 *
456 * The key policy determines which key derivation algorithm the key
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200457 * can be used for, among the subset of algorithms that can use pepper.
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200458 */
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +0200459#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
Manuel Pégourié-Gonnard31cbbef2021-04-20 11:18:25 +0200460
Gilles Peskine737c6be2019-05-21 16:01:06 +0200461/** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100462 *
463 * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
464 * 32 bytes (AES-256).
465 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100466#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100467
468/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
469 *
Gilles Peskine7e54a292021-03-16 18:21:34 +0100470 * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
471 * 192 bits (3-key 3DES).
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100472 *
473 * Note that single DES and 2-key 3DES are weak and strongly
474 * deprecated and should only be used to decrypt legacy data. 3-key 3DES
475 * is weak and deprecated and should only be used in legacy protocols.
476 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100477#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100478
Gilles Peskine737c6be2019-05-21 16:01:06 +0200479/** Key for a cipher, AEAD or MAC algorithm based on the
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100480 * Camellia block cipher. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100481#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100482
483/** Key for the RC4 stream cipher.
484 *
485 * Note that RC4 is weak and deprecated and should only be used in
486 * legacy protocols. */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100487#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100488
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200489/** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
490 *
491 * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
492 *
493 * Implementations must support 12-byte nonces, may support 8-byte nonces,
494 * and should reject other sizes.
495 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100496#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +0200497
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100498/** RSA public key.
499 *
500 * The size of an RSA key is the bit size of the modulus.
501 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100502#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100503/** RSA key pair (private and public key).
504 *
505 * The size of an RSA key is the bit size of the modulus.
506 */
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100507#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100508/** Whether a key type is an RSA key (pair or public-only). */
509#define PSA_KEY_TYPE_IS_RSA(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200510 (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100511
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100512#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x4100)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100513#define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE ((psa_key_type_t)0x7100)
514#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100515/** Elliptic curve key pair.
516 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100517 * The size of an elliptic curve key is the bit size associated with the curve,
518 * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
519 * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
520 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100521 * \param curve A value of type ::psa_ecc_family_t that
522 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100523 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200524#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
525 (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100526/** Elliptic curve public key.
527 *
Gilles Peskine6a427bf2021-03-16 18:19:18 +0100528 * The size of an elliptic curve public key is the same as the corresponding
529 * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
530 * `PSA_ECC_FAMILY_xxx` curve families).
531 *
Paul Elliott8ff510a2020-06-02 17:19:28 +0100532 * \param curve A value of type ::psa_ecc_family_t that
533 * identifies the ECC curve to be used.
Andrew Thoelke214064e2019-09-25 22:16:21 +0100534 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100535#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
536 (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
537
538/** Whether a key type is an elliptic curve key (pair or public-only). */
539#define PSA_KEY_TYPE_IS_ECC(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200540 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100541 ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100542/** Whether a key type is an elliptic curve key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200543#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100544 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200545 PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
Gilles Peskine5e9c9cc2018-12-12 14:02:48 +0100546/** Whether a key type is an elliptic curve public key. */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100547#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
548 (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \
549 PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
550
551/** Extract the curve from an elliptic curve key type. */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100552#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
553 ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100554 ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
555 0))
556
Gilles Peskine228abc52019-12-03 17:24:19 +0100557/** SEC Koblitz curves over prime fields.
558 *
559 * This family comprises the following curves:
560 * secp192k1, secp224k1, secp256k1.
561 * They are defined in _Standards for Efficient Cryptography_,
562 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
563 * https://www.secg.org/sec2-v2.pdf
564 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100565#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
Gilles Peskine228abc52019-12-03 17:24:19 +0100566
567/** SEC random curves over prime fields.
568 *
569 * This family comprises the following curves:
570 * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
571 * They are defined in _Standards for Efficient Cryptography_,
572 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
573 * https://www.secg.org/sec2-v2.pdf
574 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100575#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
Gilles Peskine228abc52019-12-03 17:24:19 +0100576/* SECP160R2 (SEC2 v1, obsolete) */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100577#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100578
579/** SEC Koblitz curves over binary fields.
580 *
581 * This family comprises the following curves:
582 * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
583 * They are defined in _Standards for Efficient Cryptography_,
584 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
585 * https://www.secg.org/sec2-v2.pdf
586 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100587#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
Gilles Peskine228abc52019-12-03 17:24:19 +0100588
589/** SEC random curves over binary fields.
590 *
591 * This family comprises the following curves:
592 * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
593 * They are defined in _Standards for Efficient Cryptography_,
594 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
595 * https://www.secg.org/sec2-v2.pdf
596 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100597#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
Gilles Peskine228abc52019-12-03 17:24:19 +0100598
599/** SEC additional random curves over binary fields.
600 *
601 * This family comprises the following curve:
602 * sect163r2.
603 * It is defined in _Standards for Efficient Cryptography_,
604 * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
605 * https://www.secg.org/sec2-v2.pdf
606 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100607#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
Gilles Peskine228abc52019-12-03 17:24:19 +0100608
609/** Brainpool P random curves.
610 *
611 * This family comprises the following curves:
612 * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
613 * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
614 * It is defined in RFC 5639.
615 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100616#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
Gilles Peskine228abc52019-12-03 17:24:19 +0100617
618/** Curve25519 and Curve448.
619 *
620 * This family comprises the following Montgomery curves:
621 * - 255-bit: Bernstein et al.,
622 * _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
623 * The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
624 * - 448-bit: Hamburg,
625 * _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
626 * The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
627 */
Paul Elliott8ff510a2020-06-02 17:19:28 +0100628#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
Gilles Peskine228abc52019-12-03 17:24:19 +0100629
Gilles Peskine67546802021-02-24 21:49:40 +0100630/** The twisted Edwards curves Ed25519 and Ed448.
631 *
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100632 * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
Gilles Peskinea00abc62021-03-16 18:25:14 +0100633 * #PSA_ALG_ED25519PH for the 255-bit curve,
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100634 * #PSA_ALG_ED448PH for the 448-bit curve).
Gilles Peskine67546802021-02-24 21:49:40 +0100635 *
636 * This family comprises the following twisted Edwards curves:
Gilles Peskinea00abc62021-03-16 18:25:14 +0100637 * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
Gilles Peskine67546802021-02-24 21:49:40 +0100638 * to Curve25519.
639 * Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
640 * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
641 * to Curve448.
642 * Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
643 */
644#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
645
Gilles Peskine7cfcb3f2019-12-04 18:58:44 +0100646#define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE ((psa_key_type_t)0x4200)
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100647#define PSA_KEY_TYPE_DH_KEY_PAIR_BASE ((psa_key_type_t)0x7200)
648#define PSA_KEY_TYPE_DH_GROUP_MASK ((psa_key_type_t)0x00ff)
Andrew Thoelke214064e2019-09-25 22:16:21 +0100649/** Diffie-Hellman key pair.
650 *
Paul Elliott75e27032020-06-03 15:17:39 +0100651 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100652 * Diffie-Hellman group to be used.
653 */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200654#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
655 (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
Andrew Thoelke214064e2019-09-25 22:16:21 +0100656/** Diffie-Hellman public key.
657 *
Paul Elliott75e27032020-06-03 15:17:39 +0100658 * \param group A value of type ::psa_dh_family_t that identifies the
Andrew Thoelke214064e2019-09-25 22:16:21 +0100659 * Diffie-Hellman group to be used.
660 */
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200661#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
662 (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
663
664/** Whether a key type is a Diffie-Hellman key (pair or public-only). */
665#define PSA_KEY_TYPE_IS_DH(type) \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200666 ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200667 ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
668/** Whether a key type is a Diffie-Hellman key pair. */
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200669#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200670 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
Gilles Peskinec93b80c2019-05-16 19:39:54 +0200671 PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200672/** Whether a key type is a Diffie-Hellman public key. */
673#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
674 (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) == \
675 PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
676
677/** Extract the group from a Diffie-Hellman key type. */
Paul Elliott75e27032020-06-03 15:17:39 +0100678#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
679 ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ? \
Gilles Peskinedcaefae2019-05-16 12:55:35 +0200680 ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) : \
681 0))
682
Gilles Peskine228abc52019-12-03 17:24:19 +0100683/** Diffie-Hellman groups defined in RFC 7919 Appendix A.
684 *
685 * This family includes groups with the following key sizes (in bits):
686 * 2048, 3072, 4096, 6144, 8192. A given implementation may support
687 * all of these sizes or only a subset.
688 */
Paul Elliott75e27032020-06-03 15:17:39 +0100689#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
Gilles Peskine228abc52019-12-03 17:24:19 +0100690
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100691#define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) \
Gilles Peskinef65ed6f2019-12-04 17:18:41 +0100692 (((type) >> 8) & 7)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100693/** The block size of a block cipher.
694 *
695 * \param type A cipher key type (value of type #psa_key_type_t).
696 *
697 * \return The block size for a block cipher, or 1 for a stream cipher.
698 * The return value is undefined if \p type is not a supported
699 * cipher key type.
700 *
701 * \note It is possible to build stream cipher algorithms on top of a block
702 * cipher, for example CTR mode (#PSA_ALG_CTR).
703 * This macro only takes the key type into account, so it cannot be
704 * used to determine the size of the data that #psa_cipher_update()
705 * might buffer for future processing in general.
706 *
707 * \note This macro returns a compile-time constant if its argument is one.
708 *
709 * \warning This macro may evaluate its argument multiple times.
710 */
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100711#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100712 (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
gabor-mezei-armcbcec212020-12-18 14:23:51 +0100713 1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) : \
Gilles Peskine2eea95c2019-12-02 17:44:12 +0100714 0u)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100715
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100716/** Vendor-defined algorithm flag.
717 *
718 * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
719 * bit set. Vendors who define additional algorithms must use an encoding with
720 * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
721 * used by standard encodings whenever practical.
722 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100723#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100724
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100725#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100726#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x02000000)
727#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x03000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100728#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100729#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x05000000)
730#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x06000000)
731#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x07000000)
732#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x08000000)
733#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x09000000)
Janos Follath9c6b1472021-03-21 15:11:01 +0000734#define PSA_ALG_CATEGORY_PAKE ((psa_algorithm_t)0x0a000000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100735
Andrew Thoelkedd49cf92019-09-24 13:11:49 +0100736/** Whether an algorithm is vendor-defined.
737 *
738 * See also #PSA_ALG_VENDOR_FLAG.
739 */
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100740#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
741 (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
742
743/** Whether the specified algorithm is a hash algorithm.
744 *
745 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
746 *
747 * \return 1 if \p alg is a hash algorithm, 0 otherwise.
748 * This macro may return either 0 or 1 if \p alg is not a supported
749 * algorithm identifier.
