David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 3 | * Kernel internal timers |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 6 | * |
| 7 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. |
| 8 | * |
| 9 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| 10 | * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| 11 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to |
| 12 | * serialize accesses to xtime/lost_ticks). |
| 13 | * Copyright (C) 1998 Andrea Arcangeli |
| 14 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl |
| 15 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love |
| 16 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. |
| 17 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar |
| 18 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar |
| 19 | */ |
| 20 | |
| 21 | #include <linux/kernel_stat.h> |
| 22 | #include <linux/export.h> |
| 23 | #include <linux/interrupt.h> |
| 24 | #include <linux/percpu.h> |
| 25 | #include <linux/init.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/swap.h> |
| 28 | #include <linux/pid_namespace.h> |
| 29 | #include <linux/notifier.h> |
| 30 | #include <linux/thread_info.h> |
| 31 | #include <linux/time.h> |
| 32 | #include <linux/jiffies.h> |
| 33 | #include <linux/posix-timers.h> |
| 34 | #include <linux/cpu.h> |
| 35 | #include <linux/syscalls.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/tick.h> |
| 38 | #include <linux/kallsyms.h> |
| 39 | #include <linux/irq_work.h> |
| 40 | #include <linux/sched/signal.h> |
| 41 | #include <linux/sched/sysctl.h> |
| 42 | #include <linux/sched/nohz.h> |
| 43 | #include <linux/sched/debug.h> |
| 44 | #include <linux/slab.h> |
| 45 | #include <linux/compat.h> |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 46 | #include <linux/random.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 47 | |
| 48 | #include <linux/uaccess.h> |
| 49 | #include <asm/unistd.h> |
| 50 | #include <asm/div64.h> |
| 51 | #include <asm/timex.h> |
| 52 | #include <asm/io.h> |
| 53 | |
| 54 | #include "tick-internal.h" |
| 55 | |
| 56 | #define CREATE_TRACE_POINTS |
| 57 | #include <trace/events/timer.h> |
| 58 | |
| 59 | __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
| 60 | |
| 61 | EXPORT_SYMBOL(jiffies_64); |
| 62 | |
| 63 | /* |
| 64 | * The timer wheel has LVL_DEPTH array levels. Each level provides an array of |
| 65 | * LVL_SIZE buckets. Each level is driven by its own clock and therefor each |
| 66 | * level has a different granularity. |
| 67 | * |
| 68 | * The level granularity is: LVL_CLK_DIV ^ lvl |
| 69 | * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) |
| 70 | * |
| 71 | * The array level of a newly armed timer depends on the relative expiry |
| 72 | * time. The farther the expiry time is away the higher the array level and |
| 73 | * therefor the granularity becomes. |
| 74 | * |
| 75 | * Contrary to the original timer wheel implementation, which aims for 'exact' |
| 76 | * expiry of the timers, this implementation removes the need for recascading |
| 77 | * the timers into the lower array levels. The previous 'classic' timer wheel |
| 78 | * implementation of the kernel already violated the 'exact' expiry by adding |
| 79 | * slack to the expiry time to provide batched expiration. The granularity |
| 80 | * levels provide implicit batching. |
| 81 | * |
| 82 | * This is an optimization of the original timer wheel implementation for the |
| 83 | * majority of the timer wheel use cases: timeouts. The vast majority of |
| 84 | * timeout timers (networking, disk I/O ...) are canceled before expiry. If |
| 85 | * the timeout expires it indicates that normal operation is disturbed, so it |
| 86 | * does not matter much whether the timeout comes with a slight delay. |
| 87 | * |
| 88 | * The only exception to this are networking timers with a small expiry |
| 89 | * time. They rely on the granularity. Those fit into the first wheel level, |
| 90 | * which has HZ granularity. |
| 91 | * |
| 92 | * We don't have cascading anymore. timers with a expiry time above the |
| 93 | * capacity of the last wheel level are force expired at the maximum timeout |
| 94 | * value of the last wheel level. From data sampling we know that the maximum |
| 95 | * value observed is 5 days (network connection tracking), so this should not |
| 96 | * be an issue. |
| 97 | * |
| 98 | * The currently chosen array constants values are a good compromise between |
| 99 | * array size and granularity. |
| 100 | * |
| 101 | * This results in the following granularity and range levels: |
| 102 | * |
| 103 | * HZ 1000 steps |
| 104 | * Level Offset Granularity Range |
| 105 | * 0 0 1 ms 0 ms - 63 ms |
| 106 | * 1 64 8 ms 64 ms - 511 ms |
| 107 | * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) |
| 108 | * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) |
| 109 | * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) |
| 110 | * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) |
| 111 | * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) |
| 112 | * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) |
| 113 | * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) |
| 114 | * |
| 115 | * HZ 300 |
| 116 | * Level Offset Granularity Range |
| 117 | * 0 0 3 ms 0 ms - 210 ms |
| 118 | * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) |
| 119 | * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) |
| 120 | * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) |
| 121 | * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) |
| 122 | * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) |
| 123 | * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) |
| 124 | * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) |
| 125 | * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) |
| 126 | * |
| 127 | * HZ 250 |
| 128 | * Level Offset Granularity Range |
| 129 | * 0 0 4 ms 0 ms - 255 ms |
| 130 | * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) |
| 131 | * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) |
| 132 | * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) |
| 133 | * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) |
| 134 | * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) |
| 135 | * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) |
| 136 | * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) |
| 137 | * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) |
| 138 | * |
| 139 | * HZ 100 |
| 140 | * Level Offset Granularity Range |
| 141 | * 0 0 10 ms 0 ms - 630 ms |
| 142 | * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) |
| 143 | * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) |
| 144 | * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) |
| 145 | * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) |
| 146 | * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) |
| 147 | * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) |
| 148 | * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) |
| 149 | */ |
| 150 | |
| 151 | /* Clock divisor for the next level */ |
| 152 | #define LVL_CLK_SHIFT 3 |
| 153 | #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) |
| 154 | #define LVL_CLK_MASK (LVL_CLK_DIV - 1) |
| 155 | #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) |
| 156 | #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) |
| 157 | |
| 158 | /* |
| 159 | * The time start value for each level to select the bucket at enqueue |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 160 | * time. We start from the last possible delta of the previous level |
| 161 | * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 162 | */ |
| 163 | #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) |
| 164 | |
| 165 | /* Size of each clock level */ |
| 166 | #define LVL_BITS 6 |
| 167 | #define LVL_SIZE (1UL << LVL_BITS) |
| 168 | #define LVL_MASK (LVL_SIZE - 1) |
| 169 | #define LVL_OFFS(n) ((n) * LVL_SIZE) |
| 170 | |
| 171 | /* Level depth */ |
| 172 | #if HZ > 100 |
| 173 | # define LVL_DEPTH 9 |
| 174 | # else |
| 175 | # define LVL_DEPTH 8 |
| 176 | #endif |
| 177 | |
| 178 | /* The cutoff (max. capacity of the wheel) */ |
| 179 | #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) |
| 180 | #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) |
| 181 | |
| 182 | /* |
| 183 | * The resulting wheel size. If NOHZ is configured we allocate two |
| 184 | * wheels so we have a separate storage for the deferrable timers. |
| 185 | */ |
| 186 | #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) |
| 187 | |
| 188 | #ifdef CONFIG_NO_HZ_COMMON |
| 189 | # define NR_BASES 2 |
| 190 | # define BASE_STD 0 |
| 191 | # define BASE_DEF 1 |
| 192 | #else |
| 193 | # define NR_BASES 1 |
| 194 | # define BASE_STD 0 |
| 195 | # define BASE_DEF 0 |
| 196 | #endif |
| 197 | |
| 198 | struct timer_base { |
| 199 | raw_spinlock_t lock; |
| 200 | struct timer_list *running_timer; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 201 | #ifdef CONFIG_PREEMPT_RT |
| 202 | spinlock_t expiry_lock; |
| 203 | atomic_t timer_waiters; |
| 204 | #endif |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 205 | unsigned long clk; |
| 206 | unsigned long next_expiry; |
| 207 | unsigned int cpu; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 208 | bool next_expiry_recalc; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 209 | bool is_idle; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 210 | bool timers_pending; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 211 | DECLARE_BITMAP(pending_map, WHEEL_SIZE); |
| 212 | struct hlist_head vectors[WHEEL_SIZE]; |
| 213 | } ____cacheline_aligned; |
| 214 | |
| 215 | static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); |
| 216 | |
| 217 | #ifdef CONFIG_NO_HZ_COMMON |
| 218 | |
| 219 | static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); |
| 220 | static DEFINE_MUTEX(timer_keys_mutex); |
| 221 | |
| 222 | static void timer_update_keys(struct work_struct *work); |
| 223 | static DECLARE_WORK(timer_update_work, timer_update_keys); |
| 224 | |
| 225 | #ifdef CONFIG_SMP |
| 226 | unsigned int sysctl_timer_migration = 1; |
| 227 | |
| 228 | DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); |
| 229 | |
| 230 | static void timers_update_migration(void) |
| 231 | { |
| 232 | if (sysctl_timer_migration && tick_nohz_active) |
| 233 | static_branch_enable(&timers_migration_enabled); |
| 234 | else |
| 235 | static_branch_disable(&timers_migration_enabled); |
| 236 | } |
| 237 | #else |
| 238 | static inline void timers_update_migration(void) { } |
| 239 | #endif /* !CONFIG_SMP */ |
| 240 | |
| 241 | static void timer_update_keys(struct work_struct *work) |
| 242 | { |
| 243 | mutex_lock(&timer_keys_mutex); |
| 244 | timers_update_migration(); |
| 245 | static_branch_enable(&timers_nohz_active); |
| 246 | mutex_unlock(&timer_keys_mutex); |
