v4.19.13 snapshot.
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
new file mode 100644
index 0000000..fa49cd7
--- /dev/null
+++ b/kernel/time/timer.c
@@ -0,0 +1,1999 @@
+/*
+ *  linux/kernel/timer.c
+ *
+ *  Kernel internal timers
+ *
+ *  Copyright (C) 1991, 1992  Linus Torvalds
+ *
+ *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
+ *
+ *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
+ *              "A Kernel Model for Precision Timekeeping" by Dave Mills
+ *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
+ *              serialize accesses to xtime/lost_ticks).
+ *                              Copyright (C) 1998  Andrea Arcangeli
+ *  1999-03-10  Improved NTP compatibility by Ulrich Windl
+ *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
+ *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
+ *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
+ *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
+ */
+
+#include <linux/kernel_stat.h>
+#include <linux/export.h>
+#include <linux/interrupt.h>
+#include <linux/percpu.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/pid_namespace.h>
+#include <linux/notifier.h>
+#include <linux/thread_info.h>
+#include <linux/time.h>
+#include <linux/jiffies.h>
+#include <linux/posix-timers.h>
+#include <linux/cpu.h>
+#include <linux/syscalls.h>
+#include <linux/delay.h>
+#include <linux/tick.h>
+#include <linux/kallsyms.h>
+#include <linux/irq_work.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/sysctl.h>
+#include <linux/sched/nohz.h>
+#include <linux/sched/debug.h>
+#include <linux/slab.h>
+#include <linux/compat.h>
+
+#include <linux/uaccess.h>
+#include <asm/unistd.h>
+#include <asm/div64.h>
+#include <asm/timex.h>
+#include <asm/io.h>
+
+#include "tick-internal.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/timer.h>
+
+__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
+
+EXPORT_SYMBOL(jiffies_64);
+
+/*
+ * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
+ * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
+ * level has a different granularity.
+ *
+ * The level granularity is:		LVL_CLK_DIV ^ lvl
+ * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
+ *
+ * The array level of a newly armed timer depends on the relative expiry
+ * time. The farther the expiry time is away the higher the array level and
+ * therefor the granularity becomes.
+ *
+ * Contrary to the original timer wheel implementation, which aims for 'exact'
+ * expiry of the timers, this implementation removes the need for recascading
+ * the timers into the lower array levels. The previous 'classic' timer wheel
+ * implementation of the kernel already violated the 'exact' expiry by adding
+ * slack to the expiry time to provide batched expiration. The granularity
+ * levels provide implicit batching.
+ *
+ * This is an optimization of the original timer wheel implementation for the
+ * majority of the timer wheel use cases: timeouts. The vast majority of
+ * timeout timers (networking, disk I/O ...) are canceled before expiry. If
+ * the timeout expires it indicates that normal operation is disturbed, so it
+ * does not matter much whether the timeout comes with a slight delay.
+ *
+ * The only exception to this are networking timers with a small expiry
+ * time. They rely on the granularity. Those fit into the first wheel level,
+ * which has HZ granularity.
+ *
+ * We don't have cascading anymore. timers with a expiry time above the
+ * capacity of the last wheel level are force expired at the maximum timeout
+ * value of the last wheel level. From data sampling we know that the maximum
+ * value observed is 5 days (network connection tracking), so this should not
+ * be an issue.
+ *
+ * The currently chosen array constants values are a good compromise between
+ * array size and granularity.
+ *
+ * This results in the following granularity and range levels:
+ *
+ * HZ 1000 steps
+ * Level Offset  Granularity            Range
+ *  0      0         1 ms                0 ms -         63 ms
+ *  1     64         8 ms               64 ms -        511 ms
+ *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
+ *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
+ *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
+ *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
+ *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
+ *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
+ *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
+ *
+ * HZ  300
+ * Level Offset  Granularity            Range
+ *  0	   0         3 ms                0 ms -        210 ms
+ *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
+ *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
+ *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
+ *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
+ *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
+ *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
+ *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
+ *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
+ *
+ * HZ  250
+ * Level Offset  Granularity            Range
+ *  0	   0         4 ms                0 ms -        255 ms
+ *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
+ *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
+ *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
+ *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
+ *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
+ *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
+ *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
+ *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
+ *
+ * HZ  100
+ * Level Offset  Granularity            Range
+ *  0	   0         10 ms               0 ms -        630 ms
+ *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
+ *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
+ *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
+ *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
+ *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
+ *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
+ *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
+ */
+
+/* Clock divisor for the next level */
+#define LVL_CLK_SHIFT	3
+#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
+#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
+#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
+#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
+
+/*
+ * The time start value for each level to select the bucket at enqueue
+ * time.