750 */
751#define PSA_ALG_IS_HASH(alg) \
752 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
753
754/** Whether the specified algorithm is a MAC algorithm.
755 *
756 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
757 *
758 * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
759 * This macro may return either 0 or 1 if \p alg is not a supported
760 * algorithm identifier.
761 */
762#define PSA_ALG_IS_MAC(alg) \
763 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
764
765/** Whether the specified algorithm is a symmetric cipher algorithm.
766 *
767 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
768 *
769 * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
770 * This macro may return either 0 or 1 if \p alg is not a supported
771 * algorithm identifier.
772 */
773#define PSA_ALG_IS_CIPHER(alg) \
774 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
775
776/** Whether the specified algorithm is an authenticated encryption
777 * with associated data (AEAD) algorithm.
778 *
779 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
780 *
781 * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
782 * This macro may return either 0 or 1 if \p alg is not a supported
783 * algorithm identifier.
784 */
785#define PSA_ALG_IS_AEAD(alg) \
786 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
787
Gilles Peskine4eb05a42020-05-26 17:07:16 +0200788/** Whether the specified algorithm is an asymmetric signature algorithm,
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200789 * also known as public-key signature algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100790 *
791 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
792 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200793 * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100794 * This macro may return either 0 or 1 if \p alg is not a supported
795 * algorithm identifier.
796 */
797#define PSA_ALG_IS_SIGN(alg) \
798 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
799
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200800/** Whether the specified algorithm is an asymmetric encryption algorithm,
801 * also known as public-key encryption algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100802 *
803 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
804 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +0200805 * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100806 * This macro may return either 0 or 1 if \p alg is not a supported
807 * algorithm identifier.
808 */
809#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
810 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
811
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100812/** Whether the specified algorithm is a key agreement algorithm.
813 *
814 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
815 *
816 * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
817 * This macro may return either 0 or 1 if \p alg is not a supported
818 * algorithm identifier.
819 */
820#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +0100821 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100822
823/** Whether the specified algorithm is a key derivation algorithm.
824 *
825 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
826 *
827 * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
828 * This macro may return either 0 or 1 if \p alg is not a supported
829 * algorithm identifier.
830 */
831#define PSA_ALG_IS_KEY_DERIVATION(alg) \
832 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
833
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200834/** Whether the specified algorithm is a key stretching / password hashing
835 * algorithm.
836 *
837 * A key stretching / password hashing algorithm is a key derivation algorithm
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +0200838 * that is suitable for use with a low-entropy secret such as a password.
839 * Equivalently, it's a key derivation algorithm that uses a
840 * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +0200841 *
842 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
843 *
844 * \return 1 if \p alg is a key stretching / passowrd hashing algorithm, 0
845 * otherwise. This macro may return either 0 or 1 if \p alg is not a
846 * supported algorithm identifier.
847 */
848#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
849 (PSA_ALG_IS_KEY_DERIVATION(alg) && \
850 (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
851
Janos Follath9c6b1472021-03-21 15:11:01 +0000852/** Whether the specified algorithm is a password-authenticated key exchange.
853 *
854 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
855 *
856 * \return 1 if \p alg is a password-authenticated key exchange (PAKE)
857 * algorithm, 0 otherwise.
858 * This macro may return either 0 or 1 if \p alg is not a supported
859 * algorithm identifier.
860 */
861#define PSA_ALG_IS_PAKE(alg) \
862 (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_PAKE)
863
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100864#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100865/** MD2 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100866#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100867/** MD4 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100868#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100869/** MD5 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100870#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100871/** PSA_ALG_RIPEMD160 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100872#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
Adrian L. Shaw21e71452019-09-20 16:01:11 +0100873/** SHA1 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100874#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100875/** SHA2-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100876#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100877/** SHA2-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100878#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100879/** SHA2-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100880#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100881/** SHA2-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100882#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100883/** SHA2-512/224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100884#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100885/** SHA2-512/256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100886#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100887/** SHA3-224 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100888#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100889/** SHA3-256 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100890#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100891/** SHA3-384 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100892#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100893/** SHA3-512 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100894#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
Gilles Peskine27354692021-03-03 17:45:06 +0100895/** The first 512 bits (64 bytes) of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +0100896 *
897 * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
898 * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
899 * has the same output size and a (theoretically) higher security strength.
900 */
Gilles Peskine27354692021-03-03 17:45:06 +0100901#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100902
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100903/** In a hash-and-sign algorithm policy, allow any hash algorithm.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100904 *
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100905 * This value may be used to form the algorithm usage field of a policy
906 * for a signature algorithm that is parametrized by a hash. The key
907 * may then be used to perform operations using the same signature
908 * algorithm parametrized with any supported hash.
909 *
910 * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100911 * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS,
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100912 * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
Gilles Peskine763fb9a2019-01-28 13:29:01 +0100913 * Then you may create and use a key as follows:
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100914 * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
915 * ```
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100916 * psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
Gilles Peskine80b39ae2019-05-15 16:09:46 +0200917 * psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100918 * ```
919 * - Import or generate key material.
Gilles Peskine89d8c5c2019-11-26 17:01:59 +0100920 * - Call psa_sign_hash() or psa_verify_hash(), passing
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100921 * an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
922 * call to sign or verify a message may use a different hash.
923 * ```
Ronald Croncf56a0a2020-08-04 09:51:30 +0200924 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
925 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
926 * psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100927 * ```
928 *
929 * This value may not be used to build other algorithms that are
930 * parametrized over a hash. For any valid use of this macro to build
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100931 * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100932 *
933 * This value may not be used to build an algorithm specification to
934 * perform an operation. It is only valid to build policies.
935 */
Bence Szépkútia2945512020-12-03 21:40:17 +0100936#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
Gilles Peskine30f77cd2019-01-14 16:06:39 +0100937
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100938#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
Bence Szépkútia2945512020-12-03 21:40:17 +0100939#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x03800000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100940/** Macro to build an HMAC algorithm.
941 *
942 * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
943 *
944 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
945 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
946 *
947 * \return The corresponding HMAC algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +0100948 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100949 * hash algorithm.
950 */
951#define PSA_ALG_HMAC(hash_alg) \
952 (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
953
954#define PSA_ALG_HMAC_GET_HASH(hmac_alg) \
955 (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
956
957/** Whether the specified algorithm is an HMAC algorithm.
958 *
959 * HMAC is a family of MAC algorithms that are based on a hash function.
960 *
961 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
962 *
963 * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
964 * This macro may return either 0 or 1 if \p alg is not a supported
965 * algorithm identifier.
966 */
967#define PSA_ALG_IS_HMAC(alg) \
968 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
969 PSA_ALG_HMAC_BASE)
970
971/* In the encoding of a MAC algorithm, the bits corresponding to
972 * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
973 * truncated. As an exception, the value 0 means the untruncated algorithm,
974 * whatever its length is. The length is encoded in 6 bits, so it can
975 * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
976 * to full length is correctly encoded as 0 and any non-trivial truncation
977 * is correctly encoded as a value between 1 and 63. */
Bence Szépkútia2945512020-12-03 21:40:17 +0100978#define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x003f0000)
979#define PSA_MAC_TRUNCATION_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100980
Steven Cooremand927ed72021-02-22 19:59:35 +0100981/* In the encoding of a MAC algorithm, the bit corresponding to
982 * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +0100983 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
984 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +0100985 * same base class and having a (potentially truncated) MAC length greater or
986 * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
987#define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
988
Gilles Peskinef3b731e2018-12-12 13:38:31 +0100989/** Macro to build a truncated MAC algorithm.
990 *
991 * A truncated MAC algorithm is identical to the corresponding MAC
992 * algorithm except that the MAC value for the truncated algorithm
993 * consists of only the first \p mac_length bytes of the MAC value
994 * for the untruncated algorithm.
995 *
996 * \note This macro may allow constructing algorithm identifiers that
997 * are not valid, either because the specified length is larger
998 * than the untruncated MAC or because the specified length is
999 * smaller than permitted by the implementation.
1000 *
1001 * \note It is implementation-defined whether a truncated MAC that
1002 * is truncated to the same length as the MAC of the untruncated
1003 * algorithm is considered identical to the untruncated algorithm
1004 * for policy comparison purposes.
1005 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001006 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001007 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001008 * is true). This may be a truncated or untruncated
1009 * MAC algorithm.
1010 * \param mac_length Desired length of the truncated MAC in bytes.
1011 * This must be at most the full length of the MAC
1012 * and must be at least an implementation-specified
1013 * minimum. The implementation-specified minimum
1014 * shall not be zero.
1015 *
1016 * \return The corresponding MAC algorithm with the specified
1017 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001018 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001019 * MAC algorithm or if \p mac_length is too small or
1020 * too large for the specified MAC algorithm.
1021 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001022#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
1023 (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1024 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001025 ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1026
1027/** Macro to build the base MAC algorithm corresponding to a truncated
1028 * MAC algorithm.
1029 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001030 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001031 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001032 * is true). This may be a truncated or untruncated
1033 * MAC algorithm.
1034 *
1035 * \return The corresponding base MAC algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001036 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001037 * MAC algorithm.
1038 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001039#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
1040 ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK | \
1041 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001042
1043/** Length to which a MAC algorithm is truncated.
1044 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001045 * \param mac_alg A MAC algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001046 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001047 * is true).
1048 *
1049 * \return Length of the truncated MAC in bytes.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001050 * \return 0 if \p mac_alg is a non-truncated MAC algorithm.
1051 * \return Unspecified if \p mac_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001052 * MAC algorithm.
1053 */
Gilles Peskine434899f2018-10-19 11:30:26 +02001054#define PSA_MAC_TRUNCATED_LENGTH(mac_alg) \
1055 (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001056
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001057/** Macro to build a MAC minimum-MAC-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001058 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001059 * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001060 * sharing the same base algorithm, and where the (potentially truncated) MAC
1061 * length of the specific algorithm is equal to or larger then the wildcard
1062 * algorithm's minimum MAC length.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001063 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001064 * \note When setting the minimum required MAC length to less than the
1065 * smallest MAC length allowed by the base algorithm, this effectively
1066 * becomes an 'any-MAC-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001067 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001068 * \param mac_alg A MAC algorithm identifier (value of type
1069 * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1070 * is true).
1071 * \param min_mac_length Desired minimum length of the message authentication
1072 * code in bytes. This must be at most the untruncated
1073 * length of the MAC and must be at least 1.
1074 *
1075 * \return The corresponding MAC wildcard algorithm with the
1076 * specified minimum length.
1077 * \return Unspecified if \p mac_alg is not a supported MAC
1078 * algorithm or if \p min_mac_length is less than 1 or
1079 * too large for the specified MAC algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001080 */
Steven Cooreman328f11c2021-03-02 11:44:51 +01001081#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
1082 ( PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | \
1083 PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001084
Bence Szépkútia2945512020-12-03 21:40:17 +01001085#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x03c00000)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001086/** The CBC-MAC construction over a block cipher
1087 *
1088 * \warning CBC-MAC is insecure in many cases.