| 247 | } |
| 248 | |
| 249 | void timers_update_nohz(void) |
| 250 | { |
| 251 | schedule_work(&timer_update_work); |
| 252 | } |
| 253 | |
| 254 | int timer_migration_handler(struct ctl_table *table, int write, |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 255 | void *buffer, size_t *lenp, loff_t *ppos) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 256 | { |
| 257 | int ret; |
| 258 | |
| 259 | mutex_lock(&timer_keys_mutex); |
| 260 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 261 | if (!ret && write) |
| 262 | timers_update_migration(); |
| 263 | mutex_unlock(&timer_keys_mutex); |
| 264 | return ret; |
| 265 | } |
| 266 | |
| 267 | static inline bool is_timers_nohz_active(void) |
| 268 | { |
| 269 | return static_branch_unlikely(&timers_nohz_active); |
| 270 | } |
| 271 | #else |
| 272 | static inline bool is_timers_nohz_active(void) { return false; } |
| 273 | #endif /* NO_HZ_COMMON */ |
| 274 | |
| 275 | static unsigned long round_jiffies_common(unsigned long j, int cpu, |
| 276 | bool force_up) |
| 277 | { |
| 278 | int rem; |
| 279 | unsigned long original = j; |
| 280 | |
| 281 | /* |
| 282 | * We don't want all cpus firing their timers at once hitting the |
| 283 | * same lock or cachelines, so we skew each extra cpu with an extra |
| 284 | * 3 jiffies. This 3 jiffies came originally from the mm/ code which |
| 285 | * already did this. |
| 286 | * The skew is done by adding 3*cpunr, then round, then subtract this |
| 287 | * extra offset again. |
| 288 | */ |
| 289 | j += cpu * 3; |
| 290 | |
| 291 | rem = j % HZ; |
| 292 | |
| 293 | /* |
| 294 | * If the target jiffie is just after a whole second (which can happen |
| 295 | * due to delays of the timer irq, long irq off times etc etc) then |
| 296 | * we should round down to the whole second, not up. Use 1/4th second |
| 297 | * as cutoff for this rounding as an extreme upper bound for this. |
| 298 | * But never round down if @force_up is set. |
| 299 | */ |
| 300 | if (rem < HZ/4 && !force_up) /* round down */ |
| 301 | j = j - rem; |
| 302 | else /* round up */ |
| 303 | j = j - rem + HZ; |
| 304 | |
| 305 | /* now that we have rounded, subtract the extra skew again */ |
| 306 | j -= cpu * 3; |
| 307 | |
| 308 | /* |
| 309 | * Make sure j is still in the future. Otherwise return the |
| 310 | * unmodified value. |
| 311 | */ |
| 312 | return time_is_after_jiffies(j) ? j : original; |
| 313 | } |
| 314 | |
| 315 | /** |
| 316 | * __round_jiffies - function to round jiffies to a full second |
| 317 | * @j: the time in (absolute) jiffies that should be rounded |
| 318 | * @cpu: the processor number on which the timeout will happen |
| 319 | * |
| 320 | * __round_jiffies() rounds an absolute time in the future (in jiffies) |
| 321 | * up or down to (approximately) full seconds. This is useful for timers |
| 322 | * for which the exact time they fire does not matter too much, as long as |
| 323 | * they fire approximately every X seconds. |
| 324 | * |
| 325 | * By rounding these timers to whole seconds, all such timers will fire |
| 326 | * at the same time, rather than at various times spread out. The goal |
| 327 | * of this is to have the CPU wake up less, which saves power. |
| 328 | * |
| 329 | * The exact rounding is skewed for each processor to avoid all |
| 330 | * processors firing at the exact same time, which could lead |
| 331 | * to lock contention or spurious cache line bouncing. |
| 332 | * |
| 333 | * The return value is the rounded version of the @j parameter. |
| 334 | */ |
| 335 | unsigned long __round_jiffies(unsigned long j, int cpu) |
| 336 | { |
| 337 | return round_jiffies_common(j, cpu, false); |
| 338 | } |
| 339 | EXPORT_SYMBOL_GPL(__round_jiffies); |
| 340 | |
| 341 | /** |
| 342 | * __round_jiffies_relative - function to round jiffies to a full second |
| 343 | * @j: the time in (relative) jiffies that should be rounded |
| 344 | * @cpu: the processor number on which the timeout will happen |
| 345 | * |
| 346 | * __round_jiffies_relative() rounds a time delta in the future (in jiffies) |
| 347 | * up or down to (approximately) full seconds. This is useful for timers |
| 348 | * for which the exact time they fire does not matter too much, as long as |
| 349 | * they fire approximately every X seconds. |
| 350 | * |
| 351 | * By rounding these timers to whole seconds, all such timers will fire |
| 352 | * at the same time, rather than at various times spread out. The goal |
| 353 | * of this is to have the CPU wake up less, which saves power. |
| 354 | * |
| 355 | * The exact rounding is skewed for each processor to avoid all |
| 356 | * processors firing at the exact same time, which could lead |
| 357 | * to lock contention or spurious cache line bouncing. |
| 358 | * |
| 359 | * The return value is the rounded version of the @j parameter. |
| 360 | */ |
| 361 | unsigned long __round_jiffies_relative(unsigned long j, int cpu) |
| 362 | { |
| 363 | unsigned long j0 = jiffies; |
| 364 | |
| 365 | /* Use j0 because jiffies might change while we run */ |
| 366 | return round_jiffies_common(j + j0, cpu, false) - j0; |
| 367 | } |
| 368 | EXPORT_SYMBOL_GPL(__round_jiffies_relative); |
| 369 | |
| 370 | /** |
| 371 | * round_jiffies - function to round jiffies to a full second |
| 372 | * @j: the time in (absolute) jiffies that should be rounded |
| 373 | * |
| 374 | * round_jiffies() rounds an absolute time in the future (in jiffies) |
| 375 | * up or down to (approximately) full seconds. This is useful for timers |
| 376 | * for which the exact time they fire does not matter too much, as long as |
| 377 | * they fire approximately every X seconds. |
| 378 | * |
| 379 | * By rounding these timers to whole seconds, all such timers will fire |
| 380 | * at the same time, rather than at various times spread out. The goal |
| 381 | * of this is to have the CPU wake up less, which saves power. |
| 382 | * |
| 383 | * The return value is the rounded version of the @j parameter. |
| 384 | */ |
| 385 | unsigned long round_jiffies(unsigned long j) |
| 386 | { |
| 387 | return round_jiffies_common(j, raw_smp_processor_id(), false); |
| 388 | } |
| 389 | EXPORT_SYMBOL_GPL(round_jiffies); |
| 390 | |
| 391 | /** |
| 392 | * round_jiffies_relative - function to round jiffies to a full second |
| 393 | * @j: the time in (relative) jiffies that should be rounded |
| 394 | * |
| 395 | * round_jiffies_relative() rounds a time delta in the future (in jiffies) |
| 396 | * up or down to (approximately) full seconds. This is useful for timers |
| 397 | * for which the exact time they fire does not matter too much, as long as |
| 398 | * they fire approximately every X seconds. |
| 399 | * |
| 400 | * By rounding these timers to whole seconds, all such timers will fire |
| 401 | * at the same time, rather than at various times spread out. The goal |
| 402 | * of this is to have the CPU wake up less, which saves power. |
| 403 | * |
| 404 | * The return value is the rounded version of the @j parameter. |
| 405 | */ |
| 406 | unsigned long round_jiffies_relative(unsigned long j) |
| 407 | { |
| 408 | return __round_jiffies_relative(j, raw_smp_processor_id()); |
| 409 | } |
| 410 | EXPORT_SYMBOL_GPL(round_jiffies_relative); |
| 411 | |
| 412 | /** |
| 413 | * __round_jiffies_up - function to round jiffies up to a full second |
| 414 | * @j: the time in (absolute) jiffies that should be rounded |
| 415 | * @cpu: the processor number on which the timeout will happen |
| 416 | * |
| 417 | * This is the same as __round_jiffies() except that it will never |
| 418 | * round down. This is useful for timeouts for which the exact time |
| 419 | * of firing does not matter too much, as long as they don't fire too |
| 420 | * early. |
| 421 | */ |
| 422 | unsigned long __round_jiffies_up(unsigned long j, int cpu) |
| 423 | { |
| 424 | return round_jiffies_common(j, cpu, true); |
| 425 | } |
| 426 | EXPORT_SYMBOL_GPL(__round_jiffies_up); |
| 427 | |
| 428 | /** |
| 429 | * __round_jiffies_up_relative - function to round jiffies up to a full second |
| 430 | * @j: the time in (relative) jiffies that should be rounded |
| 431 | * @cpu: the processor number on which the timeout will happen |
| 432 | * |
| 433 | * This is the same as __round_jiffies_relative() except that it will never |
| 434 | * round down. This is useful for timeouts for which the exact time |
| 435 | * of firing does not matter too much, as long as they don't fire too |
| 436 | * early. |
| 437 | */ |
| 438 | unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) |
| 439 | { |
| 440 | unsigned long j0 = jiffies; |
| 441 | |
| 442 | /* Use j0 because jiffies might change while we run */ |
| 443 | return round_jiffies_common(j + j0, cpu, true) - j0; |
| 444 | } |
| 445 | EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); |
| 446 | |
| 447 | /** |
| 448 | * round_jiffies_up - function to round jiffies up to a full second |
| 449 | * @j: the time in (absolute) jiffies that should be rounded |
| 450 | * |
| 451 | * This is the same as round_jiffies() except that it will never |
| 452 | * round down. This is useful for timeouts for which the exact time |
| 453 | * of firing does not matter too much, as long as they don't fire too |
| 454 | * early. |
| 455 | */ |
| 456 | unsigned long round_jiffies_up(unsigned long j) |
| 457 | { |
| 458 | return round_jiffies_common(j, raw_smp_processor_id(), true); |
| 459 | } |
| 460 | EXPORT_SYMBOL_GPL(round_jiffies_up); |
| 461 | |
| 462 | /** |
| 463 | * round_jiffies_up_relative - function to round jiffies up to a full second |
| 464 | * @j: the time in (relative) jiffies that should be rounded |
| 465 | * |
| 466 | * This is the same as round_jiffies_relative() except that it will never |
| 467 | * round down. This is useful for timeouts for which the exact time |
| 468 | * of firing does not matter too much, as long as they don't fire too |
| 469 | * early. |
| 470 | */ |
| 471 | unsigned long round_jiffies_up_relative(unsigned long j) |
| 472 | { |
| 473 | return __round_jiffies_up_relative(j, raw_smp_processor_id()); |
| 474 | } |
| 475 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); |
| 476 | |
| 477 | |
| 478 | static inline unsigned int timer_get_idx(struct timer_list *timer) |
| 479 | { |
| 480 | return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; |
| 481 | } |
| 482 | |
| 483 | static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) |
| 484 | { |
| 485 | timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | |
| 486 | idx << TIMER_ARRAYSHIFT; |
| 487 | } |
| 488 | |
| 489 | /* |
| 490 | * Helper function to calculate the array index for a given expiry |
| 491 | * time. |
| 492 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 493 | static inline unsigned calc_index(unsigned long expires, unsigned lvl, |
| 494 | unsigned long *bucket_expiry) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 495 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 496 | |