+ */
+#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
+
+/* Size of each clock level */
+#define LVL_BITS	6
+#define LVL_SIZE	(1UL << LVL_BITS)
+#define LVL_MASK	(LVL_SIZE - 1)
+#define LVL_OFFS(n)	((n) * LVL_SIZE)
+
+/* Level depth */
+#if HZ > 100
+# define LVL_DEPTH	9
+# else
+# define LVL_DEPTH	8
+#endif
+
+/* The cutoff (max. capacity of the wheel) */
+#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
+#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
+
+/*
+ * The resulting wheel size. If NOHZ is configured we allocate two
+ * wheels so we have a separate storage for the deferrable timers.
+ */
+#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
+
+#ifdef CONFIG_NO_HZ_COMMON
+# define NR_BASES	2
+# define BASE_STD	0
+# define BASE_DEF	1
+#else
+# define NR_BASES	1
+# define BASE_STD	0
+# define BASE_DEF	0
+#endif
+
+struct timer_base {
+	raw_spinlock_t		lock;
+	struct timer_list	*running_timer;
+	unsigned long		clk;
+	unsigned long		next_expiry;
+	unsigned int		cpu;
+	bool			is_idle;
+	bool			must_forward_clk;
+	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
+	struct hlist_head	vectors[WHEEL_SIZE];
+} ____cacheline_aligned;
+
+static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
+
+#ifdef CONFIG_NO_HZ_COMMON
+
+static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
+static DEFINE_MUTEX(timer_keys_mutex);
+
+static void timer_update_keys(struct work_struct *work);
+static DECLARE_WORK(timer_update_work, timer_update_keys);
+
+#ifdef CONFIG_SMP
+unsigned int sysctl_timer_migration = 1;
+
+DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
+
+static void timers_update_migration(void)
+{
+	if (sysctl_timer_migration && tick_nohz_active)
+		static_branch_enable(&timers_migration_enabled);
+	else
+		static_branch_disable(&timers_migration_enabled);
+}
+#else
+static inline void timers_update_migration(void) { }
+#endif /* !CONFIG_SMP */
+
+static void timer_update_keys(struct work_struct *work)
+{
+	mutex_lock(&timer_keys_mutex);
+	timers_update_migration();
+	static_branch_enable(&timers_nohz_active);
+	mutex_unlock(&timer_keys_mutex);
+}
+
+void timers_update_nohz(void)
+{
+	schedule_work(&timer_update_work);
+}
+
+int timer_migration_handler(struct ctl_table *table, int write,
+			    void __user *buffer, size_t *lenp,
+			    loff_t *ppos)
+{
+	int ret;
+
+	mutex_lock(&timer_keys_mutex);
+	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+	if (!ret && write)
+		timers_update_migration();
+	mutex_unlock(&timer_keys_mutex);
+	return ret;
+}
+
+static inline bool is_timers_nohz_active(void)
+{
+	return static_branch_unlikely(&timers_nohz_active);
+}
+#else
+static inline bool is_timers_nohz_active(void) { return false; }
+#endif /* NO_HZ_COMMON */
+
+static unsigned long round_jiffies_common(unsigned long j, int cpu,
+		bool force_up)
+{
+	int rem;
+	unsigned long original = j;
+
+	/*
+	 * We don't want all cpus firing their timers at once hitting the
+	 * same lock or cachelines, so we skew each extra cpu with an extra
+	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
+	 * already did this.
+	 * The skew is done by adding 3*cpunr, then round, then subtract this
+	 * extra offset again.