1089 * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1090 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001091#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001092/** The CMAC construction over a block cipher */
Bence Szépkútia2945512020-12-03 21:40:17 +01001093#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001094
1095/** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1096 *
1097 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1098 *
1099 * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1100 * This macro may return either 0 or 1 if \p alg is not a supported
1101 * algorithm identifier.
1102 */
1103#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
1104 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1105 PSA_ALG_CIPHER_MAC_BASE)
1106
1107#define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000)
1108#define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1109
1110/** Whether the specified algorithm is a stream cipher.
1111 *
1112 * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1113 * by applying a bitwise-xor with a stream of bytes that is generated
1114 * from a key.
1115 *
1116 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1117 *
1118 * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1119 * This macro may return either 0 or 1 if \p alg is not a supported
1120 * algorithm identifier or if it is not a symmetric cipher algorithm.
1121 */
1122#define PSA_ALG_IS_STREAM_CIPHER(alg) \
1123 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1124 (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1125
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001126/** The stream cipher mode of a stream cipher algorithm.
1127 *
1128 * The underlying stream cipher is determined by the key type.
Bence Szépkúti99ffb2b2020-12-08 00:08:31 +01001129 * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1130 * - To use ARC4, use a key type of #PSA_KEY_TYPE_ARC4.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001131 */
Bence Szépkúti1de907d2020-12-07 18:20:28 +01001132#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001133
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001134/** The CTR stream cipher mode.
1135 *
1136 * CTR is a stream cipher which is built from a block cipher.
1137 * The underlying block cipher is determined by the key type.
1138 * For example, to use AES-128-CTR, use this algorithm with
1139 * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1140 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001141#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001142
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001143/** The CFB stream cipher mode.
1144 *
1145 * The underlying block cipher is determined by the key type.
1146 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001147#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001148
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001149/** The OFB stream cipher mode.
1150 *
1151 * The underlying block cipher is determined by the key type.
1152 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001153#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001154
1155/** The XTS cipher mode.
1156 *
1157 * XTS is a cipher mode which is built from a block cipher. It requires at
1158 * least one full block of input, but beyond this minimum the input
1159 * does not need to be a whole number of blocks.
1160 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001161#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001162
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001163/** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1164 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001165 * \warning ECB mode does not protect the confidentiality of the encrypted data
1166 * except in extremely narrow circumstances. It is recommended that applications
1167 * only use ECB if they need to construct an operating mode that the
1168 * implementation does not provide. Implementations are encouraged to provide
1169 * the modes that applications need in preference to supporting direct access
1170 * to ECB.
1171 *
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001172 * The underlying block cipher is determined by the key type.
1173 *
Steven Cooremana6033e92020-08-25 11:47:50 +02001174 * This symmetric cipher mode can only be used with messages whose lengths are a
1175 * multiple of the block size of the chosen block cipher.
1176 *
1177 * ECB mode does not accept an initialization vector (IV). When using a
1178 * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1179 * and psa_cipher_set_iv() must not be called.
Steven Cooremaned3c9ec2020-07-06 14:08:59 +02001180 */
1181#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
1182
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001183/** The CBC block cipher chaining mode, with no padding.
1184 *
1185 * The underlying block cipher is determined by the key type.
1186 *
1187 * This symmetric cipher mode can only be used with messages whose lengths
1188 * are whole number of blocks for the chosen block cipher.
1189 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001190#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001191
1192/** The CBC block cipher chaining mode with PKCS#7 padding.
1193 *
1194 * The underlying block cipher is determined by the key type.
1195 *
1196 * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1197 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001198#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001199
Gilles Peskine679693e2019-05-06 15:10:16 +02001200#define PSA_ALG_AEAD_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000)
1201
1202/** Whether the specified algorithm is an AEAD mode on a block cipher.
1203 *
1204 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1205 *
1206 * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1207 * a block cipher, 0 otherwise.
1208 * This macro may return either 0 or 1 if \p alg is not a supported
1209 * algorithm identifier.
1210 */
1211#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
1212 (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1213 (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1214
Gilles Peskine9153ec02019-02-15 13:02:02 +01001215/** The CCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001216 *
1217 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001218 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001219#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
Gilles Peskine9153ec02019-02-15 13:02:02 +01001220
1221/** The GCM authenticated encryption algorithm.
Adrian L. Shawfd2aed42019-07-11 15:47:40 +01001222 *
1223 * The underlying block cipher is determined by the key type.
Gilles Peskine9153ec02019-02-15 13:02:02 +01001224 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001225#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
Gilles Peskine679693e2019-05-06 15:10:16 +02001226
1227/** The Chacha20-Poly1305 AEAD algorithm.
1228 *
1229 * The ChaCha20_Poly1305 construction is defined in RFC 7539.
Gilles Peskine3e79c8e2019-05-06 15:20:04 +02001230 *
1231 * Implementations must support 12-byte nonces, may support 8-byte nonces,
1232 * and should reject other sizes.
1233 *
1234 * Implementations must support 16-byte tags and should reject other sizes.
Gilles Peskine679693e2019-05-06 15:10:16 +02001235 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001236#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001237
1238/* In the encoding of a AEAD algorithm, the bits corresponding to
1239 * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1240 * The constants for default lengths follow this encoding.
1241 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001242#define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x003f0000)
1243#define PSA_AEAD_TAG_LENGTH_OFFSET 16
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001244
Steven Cooremand927ed72021-02-22 19:59:35 +01001245/* In the encoding of an AEAD algorithm, the bit corresponding to
1246 * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
Steven Cooreman328f11c2021-03-02 11:44:51 +01001247 * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1248 * algorithm policy can be used with any algorithm corresponding to the
Steven Cooremand927ed72021-02-22 19:59:35 +01001249 * same base class and having a tag length greater than or equal to the one
1250 * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1251#define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG ((psa_algorithm_t)0x00008000)
1252
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001253/** Macro to build a shortened AEAD algorithm.
1254 *
1255 * A shortened AEAD algorithm is similar to the corresponding AEAD
1256 * algorithm, but has an authentication tag that consists of fewer bytes.
1257 * Depending on the algorithm, the tag length may affect the calculation
1258 * of the ciphertext.
1259 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001260 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001261 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001262 * is true).
1263 * \param tag_length Desired length of the authentication tag in bytes.
1264 *
1265 * \return The corresponding AEAD algorithm with the specified
1266 * length.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001267 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001268 * AEAD algorithm or if \p tag_length is not valid
1269 * for the specified AEAD algorithm.
1270 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001271#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001272 (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | \
1273 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) | \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001274 ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \
1275 PSA_ALG_AEAD_TAG_LENGTH_MASK))
1276
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001277/** Retrieve the tag length of a specified AEAD algorithm
1278 *
1279 * \param aead_alg An AEAD algorithm identifier (value of type
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001280 * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001281 * is true).
1282 *
1283 * \return The tag length specified by the input algorithm.
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001284 * \return Unspecified if \p aead_alg is not a supported
Gilles Peskine87353432021-03-08 17:25:03 +01001285 * AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001286 */
1287#define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg) \
1288 (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> \
1289 PSA_AEAD_TAG_LENGTH_OFFSET )
1290
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001291/** Calculate the corresponding AEAD algorithm with the default tag length.
1292 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001293 * \param aead_alg An AEAD algorithm (\c PSA_ALG_XXX value such that
Gilles Peskine7ef23be2021-03-08 17:19:47 +01001294 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001295 *
Gilles Peskine434899f2018-10-19 11:30:26 +02001296 * \return The corresponding AEAD algorithm with the default
1297 * tag length for that algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001298 */
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001299#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
Unknowne2e19952019-08-21 03:33:04 -04001300 ( \
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001301 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1302 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1303 PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001304 0)
Bence Szépkútia63b20d2020-12-16 11:36:46 +01001305#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref) \
1306 PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) == \
1307 PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001308 ref :
1309
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001310/** Macro to build an AEAD minimum-tag-length wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001311 *
Steven Cooremana1d83222021-02-25 10:20:29 +01001312 * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001313 * sharing the same base algorithm, and where the tag length of the specific
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001314 * algorithm is equal to or larger then the minimum tag length specified by the
1315 * wildcard algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001316 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001317 * \note When setting the minimum required tag length to less than the
1318 * smallest tag length allowed by the base algorithm, this effectively
1319 * becomes an 'any-tag-length-allowed' policy for that base algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001320 *
Steven Cooreman37389c72021-02-18 12:08:41 +01001321 * \param aead_alg An AEAD algorithm identifier (value of type
1322 * #psa_algorithm_t such that
1323 * #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1324 * \param min_tag_length Desired minimum length of the authentication tag in
1325 * bytes. This must be at least 1 and at most the largest
1326 * allowed tag length of the algorithm.
1327 *
1328 * \return The corresponding AEAD wildcard algorithm with the
1329 * specified minimum length.
1330 * \return Unspecified if \p aead_alg is not a supported
1331 * AEAD algorithm or if \p min_tag_length is less than 1
1332 * or too large for the specified AEAD algorithm.
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001333 */
Steven Cooreman5d814812021-02-18 12:11:39 +01001334#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
Steven Cooreman328f11c2021-03-02 11:44:51 +01001335 ( PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | \
1336 PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG )
Steven Cooremanb3ce8152021-02-18 12:03:50 +01001337
Bence Szépkútia2945512020-12-03 21:40:17 +01001338#define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x06000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001339/** RSA PKCS#1 v1.5 signature with hashing.
1340 *
1341 * This is the signature scheme defined by RFC 8017
1342 * (PKCS#1: RSA Cryptography Specifications) under the name
1343 * RSASSA-PKCS1-v1_5.
1344 *
1345 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1346 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001347 * This includes #PSA_ALG_ANY_HASH
1348 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001349 *
1350 * \return The corresponding RSA PKCS#1 v1.5 signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001351 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001352 * hash algorithm.
1353 */
1354#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
1355 (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1356/** Raw PKCS#1 v1.5 signature.
1357 *
1358 * The input to this algorithm is the DigestInfo structure used by
1359 * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1360 * steps 3&ndash;6.
1361 */
1362#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1363#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
1364 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1365
Bence Szépkútia2945512020-12-03 21:40:17 +01001366#define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x06000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001367/** RSA PSS signature with hashing.
1368 *
1369 * This is the signature scheme defined by RFC 8017
1370 * (PKCS#1: RSA Cryptography Specifications) under the name
1371 * RSASSA-PSS, with the message generation function MGF1, and with
1372 * a salt length equal to the length of the hash. The specified
1373 * hash algorithm is used to hash the input message, to create the
1374 * salted hash, and for the mask generation.