| 497 | /* |
| 498 | * The timer wheel has to guarantee that a timer does not fire |
| 499 | * early. Early expiry can happen due to: |
| 500 | * - Timer is armed at the edge of a tick |
| 501 | * - Truncation of the expiry time in the outer wheel levels |
| 502 | * |
| 503 | * Round up with level granularity to prevent this. |
| 504 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 505 | expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 506 | *bucket_expiry = expires << LVL_SHIFT(lvl); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 507 | return LVL_OFFS(lvl) + (expires & LVL_MASK); |
| 508 | } |
| 509 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 510 | static int calc_wheel_index(unsigned long expires, unsigned long clk, |
| 511 | unsigned long *bucket_expiry) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 512 | { |
| 513 | unsigned long delta = expires - clk; |
| 514 | unsigned int idx; |
| 515 | |
| 516 | if (delta < LVL_START(1)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 517 | idx = calc_index(expires, 0, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 518 | } else if (delta < LVL_START(2)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 519 | idx = calc_index(expires, 1, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 520 | } else if (delta < LVL_START(3)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 521 | idx = calc_index(expires, 2, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 522 | } else if (delta < LVL_START(4)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 523 | idx = calc_index(expires, 3, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 524 | } else if (delta < LVL_START(5)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 525 | idx = calc_index(expires, 4, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 526 | } else if (delta < LVL_START(6)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 527 | idx = calc_index(expires, 5, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 528 | } else if (delta < LVL_START(7)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 529 | idx = calc_index(expires, 6, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 530 | } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 531 | idx = calc_index(expires, 7, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 532 | } else if ((long) delta < 0) { |
| 533 | idx = clk & LVL_MASK; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 534 | *bucket_expiry = clk; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 535 | } else { |
| 536 | /* |
| 537 | * Force expire obscene large timeouts to expire at the |
| 538 | * capacity limit of the wheel. |
| 539 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 540 | if (delta >= WHEEL_TIMEOUT_CUTOFF) |
| 541 | expires = clk + WHEEL_TIMEOUT_MAX; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 542 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 543 | idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 544 | } |
| 545 | return idx; |
| 546 | } |
| 547 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 548 | static void |
| 549 | trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) |
| 550 | { |
| 551 | if (!is_timers_nohz_active()) |
| 552 | return; |
| 553 | |
| 554 | /* |
| 555 | * TODO: This wants some optimizing similar to the code below, but we |
| 556 | * will do that when we switch from push to pull for deferrable timers. |
| 557 | */ |
| 558 | if (timer->flags & TIMER_DEFERRABLE) { |
| 559 | if (tick_nohz_full_cpu(base->cpu)) |
| 560 | wake_up_nohz_cpu(base->cpu); |
| 561 | return; |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * We might have to IPI the remote CPU if the base is idle and the |
| 566 | * timer is not deferrable. If the other CPU is on the way to idle |
| 567 | * then it can't set base->is_idle as we hold the base lock: |
| 568 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 569 | if (base->is_idle) |
| 570 | wake_up_nohz_cpu(base->cpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 571 | } |
| 572 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 573 | /* |
| 574 | * Enqueue the timer into the hash bucket, mark it pending in |
| 575 | * the bitmap, store the index in the timer flags then wake up |
| 576 | * the target CPU if needed. |
| 577 | */ |
| 578 | static void enqueue_timer(struct timer_base *base, struct timer_list *timer, |
| 579 | unsigned int idx, unsigned long bucket_expiry) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 580 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 581 | |
| 582 | hlist_add_head(&timer->entry, base->vectors + idx); |
| 583 | __set_bit(idx, base->pending_map); |
| 584 | timer_set_idx(timer, idx); |
| 585 | |
| 586 | trace_timer_start(timer, timer->expires, timer->flags); |
| 587 | |
| 588 | /* |
| 589 | * Check whether this is the new first expiring timer. The |
| 590 | * effective expiry time of the timer is required here |
| 591 | * (bucket_expiry) instead of timer->expires. |
| 592 | */ |
| 593 | if (time_before(bucket_expiry, base->next_expiry)) { |
| 594 | /* |
| 595 | * Set the next expiry time and kick the CPU so it |
| 596 | * can reevaluate the wheel: |
| 597 | */ |
| 598 | base->next_expiry = bucket_expiry; |
| 599 | base->timers_pending = true; |
| 600 | base->next_expiry_recalc = false; |
| 601 | trigger_dyntick_cpu(base, timer); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | static void internal_add_timer(struct timer_base *base, struct timer_list *timer) |
| 606 | { |
| 607 | unsigned long bucket_expiry; |
| 608 | unsigned int idx; |
| 609 | |
| 610 | idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry); |
| 611 | enqueue_timer(base, timer, idx, bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 612 | } |
| 613 | |
| 614 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
| 615 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 616 | static const struct debug_obj_descr timer_debug_descr; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 617 | |
| 618 | static void *timer_debug_hint(void *addr) |
| 619 | { |
| 620 | return ((struct timer_list *) addr)->function; |
| 621 | } |
| 622 | |
| 623 | static bool timer_is_static_object(void *addr) |
| 624 | { |
| 625 | struct timer_list *timer = addr; |
| 626 | |
| 627 | return (timer->entry.pprev == NULL && |
| 628 | timer->entry.next == TIMER_ENTRY_STATIC); |
| 629 | } |
| 630 | |
| 631 | /* |
| 632 | * fixup_init is called when: |
| 633 | * - an active object is initialized |
| 634 | */ |
| 635 | static bool timer_fixup_init(void *addr, enum debug_obj_state state) |
| 636 | { |
| 637 | struct timer_list *timer = addr; |
| 638 | |
| 639 | switch (state) { |
| 640 | case ODEBUG_STATE_ACTIVE: |
| 641 | del_timer_sync(timer); |
| 642 | debug_object_init(timer, &timer_debug_descr); |
| 643 | return true; |
| 644 | default: |
| 645 | return false; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | /* Stub timer callback for improperly used timers. */ |
| 650 | static void stub_timer(struct timer_list *unused) |
| 651 | { |
| 652 | WARN_ON(1); |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * fixup_activate is called when: |
| 657 | * - an active object is activated |
| 658 | * - an unknown non-static object is activated |
| 659 | */ |
| 660 | static bool timer_fixup_activate(void *addr, enum debug_obj_state state) |
| 661 | { |
| 662 | struct timer_list *timer = addr; |
| 663 | |
| 664 | switch (state) { |
| 665 | case ODEBUG_STATE_NOTAVAILABLE: |
| 666 | timer_setup(timer, stub_timer, 0); |
| 667 | return true; |
| 668 | |
| 669 | case ODEBUG_STATE_ACTIVE: |
| 670 | WARN_ON(1); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 671 | fallthrough; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 672 | default: |
| 673 | return false; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * fixup_free is called when: |
| 679 | * - an active object is freed |
| 680 | */ |
| 681 | static bool timer_fixup_free(void *addr, enum debug_obj_state state) |
| 682 | { |
| 683 | struct timer_list *timer = addr; |
| 684 | |
| 685 | switch (state) { |
| 686 | case ODEBUG_STATE_ACTIVE: |
| 687 | del_timer_sync(timer); |
| 688 | debug_object_free(timer, &timer_debug_descr); |
| 689 | return true; |
| 690 | default: |
| 691 | return false; |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * fixup_assert_init is called when: |
| 697 | * - an untracked/uninit-ed object is found |
| 698 | */ |
| 699 | static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) |
| 700 | { |
| 701 | struct timer_list *timer = addr; |
| 702 | |
| 703 | switch (state) { |
| 704 | case ODEBUG_STATE_NOTAVAILABLE: |
| 705 | timer_setup(timer, stub_timer, 0); |
| 706 | return true; |
| 707 | default: |
| 708 | return false; |
| 709 | } |
| 710 | } |
| 711 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 712 | static const struct debug_obj_descr timer_debug_descr = { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 713 | .name = "timer_list", |
| 714 | .debug_hint = timer_debug_hint, |
| 715 | .is_static_object = timer_is_static_object, |
| 716 | .fixup_init = timer_fixup_init, |
| 717 | .fixup_activate = timer_fixup_activate, |
| 718 | .fixup_free = timer_fixup_free, |
| 719 | .fixup_assert_init = timer_fixup_assert_init, |
| 720 | }; |
| 721 | |
| 722 | static inline void debug_timer_init(struct timer_list *timer) |
| 723 | { |
| 724 | debug_object_init(timer, &timer_debug_descr); |
| 725 | } |
| 726 | |
| 727 | static inline void debug_timer_activate(struct timer_list *timer) |
| 728 | { |
| 729 | debug_object_activate(timer, &timer_debug_descr); |
| 730 | } |
| 731 | |
| 732 | static inline void debug_timer_deactivate(struct timer_list *timer) |
| 733 | { |
| 734 | debug_object_deactivate(timer, &timer_debug_descr); |
| 735 | } |
| 736 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 737 | static inline void debug_timer_assert_init(struct timer_list *timer) |
| 738 | { |
| 739 | debug_object_assert_init(timer, &timer_debug_descr); |
| 740 | } |
| 741 | |
| 742 | static void do_init_timer(struct timer_list *timer, |
| 743 | void (*func)(struct timer_list *), |
| 744 | unsigned int flags, |
| 745 | const char *name, struct lock_class_key *key); |
| 746 | |
| 747 | void init_timer_on_stack_key(struct timer_list *timer, |
| 748 | void (*func)(struct timer_list *), |
| 749 | unsigned int flags, |
| 750 | const char *name, struct lock_class_key *key) |
| 751 | { |
| 752 | debug_object_init_on_stack(timer, &timer_debug_descr); |
| 753 | do_init_timer(timer, func, flags, name, key); |
| 754 | } |
| 755 | EXPORT_SYMBOL_GPL(init_timer_on_stack_key); |
| 756 | |
| 757 | void destroy_timer_on_stack(struct timer_list *timer) |
| 758 | { |
| 759 | debug_object_free(timer, &timer_debug_descr); |
| 760 | } |
| 761 | EXPORT_SYMBOL_GPL(destroy_timer_on_stack); |
| 762 | |
| 763 | #else |