+	 */
+	j += cpu * 3;
+
+	rem = j % HZ;
+
+	/*
+	 * If the target jiffie is just after a whole second (which can happen
+	 * due to delays of the timer irq, long irq off times etc etc) then
+	 * we should round down to the whole second, not up. Use 1/4th second
+	 * as cutoff for this rounding as an extreme upper bound for this.
+	 * But never round down if @force_up is set.
+	 */
+	if (rem < HZ/4 && !force_up) /* round down */
+		j = j - rem;
+	else /* round up */
+		j = j - rem + HZ;
+
+	/* now that we have rounded, subtract the extra skew again */
+	j -= cpu * 3;
+
+	/*
+	 * Make sure j is still in the future. Otherwise return the
+	 * unmodified value.
+	 */
+	return time_is_after_jiffies(j) ? j : original;
+}
+
+/**
+ * __round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies() rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long __round_jiffies(unsigned long j, int cpu)
+{
+	return round_jiffies_common(j, cpu, false);
+}
+EXPORT_SYMBOL_GPL(__round_jiffies);
+
+/**
+ * __round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long __round_jiffies_relative(unsigned long j, int cpu)
+{
+	unsigned long j0 = jiffies;
+
+	/* Use j0 because jiffies might change while we run */
+	return round_jiffies_common(j + j0, cpu, false) - j0;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_relative);
+
+/**
+ * round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ *
+ * round_jiffies() rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long round_jiffies(unsigned long j)
+{
+	return round_jiffies_common(j, raw_smp_processor_id(), false);
+}
+EXPORT_SYMBOL_GPL(round_jiffies);
+
+/**
+ * round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ *
+ * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long round_jiffies_relative(unsigned long j)
+{
+	return __round_jiffies_relative(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies_relative);
+
+/**
+ * __round_jiffies_up - function to round jiffies up to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * This is the same as __round_jiffies() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long __round_jiffies_up(unsigned long j, int cpu)
+{
+	return round_jiffies_common(j, cpu, true);
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_up);
+
+/**
+ * __round_jiffies_up_relative - function to round jiffies up to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * This is the same as __round_jiffies_relative() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
+{
+	unsigned long j0 = jiffies;
+
+	/* Use j0 because jiffies might change while we run */
+	return round_jiffies_common(j + j0, cpu, true) - j0;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
+
+/**
+ * round_jiffies_up - function to round jiffies up to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ *
+ * This is the same as round_jiffies() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long round_jiffies_up(unsigned long j)
+{
+	return round_jiffies_common(j, raw_smp_processor_id(), true);
+}
+EXPORT_SYMBOL_GPL(round_jiffies_up);
+
+/**
+ * round_jiffies_up_relative - function to round jiffies up to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ *
+ * This is the same as round_jiffies_relative() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long round_jiffies_up_relative(unsigned long j)
+{
+	return __round_jiffies_up_relative(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
+
+
+static inline unsigned int timer_get_idx(struct timer_list *timer)
+{
+	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
+}
+
+static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
+{
+	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
+			idx << TIMER_ARRAYSHIFT;
+}
+
+/*
+ * Helper function to calculate the array index for a given expiry
+ * time.
+ */
+static inline unsigned calc_index(unsigned expires, unsigned lvl)
+{
+	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
+	return LVL_OFFS(lvl) + (expires & LVL_MASK);
+}
+
+static int calc_wheel_index(unsigned long expires, unsigned long clk)
+{
+	unsigned long delta = expires - clk;
+	unsigned int idx;
+
+	if (delta < LVL_START(1)) {
+		idx = calc_index(expires, 0);
+	} else if (delta < LVL_START(2)) {
+		idx = calc_index(expires, 1);
+	} else if (delta < LVL_START(3)) {
+		idx = calc_index(expires, 2);
+	} else if (delta < LVL_START(4)) {
+		idx = calc_index(expires, 3);
+	} else if (delta < LVL_START(5)) {
+		idx = calc_index(expires, 4);
+	} else if (delta < LVL_START(6)) {
+		idx = calc_index(expires, 5);
+	} else if (delta < LVL_START(7)) {
+		idx = calc_index(expires, 6);
+	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
+		idx = calc_index(expires, 7);
+	} else if ((long) delta < 0) {
+		idx = clk & LVL_MASK;
+	} else {
+		/*
+		 * Force expire obscene large timeouts to expire at the
+		 * capacity limit of the wheel.