1375 *
1376 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1377 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001378 * This includes #PSA_ALG_ANY_HASH
1379 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001380 *
1381 * \return The corresponding RSA PSS signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001382 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001383 * hash algorithm.
1384 */
1385#define PSA_ALG_RSA_PSS(hash_alg) \
1386 (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1387#define PSA_ALG_IS_RSA_PSS(alg) \
1388 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1389
Bence Szépkútia2945512020-12-03 21:40:17 +01001390#define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x06000600)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001391/** ECDSA signature with hashing.
1392 *
1393 * This is the ECDSA signature scheme defined by ANSI X9.62,
1394 * with a random per-message secret number (*k*).
1395 *
1396 * The representation of the signature as a byte string consists of
1397 * the concatentation of the signature values *r* and *s*. Each of
1398 * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1399 * of the base point of the curve in octets. Each value is represented
1400 * in big-endian order (most significant octet first).
1401 *
1402 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1403 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001404 * This includes #PSA_ALG_ANY_HASH
1405 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001406 *
1407 * \return The corresponding ECDSA signature algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001408 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001409 * hash algorithm.
1410 */
1411#define PSA_ALG_ECDSA(hash_alg) \
1412 (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1413/** ECDSA signature without hashing.
1414 *
1415 * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1416 * without specifying a hash algorithm. This algorithm may only be
1417 * used to sign or verify a sequence of bytes that should be an
1418 * already-calculated hash. Note that the input is padded with
1419 * zeros on the left or truncated on the left as required to fit
1420 * the curve size.
1421 */
1422#define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
Bence Szépkútia2945512020-12-03 21:40:17 +01001423#define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x06000700)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001424/** Deterministic ECDSA signature with hashing.
1425 *
1426 * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1427 *
1428 * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1429 *
1430 * Note that when this algorithm is used for verification, signatures
1431 * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1432 * same private key are accepted. In other words,
1433 * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1434 * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1435 *
1436 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1437 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001438 * This includes #PSA_ALG_ANY_HASH
1439 * when specifying the algorithm in a usage policy.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001440 *
1441 * \return The corresponding deterministic ECDSA signature
1442 * algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001443 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001444 * hash algorithm.
1445 */
1446#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
1447 (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
Bence Szépkútia2945512020-12-03 21:40:17 +01001448#define PSA_ALG_ECDSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001449#define PSA_ALG_IS_ECDSA(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001450 (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) == \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001451 PSA_ALG_ECDSA_BASE)
1452#define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \
Gilles Peskine972630e2019-11-29 11:55:48 +01001453 (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001454#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
1455 (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1456#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
1457 (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1458
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001459/** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1460 * using standard parameters.
1461 *
1462 * Contexts are not supported in the current version of this specification
1463 * because there is no suitable signature interface that can take the
1464 * context as a parameter. A future version of this specification may add
1465 * suitable functions and extend this algorithm to support contexts.
1466 *
1467 * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1468 * In this specification, the following curves are supported:
1469 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1470 * in RFC 8032.
1471 * The curve is Edwards25519.
1472 * The hash function used internally is SHA-512.
1473 * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1474 * in RFC 8032.
1475 * The curve is Edwards448.
1476 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001477 * SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001478 *
1479 * This algorithm can be used with psa_sign_message() and
1480 * psa_verify_message(). Since there is no prehashing, it cannot be used
1481 * with psa_sign_hash() or psa_verify_hash().
1482 *
1483 * The signature format is the concatenation of R and S as defined by
1484 * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1485 * string for Ed448).
1486 */
1487#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t)0x06000800)
1488
1489#define PSA_ALG_HASH_EDDSA_BASE ((psa_algorithm_t)0x06000900)
1490#define PSA_ALG_IS_HASH_EDDSA(alg) \
1491 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1492
1493/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
Gilles Peskinee36f8aa2021-03-01 10:20:20 +01001494 * using SHA-512 and the Edwards25519 curve.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001495 *
1496 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1497 *
1498 * This algorithm is Ed25519 as specified in RFC 8032.
1499 * The curve is Edwards25519.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001500 * The prehash is SHA-512.
Gilles Peskinee5fde542021-03-16 18:40:36 +01001501 * The hash function used internally is SHA-512.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001502 *
1503 * This is a hash-and-sign algorithm: to calculate a signature,
1504 * you can either:
1505 * - call psa_sign_message() on the message;
1506 * - or calculate the SHA-512 hash of the message
1507 * with psa_hash_compute()
1508 * or with a multi-part hash operation started with psa_hash_setup(),
1509 * using the hash algorithm #PSA_ALG_SHA_512,
1510 * then sign the calculated hash with psa_sign_hash().
1511 * Verifying a signature is similar, using psa_verify_message() or
1512 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001513 */
1514#define PSA_ALG_ED25519PH \
1515 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1516
1517/** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1518 * using SHAKE256 and the Edwards448 curve.
1519 *
1520 * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1521 *
1522 * This algorithm is Ed448 as specified in RFC 8032.
1523 * The curve is Edwards448.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001524 * The prehash is the first 64 bytes of the SHAKE256 output.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001525 * The hash function used internally is the first 114 bytes of the
Gilles Peskinee5fde542021-03-16 18:40:36 +01001526 * SHAKE256 output.
Gilles Peskineb13ead82021-03-01 10:28:29 +01001527 *
1528 * This is a hash-and-sign algorithm: to calculate a signature,
1529 * you can either:
1530 * - call psa_sign_message() on the message;
1531 * - or calculate the first 64 bytes of the SHAKE256 output of the message
1532 * with psa_hash_compute()
1533 * or with a multi-part hash operation started with psa_hash_setup(),
Gilles Peskine27354692021-03-03 17:45:06 +01001534 * using the hash algorithm #PSA_ALG_SHAKE256_512,
Gilles Peskineb13ead82021-03-01 10:28:29 +01001535 * then sign the calculated hash with psa_sign_hash().
1536 * Verifying a signature is similar, using psa_verify_message() or
1537 * psa_verify_hash() instead of the signature function.
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001538 */
1539#define PSA_ALG_ED448PH \
Gilles Peskine27354692021-03-03 17:45:06 +01001540 (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001541
Gilles Peskine6d400852021-02-24 21:39:52 +01001542/* Default definition, to be overridden if the library is extended with
1543 * more hash-and-sign algorithms that we want to keep out of this header
1544 * file. */
1545#define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1546
Gilles Peskined35b4892019-01-14 16:02:15 +01001547/** Whether the specified algorithm is a hash-and-sign algorithm.
1548 *
Gilles Peskine6cc0a202020-05-05 16:05:26 +02001549 * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1550 * structured in two parts: first the calculation of a hash in a way that
1551 * does not depend on the key, then the calculation of a signature from the
Gilles Peskined35b4892019-01-14 16:02:15 +01001552 * hash value and the key.
1553 *
1554 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1555 *
1556 * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1557 * This macro may return either 0 or 1 if \p alg is not a supported
1558 * algorithm identifier.
1559 */
1560#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
1561 (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
Gilles Peskine3a1101a2021-02-24 21:52:21 +01001562 PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
Gilles Peskine6d400852021-02-24 21:39:52 +01001563 PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
Gilles Peskined35b4892019-01-14 16:02:15 +01001564
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001565/** Whether the specified algorithm is a signature algorithm that can be used
1566 * with psa_sign_message() and psa_verify_message().
1567 *
1568 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1569 *
1570 * \return 1 if alg is a signature algorithm that can be used to sign a
gabor-mezei-arm36658e42021-04-20 12:08:36 +02001571 * message. 0 if \p alg is a signature algorithm that can only be used
1572 * to sign an already-calculated hash. 0 if \p alg is not a signature
1573 * algorithm. This macro can return either 0 or 1 if \p alg is not a
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001574 * supported algorithm identifier.
1575 */
1576#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
gabor-mezei-arm36658e42021-04-20 12:08:36 +02001577 (PSA_ALG_IS_HASH_AND_SIGN(alg) || (alg) == PSA_ALG_PURE_EDDSA )
gabor-mezei-arm4a210192021-04-14 21:14:28 +02001578
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001579/** Get the hash used by a hash-and-sign signature algorithm.
1580 *
1581 * A hash-and-sign algorithm is a signature algorithm which is
1582 * composed of two phases: first a hashing phase which does not use
1583 * the key and produces a hash of the input message, then a signing
1584 * phase which only uses the hash and the key and not the message
1585 * itself.
1586 *
1587 * \param alg A signature algorithm (\c PSA_ALG_XXX value such that
1588 * #PSA_ALG_IS_SIGN(\p alg) is true).
1589 *
1590 * \return The underlying hash algorithm if \p alg is a hash-and-sign
1591 * algorithm.
1592 * \return 0 if \p alg is a signature algorithm that does not
1593 * follow the hash-and-sign structure.
1594 * \return Unspecified if \p alg is not a signature algorithm or
1595 * if it is not supported by the implementation.
1596 */
1597#define PSA_ALG_SIGN_GET_HASH(alg) \
Gilles Peskined35b4892019-01-14 16:02:15 +01001598 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001599 ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \
1600 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1601 0)
1602
1603/** RSA PKCS#1 v1.5 encryption.
1604 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001605#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001606
Bence Szépkútia2945512020-12-03 21:40:17 +01001607#define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x07000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001608/** RSA OAEP encryption.
1609 *
1610 * This is the encryption scheme defined by RFC 8017
1611 * (PKCS#1: RSA Cryptography Specifications) under the name
1612 * RSAES-OAEP, with the message generation function MGF1.
1613 *
1614 * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that
1615 * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1616 * for MGF1.
1617 *
Gilles Peskine9ff8d1f2020-05-05 16:00:17 +02001618 * \return The corresponding RSA OAEP encryption algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001619 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001620 * hash algorithm.
1621 */
1622#define PSA_ALG_RSA_OAEP(hash_alg) \
1623 (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1624#define PSA_ALG_IS_RSA_OAEP(alg) \
1625 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1626#define PSA_ALG_RSA_OAEP_GET_HASH(alg) \
1627 (PSA_ALG_IS_RSA_OAEP(alg) ? \
1628 ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \
1629 0)
1630
Bence Szépkútia2945512020-12-03 21:40:17 +01001631#define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x08000100)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001632/** Macro to build an HKDF algorithm.
1633 *
1634 * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256.
1635 *
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001636 * This key derivation algorithm uses the following inputs:
Gilles Peskine03410b52019-05-16 16:05:19 +02001637 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001638 * It is optional; if omitted, the derivation uses an empty salt.
Gilles Peskine03410b52019-05-16 16:05:19 +02001639 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1640 * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1641 * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1642 * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01001643 * starting to generate output.