| 764 | static inline void debug_timer_init(struct timer_list *timer) { } |
| 765 | static inline void debug_timer_activate(struct timer_list *timer) { } |
| 766 | static inline void debug_timer_deactivate(struct timer_list *timer) { } |
| 767 | static inline void debug_timer_assert_init(struct timer_list *timer) { } |
| 768 | #endif |
| 769 | |
| 770 | static inline void debug_init(struct timer_list *timer) |
| 771 | { |
| 772 | debug_timer_init(timer); |
| 773 | trace_timer_init(timer); |
| 774 | } |
| 775 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 776 | static inline void debug_deactivate(struct timer_list *timer) |
| 777 | { |
| 778 | debug_timer_deactivate(timer); |
| 779 | trace_timer_cancel(timer); |
| 780 | } |
| 781 | |
| 782 | static inline void debug_assert_init(struct timer_list *timer) |
| 783 | { |
| 784 | debug_timer_assert_init(timer); |
| 785 | } |
| 786 | |
| 787 | static void do_init_timer(struct timer_list *timer, |
| 788 | void (*func)(struct timer_list *), |
| 789 | unsigned int flags, |
| 790 | const char *name, struct lock_class_key *key) |
| 791 | { |
| 792 | timer->entry.pprev = NULL; |
| 793 | timer->function = func; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 794 | if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS)) |
| 795 | flags &= TIMER_INIT_FLAGS; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 796 | timer->flags = flags | raw_smp_processor_id(); |
| 797 | lockdep_init_map(&timer->lockdep_map, name, key, 0); |
| 798 | } |
| 799 | |
| 800 | /** |
| 801 | * init_timer_key - initialize a timer |
| 802 | * @timer: the timer to be initialized |
| 803 | * @func: timer callback function |
| 804 | * @flags: timer flags |
| 805 | * @name: name of the timer |
| 806 | * @key: lockdep class key of the fake lock used for tracking timer |
| 807 | * sync lock dependencies |
| 808 | * |
| 809 | * init_timer_key() must be done to a timer prior calling *any* of the |
| 810 | * other timer functions. |
| 811 | */ |
| 812 | void init_timer_key(struct timer_list *timer, |
| 813 | void (*func)(struct timer_list *), unsigned int flags, |
| 814 | const char *name, struct lock_class_key *key) |
| 815 | { |
| 816 | debug_init(timer); |
| 817 | do_init_timer(timer, func, flags, name, key); |
| 818 | } |
| 819 | EXPORT_SYMBOL(init_timer_key); |
| 820 | |
| 821 | static inline void detach_timer(struct timer_list *timer, bool clear_pending) |
| 822 | { |
| 823 | struct hlist_node *entry = &timer->entry; |
| 824 | |
| 825 | debug_deactivate(timer); |
| 826 | |
| 827 | __hlist_del(entry); |
| 828 | if (clear_pending) |
| 829 | entry->pprev = NULL; |
| 830 | entry->next = LIST_POISON2; |
| 831 | } |
| 832 | |
| 833 | static int detach_if_pending(struct timer_list *timer, struct timer_base *base, |
| 834 | bool clear_pending) |
| 835 | { |
| 836 | unsigned idx = timer_get_idx(timer); |
| 837 | |
| 838 | if (!timer_pending(timer)) |
| 839 | return 0; |
| 840 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 841 | if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 842 | __clear_bit(idx, base->pending_map); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 843 | base->next_expiry_recalc = true; |
| 844 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 845 | |
| 846 | detach_timer(timer, clear_pending); |
| 847 | return 1; |
| 848 | } |
| 849 | |
| 850 | static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) |
| 851 | { |
| 852 | struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); |
| 853 | |
| 854 | /* |
| 855 | * If the timer is deferrable and NO_HZ_COMMON is set then we need |
| 856 | * to use the deferrable base. |
| 857 | */ |
| 858 | if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) |
| 859 | base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); |
| 860 | return base; |
| 861 | } |
| 862 | |
| 863 | static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) |
| 864 | { |
| 865 | struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); |
| 866 | |
| 867 | /* |
| 868 | * If the timer is deferrable and NO_HZ_COMMON is set then we need |
| 869 | * to use the deferrable base. |
| 870 | */ |
| 871 | if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) |
| 872 | base = this_cpu_ptr(&timer_bases[BASE_DEF]); |
| 873 | return base; |
| 874 | } |
| 875 | |
| 876 | static inline struct timer_base *get_timer_base(u32 tflags) |
| 877 | { |
| 878 | return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); |
| 879 | } |
| 880 | |
| 881 | static inline struct timer_base * |
| 882 | get_target_base(struct timer_base *base, unsigned tflags) |
| 883 | { |
| 884 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
| 885 | if (static_branch_likely(&timers_migration_enabled) && |
| 886 | !(tflags & TIMER_PINNED)) |
| 887 | return get_timer_cpu_base(tflags, get_nohz_timer_target()); |
| 888 | #endif |
| 889 | return get_timer_this_cpu_base(tflags); |
| 890 | } |
| 891 | |
| 892 | static inline void forward_timer_base(struct timer_base *base) |
| 893 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 894 | unsigned long jnow = READ_ONCE(jiffies); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 895 | |
| 896 | /* |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 897 | * No need to forward if we are close enough below jiffies. |
| 898 | * Also while executing timers, base->clk is 1 offset ahead |
| 899 | * of jiffies to avoid endless requeuing to current jffies. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 900 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 901 | if ((long)(jnow - base->clk) < 1) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 902 | return; |
| 903 | |
| 904 | /* |
| 905 | * If the next expiry value is > jiffies, then we fast forward to |
| 906 | * jiffies otherwise we forward to the next expiry value. |
| 907 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 908 | if (time_after(base->next_expiry, jnow)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 909 | base->clk = jnow; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 910 | } else { |
| 911 | if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) |
| 912 | return; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 913 | base->clk = base->next_expiry; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 914 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 915 | } |
| 916 | |
| 917 | |
| 918 | /* |
| 919 | * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means |
| 920 | * that all timers which are tied to this base are locked, and the base itself |
| 921 | * is locked too. |
| 922 | * |
| 923 | * So __run_timers/migrate_timers can safely modify all timers which could |
| 924 | * be found in the base->vectors array. |
| 925 | * |
| 926 | * When a timer is migrating then the TIMER_MIGRATING flag is set and we need |
| 927 | * to wait until the migration is done. |
| 928 | */ |
| 929 | static struct timer_base *lock_timer_base(struct timer_list *timer, |
| 930 | unsigned long *flags) |
| 931 | __acquires(timer->base->lock) |
| 932 | { |
| 933 | for (;;) { |
| 934 | struct timer_base *base; |
| 935 | u32 tf; |
| 936 | |
| 937 | /* |
| 938 | * We need to use READ_ONCE() here, otherwise the compiler |
| 939 | * might re-read @tf between the check for TIMER_MIGRATING |
| 940 | * and spin_lock(). |
| 941 | */ |
| 942 | tf = READ_ONCE(timer->flags); |
| 943 | |
| 944 | if (!(tf & TIMER_MIGRATING)) { |
| 945 | base = get_timer_base(tf); |
| 946 | raw_spin_lock_irqsave(&base->lock, *flags); |
| 947 | if (timer->flags == tf) |
| 948 | return base; |
| 949 | raw_spin_unlock_irqrestore(&base->lock, *flags); |
| 950 | } |
| 951 | cpu_relax(); |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | #define MOD_TIMER_PENDING_ONLY 0x01 |
| 956 | #define MOD_TIMER_REDUCE 0x02 |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 957 | #define MOD_TIMER_NOTPENDING 0x04 |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 958 | |
| 959 | static inline int |
| 960 | __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) |
| 961 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 962 | unsigned long clk = 0, flags, bucket_expiry; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 963 | struct timer_base *base, *new_base; |
| 964 | unsigned int idx = UINT_MAX; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 965 | int ret = 0; |
| 966 | |
| 967 | BUG_ON(!timer->function); |
| 968 | |
| 969 | /* |
| 970 | * This is a common optimization triggered by the networking code - if |
| 971 | * the timer is re-modified to have the same timeout or ends up in the |
| 972 | * same array bucket then just return: |
| 973 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 974 | if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 975 | /* |
| 976 | * The downside of this optimization is that it can result in |
| 977 | * larger granularity than you would get from adding a new |
| 978 | * timer with this expiry. |
| 979 | */ |
| 980 | long diff = timer->expires - expires; |
| 981 | |
| 982 | if (!diff) |
| 983 | return 1; |
| 984 | if (options & MOD_TIMER_REDUCE && diff <= 0) |
| 985 | return 1; |
| 986 | |
| 987 | /* |
| 988 | * We lock timer base and calculate the bucket index right |
| 989 | * here. If the timer ends up in the same bucket, then we |
| 990 | * just update the expiry time and avoid the whole |
| 991 | * dequeue/enqueue dance. |
| 992 | */ |
| 993 | base = lock_timer_base(timer, &flags); |
| 994 | forward_timer_base(base); |
| 995 | |
| 996 | if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && |
| 997 | time_before_eq(timer->expires, expires)) { |
| 998 | ret = 1; |
| 999 | goto out_unlock; |
| 1000 | } |
| 1001 | |
| 1002 | clk = base->clk; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1003 | idx = calc_wheel_index(expires, clk, &bucket_expiry); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1004 | |
| 1005 | /* |
| 1006 | * Retrieve and compare the array index of the pending |
| 1007 | * timer. If it matches set the expiry to the new value so a |
| 1008 | * subsequent call will exit in the expires check above. |
| 1009 | */ |
| 1010 | if (idx == timer_get_idx(timer)) { |
| 1011 | if (!(options & MOD_TIMER_REDUCE)) |
| 1012 | timer->expires = expires; |
| 1013 | else if (time_after(timer->expires, expires)) |
| 1014 | timer->expires = expires; |
| 1015 | ret = 1; |
| 1016 | goto out_unlock; |
| 1017 | } |
| 1018 | } else { |
| 1019 | base = lock_timer_base(timer, &flags); |
| 1020 | forward_timer_base(base); |
| 1021 | } |
| 1022 | |
| 1023 | ret = detach_if_pending(timer, base, false); |
| 1024 | if (!ret && (options & MOD_TIMER_PENDING_ONLY)) |
| 1025 | goto out_unlock; |
| 1026 | |
| 1027 | new_base = get_target_base(base, timer->flags); |
| 1028 | |
| 1029 | if (base != new_base) { |
| 1030 | /* |
| 1031 | * We are trying to schedule the timer on the new base. |
| 1032 | * However we can't change timer's base while it is running, |