+		 */
+		if (expires >= WHEEL_TIMEOUT_CUTOFF)
+			expires = WHEEL_TIMEOUT_MAX;
+
+		idx = calc_index(expires, LVL_DEPTH - 1);
+	}
+	return idx;
+}
+
+/*
+ * Enqueue the timer into the hash bucket, mark it pending in
+ * the bitmap and store the index in the timer flags.
+ */
+static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
+			  unsigned int idx)
+{
+	hlist_add_head(&timer->entry, base->vectors + idx);
+	__set_bit(idx, base->pending_map);
+	timer_set_idx(timer, idx);
+}
+
+static void
+__internal_add_timer(struct timer_base *base, struct timer_list *timer)
+{
+	unsigned int idx;
+
+	idx = calc_wheel_index(timer->expires, base->clk);
+	enqueue_timer(base, timer, idx);
+}
+
+static void
+trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
+{
+	if (!is_timers_nohz_active())
+		return;
+
+	/*
+	 * TODO: This wants some optimizing similar to the code below, but we
+	 * will do that when we switch from push to pull for deferrable timers.
+	 */
+	if (timer->flags & TIMER_DEFERRABLE) {
+		if (tick_nohz_full_cpu(base->cpu))
+			wake_up_nohz_cpu(base->cpu);
+		return;
+	}
+
+	/*
+	 * We might have to IPI the remote CPU if the base is idle and the
+	 * timer is not deferrable. If the other CPU is on the way to idle
+	 * then it can't set base->is_idle as we hold the base lock:
+	 */
+	if (!base->is_idle)
+		return;
+
+	/* Check whether this is the new first expiring timer: */
+	if (time_after_eq(timer->expires, base->next_expiry))
+		return;
+
+	/*
+	 * Set the next expiry time and kick the CPU so it can reevaluate the
+	 * wheel:
+	 */
+	base->next_expiry = timer->expires;
+	wake_up_nohz_cpu(base->cpu);
+}
+
+static void
+internal_add_timer(struct timer_base *base, struct timer_list *timer)
+{
+	__internal_add_timer(base, timer);
+	trigger_dyntick_cpu(base, timer);
+}
+
+#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
+
+static struct debug_obj_descr timer_debug_descr;
+
+static void *timer_debug_hint(void *addr)
+{
+	return ((struct timer_list *) addr)->function;
+}
+
+static bool timer_is_static_object(void *addr)
+{
+	struct timer_list *timer = addr;
+
+	return (timer->entry.pprev == NULL &&
+		timer->entry.next == TIMER_ENTRY_STATIC);
+}
+
+/*
+ * fixup_init is called when:
+ * - an active object is initialized
+ */
+static bool timer_fixup_init(void *addr, enum debug_obj_state state)
+{
+	struct timer_list *timer = addr;
+
+	switch (state) {
+	case ODEBUG_STATE_ACTIVE:
+		del_timer_sync(timer);
+		debug_object_init(timer, &timer_debug_descr);
+		return true;
+	default:
+		return false;
+	}
+}
+
+/* Stub timer callback for improperly used timers. */
+static void stub_timer(struct timer_list *unused)
+{
+	WARN_ON(1);
+}
+
+/*
+ * fixup_activate is called when:
+ * - an active object is activated
+ * - an unknown non-static object is activated
+ */
+static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
+{
+	struct timer_list *timer = addr;
+
+	switch (state) {
+	case ODEBUG_STATE_NOTAVAILABLE:
+		timer_setup(timer, stub_timer, 0);
+		return true;
+
+	case ODEBUG_STATE_ACTIVE:
+		WARN_ON(1);
+
+	default:
+		return false;
+	}
+}
+
+/*
+ * fixup_free is called when:
+ * - an active object is freed
+ */
+static bool timer_fixup_free(void *addr, enum debug_obj_state state)
+{
+	struct timer_list *timer = addr;
+
+	switch (state) {
+	case ODEBUG_STATE_ACTIVE:
+		del_timer_sync(timer);
+		debug_object_free(timer, &timer_debug_descr);
+		return true;
+	default:
+		return false;
+	}
+}
+
+/*