1644 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001645 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1646 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1647 *
1648 * \return The corresponding HKDF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001649 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001650 * hash algorithm.
1651 */
1652#define PSA_ALG_HKDF(hash_alg) \
1653 (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1654/** Whether the specified algorithm is an HKDF algorithm.
1655 *
1656 * HKDF is a family of key derivation algorithms that are based on a hash
1657 * function and the HMAC construction.
1658 *
1659 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1660 *
1661 * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1662 * This macro may return either 0 or 1 if \c alg is not a supported
1663 * key derivation algorithm identifier.
1664 */
1665#define PSA_ALG_IS_HKDF(alg) \
1666 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1667#define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \
1668 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1669
Bence Szépkútia2945512020-12-03 21:40:17 +01001670#define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x08000200)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001671/** Macro to build a TLS-1.2 PRF algorithm.
1672 *
1673 * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1674 * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1675 * used with either SHA-256 or SHA-384.
1676 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001677 * This key derivation algorithm uses the following inputs, which must be
1678 * passed in the order given here:
1679 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001680 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1681 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001682 *
1683 * For the application to TLS-1.2 key expansion, the seed is the
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001684 * concatenation of ServerHello.Random + ClientHello.Random,
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001685 * and the label is "key expansion".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001686 *
1687 * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the
1688 * TLS 1.2 PRF using HMAC-SHA-256.
1689 *
1690 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1691 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1692 *
1693 * \return The corresponding TLS-1.2 PRF algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001694 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001695 * hash algorithm.
1696 */
1697#define PSA_ALG_TLS12_PRF(hash_alg) \
1698 (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1699
1700/** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1701 *
1702 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1703 *
1704 * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1705 * This macro may return either 0 or 1 if \c alg is not a supported
1706 * key derivation algorithm identifier.
1707 */
1708#define PSA_ALG_IS_TLS12_PRF(alg) \
1709 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1710#define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \
1711 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1712
Bence Szépkútia2945512020-12-03 21:40:17 +01001713#define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x08000300)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001714/** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1715 *
1716 * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1717 * from the PreSharedKey (PSK) through the application of padding
1718 * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1719 * The latter is based on HMAC and can be used with either SHA-256
1720 * or SHA-384.
1721 *
Gilles Peskineed87d312019-05-29 17:32:39 +02001722 * This key derivation algorithm uses the following inputs, which must be
1723 * passed in the order given here:
1724 * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001725 * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1726 * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02001727 *
1728 * For the application to TLS-1.2, the seed (which is
1729 * forwarded to the TLS-1.2 PRF) is the concatenation of the
1730 * ClientHello.Random + ServerHello.Random,
1731 * and the label is "master secret" or "extended master secret".
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001732 *
1733 * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the
1734 * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
1735 *
1736 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1737 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1738 *
1739 * \return The corresponding TLS-1.2 PSK to MS algorithm.
Gilles Peskine3be6b7f2019-03-05 19:32:26 +01001740 * \return Unspecified if \p hash_alg is not a supported
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001741 * hash algorithm.
1742 */
1743#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
1744 (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1745
1746/** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
1747 *
1748 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1749 *
1750 * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
1751 * This macro may return either 0 or 1 if \c alg is not a supported
1752 * key derivation algorithm identifier.
1753 */
1754#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
1755 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
1756#define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \
1757 (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1758
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001759/* This flag indicates whether the key derivation algorithm is suitable for
1760 * use on low-entropy secrets such as password - these algorithms are also
1761 * known as key stretching or password hashing schemes. These are also the
1762 * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001763 *
1764 * Those algorithms cannot be combined with a key agreement algorithm.
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001765 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001766#define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG ((psa_algorithm_t)0x00800000)
Manuel Pégourié-Gonnard234b1ec2021-04-20 13:07:21 +02001767
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001768#define PSA_ALG_PBKDF2_HMAC_BASE ((psa_algorithm_t)0x08800100)
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001769/** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001770 *
1771 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001772 * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
1773 * HMAC with the specified hash.
1774 * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA256)` specifies PBKDF2
1775 * using the PRF HMAC-SHA-256.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001776 *
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001777 * This key derivation algorithm uses the following inputs, which must be
1778 * provided in the following order:
1779 * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001780 * This input step must be used exactly once.
1781 * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1782 * This input step must be used one or more times; if used several times, the
1783 * inputs will be concatenated. This can be used to build the final salt
1784 * from multiple sources, both public and secret (also known as pepper).
Manuel Pégourié-Gonnard3d722672021-04-30 12:42:36 +02001785 * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02001786 * This input step must be used exactly once.
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001787 *
1788 * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that
1789 * #PSA_ALG_IS_HASH(\p hash_alg) is true).
1790 *
1791 * \return The corresponding PBKDF2-HMAC-XXX algorithm.
1792 * \return Unspecified if \p hash_alg is not a supported
1793 * hash algorithm.
1794 */
1795#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
1796 (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1797
1798/** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
1799 *
1800 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1801 *
1802 * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
1803 * This macro may return either 0 or 1 if \c alg is not a supported
1804 * key derivation algorithm identifier.
1805 */
1806#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
1807 (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
Manuel Pégourié-Gonnard7da57912021-04-20 12:53:07 +02001808
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001809/** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
1810 *
1811 * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
1812 * This macro specifies the PBKDF2 algorithm constructed using the
1813 * AES-CMAC-PRF-128 PRF specified by RFC 4615.
1814 *
1815 * This key derivation algorithm uses the same inputs as
Manuel Pégourié-Gonnard5b79ee22021-05-04 10:34:56 +02001816 * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001817 */
Manuel Pégourié-Gonnard06638ae2021-05-04 10:19:37 +02001818#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
Manuel Pégourié-Gonnard6983b4f2021-05-03 11:41:49 +02001819
Bence Szépkútia2945512020-12-03 21:40:17 +01001820#define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0xfe00ffff)
1821#define PSA_ALG_KEY_AGREEMENT_MASK ((psa_algorithm_t)0xffff0000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001822
Gilles Peskine6843c292019-01-18 16:44:49 +01001823/** Macro to build a combined algorithm that chains a key agreement with
1824 * a key derivation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001825 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001826 * \param ka_alg A key agreement algorithm (\c PSA_ALG_XXX value such
1827 * that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
1828 * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such
1829 * that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001830 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001831 * \return The corresponding key agreement and derivation
1832 * algorithm.
1833 * \return Unspecified if \p ka_alg is not a supported
1834 * key agreement algorithm or \p kdf_alg is not a
1835 * supported key derivation algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001836 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001837#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \
1838 ((ka_alg) | (kdf_alg))
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001839
1840#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
1841 (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
1842
Gilles Peskine6843c292019-01-18 16:44:49 +01001843#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
1844 (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001845
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001846/** Whether the specified algorithm is a raw key agreement algorithm.
1847 *
1848 * A raw key agreement algorithm is one that does not specify
1849 * a key derivation function.
1850 * Usually, raw key agreement algorithms are constructed directly with
1851 * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
Ronald Cron96783552020-10-19 12:06:30 +02001852 * constructed with #PSA_ALG_KEY_AGREEMENT().
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001853 *
1854 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1855 *
1856 * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
1857 * This macro may return either 0 or 1 if \p alg is not a supported
1858 * algorithm identifier.
1859 */
Gilles Peskine6843c292019-01-18 16:44:49 +01001860#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \
Gilles Peskine47e79fb2019-02-08 11:24:59 +01001861 (PSA_ALG_IS_KEY_AGREEMENT(alg) && \
1862 PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
Gilles Peskine6843c292019-01-18 16:44:49 +01001863
1864#define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg) \
1865 ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
1866
1867/** The finite-field Diffie-Hellman (DH) key agreement algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001868 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001869 * The shared secret produced by key agreement is
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001870 * `g^{ab}` in big-endian format.
1871 * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
1872 * in bits.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001873 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001874#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001875
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001876/** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
1877 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001878 * This includes the raw finite field Diffie-Hellman algorithm as well as
1879 * finite-field Diffie-Hellman followed by any supporter key derivation
1880 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001881 *
1882 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1883 *
1884 * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
1885 * This macro may return either 0 or 1 if \c alg is not a supported
1886 * key agreement algorithm identifier.
1887 */
1888#define PSA_ALG_IS_FFDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001889 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001890
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001891/** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
1892 *
Gilles Peskine6843c292019-01-18 16:44:49 +01001893 * The shared secret produced by key agreement is the x-coordinate of
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001894 * the shared secret point. It is always `ceiling(m / 8)` bytes long where
1895 * `m` is the bit size associated with the curve, i.e. the bit size of the
1896 * order of the curve's coordinate field. When `m` is not a multiple of 8,
1897 * the byte containing the most significant bit of the shared secret
1898 * is padded with zero bits. The byte order is either little-endian
1899 * or big-endian depending on the curve type.
1900 *
Paul Elliott8ff510a2020-06-02 17:19:28 +01001901 * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001902 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1903 * in little-endian byte order.
1904 * The bit size is 448 for Curve448 and 255 for Curve25519.
1905 * - For Weierstrass curves over prime fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001906 * `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001907 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1908 * in big-endian byte order.
1909 * The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
1910 * - For Weierstrass curves over binary fields (curve types
Paul Elliott8ff510a2020-06-02 17:19:28 +01001911 * `PSA_ECC_FAMILY_SECTXXX`),
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001912 * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
1913 * in big-endian byte order.
1914 * The bit size is `m` for the field `F_{2^m}`.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001915 */
Bence Szépkútia2945512020-12-03 21:40:17 +01001916#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
Gilles Peskine6843c292019-01-18 16:44:49 +01001917
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001918/** Whether the specified algorithm is an elliptic curve Diffie-Hellman
1919 * algorithm.
1920 *
Gilles Peskine2e37c0d2019-03-05 19:32:02 +01001921 * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
1922 * elliptic curve Diffie-Hellman followed by any supporter key derivation
1923 * algorithm.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001924 *
1925 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1926 *
1927 * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
1928 * 0 otherwise.
1929 * This macro may return either 0 or 1 if \c alg is not a supported
1930 * key agreement algorithm identifier.
1931 */
1932#define PSA_ALG_IS_ECDH(alg) \
Gilles Peskine6843c292019-01-18 16:44:49 +01001933 (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01001934
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001935/** Whether the specified algorithm encoding is a wildcard.
1936 *
1937 * Wildcard values may only be used to set the usage algorithm field in
1938 * a policy, not to perform an operation.
1939 *
1940 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1941 *
1942 * \return 1 if \c alg is a wildcard algorithm encoding.
1943 * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
1944 * an operation).
1945 * \return This macro may return either 0 or 1 if \c alg is not a supported
1946 * algorithm identifier.