| 1033 | * otherwise del_timer_sync() can't detect that the timer's |
| 1034 | * handler yet has not finished. This also guarantees that the |
| 1035 | * timer is serialized wrt itself. |
| 1036 | */ |
| 1037 | if (likely(base->running_timer != timer)) { |
| 1038 | /* See the comment in lock_timer_base() */ |
| 1039 | timer->flags |= TIMER_MIGRATING; |
| 1040 | |
| 1041 | raw_spin_unlock(&base->lock); |
| 1042 | base = new_base; |
| 1043 | raw_spin_lock(&base->lock); |
| 1044 | WRITE_ONCE(timer->flags, |
| 1045 | (timer->flags & ~TIMER_BASEMASK) | base->cpu); |
| 1046 | forward_timer_base(base); |
| 1047 | } |
| 1048 | } |
| 1049 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1050 | debug_timer_activate(timer); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1051 | |
| 1052 | timer->expires = expires; |
| 1053 | /* |
| 1054 | * If 'idx' was calculated above and the base time did not advance |
| 1055 | * between calculating 'idx' and possibly switching the base, only |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1056 | * enqueue_timer() is required. Otherwise we need to (re)calculate |
| 1057 | * the wheel index via internal_add_timer(). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1058 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1059 | if (idx != UINT_MAX && clk == base->clk) |
| 1060 | enqueue_timer(base, timer, idx, bucket_expiry); |
| 1061 | else |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1062 | internal_add_timer(base, timer); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1063 | |
| 1064 | out_unlock: |
| 1065 | raw_spin_unlock_irqrestore(&base->lock, flags); |
| 1066 | |
| 1067 | return ret; |
| 1068 | } |
| 1069 | |
| 1070 | /** |
| 1071 | * mod_timer_pending - modify a pending timer's timeout |
| 1072 | * @timer: the pending timer to be modified |
| 1073 | * @expires: new timeout in jiffies |
| 1074 | * |
| 1075 | * mod_timer_pending() is the same for pending timers as mod_timer(), |
| 1076 | * but will not re-activate and modify already deleted timers. |
| 1077 | * |
| 1078 | * It is useful for unserialized use of timers. |
| 1079 | */ |
| 1080 | int mod_timer_pending(struct timer_list *timer, unsigned long expires) |
| 1081 | { |
| 1082 | return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); |
| 1083 | } |
| 1084 | EXPORT_SYMBOL(mod_timer_pending); |
| 1085 | |
| 1086 | /** |
| 1087 | * mod_timer - modify a timer's timeout |
| 1088 | * @timer: the timer to be modified |
| 1089 | * @expires: new timeout in jiffies |
| 1090 | * |
| 1091 | * mod_timer() is a more efficient way to update the expire field of an |
| 1092 | * active timer (if the timer is inactive it will be activated) |
| 1093 | * |
| 1094 | * mod_timer(timer, expires) is equivalent to: |
| 1095 | * |
| 1096 | * del_timer(timer); timer->expires = expires; add_timer(timer); |
| 1097 | * |
| 1098 | * Note that if there are multiple unserialized concurrent users of the |
| 1099 | * same timer, then mod_timer() is the only safe way to modify the timeout, |
| 1100 | * since add_timer() cannot modify an already running timer. |
| 1101 | * |
| 1102 | * The function returns whether it has modified a pending timer or not. |
| 1103 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an |
| 1104 | * active timer returns 1.) |
| 1105 | */ |
| 1106 | int mod_timer(struct timer_list *timer, unsigned long expires) |
| 1107 | { |
| 1108 | return __mod_timer(timer, expires, 0); |
| 1109 | } |
| 1110 | EXPORT_SYMBOL(mod_timer); |
| 1111 | |
| 1112 | /** |
| 1113 | * timer_reduce - Modify a timer's timeout if it would reduce the timeout |
| 1114 | * @timer: The timer to be modified |
| 1115 | * @expires: New timeout in jiffies |
| 1116 | * |
| 1117 | * timer_reduce() is very similar to mod_timer(), except that it will only |
| 1118 | * modify a running timer if that would reduce the expiration time (it will |
| 1119 | * start a timer that isn't running). |
| 1120 | */ |
| 1121 | int timer_reduce(struct timer_list *timer, unsigned long expires) |
| 1122 | { |
| 1123 | return __mod_timer(timer, expires, MOD_TIMER_REDUCE); |
| 1124 | } |
| 1125 | EXPORT_SYMBOL(timer_reduce); |
| 1126 | |
| 1127 | /** |
| 1128 | * add_timer - start a timer |
| 1129 | * @timer: the timer to be added |
| 1130 | * |
| 1131 | * The kernel will do a ->function(@timer) callback from the |
| 1132 | * timer interrupt at the ->expires point in the future. The |
| 1133 | * current time is 'jiffies'. |
| 1134 | * |
| 1135 | * The timer's ->expires, ->function fields must be set prior calling this |
| 1136 | * function. |
| 1137 | * |
| 1138 | * Timers with an ->expires field in the past will be executed in the next |
| 1139 | * timer tick. |
| 1140 | */ |
| 1141 | void add_timer(struct timer_list *timer) |
| 1142 | { |
| 1143 | BUG_ON(timer_pending(timer)); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1144 | __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1145 | } |
| 1146 | EXPORT_SYMBOL(add_timer); |
| 1147 | |
| 1148 | /** |
| 1149 | * add_timer_on - start a timer on a particular CPU |
| 1150 | * @timer: the timer to be added |
| 1151 | * @cpu: the CPU to start it on |
| 1152 | * |
| 1153 | * This is not very scalable on SMP. Double adds are not possible. |
| 1154 | */ |
| 1155 | void add_timer_on(struct timer_list *timer, int cpu) |
| 1156 | { |
| 1157 | struct timer_base *new_base, *base; |
| 1158 | unsigned long flags; |
| 1159 | |
| 1160 | BUG_ON(timer_pending(timer) || !timer->function); |
| 1161 | |
| 1162 | new_base = get_timer_cpu_base(timer->flags, cpu); |
| 1163 | |
| 1164 | /* |
| 1165 | * If @timer was on a different CPU, it should be migrated with the |
| 1166 | * old base locked to prevent other operations proceeding with the |
| 1167 | * wrong base locked. See lock_timer_base(). |
| 1168 | */ |
| 1169 | base = lock_timer_base(timer, &flags); |
| 1170 | if (base != new_base) { |
| 1171 | timer->flags |= TIMER_MIGRATING; |
| 1172 | |
| 1173 | raw_spin_unlock(&base->lock); |
| 1174 | base = new_base; |
| 1175 | raw_spin_lock(&base->lock); |
| 1176 | WRITE_ONCE(timer->flags, |
| 1177 | (timer->flags & ~TIMER_BASEMASK) | cpu); |
| 1178 | } |
| 1179 | forward_timer_base(base); |
| 1180 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1181 | debug_timer_activate(timer); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1182 | internal_add_timer(base, timer); |
| 1183 | raw_spin_unlock_irqrestore(&base->lock, flags); |
| 1184 | } |
| 1185 | EXPORT_SYMBOL_GPL(add_timer_on); |
| 1186 | |
| 1187 | /** |
| 1188 | * del_timer - deactivate a timer. |
| 1189 | * @timer: the timer to be deactivated |
| 1190 | * |
| 1191 | * del_timer() deactivates a timer - this works on both active and inactive |
| 1192 | * timers. |
| 1193 | * |
| 1194 | * The function returns whether it has deactivated a pending timer or not. |
| 1195 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an |
| 1196 | * active timer returns 1.) |
| 1197 | */ |
| 1198 | int del_timer(struct timer_list *timer) |
| 1199 | { |
| 1200 | struct timer_base *base; |
| 1201 | unsigned long flags; |
| 1202 | int ret = 0; |
| 1203 | |
| 1204 | debug_assert_init(timer); |
| 1205 | |
| 1206 | if (timer_pending(timer)) { |
| 1207 | base = lock_timer_base(timer, &flags); |
| 1208 | ret = detach_if_pending(timer, base, true); |
| 1209 | raw_spin_unlock_irqrestore(&base->lock, flags); |
| 1210 | } |
| 1211 | |
| 1212 | return ret; |
| 1213 | } |
| 1214 | EXPORT_SYMBOL(del_timer); |
| 1215 | |
| 1216 | /** |
| 1217 | * try_to_del_timer_sync - Try to deactivate a timer |
| 1218 | * @timer: timer to delete |
| 1219 | * |
| 1220 | * This function tries to deactivate a timer. Upon successful (ret >= 0) |
| 1221 | * exit the timer is not queued and the handler is not running on any CPU. |
| 1222 | */ |
| 1223 | int try_to_del_timer_sync(struct timer_list *timer) |
| 1224 | { |
| 1225 | struct timer_base *base; |
| 1226 | unsigned long flags; |
| 1227 | int ret = -1; |
| 1228 | |
| 1229 | debug_assert_init(timer); |
| 1230 | |
| 1231 | base = lock_timer_base(timer, &flags); |
| 1232 | |
| 1233 | if (base->running_timer != timer) |
| 1234 | ret = detach_if_pending(timer, base, true); |
| 1235 | |
| 1236 | raw_spin_unlock_irqrestore(&base->lock, flags); |
| 1237 | |
| 1238 | return ret; |
| 1239 | } |
| 1240 | EXPORT_SYMBOL(try_to_del_timer_sync); |
| 1241 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1242 | #ifdef CONFIG_PREEMPT_RT |
| 1243 | static __init void timer_base_init_expiry_lock(struct timer_base *base) |
| 1244 | { |
| 1245 | spin_lock_init(&base->expiry_lock); |
| 1246 | } |
| 1247 | |
| 1248 | static inline void timer_base_lock_expiry(struct timer_base *base) |
| 1249 | { |
| 1250 | spin_lock(&base->expiry_lock); |
| 1251 | } |
| 1252 | |
| 1253 | static inline void timer_base_unlock_expiry(struct timer_base *base) |
| 1254 | { |
| 1255 | spin_unlock(&base->expiry_lock); |
| 1256 | } |
| 1257 | |
| 1258 | /* |
| 1259 | * The counterpart to del_timer_wait_running(). |
| 1260 | * |
| 1261 | * If there is a waiter for base->expiry_lock, then it was waiting for the |
| 1262 | * timer callback to finish. Drop expiry_lock and reaquire it. That allows |
| 1263 | * the waiter to acquire the lock and make progress. |
| 1264 | */ |
| 1265 | static void timer_sync_wait_running(struct timer_base *base) |
| 1266 | { |
| 1267 | if (atomic_read(&base->timer_waiters)) { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1268 | raw_spin_unlock_irq(&base->lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1269 | spin_unlock(&base->expiry_lock); |
| 1270 | spin_lock(&base->expiry_lock); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1271 | raw_spin_lock_irq(&base->lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1272 | } |
| 1273 | } |
| 1274 | |
| 1275 | /* |
| 1276 | * This function is called on PREEMPT_RT kernels when the fast path |
| 1277 | * deletion of a timer failed because the timer callback function was |
| 1278 | * running. |
| 1279 | * |
| 1280 | * This prevents priority inversion, if the softirq thread on a remote CPU |
| 1281 | * got preempted, and it prevents a life lock when the task which tries to |
| 1282 | * delete a timer preempted the softirq thread running the timer callback |
| 1283 | * function. |
| 1284 | */ |
| 1285 | static void del_timer_wait_running(struct timer_list *timer) |
| 1286 | { |
| 1287 | u32 tf; |
| 1288 | |
| 1289 | tf = READ_ONCE(timer->flags); |
| 1290 | if (!(tf & TIMER_MIGRATING)) { |
| 1291 | struct timer_base *base = get_timer_base(tf); |
| 1292 | |
| 1293 | /* |
| 1294 | * Mark the base as contended and grab the expiry lock, |
| 1295 | * which is held by the softirq across the timer |
| 1296 | * callback. Drop the lock immediately so the softirq can |
| 1297 | * expire the next timer. In theory the timer could already |
| 1298 | * be running again, but that's more than unlikely and just |
| 1299 | * causes another wait loop. |