+ * fixup_assert_init is called when:
+ * - an untracked/uninit-ed object is found
+ */
+static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
+{
+	struct timer_list *timer = addr;
+
+	switch (state) {
+	case ODEBUG_STATE_NOTAVAILABLE:
+		timer_setup(timer, stub_timer, 0);
+		return true;
+	default:
+		return false;
+	}
+}
+
+static struct debug_obj_descr timer_debug_descr = {
+	.name			= "timer_list",
+	.debug_hint		= timer_debug_hint,
+	.is_static_object	= timer_is_static_object,
+	.fixup_init		= timer_fixup_init,
+	.fixup_activate		= timer_fixup_activate,
+	.fixup_free		= timer_fixup_free,
+	.fixup_assert_init	= timer_fixup_assert_init,
+};
+
+static inline void debug_timer_init(struct timer_list *timer)
+{
+	debug_object_init(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_activate(struct timer_list *timer)
+{
+	debug_object_activate(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_deactivate(struct timer_list *timer)
+{
+	debug_object_deactivate(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_free(struct timer_list *timer)
+{
+	debug_object_free(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_assert_init(struct timer_list *timer)
+{
+	debug_object_assert_init(timer, &timer_debug_descr);
+}
+
+static void do_init_timer(struct timer_list *timer,
+			  void (*func)(struct timer_list *),
+			  unsigned int flags,
+			  const char *name, struct lock_class_key *key);
+
+void init_timer_on_stack_key(struct timer_list *timer,
+			     void (*func)(struct timer_list *),
+			     unsigned int flags,
+			     const char *name, struct lock_class_key *key)
+{
+	debug_object_init_on_stack(timer, &timer_debug_descr);
+	do_init_timer(timer, func, flags, name, key);
+}
+EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
+
+void destroy_timer_on_stack(struct timer_list *timer)
+{
+	debug_object_free(timer, &timer_debug_descr);
+}
+EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
+
+#else
+static inline void debug_timer_init(struct timer_list *timer) { }
+static inline void debug_timer_activate(struct timer_list *timer) { }
+static inline void debug_timer_deactivate(struct timer_list *timer) { }
+static inline void debug_timer_assert_init(struct timer_list *timer) { }
+#endif
+
+static inline void debug_init(struct timer_list *timer)
+{
+	debug_timer_init(timer);
+	trace_timer_init(timer);
+}
+
+static inline void
+debug_activate(struct timer_list *timer, unsigned long expires)
+{
+	debug_timer_activate(timer);
+	trace_timer_start(timer, expires, timer->flags);
+}
+
+static inline void debug_deactivate(struct timer_list *timer)
+{
+	debug_timer_deactivate(timer);
+	trace_timer_cancel(timer);
+}
+
+static inline void debug_assert_init(struct timer_list *timer)
+{
+	debug_timer_assert_init(timer);
+}
+
+static void do_init_timer(struct timer_list *timer,
+			  void (*func)(struct timer_list *),
+			  unsigned int flags,
+			  const char *name, struct lock_class_key *key)
+{
+	timer->entry.pprev = NULL;
+	timer->function = func;
+	timer->flags = flags | raw_smp_processor_id();
+	lockdep_init_map(&timer->lockdep_map, name, key, 0);
+}
+
+/**
+ * init_timer_key - initialize a timer
+ * @timer: the timer to be initialized
+ * @func: timer callback function
+ * @flags: timer flags
+ * @name: name of the timer
+ * @key: lockdep class key of the fake lock used for tracking timer
+ *       sync lock dependencies
+ *
+ * init_timer_key() must be done to a timer prior calling *any* of the
+ * other timer functions.