1947 */
Steven Cooremand927ed72021-02-22 19:59:35 +01001948#define PSA_ALG_IS_WILDCARD(alg) \
1949 (PSA_ALG_IS_HASH_AND_SIGN(alg) ? \
1950 PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH : \
1951 PSA_ALG_IS_MAC(alg) ? \
1952 (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
1953 PSA_ALG_IS_AEAD(alg) ? \
1954 (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 : \
Steven Cooremanee18b1f2021-02-08 11:44:21 +01001955 (alg) == PSA_ALG_ANY_HASH)
Gilles Peskine30f77cd2019-01-14 16:06:39 +01001956
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001957/** Get the hash used by a composite algorithm.
1958 *
1959 * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1960 *
1961 * \return The underlying hash algorithm if alg is a composite algorithm that
1962 * uses a hash algorithm.
1963 *
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02001964 * \return \c 0 if alg is not a composite algorithm that uses a hash.
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001965 */
1966#define PSA_ALG_GET_HASH(alg) \
Manuel Pégourié-Gonnardf0c28ef2021-05-07 12:13:48 +02001967 (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t)0) : 0x02000000 | ((alg) & 0x000000ff))
Manuel Pégourié-Gonnard40b81bf2021-05-03 11:53:40 +02001968
Janos Follath9c6b1472021-03-21 15:11:01 +00001969/** The Password-authenticated key exchange by juggling (J-PAKE) protocol.
1970 *
1971 * J-PAKE can be instantiated over finite fields or elliptic curves. This can
Janos Follathca2c1672021-04-12 10:00:43 +01001972 * be achieved by passing either #PSA_PAKE_PRIMITIVE_TYPE_FIELD_DH or
Janos Follath9c6b1472021-03-21 15:11:01 +00001973 * #PSA_PAKE_PRIMITIVE_TYPE_CURVE to #PSA_PAKE_PRIMITIVE respectively, when
1974 * creating the cipher suite.
1975 *
1976 * In theory the protocol works with any non-interactive zero-knowledge proof.
Janos Follath1101edb2021-04-19 09:34:44 +01001977 * Implementations of the present specification use Schnorr NIZKP and this does
Janos Follath9c6b1472021-03-21 15:11:01 +00001978 * not need to be configured in the cipher suites.
1979 *
1980 * J-PAKE can be used with any secure cryptographic hash function, the choice
1981 * of hash must be supplied to the psa_pake_cipher_suite() as the second
1982 * parameter (\p hash).
1983 *
1984 * All the remaining parameters passed to psa_pake_cipher_suite() when creating
1985 * the cipher suite must be 0.
1986 *
1987 * The key exchange flow for JPAKE is as follows:
1988 * -# To get the first round data that needs to be sent to the peer, call
1989 * psa_pake_get_key_share(operation, ...);
1990 * psa_pake_output(operation, #PSA_PAKE_DATA_ZK_PUBLIC, ...);
1991 * psa_pake_output(operation, #PSA_PAKE_DATA_ZK_PROOF, ...);
1992 * psa_pake_output(operation, #PSA_PAKE_DATA_KEY_SHARE_2, ...);
1993 * psa_pake_output(operation, #PSA_PAKE_DATA_ZK_PUBLIC_2, ...);
1994 * psa_pake_output(operation, #PSA_PAKE_DATA_ZK_PROOF_2, ...);
1995 * -# To provide the first round data received from the peer to the operation,
1996 * call
1997 * psa_pake_set_key_share(operation, ...);
1998 * psa_pake_input(operation, #PSA_PAKE_DATA_ZK_PUBLIC, ...);
1999 * psa_pake_input(operation, #PSA_PAKE_DATA_ZK_PROOF, ...);
2000 * psa_pake_input(operation, #PSA_PAKE_DATA_KEY_SHARE_2, ...);
2001 * psa_pake_input(operation, #PSA_PAKE_DATA_ZK_PUBLIC_2, ...);
2002 * psa_pake_input(operation, #PSA_PAKE_DATA_ZK_PROOF_2, ...);
2003 * -# To get the second round data that needs to be sent to the peer, call
2004 * psa_pake_output(operation, #PSA_PAKE_DATA_KEY_SHARE_3, ...);
2005 * psa_pake_output(operation, #PSA_PAKE_DATA_ZK_PUBLIC_3, ...);
2006 * psa_pake_output(operation, #PSA_PAKE_DATA_ZK_PROOF_3, ...);
2007 * -# To provide the second round data received from the peer to the operation,
2008 * call
2009 * psa_pake_input(operation, #PSA_PAKE_DATA_KEY_SHARE_3, ...);
2010 * psa_pake_input(operation, #PSA_PAKE_DATA_ZK_PUBLIC_3, ...);
2011 * psa_pake_input(operation, #PSA_PAKE_DATA_ZK_PROOF_3, ...);
2012 * -# Call psa_pake_get_implicit_key() for accessing the shared secret.
2013 *
2014 * For more information consult the documentation of the individual
2015 * PSA_PAKE_DATA_XXX constants.
2016 *
Janos Follath1101edb2021-04-19 09:34:44 +01002017 * J-PAKE is standardised for example in RFC 8236.
Janos Follath9c6b1472021-03-21 15:11:01 +00002018 */
2019#define PSA_ALG_PAKE_JPAKE ((psa_algorithm_t)0x0a000001)
2020
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002021/**@}*/
2022
2023/** \defgroup key_lifetimes Key lifetimes
2024 * @{
2025 */
2026
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002027/** The default lifetime for volatile keys.
2028 *
Ronald Croncf56a0a2020-08-04 09:51:30 +02002029 * A volatile key only exists as long as the identifier to it is not destroyed.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002030 * The key material is guaranteed to be erased on a power reset.
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002031 *
2032 * A key with this lifetime is typically stored in the RAM area of the
2033 * PSA Crypto subsystem. However this is an implementation choice.
2034 * If an implementation stores data about the key in a non-volatile memory,
2035 * it must release all the resources associated with the key and erase the
2036 * key material if the calling application terminates.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002037 */
2038#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
2039
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002040/** The default lifetime for persistent keys.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002041 *
2042 * A persistent key remains in storage until it is explicitly destroyed or
2043 * until the corresponding storage area is wiped. This specification does
Gilles Peskined0107b92020-08-18 23:05:06 +02002044 * not define any mechanism to wipe a storage area, but integrations may
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002045 * provide their own mechanism (for example to perform a factory reset,
2046 * to prepare for device refurbishment, or to uninstall an application).
2047 *
2048 * This lifetime value is the default storage area for the calling
Gilles Peskined0107b92020-08-18 23:05:06 +02002049 * application. Integrations of Mbed TLS may support other persistent lifetimes.
Gilles Peskine5dcb74f2020-05-04 18:42:44 +02002050 * See ::psa_key_lifetime_t for more information.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002051 */
2052#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
2053
Gilles Peskineaff11812020-05-04 19:03:10 +02002054/** The persistence level of volatile keys.
2055 *
2056 * See ::psa_key_persistence_t for more information.
2057 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002058#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t)0x00)
Gilles Peskineaff11812020-05-04 19:03:10 +02002059
2060/** The default persistence level for persistent keys.
2061 *
2062 * See ::psa_key_persistence_t for more information.
2063 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002064#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t)0x01)
Gilles Peskineaff11812020-05-04 19:03:10 +02002065
2066/** A persistence level indicating that a key is never destroyed.
2067 *
2068 * See ::psa_key_persistence_t for more information.
2069 */
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002070#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t)0xff)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002071
2072#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002073 ((psa_key_persistence_t)((lifetime) & 0x000000ff))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002074
2075#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
Gilles Peskine4cfa4432020-05-06 13:44:32 +02002076 ((psa_key_location_t)((lifetime) >> 8))
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002077
2078/** Whether a key lifetime indicates that the key is volatile.
2079 *
2080 * A volatile key is automatically destroyed by the implementation when
2081 * the application instance terminates. In particular, a volatile key
2082 * is automatically destroyed on a power reset of the device.
2083 *
2084 * A key that is not volatile is persistent. Persistent keys are
2085 * preserved until the application explicitly destroys them or until an
2086 * implementation-specific device management event occurs (for example,
2087 * a factory reset).
2088 *
2089 * \param lifetime The lifetime value to query (value of type
2090 * ::psa_key_lifetime_t).
2091 *
2092 * \return \c 1 if the key is volatile, otherwise \c 0.
2093 */
2094#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
2095 (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
Steven Cooremandb064452020-06-01 12:29:26 +02002096 PSA_KEY_PERSISTENCE_VOLATILE)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002097
Gilles Peskinec4ee2f32020-05-04 19:07:18 +02002098/** Construct a lifetime from a persistence level and a location.
2099 *
2100 * \param persistence The persistence level
2101 * (value of type ::psa_key_persistence_t).
2102 * \param location The location indicator
2103 * (value of type ::psa_key_location_t).
2104 *
2105 * \return The constructed lifetime value.
2106 */
2107#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2108 ((location) << 8 | (persistence))
2109
Gilles Peskineaff11812020-05-04 19:03:10 +02002110/** The local storage area for persistent keys.
2111 *
2112 * This storage area is available on all systems that can store persistent
2113 * keys without delegating the storage to a third-party cryptoprocessor.
2114 *
2115 * See ::psa_key_location_t for more information.
2116 */
Gilles Peskineee04e692020-05-04 18:52:21 +02002117#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t)0x000000)
Gilles Peskineaff11812020-05-04 19:03:10 +02002118
Gilles Peskinebbb3c182020-05-04 18:42:06 +02002119#define PSA_KEY_LOCATION_VENDOR_FLAG ((psa_key_location_t)0x800000)
Gilles Peskine2d2bb1d2020-02-05 19:07:18 +01002120
Gilles Peskine4a231b82019-05-06 18:56:14 +02002121/** The minimum value for a key identifier chosen by the application.
2122 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002123#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
Gilles Peskine280948a2019-05-16 15:27:14 +02002124/** The maximum value for a key identifier chosen by the application.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002125 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002126#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
Gilles Peskine280948a2019-05-16 15:27:14 +02002127/** The minimum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002128 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002129#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
Gilles Peskine280948a2019-05-16 15:27:14 +02002130/** The maximum value for a key identifier chosen by the implementation.
Gilles Peskine4a231b82019-05-06 18:56:14 +02002131 */
Ronald Cron039a98b2020-07-23 16:07:42 +02002132#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
Gilles Peskine4a231b82019-05-06 18:56:14 +02002133
Ronald Cron7424f0d2020-09-14 16:17:41 +02002134
2135#if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2136
2137#define MBEDTLS_SVC_KEY_ID_INIT ( (psa_key_id_t)0 )
2138#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( id )
2139#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( 0 )
2140
2141/** Utility to initialize a key identifier at runtime.