| 1300 | */ |
| 1301 | atomic_inc(&base->timer_waiters); |
| 1302 | spin_lock_bh(&base->expiry_lock); |
| 1303 | atomic_dec(&base->timer_waiters); |
| 1304 | spin_unlock_bh(&base->expiry_lock); |
| 1305 | } |
| 1306 | } |
| 1307 | #else |
| 1308 | static inline void timer_base_init_expiry_lock(struct timer_base *base) { } |
| 1309 | static inline void timer_base_lock_expiry(struct timer_base *base) { } |
| 1310 | static inline void timer_base_unlock_expiry(struct timer_base *base) { } |
| 1311 | static inline void timer_sync_wait_running(struct timer_base *base) { } |
| 1312 | static inline void del_timer_wait_running(struct timer_list *timer) { } |
| 1313 | #endif |
| 1314 | |
| 1315 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1316 | /** |
| 1317 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
| 1318 | * @timer: the timer to be deactivated |
| 1319 | * |
| 1320 | * This function only differs from del_timer() on SMP: besides deactivating |
| 1321 | * the timer it also makes sure the handler has finished executing on other |
| 1322 | * CPUs. |
| 1323 | * |
| 1324 | * Synchronization rules: Callers must prevent restarting of the timer, |
| 1325 | * otherwise this function is meaningless. It must not be called from |
| 1326 | * interrupt contexts unless the timer is an irqsafe one. The caller must |
| 1327 | * not hold locks which would prevent completion of the timer's |
| 1328 | * handler. The timer's handler must not call add_timer_on(). Upon exit the |
| 1329 | * timer is not queued and the handler is not running on any CPU. |
| 1330 | * |
| 1331 | * Note: For !irqsafe timers, you must not hold locks that are held in |
| 1332 | * interrupt context while calling this function. Even if the lock has |
| 1333 | * nothing to do with the timer in question. Here's why:: |
| 1334 | * |
| 1335 | * CPU0 CPU1 |
| 1336 | * ---- ---- |
| 1337 | * <SOFTIRQ> |
| 1338 | * call_timer_fn(); |
| 1339 | * base->running_timer = mytimer; |
| 1340 | * spin_lock_irq(somelock); |
| 1341 | * <IRQ> |
| 1342 | * spin_lock(somelock); |
| 1343 | * del_timer_sync(mytimer); |
| 1344 | * while (base->running_timer == mytimer); |
| 1345 | * |
| 1346 | * Now del_timer_sync() will never return and never release somelock. |
| 1347 | * The interrupt on the other CPU is waiting to grab somelock but |
| 1348 | * it has interrupted the softirq that CPU0 is waiting to finish. |
| 1349 | * |
| 1350 | * The function returns whether it has deactivated a pending timer or not. |
| 1351 | */ |
| 1352 | int del_timer_sync(struct timer_list *timer) |
| 1353 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1354 | int ret; |
| 1355 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1356 | #ifdef CONFIG_LOCKDEP |
| 1357 | unsigned long flags; |
| 1358 | |
| 1359 | /* |
| 1360 | * If lockdep gives a backtrace here, please reference |
| 1361 | * the synchronization rules above. |
| 1362 | */ |
| 1363 | local_irq_save(flags); |
| 1364 | lock_map_acquire(&timer->lockdep_map); |
| 1365 | lock_map_release(&timer->lockdep_map); |
| 1366 | local_irq_restore(flags); |
| 1367 | #endif |
| 1368 | /* |
| 1369 | * don't use it in hardirq context, because it |
| 1370 | * could lead to deadlock. |
| 1371 | */ |
| 1372 | WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1373 | |
| 1374 | do { |
| 1375 | ret = try_to_del_timer_sync(timer); |
| 1376 | |
| 1377 | if (unlikely(ret < 0)) { |
| 1378 | del_timer_wait_running(timer); |
| 1379 | cpu_relax(); |
| 1380 | } |
| 1381 | } while (ret < 0); |
| 1382 | |
| 1383 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1384 | } |
| 1385 | EXPORT_SYMBOL(del_timer_sync); |
| 1386 | #endif |
| 1387 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1388 | static void call_timer_fn(struct timer_list *timer, |
| 1389 | void (*fn)(struct timer_list *), |
| 1390 | unsigned long baseclk) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1391 | { |
| 1392 | int count = preempt_count(); |
| 1393 | |
| 1394 | #ifdef CONFIG_LOCKDEP |
| 1395 | /* |
| 1396 | * It is permissible to free the timer from inside the |
| 1397 | * function that is called from it, this we need to take into |
| 1398 | * account for lockdep too. To avoid bogus "held lock freed" |
| 1399 | * warnings as well as problems when looking into |
| 1400 | * timer->lockdep_map, make a copy and use that here. |
| 1401 | */ |
| 1402 | struct lockdep_map lockdep_map; |
| 1403 | |
| 1404 | lockdep_copy_map(&lockdep_map, &timer->lockdep_map); |
| 1405 | #endif |
| 1406 | /* |
| 1407 | * Couple the lock chain with the lock chain at |
| 1408 | * del_timer_sync() by acquiring the lock_map around the fn() |
| 1409 | * call here and in del_timer_sync(). |
| 1410 | */ |
| 1411 | lock_map_acquire(&lockdep_map); |
| 1412 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1413 | trace_timer_expire_entry(timer, baseclk); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1414 | fn(timer); |
| 1415 | trace_timer_expire_exit(timer); |
| 1416 | |
| 1417 | lock_map_release(&lockdep_map); |
| 1418 | |
| 1419 | if (count != preempt_count()) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1420 | WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1421 | fn, count, preempt_count()); |
| 1422 | /* |
| 1423 | * Restore the preempt count. That gives us a decent |
| 1424 | * chance to survive and extract information. If the |
| 1425 | * callback kept a lock held, bad luck, but not worse |
| 1426 | * than the BUG() we had. |
| 1427 | */ |
| 1428 | preempt_count_set(count); |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | static void expire_timers(struct timer_base *base, struct hlist_head *head) |
| 1433 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1434 | /* |
| 1435 | * This value is required only for tracing. base->clk was |
| 1436 | * incremented directly before expire_timers was called. But expiry |
| 1437 | * is related to the old base->clk value. |
| 1438 | */ |
| 1439 | unsigned long baseclk = base->clk - 1; |
| 1440 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1441 | while (!hlist_empty(head)) { |
| 1442 | struct timer_list *timer; |
| 1443 | void (*fn)(struct timer_list *); |
| 1444 | |
| 1445 | timer = hlist_entry(head->first, struct timer_list, entry); |
| 1446 | |
| 1447 | base->running_timer = timer; |
| 1448 | detach_timer(timer, true); |
| 1449 | |
| 1450 | fn = timer->function; |
| 1451 | |
| 1452 | if (timer->flags & TIMER_IRQSAFE) { |
| 1453 | raw_spin_unlock(&base->lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1454 | call_timer_fn(timer, fn, baseclk); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1455 | raw_spin_lock(&base->lock); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1456 | base->running_timer = NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1457 | } else { |
| 1458 | raw_spin_unlock_irq(&base->lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1459 | call_timer_fn(timer, fn, baseclk); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 1460 | raw_spin_lock_irq(&base->lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1461 | base->running_timer = NULL; |
| 1462 | timer_sync_wait_running(base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1463 | } |
| 1464 | } |
| 1465 | } |
| 1466 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1467 | static int collect_expired_timers(struct timer_base *base, |
| 1468 | struct hlist_head *heads) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1469 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1470 | unsigned long clk = base->clk = base->next_expiry; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1471 | struct hlist_head *vec; |
| 1472 | int i, levels = 0; |
| 1473 | unsigned int idx; |
| 1474 | |
| 1475 | for (i = 0; i < LVL_DEPTH; i++) { |
| 1476 | idx = (clk & LVL_MASK) + i * LVL_SIZE; |
| 1477 | |
| 1478 | if (__test_and_clear_bit(idx, base->pending_map)) { |
| 1479 | vec = base->vectors + idx; |
| 1480 | hlist_move_list(vec, heads++); |
| 1481 | levels++; |
| 1482 | } |
| 1483 | /* Is it time to look at the next level? */ |
| 1484 | if (clk & LVL_CLK_MASK) |
| 1485 | break; |
| 1486 | /* Shift clock for the next level granularity */ |
| 1487 | clk >>= LVL_CLK_SHIFT; |
| 1488 | } |
| 1489 | return levels; |
| 1490 | } |
| 1491 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1492 | /* |
| 1493 | * Find the next pending bucket of a level. Search from level start (@offset) |
| 1494 | * + @clk upwards and if nothing there, search from start of the level |
| 1495 | * (@offset) up to @offset + clk. |
| 1496 | */ |
| 1497 | static int next_pending_bucket(struct timer_base *base, unsigned offset, |
| 1498 | unsigned clk) |
| 1499 | { |
| 1500 | unsigned pos, start = offset + clk; |
| 1501 | unsigned end = offset + LVL_SIZE; |
| 1502 | |
| 1503 | pos = find_next_bit(base->pending_map, end, start); |
| 1504 | if (pos < end) |
| 1505 | return pos - start; |
| 1506 | |
| 1507 | pos = find_next_bit(base->pending_map, start, offset); |
| 1508 | return pos < start ? pos + LVL_SIZE - start : -1; |
| 1509 | } |
| 1510 | |
| 1511 | /* |
| 1512 | * Search the first expiring timer in the various clock levels. Caller must |
| 1513 | * hold base->lock. |
| 1514 | */ |
| 1515 | static unsigned long __next_timer_interrupt(struct timer_base *base) |
| 1516 | { |
| 1517 | unsigned long clk, next, adj; |
| 1518 | unsigned lvl, offset = 0; |
| 1519 | |
| 1520 | next = base->clk + NEXT_TIMER_MAX_DELTA; |
| 1521 | clk = base->clk; |
| 1522 | for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { |
| 1523 | int pos = next_pending_bucket(base, offset, clk & LVL_MASK); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1524 | unsigned long lvl_clk = clk & LVL_CLK_MASK; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1525 | |
| 1526 | if (pos >= 0) { |
| 1527 | unsigned long tmp = clk + (unsigned long) pos; |
| 1528 | |
| 1529 | tmp <<= LVL_SHIFT(lvl); |
| 1530 | if (time_before(tmp, next)) |
| 1531 | next = tmp; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1532 | |
| 1533 | /* |
| 1534 | * If the next expiration happens before we reach |
| 1535 | * the next level, no need to check further. |
| 1536 | */ |
| 1537 | if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) |
| 1538 | break; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1539 | } |
| 1540 | /* |
| 1541 | * Clock for the next level. If the current level clock lower |
| 1542 | * bits are zero, we look at the next level as is. If not we |
| 1543 | * need to advance it by one because that's going to be the |
| 1544 | * next expiring bucket in that level. base->clk is the next |
| 1545 | * expiring jiffie. So in case of: |
| 1546 | * |
| 1547 | * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 |
| 1548 | * 0 0 0 0 0 0 |
| 1549 | * |
| 1550 | * we have to look at all levels @index 0. With |
| 1551 | * |
| 1552 | * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 |
| 1553 | * 0 0 0 0 0 2 |
| 1554 | * |
| 1555 | * LVL0 has the next expiring bucket @index 2. The upper |
| 1556 | * levels have the next expiring bucket @index 1. |
| 1557 | * |
| 1558 | * In case that the propagation wraps the next level the same |
| 1559 | * rules apply: |
| 1560 | * |
| 1561 | * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 |
| 1562 | * 0 0 0 0 F 2 |
| 1563 | * |
| 1564 | * So after looking at LVL0 we get: |
| 1565 | * |
| 1566 | * LVL5 LVL4 LVL3 LVL2 LVL1 |
| 1567 | * 0 0 0 1 0 |
| 1568 | * |
| 1569 | * So no propagation from LVL1 to LVL2 because that happened |
| 1570 | * with the add already, but then we need to propagate further |
| 1571 | * from LVL2 to LVL3. |
| 1572 | * |
| 1573 | * So the simple check whether the lower bits of the current |
| 1574 | * level are 0 or not is sufficient for all cases. |
| 1575 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1576 | adj = lvl_clk ? 1 : 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1577 | clk >>= LVL_CLK_SHIFT; |
| 1578 | clk += adj; |
| 1579 | } |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1580 | |
| 1581 | base->next_expiry_recalc = false; |
| 1582 | base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA); |
| 1583 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1584 | return next; |
| 1585 | } |
| 1586 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1587 | #ifdef CONFIG_NO_HZ_COMMON |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1588 | /* |
| 1589 | * Check, if the next hrtimer event is before the next timer wheel |
| 1590 | * event: |
| 1591 | */ |
| 1592 | static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) |
| 1593 | { |
| 1594 | u64 nextevt = hrtimer_get_next_event(); |
| 1595 | |
| 1596 | /* |
| 1597 | * If high resolution timers are enabled |
| 1598 | * hrtimer_get_next_event() returns KTIME_MAX. |
| 1599 | */ |
| 1600 | if (expires <= nextevt) |
| 1601 | return expires; |
| 1602 | |
| 1603 | /* |
| 1604 | * If the next timer is already expired, return the tick base |
| 1605 | * time so the tick is fired immediately. |
| 1606 | */ |
| 1607 | if (nextevt <= basem) |
| 1608 | return basem; |
| 1609 | |
| 1610 | /* |
| 1611 | * Round up to the next jiffie. High resolution timers are |
| 1612 | * off, so the hrtimers are expired in the tick and we need to |
| 1613 | * make sure that this tick really expires the timer to avoid |
| 1614 | * a ping pong of the nohz stop code. |
| 1615 | * |
| 1616 | * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 |
| 1617 | */ |
| 1618 | return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; |
| 1619 | } |
| 1620 | |
| 1621 | /** |
| 1622 | * get_next_timer_interrupt - return the time (clock mono) of the next timer |
| 1623 | * @basej: base time jiffies |
| 1624 | * @basem: base time clock monotonic |
| 1625 | * |
| 1626 | * Returns the tick aligned clock monotonic time of the next pending |
| 1627 | * timer or KTIME_MAX if no timer is pending. |
| 1628 | */ |
| 1629 | u64 get_next_timer_interrupt(unsigned long basej, u64 basem) |
| 1630 | { |
| 1631 | struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); |
| 1632 | u64 expires = KTIME_MAX; |
| 1633 | unsigned long nextevt; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1634 | |
| 1635 | /* |
| 1636 | * Pretend that there is no timer pending if the cpu is offline. |
| 1637 | * Possible pending timers will be migrated later to an active cpu. |
| 1638 | */ |
| 1639 | if (cpu_is_offline(smp_processor_id())) |
| 1640 | return expires; |
| 1641 | |
| 1642 | raw_spin_lock(&base->lock); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1643 | if (base->next_expiry_recalc) |
| 1644 | base->next_expiry = __next_timer_interrupt(base); |
| 1645 | nextevt = base->next_expiry; |
| 1646 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1647 | /* |
| 1648 | * We have a fresh next event. Check whether we can forward the |
| 1649 | * base. We can only do that when @basej is past base->clk |
| 1650 | * otherwise we might rewind base->clk. |
| 1651 | */ |
| 1652 | if (time_after(basej, base->clk)) { |
| 1653 | if (time_after(nextevt, basej)) |
| 1654 | base->clk = basej; |
| 1655 | else if (time_after(nextevt, base->clk)) |
| 1656 | base->clk = nextevt; |
| 1657 | } |
| 1658 | |
| 1659 | if (time_before_eq(nextevt, basej)) { |
| 1660 | expires = basem; |
| 1661 | base->is_idle = false; |
| 1662 | } else { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1663 | if (base->timers_pending) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1664 | expires = basem + (u64)(nextevt - basej) * TICK_NSEC; |
| 1665 | /* |
| 1666 | * If we expect to sleep more than a tick, mark the base idle. |
| 1667 | * Also the tick is stopped so any added timer must forward |
| 1668 | * the base clk itself to keep granularity small. This idle |
| 1669 | * logic is only maintained for the BASE_STD base, deferrable |
| 1670 | * timers may still see large granularity skew (by design). |
| 1671 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1672 | if ((expires - basem) > TICK_NSEC) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1673 | base->is_idle = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1674 | } |
| 1675 | raw_spin_unlock(&base->lock); |
| 1676 | |
| 1677 | return cmp_next_hrtimer_event(basem, expires); |
| 1678 | } |
| 1679 | |
| 1680 | /** |
| 1681 | * timer_clear_idle - Clear the idle state of the timer base |
| 1682 | * |
| 1683 | * Called with interrupts disabled |
| 1684 | */ |
| 1685 | void timer_clear_idle(void) |
| 1686 | { |
| 1687 | struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); |
| 1688 | |
| 1689 | /* |
| 1690 | * We do this unlocked. The worst outcome is a remote enqueue sending |
| 1691 | * a pointless IPI, but taking the lock would just make the window for |
| 1692 | * sending the IPI a few instructions smaller for the cost of taking |
| 1693 | * the lock in the exit from idle path. |
| 1694 | */ |
| 1695 | base->is_idle = false; |
| 1696 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1697 | #endif |
| 1698 | |
| 1699 | /* |
| 1700 | * Called from the timer interrupt handler to charge one tick to the current |
| 1701 | * process. user_tick is 1 if the tick is user time, 0 for system. |
| 1702 | */ |
| 1703 | void update_process_times(int user_tick) |
| 1704 | { |
| 1705 | struct task_struct *p = current; |
| 1706 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1707 | PRANDOM_ADD_NOISE(jiffies, user_tick, p, 0); |
| 1708 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1709 | /* Note: this timer irq context must be accounted for as well. */ |
| 1710 | account_process_tick(p, user_tick); |
| 1711 | run_local_timers(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1712 | rcu_sched_clock_irq(user_tick); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1713 | #ifdef CONFIG_IRQ_WORK |
| 1714 | if (in_irq()) |
| 1715 | irq_work_tick(); |
| 1716 | #endif |
| 1717 | scheduler_tick(); |
| 1718 | if (IS_ENABLED(CONFIG_POSIX_TIMERS)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1719 | run_posix_cpu_timers(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1720 | } |
| 1721 | |
| 1722 | /** |
| 1723 | * __run_timers - run all expired timers (if any) on this CPU. |
| 1724 | * @base: the timer vector to be processed. |
| 1725 | */ |
| 1726 | static inline void __run_timers(struct timer_base *base) |
| 1727 | { |
| 1728 | struct hlist_head heads[LVL_DEPTH]; |
| 1729 | int levels; |
| 1730 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1731 | if (time_before(jiffies, base->next_expiry)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1732 | return; |
| 1733 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1734 | timer_base_lock_expiry(base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1735 | raw_spin_lock_irq(&base->lock); |
| 1736 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1737 | while (time_after_eq(jiffies, base->clk) && |
| 1738 | time_after_eq(jiffies, base->next_expiry)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1739 | levels = collect_expired_timers(base, heads); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1740 | /* |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 1741 | * The two possible reasons for not finding any expired |
| 1742 | * timer at this clk are that all matching timers have been |
| 1743 | * dequeued or no timer has been queued since |
| 1744 | * base::next_expiry was set to base::clk + |
| 1745 | * NEXT_TIMER_MAX_DELTA. |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1746 | */ |
Olivier Deprez | 92d4c21 | 2022-12-06 15:05:30 +0100 | [diff] [blame] | 1747 | WARN_ON_ONCE(!levels && !base->next_expiry_recalc |
| 1748 | && base->timers_pending); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1749 | base->clk++; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1750 | base->next_expiry = __next_timer_interrupt(base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1751 | |
| 1752 | while (levels--) |
| 1753 | expire_timers(base, heads + levels); |
| 1754 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1755 | raw_spin_unlock_irq(&base->lock); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1756 | timer_base_unlock_expiry(base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1757 | } |
| 1758 | |
| 1759 | /* |
| 1760 | * This function runs timers and the timer-tq in bottom half context. |
| 1761 | */ |
| 1762 | static __latent_entropy void run_timer_softirq(struct softirq_action *h) |
| 1763 | { |
| 1764 | struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); |
| 1765 | |
| 1766 | __run_timers(base); |
| 1767 | if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) |
| 1768 | __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); |
| 1769 | } |
| 1770 | |
| 1771 | /* |
| 1772 | * Called by the local, per-CPU timer interrupt on SMP. |
| 1773 | */ |
| 1774 | void run_local_timers(void) |
| 1775 | { |
| 1776 | struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); |
| 1777 | |
| 1778 | hrtimer_run_queues(); |
| 1779 | /* Raise the softirq only if required. */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1780 | if (time_before(jiffies, base->next_expiry)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1781 | if (!IS_ENABLED(CONFIG_NO_HZ_COMMON)) |
| 1782 | return; |
| 1783 | /* CPU is awake, so check the deferrable base. */ |
| 1784 | base++; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1785 | if (time_before(jiffies, base->next_expiry)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1786 | return; |
| 1787 | } |
| 1788 | raise_softirq(TIMER_SOFTIRQ); |
| 1789 | } |
| 1790 | |
| 1791 | /* |
| 1792 | * Since schedule_timeout()'s timer is defined on the stack, it must store |
| 1793 | * the target task on the stack as well. |
| 1794 | */ |
| 1795 | struct process_timer { |
| 1796 | struct timer_list timer; |
| 1797 | struct task_struct *task; |
| 1798 | }; |
| 1799 | |