2142 *
2143 * \param unused Unused parameter.
2144 * \param key_id Identifier of the key.
2145 */
2146static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2147 unsigned int unused, psa_key_id_t key_id )
2148{
2149 (void)unused;
2150
2151 return( key_id );
2152}
2153
2154/** Compare two key identifiers.
2155 *
2156 * \param id1 First key identifier.
2157 * \param id2 Second key identifier.
2158 *
2159 * \return Non-zero if the two key identifier are equal, zero otherwise.
2160 */
2161static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2162 mbedtls_svc_key_id_t id2 )
2163{
2164 return( id1 == id2 );
2165}
2166
Ronald Cronc4d1b512020-07-31 11:26:37 +02002167/** Check whether a key identifier is null.
2168 *
2169 * \param key Key identifier.
2170 *
2171 * \return Non-zero if the key identifier is null, zero otherwise.
2172 */
2173static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2174{
2175 return( key == 0 );
2176}
2177
Ronald Cron7424f0d2020-09-14 16:17:41 +02002178#else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2179
2180#define MBEDTLS_SVC_KEY_ID_INIT ( (mbedtls_svc_key_id_t){ 0, 0 } )
2181#define MBEDTLS_SVC_KEY_ID_GET_KEY_ID( id ) ( ( id ).key_id )
2182#define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID( id ) ( ( id ).owner )
2183
2184/** Utility to initialize a key identifier at runtime.
2185 *
2186 * \param owner_id Identifier of the key owner.
2187 * \param key_id Identifier of the key.
2188 */
2189static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2190 mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id )
2191{
2192 return( (mbedtls_svc_key_id_t){ .key_id = key_id,
2193 .owner = owner_id } );
2194}
2195
2196/** Compare two key identifiers.
2197 *
2198 * \param id1 First key identifier.
2199 * \param id2 Second key identifier.
2200 *
2201 * \return Non-zero if the two key identifier are equal, zero otherwise.
2202 */
2203static inline int mbedtls_svc_key_id_equal( mbedtls_svc_key_id_t id1,
2204 mbedtls_svc_key_id_t id2 )
2205{
2206 return( ( id1.key_id == id2.key_id ) &&
2207 mbedtls_key_owner_id_equal( id1.owner, id2.owner ) );
2208}
2209
Ronald Cronc4d1b512020-07-31 11:26:37 +02002210/** Check whether a key identifier is null.
2211 *
2212 * \param key Key identifier.
2213 *
2214 * \return Non-zero if the key identifier is null, zero otherwise.
2215 */
2216static inline int mbedtls_svc_key_id_is_null( mbedtls_svc_key_id_t key )
2217{
2218 return( ( key.key_id == 0 ) && ( key.owner == 0 ) );
2219}
2220
Ronald Cron7424f0d2020-09-14 16:17:41 +02002221#endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002222
2223/**@}*/
2224
2225/** \defgroup policy Key policies
2226 * @{
2227 */
2228
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002229/** Whether the key may be exported.
2230 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002231 * A public key or the public part of a key pair may always be exported
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002232 * regardless of the value of this permission flag.
2233 *
Gilles Peskined6a8f5f2019-05-14 16:25:50 +02002234 * If a key does not have export permission, implementations shall not
2235 * allow the key to be exported in plain form from the cryptoprocessor,
2236 * whether through psa_export_key() or through a proprietary interface.
2237 * The key may however be exportable in a wrapped form, i.e. in a form
2238 * where it is encrypted by another key.
2239 */
Gilles Peskine8e0206a2019-05-14 14:24:28 +02002240#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
2241
2242/** Whether the key may be copied.
2243 *
2244 * This flag allows the use of psa_copy_key() to make a copy of the key
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002245 * with the same policy or a more restrictive policy.
2246 *
2247 * For lifetimes for which the key is located in a secure element which
2248 * enforce the non-exportability of keys, copying a key outside the secure
2249 * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2250 * Copying the key inside the secure element is permitted with just
2251 * #PSA_KEY_USAGE_COPY if the secure element supports it.
2252 * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2253 * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2254 * is sufficient to permit the copy.
2255 */
2256#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
2257
2258/** Whether the key may be used to encrypt a message.
2259 *
2260 * This flag allows the key to be used for a symmetric encryption operation,
2261 * for an AEAD encryption-and-authentication operation,
2262 * or for an asymmetric encryption operation,
2263 * if otherwise permitted by the key's type and policy.
2264 *
2265 * For a key pair, this concerns the public key.
2266 */
2267#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
2268
2269/** Whether the key may be used to decrypt a message.
2270 *
2271 * This flag allows the key to be used for a symmetric decryption operation,
2272 * for an AEAD decryption-and-verification operation,
2273 * or for an asymmetric decryption operation,
2274 * if otherwise permitted by the key's type and policy.
2275 *
2276 * For a key pair, this concerns the private key.
2277 */
2278#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
2279
2280/** Whether the key may be used to sign a message.
2281 *
gabor-mezei-arm4a210192021-04-14 21:14:28 +02002282 * This flag allows the key to be used for a MAC calculation operation or for
2283 * an asymmetric message signature operation, if otherwise permitted by the
2284 * key’s type and policy.
2285 *
2286 * For a key pair, this concerns the private key.
2287 */
2288#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
2289
2290/** Whether the key may be used to verify a message.
2291 *
2292 * This flag allows the key to be used for a MAC verification operation or for
2293 * an asymmetric message signature verification operation, if otherwise
2294 * permitted by the key’s type and policy.
2295 *
2296 * For a key pair, this concerns the public key.
2297 */
2298#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
2299
2300/** Whether the key may be used to sign a message.
2301 *
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002302 * This flag allows the key to be used for a MAC calculation operation
2303 * or for an asymmetric signature operation,
2304 * if otherwise permitted by the key's type and policy.
2305 *
2306 * For a key pair, this concerns the private key.
2307 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002308#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002309
2310/** Whether the key may be used to verify a message signature.
2311 *
2312 * This flag allows the key to be used for a MAC verification operation
2313 * or for an asymmetric signature verification operation,
2314 * if otherwise permitted by by the key's type and policy.
2315 *
2316 * For a key pair, this concerns the public key.
2317 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002318#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002319
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002320/** Whether the key may be used to derive other keys or produce a password
2321 * hash.
2322 *
2323 * This flag allows the key to be used as the input of
2324 * psa_key_derivation_input_key() at the step
2325 * #PSA_KEY_DERIVATION_INPUT_SECRET of #PSA_KEY_DERIVATION_INPUT_PASSWORD
2326 * depending on the algorithm, and allows the use of
2327 * psa_key_derivation_output_bytes() or psa_key_derivation_output_key()
2328 * at the end of the operation.
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002329 */
Bence Szépkútia2945512020-12-03 21:40:17 +01002330#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002331
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002332/** Whether the key may be used to verify the result of a key derivation,
2333 * including password hashing.
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002334 *
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002335 * This flag allows the key to be used:
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002336 *
Manuel Pégourié-Gonnard2171e422021-05-03 10:49:54 +02002337 * - for a key of type #PSA_KEY_TYPE_PASSWORD_HASH, as the \c key argument of
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002338 * psa_key_derivation_verify_key();
2339 * - for a key of type #PSA_KEY_TYPE_PASSWORD (or #PSA_KEY_TYPE_DERIVE), as
2340 * the input to psa_key_derivation_input_key() at the step
2341 * #PSA_KEY_DERIVATION_INPUT_PASSWORD (or #PSA_KEY_DERIVATION_INPUT_SECRET);
2342 * then at the end of the operation use of psa_key_derivation_verify_bytes()
2343 * or psa_key_derivation_verify_key() will be permitted (but not
2344 * psa_key_derivation_output_xxx() unless #PSA_KEY_USAGE_DERIVE is set).
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002345 */
Manuel Pégourié-Gonnard9023cac2021-05-03 10:23:12 +02002346#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
Manuel Pégourié-Gonnard759438c2021-04-20 11:18:53 +02002347
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002348/**@}*/
2349
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002350/** \defgroup derivation Key derivation
2351 * @{
2352 */
2353
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002354/** A secret input for key derivation.
2355 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002356 * This should be a key of type #PSA_KEY_TYPE_DERIVE
2357 * (passed to psa_key_derivation_input_key())
2358 * or the shared secret resulting from a key agreement
2359 * (obtained via psa_key_derivation_key_agreement()).
Gilles Peskine178c9aa2019-09-24 18:21:06 +02002360 *
2361 * The secret can also be a direct input (passed to
2362 * key_derivation_input_bytes()). In this case, the derivation operation
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002363 * may not be used to derive or verify keys: the operation will only allow
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002364 * psa_key_derivation_output_bytes() or
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002365 * psa_key_derivation_verify_bytes() but not
2366 * psa_key_derivation_output_key() or
2367 * psa_key_derivation_verify_key().
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002368 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002369#define PSA_KEY_DERIVATION_INPUT_SECRET ((psa_key_derivation_step_t)0x0101)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002370
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002371/** A low-entropy secret input for password hashing / key stretching.
2372 *
Manuel Pégourié-Gonnardffc86ce2021-04-30 11:37:57 +02002373 * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2374 * psa_key_derivation_input_key()) or a direct input (passed to
2375 * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2376 * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2377 * the shared secret resulting from a key agreement.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002378 *
Manuel Pégourié-Gonnard730f62a2021-05-05 10:05:06 +02002379 * The secret can also be a direct input (passed to
2380 * key_derivation_input_bytes()). In this case, the derivation operation
2381 * may not be used to derive or verify keys: the operation will only allow
2382 * psa_key_derivation_output_bytes() or
2383 * psa_key_derivation_verify_bytes(), not
2384 * psa_key_derivation_output_key() or
2385 * psa_key_derivation_verify_key().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002386 */
2387#define PSA_KEY_DERIVATION_INPUT_PASSWORD ((psa_key_derivation_step_t)0x0102)
2388
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002389/** A label for key derivation.
2390 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002391 * This should be a direct input.
2392 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002393 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002394#define PSA_KEY_DERIVATION_INPUT_LABEL ((psa_key_derivation_step_t)0x0201)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002395
2396/** A salt for key derivation.
2397 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002398 * This should be a direct input.
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002399 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2400 * #PSA_KEY_TYPE_PEPPER.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002401 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002402#define PSA_KEY_DERIVATION_INPUT_SALT ((psa_key_derivation_step_t)0x0202)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002403
2404/** An information string for key derivation.
2405 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002406 * This should be a direct input.