| 1800 | static void process_timeout(struct timer_list *t) |
| 1801 | { |
| 1802 | struct process_timer *timeout = from_timer(timeout, t, timer); |
| 1803 | |
| 1804 | wake_up_process(timeout->task); |
| 1805 | } |
| 1806 | |
| 1807 | /** |
| 1808 | * schedule_timeout - sleep until timeout |
| 1809 | * @timeout: timeout value in jiffies |
| 1810 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1811 | * Make the current task sleep until @timeout jiffies have elapsed. |
| 1812 | * The function behavior depends on the current task state |
| 1813 | * (see also set_current_state() description): |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1814 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1815 | * %TASK_RUNNING - the scheduler is called, but the task does not sleep |
| 1816 | * at all. That happens because sched_submit_work() does nothing for |
| 1817 | * tasks in %TASK_RUNNING state. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1818 | * |
| 1819 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to |
| 1820 | * pass before the routine returns unless the current task is explicitly |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1821 | * woken up, (e.g. by wake_up_process()). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1822 | * |
| 1823 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| 1824 | * delivered to the current task or the current task is explicitly woken |
| 1825 | * up. |
| 1826 | * |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1827 | * The current task state is guaranteed to be %TASK_RUNNING when this |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1828 | * routine returns. |
| 1829 | * |
| 1830 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule |
| 1831 | * the CPU away without a bound on the timeout. In this case the return |
| 1832 | * value will be %MAX_SCHEDULE_TIMEOUT. |
| 1833 | * |
| 1834 | * Returns 0 when the timer has expired otherwise the remaining time in |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1835 | * jiffies will be returned. In all cases the return value is guaranteed |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1836 | * to be non-negative. |
| 1837 | */ |
| 1838 | signed long __sched schedule_timeout(signed long timeout) |
| 1839 | { |
| 1840 | struct process_timer timer; |
| 1841 | unsigned long expire; |
| 1842 | |
| 1843 | switch (timeout) |
| 1844 | { |
| 1845 | case MAX_SCHEDULE_TIMEOUT: |
| 1846 | /* |
| 1847 | * These two special cases are useful to be comfortable |
| 1848 | * in the caller. Nothing more. We could take |
| 1849 | * MAX_SCHEDULE_TIMEOUT from one of the negative value |
| 1850 | * but I' d like to return a valid offset (>=0) to allow |
| 1851 | * the caller to do everything it want with the retval. |
| 1852 | */ |
| 1853 | schedule(); |
| 1854 | goto out; |
| 1855 | default: |
| 1856 | /* |
| 1857 | * Another bit of PARANOID. Note that the retval will be |
| 1858 | * 0 since no piece of kernel is supposed to do a check |
| 1859 | * for a negative retval of schedule_timeout() (since it |
| 1860 | * should never happens anyway). You just have the printk() |
| 1861 | * that will tell you if something is gone wrong and where. |
| 1862 | */ |
| 1863 | if (timeout < 0) { |
| 1864 | printk(KERN_ERR "schedule_timeout: wrong timeout " |
| 1865 | "value %lx\n", timeout); |
| 1866 | dump_stack(); |
| 1867 | current->state = TASK_RUNNING; |
| 1868 | goto out; |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | expire = timeout + jiffies; |
| 1873 | |
| 1874 | timer.task = current; |
| 1875 | timer_setup_on_stack(&timer.timer, process_timeout, 0); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1876 | __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1877 | schedule(); |
| 1878 | del_singleshot_timer_sync(&timer.timer); |
| 1879 | |
| 1880 | /* Remove the timer from the object tracker */ |
| 1881 | destroy_timer_on_stack(&timer.timer); |
| 1882 | |
| 1883 | timeout = expire - jiffies; |
| 1884 | |
| 1885 | out: |
| 1886 | return timeout < 0 ? 0 : timeout; |
| 1887 | } |
| 1888 | EXPORT_SYMBOL(schedule_timeout); |
| 1889 | |
| 1890 | /* |
| 1891 | * We can use __set_current_state() here because schedule_timeout() calls |
| 1892 | * schedule() unconditionally. |
| 1893 | */ |
| 1894 | signed long __sched schedule_timeout_interruptible(signed long timeout) |
| 1895 | { |
| 1896 | __set_current_state(TASK_INTERRUPTIBLE); |
| 1897 | return schedule_timeout(timeout); |
| 1898 | } |
| 1899 | EXPORT_SYMBOL(schedule_timeout_interruptible); |
| 1900 | |
| 1901 | signed long __sched schedule_timeout_killable(signed long timeout) |
| 1902 | { |
| 1903 | __set_current_state(TASK_KILLABLE); |
| 1904 | return schedule_timeout(timeout); |
| 1905 | } |
| 1906 | EXPORT_SYMBOL(schedule_timeout_killable); |
| 1907 | |
| 1908 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) |
| 1909 | { |
| 1910 | __set_current_state(TASK_UNINTERRUPTIBLE); |
| 1911 | return schedule_timeout(timeout); |
| 1912 | } |
| 1913 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); |
| 1914 | |
| 1915 | /* |
| 1916 | * Like schedule_timeout_uninterruptible(), except this task will not contribute |
| 1917 | * to load average. |
| 1918 | */ |
| 1919 | signed long __sched schedule_timeout_idle(signed long timeout) |
| 1920 | { |
| 1921 | __set_current_state(TASK_IDLE); |
| 1922 | return schedule_timeout(timeout); |
| 1923 | } |
| 1924 | EXPORT_SYMBOL(schedule_timeout_idle); |
| 1925 | |
| 1926 | #ifdef CONFIG_HOTPLUG_CPU |
| 1927 | static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) |
| 1928 | { |
| 1929 | struct timer_list *timer; |
| 1930 | int cpu = new_base->cpu; |
| 1931 | |
| 1932 | while (!hlist_empty(head)) { |
| 1933 | timer = hlist_entry(head->first, struct timer_list, entry); |
| 1934 | detach_timer(timer, false); |
| 1935 | timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; |
| 1936 | internal_add_timer(new_base, timer); |
| 1937 | } |
| 1938 | } |
| 1939 | |
| 1940 | int timers_prepare_cpu(unsigned int cpu) |
| 1941 | { |
| 1942 | struct timer_base *base; |
| 1943 | int b; |
| 1944 | |
| 1945 | for (b = 0; b < NR_BASES; b++) { |
| 1946 | base = per_cpu_ptr(&timer_bases[b], cpu); |
| 1947 | base->clk = jiffies; |
| 1948 | base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 1949 | base->timers_pending = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1950 | base->is_idle = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1951 | } |
| 1952 | return 0; |
| 1953 | } |
| 1954 | |
| 1955 | int timers_dead_cpu(unsigned int cpu) |
| 1956 | { |
| 1957 | struct timer_base *old_base; |
| 1958 | struct timer_base *new_base; |
| 1959 | int b, i; |
| 1960 | |
| 1961 | BUG_ON(cpu_online(cpu)); |
| 1962 | |
| 1963 | for (b = 0; b < NR_BASES; b++) { |
| 1964 | old_base = per_cpu_ptr(&timer_bases[b], cpu); |
| 1965 | new_base = get_cpu_ptr(&timer_bases[b]); |
| 1966 | /* |
| 1967 | * The caller is globally serialized and nobody else |
| 1968 | * takes two locks at once, deadlock is not possible. |
| 1969 | */ |
| 1970 | raw_spin_lock_irq(&new_base->lock); |
| 1971 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
| 1972 | |
| 1973 | /* |
| 1974 | * The current CPUs base clock might be stale. Update it |
| 1975 | * before moving the timers over. |
| 1976 | */ |
| 1977 | forward_timer_base(new_base); |
| 1978 | |
| 1979 | BUG_ON(old_base->running_timer); |
| 1980 | |
| 1981 | for (i = 0; i < WHEEL_SIZE; i++) |
| 1982 | migrate_timer_list(new_base, old_base->vectors + i); |
| 1983 | |
| 1984 | raw_spin_unlock(&old_base->lock); |
| 1985 | raw_spin_unlock_irq(&new_base->lock); |
| 1986 | put_cpu_ptr(&timer_bases); |
| 1987 | } |
| 1988 | return 0; |
| 1989 | } |
| 1990 | |
| 1991 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 1992 | |
| 1993 | static void __init init_timer_cpu(int cpu) |
| 1994 | { |
| 1995 | struct timer_base *base; |
| 1996 | int i; |
| 1997 | |
| 1998 | for (i = 0; i < NR_BASES; i++) { |
| 1999 | base = per_cpu_ptr(&timer_bases[i], cpu); |
| 2000 | base->cpu = cpu; |
| 2001 | raw_spin_lock_init(&base->lock); |
| 2002 | base->clk = jiffies; |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2003 | base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2004 | timer_base_init_expiry_lock(base); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | static void __init init_timer_cpus(void) |
| 2009 | { |
| 2010 | int cpu; |
| 2011 | |
| 2012 | for_each_possible_cpu(cpu) |
| 2013 | init_timer_cpu(cpu); |
| 2014 | } |
| 2015 | |
| 2016 | void __init init_timers(void) |
| 2017 | { |
| 2018 | init_timer_cpus(); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame] | 2019 | posix_cputimers_init_work(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2020 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq); |
| 2021 | } |
| 2022 | |
| 2023 | /** |
| 2024 | * msleep - sleep safely even with waitqueue interruptions |
| 2025 | * @msecs: Time in milliseconds to sleep for |
| 2026 | */ |
| 2027 | void msleep(unsigned int msecs) |
| 2028 | { |
| 2029 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; |
| 2030 | |
| 2031 | while (timeout) |
| 2032 | timeout = schedule_timeout_uninterruptible(timeout); |
| 2033 | } |
| 2034 | |
| 2035 | EXPORT_SYMBOL(msleep); |
| 2036 | |
| 2037 | /** |
| 2038 | * msleep_interruptible - sleep waiting for signals |
| 2039 | * @msecs: Time in milliseconds to sleep for |
| 2040 | */ |
| 2041 | unsigned long msleep_interruptible(unsigned int msecs) |
| 2042 | { |
| 2043 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; |
| 2044 | |
| 2045 | while (timeout && !signal_pending(current)) |
| 2046 | timeout = schedule_timeout_interruptible(timeout); |
| 2047 | return jiffies_to_msecs(timeout); |
| 2048 | } |
| 2049 | |
| 2050 | EXPORT_SYMBOL(msleep_interruptible); |
| 2051 | |
| 2052 | /** |
| 2053 | * usleep_range - Sleep for an approximate time |
| 2054 | * @min: Minimum time in usecs to sleep |
| 2055 | * @max: Maximum time in usecs to sleep |
| 2056 | * |
| 2057 | * In non-atomic context where the exact wakeup time is flexible, use |
| 2058 | * usleep_range() instead of udelay(). The sleep improves responsiveness |
| 2059 | * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces |
| 2060 | * power usage by allowing hrtimers to take advantage of an already- |
| 2061 | * scheduled interrupt instead of scheduling a new one just for this sleep. |
| 2062 | */ |
| 2063 | void __sched usleep_range(unsigned long min, unsigned long max) |
| 2064 | { |
| 2065 | ktime_t exp = ktime_add_us(ktime_get(), min); |
| 2066 | u64 delta = (u64)(max - min) * NSEC_PER_USEC; |
| 2067 | |
| 2068 | for (;;) { |
| 2069 | __set_current_state(TASK_UNINTERRUPTIBLE); |
| 2070 | /* Do not return before the requested sleep time has elapsed */ |
| 2071 | if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) |
| 2072 | break; |
| 2073 | } |
| 2074 | } |
| 2075 | EXPORT_SYMBOL(usleep_range); |