2407 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002408 */
Gilles Peskinecf7292e2019-05-16 17:53:40 +02002409#define PSA_KEY_DERIVATION_INPUT_INFO ((psa_key_derivation_step_t)0x0203)
Gilles Peskine6cdfdb72019-01-08 10:31:27 +01002410
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002411/** A seed for key derivation.
2412 *
Gilles Peskine224b0d62019-09-23 18:13:17 +02002413 * This should be a direct input.
2414 * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
Gilles Peskine2cb9e392019-05-21 15:58:13 +02002415 */
2416#define PSA_KEY_DERIVATION_INPUT_SEED ((psa_key_derivation_step_t)0x0204)
2417
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002418/** A cost parameter for password hashing / key stretching.
2419 *
Manuel Pégourié-Gonnard22f08bc2021-04-20 11:57:34 +02002420 * This must be a direct input, passed to psa_key_derivation_input_integer().
Manuel Pégourié-Gonnard5a679922021-04-20 11:30:11 +02002421 */
2422#define PSA_KEY_DERIVATION_INPUT_COST ((psa_key_derivation_step_t)0x0205)
2423
Gilles Peskineb70a0fd2019-01-07 22:59:38 +01002424/**@}*/
2425
Bence Szépkútib639d432021-04-21 10:33:54 +02002426/** \defgroup helper_macros Helper macros
2427 * @{
2428 */
2429
2430/* Helper macros */
2431
2432/** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2433 * regardless of the tag length they encode.
2434 *
2435 * \param aead_alg_1 An AEAD algorithm identifier.
2436 * \param aead_alg_2 An AEAD algorithm identifier.
2437 *
2438 * \return 1 if both identifiers refer to the same AEAD algorithm,
2439 * 0 otherwise.
2440 * Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2441 * a supported AEAD algorithm.
2442 */
2443#define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2444 (!(((aead_alg_1) ^ (aead_alg_2)) & \
2445 ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2446
2447/**@}*/
2448
Janos Follathca2c1672021-04-12 10:00:43 +01002449/** \defgroup pake Password-authenticated key exchange (PAKE)
Janos Follathb86273a2021-03-20 14:58:52 +00002450 * @{
2451 */
2452
2453/** The first peer in a balanced PAKE.
2454 *
2455 * Although balanced PAKE protocols are symmetric, some of them needs an
2456 * ordering of peers for the transcript calculations. If the protocol does not
2457 * need this, either #PSA_PAKE_SIDE_FIRST or #PSA_PAKE_SIDE_SECOND are
2458 * accepted.
2459 */
2460#define PSA_PAKE_SIDE_FIRST ((psa_pake_side_t)0x0001)
2461
2462/** The second peer in a balanced PAKE.
2463 *
2464 * Although balanced PAKE protocols are symmetric, some of them needs an
2465 * ordering of peers for the transcript calculations. If the protocol does not
2466 * need this, either #PSA_PAKE_SIDE_FIRST or #PSA_PAKE_SIDE_SECOND are
2467 * accepted.
2468 */
2469#define PSA_PAKE_SIDE_SECOND ((psa_pake_side_t)0x0002)
2470
2471/** The client in an augmented PAKE.
2472 *
2473 * Augmented PAKE protocols need to differentiate between client and server.
2474 */
2475#define PSA_PAKE_SIDE_CLIENT ((psa_pake_side_t)0x0101)
2476
2477/** The server in an augmented PAKE.
2478 *
2479 * Augmented PAKE protocols need to differentiate between client and server.
2480 */
2481#define PSA_PAKE_SIDE_SERVER ((psa_pake_side_t)0x0102)
Janos Follath38a5d352021-03-21 07:01:53 +00002482
Janos Follath9c6b1472021-03-21 15:11:01 +00002483/** The PAKE uses elliptic curves.
Janos Follath38a5d352021-03-21 07:01:53 +00002484 *
Janos Follath1101edb2021-04-19 09:34:44 +01002485 * The corresponding family type is ::psa_ecc_family_t. In determining a
Janos Follath38a5d352021-03-21 07:01:53 +00002486 * specific curve in the family ::psa_pake_bits_t values are interpreted in the
2487 * exact same way as ::psa_key_bits_t would.
Janos Follath9c6b1472021-03-21 15:11:01 +00002488 *
2489 * Input and output during the operation can involve group elements and scalar
2490 * values:
2491 * -# The format for group elements is the same as for public keys on the
2492 * specific curve would be. For more information, consult the documentation of
2493 * psa_export_public_key().
2494 * -# The format for scalars is the same as for private keys on the specific
2495 * curve would be. For more information, consult the documentation of
2496 * psa_export_key().
Janos Follath38a5d352021-03-21 07:01:53 +00002497 */
Janos Follath9c6b1472021-03-21 15:11:01 +00002498#define PSA_PAKE_PRIMITIVE_TYPE_CURVE ((psa_pake_primitive_type_t)0x01)
2499
2500/** The PAKE uses finite fields based Diffie-Hellman groups.
2501 *
2502 * The corresponding family type is ::psa_dh_family_t. In determining a
2503 * specific group in the family ::psa_pake_bits_t values are interpreted in the
2504 * exact same way as ::psa_key_bits_t would.
2505 *
2506 * Input and output during the operation can involve group elements and scalar
2507 * values:
2508 * -# The format for group elements is the same as for public keys on the
2509 * specific group would be. For more information, consult the documentation of
2510 * psa_export_public_key().
2511 * -# The format for scalars is the same as for private keys on the specific
2512 * group would be. For more information, consult the documentation of
2513 * psa_export_key().
2514 */
2515#define PSA_PAKE_PRIMITIVE_TYPE_FIELD_DH ((psa_pake_primitive_type_t)0x02)
Janos Follath38a5d352021-03-21 07:01:53 +00002516
2517/** Construct a PAKE primitive from type, family and bitsize.
2518 *
2519 * \param type The type of the primitive
2520 * (value of type ::psa_pake_primitive_type_t).
2521 * \param family The family of the primitive
2522 * (the type and interpretation of this parameter depends
2523 * on \p type, for more information consult the
2524 * documentation of individual ::psa_pake_primitive_type_t
2525 * constants).
Janos Follath1101edb2021-04-19 09:34:44 +01002526 * \param bits The bitsize of the primitive
Janos Follath38a5d352021-03-21 07:01:53 +00002527 * (Value of type ::psa_pake_bits_t. The interpretation
2528 * of this parameter depends on \p family, for more
2529 * information consult the documentation of individual
2530 * ::psa_pake_primitive_type_t constants).
2531 *
2532 * \return The constructed primitive value.
2533 */
2534#define PSA_PAKE_PRIMITIVE(type, family, bits) \
2535 ((psa_pake_primitive_t) (((type) << 24 | (persistence) << 16) | (bits)))
2536
Janos Follath9c6b1472021-03-21 15:11:01 +00002537
2538/** The key share being sent to or received from the peer.
2539 *
2540 * Unless the documentation of the PAKE algorithm says otherwise this is a
2541 * group element.
2542 *
2543 * For information regarding representation consult the documentation of
2544 * individual ::psa_pake_primitive_type_t constants.
2545 *
2546 * Some PAKE protocols need to exchange several key shares. If that is the
2547 * case, this value marks the first key share sent and the first key share
2548 * received. For values sent or received afterwards, use
2549 * #PSA_PAKE_DATA_KEY_SHARE_2 and #PSA_PAKE_DATA_KEY_SHARE_3.
2550 */
2551#define PSA_PAKE_DATA_KEY_SHARE ((psa_pake_data_t)0x01)
2552
2553
2554/** A Schnorr NIZKP public key.
2555 *
2556 * This is a group element.
2557 *
2558 * For information regarding representation consult the documentation of
2559 * individual ::psa_pake_primitive_type_t constants.
2560 *
2561 * Some PAKE protocols need to perform several zero-knowledge proofs. If that
2562 * is the case, this value marks the first public key sent and the first public
2563 * key received. For values sent or received afterwards, use
2564 * #PSA_PAKE_DATA_ZK_PUBLIC_2 and #PSA_PAKE_DATA_ZK_PUBLIC_3.
2565 */
2566#define PSA_PAKE_DATA_ZK_PUBLIC ((psa_pake_data_t)0x02)
2567
2568
2569/** A Schnorr NIZKP proof.
2570 *
Janos Follath1101edb2021-04-19 09:34:44 +01002571 * This is a scalar value.
Janos Follath9c6b1472021-03-21 15:11:01 +00002572 *
2573 * For information regarding representation consult the documentation of
2574 * individual ::psa_pake_primitive_type_t constants.
2575 *
2576 * Some PAKE protocols need to perform several zero-knowledge proofs. If that
2577 * is the case, this value marks the first proof sent and the first proof
2578 * received. For values sent or received afterwards, use
2579 * #PSA_PAKE_DATA_ZK_PROOF_2 and #PSA_PAKE_DATA_ZK_PROOF_3.
2580 */
2581#define PSA_PAKE_DATA_ZK_PROOF ((psa_pake_data_t)0x03)
2582
2583/** Marks the second key share sent and received.
2584 *
2585 * See #PSA_PAKE_DATA_KEY_SHARE.
2586 */
2587#define PSA_PAKE_DATA_KEY_SHARE_2 ((psa_pake_data_t)0x04)
2588
2589/** Marks the second Schnorr NIZKP public key sent and received.
2590 *
2591 * See #PSA_PAKE_DATA_ZK_PUBLIC.
2592 */
2593#define PSA_PAKE_DATA_ZK_PUBLIC_2 ((psa_pake_data_t)0x05)
2594
2595/** Marks the second Schnorr NIZKP proof sent and received.
2596 *
2597 * See #PSA_PAKE_DATA_ZK_PROOF.
2598 */
2599#define PSA_PAKE_DATA_ZK_PROOF_2 ((psa_pake_data_t)0x06)
2600
2601/** Marks the third key share sent and received.
2602 *
2603 * See #PSA_PAKE_DATA_KEY_SHARE.
2604 */
2605#define PSA_PAKE_DATA_KEY_SHARE_3 ((psa_pake_data_t)0x07)
2606
2607/** Marks the third Schnorr NIZKP public key sent and received.
2608 *
2609 * See #PSA_PAKE_DATA_ZK_PUBLIC.
2610 */
2611#define PSA_PAKE_DATA_ZK_PUBLIC_3 ((psa_pake_data_t)0x08)
2612
2613/** Marks the third Schnorr NIZKP proof sent and received.
2614 *
2615 * See #PSA_PAKE_DATA_ZK_PROOF.
2616 */
2617#define PSA_PAKE_DATA_ZK_PROOF_3 ((psa_pake_data_t)0x09)
2618
Janos Follathb86273a2021-03-20 14:58:52 +00002619/**@}*/
Gilles Peskinef3b731e2018-12-12 13:38:31 +01002620#endif /* PSA_CRYPTO_VALUES_H */