+ */
+void init_timer_key(struct timer_list *timer,
+		    void (*func)(struct timer_list *), unsigned int flags,
+		    const char *name, struct lock_class_key *key)
+{
+	debug_init(timer);
+	do_init_timer(timer, func, flags, name, key);
+}
+EXPORT_SYMBOL(init_timer_key);
+
+static inline void detach_timer(struct timer_list *timer, bool clear_pending)
+{
+	struct hlist_node *entry = &timer->entry;
+
+	debug_deactivate(timer);
+
+	__hlist_del(entry);
+	if (clear_pending)
+		entry->pprev = NULL;
+	entry->next = LIST_POISON2;
+}
+
+static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
+			     bool clear_pending)
+{
+	unsigned idx = timer_get_idx(timer);
+
+	if (!timer_pending(timer))
+		return 0;
+
+	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
+		__clear_bit(idx, base->pending_map);
+
+	detach_timer(timer, clear_pending);
+	return 1;
+}
+
+static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
+{
+	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
+
+	/*
+	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
+	 * to use the deferrable base.
+	 */
+	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
+		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
+	return base;
+}
+
+static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
+{
+	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
+
+	/*
+	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
+	 * to use the deferrable base.
+	 */
+	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
+		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
+	return base;
+}
+
+static inline struct timer_base *get_timer_base(u32 tflags)
+{
+	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
+}
+
+static inline struct timer_base *
+get_target_base(struct timer_base *base, unsigned tflags)
+{
+#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+	if (static_branch_likely(&timers_migration_enabled) &&
+	    !(tflags & TIMER_PINNED))
+		return get_timer_cpu_base(tflags, get_nohz_timer_target());
+#endif
+	return get_timer_this_cpu_base(tflags);
+}
+
+static inline void forward_timer_base(struct timer_base *base)
+{
+#ifdef CONFIG_NO_HZ_COMMON
+	unsigned long jnow;
+
+	/*
+	 * We only forward the base when we are idle or have just come out of
+	 * idle (must_forward_clk logic), and have a delta between base clock
+	 * and jiffies. In the common case, run_timers will take care of it.
+	 */
+	if (likely(!base->must_forward_clk))
+		return;
+
+	jnow = READ_ONCE(jiffies);
+	base->must_forward_clk = base->is_idle;
+	if ((long)(jnow - base->clk) < 2)
+		return;
+
+	/*
+	 * If the next expiry value is > jiffies, then we fast forward to
+	 * jiffies otherwise we forward to the next expiry value.
+	 */
+	if (time_after(base->next_expiry, jnow))
+		base->clk = jnow;
+	else
+		base->clk = base->next_expiry;
+#endif
+}
+
+
+/*
+ * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
+ * that all timers which are tied to this base are locked, and the base itself
+ * is locked too.
+ *
+ * So __run_timers/migrate_timers can safely modify all timers which could
+ * be found in the base->vectors array.
+ *
+ * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
+ * to wait until the migration is done.
+ */
+static struct timer_base *lock_timer_base(struct timer_list *timer,
+					  unsigned long *flags)
+	__acquires(timer->base->lock)
+{
+	for (;;) {
+		struct timer_base *base;
+		u32 tf;
+
+		/*
+		 * We need to use READ_ONCE() here, otherwise the compiler
+		 * might re-read @tf between the check for TIMER_MIGRATING
+		 * and spin_lock().
+		 */
+		tf = READ_ONCE(timer->flags);
+
+		if (!(tf & TIMER_MIGRATING)) {
+			base = get_timer_base(tf);
+			raw_spin_lock_irqsave(&base->lock, *flags);
+			if (timer->flags == tf)
+				return base;
+			raw_spin_unlock_irqrestore(&base->lock, *flags);
+		}
+		cpu_relax();
+	}
+}
+
+#define MOD_TIMER_PENDING_ONLY		0x01
+#define MOD_TIMER_REDUCE		0x02
+
+static inline int
+__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
+{
+	struct timer_base *base, *new_base;
+	unsigned int idx = UINT_MAX;
+	unsigned long clk = 0, flags;
+	int ret = 0;
+
+	BUG_ON(!timer->function);
+
+	/*
+	 * This is a common optimization triggered by the networking code - if
+	 * the timer is re-modified to have the same timeout or ends up in the
+	 * same array bucket then just return:
+	 */
+	if (timer_pending(timer)) {
+		/*
+		 * The downside of this optimization is that it can result in
+		 * larger granularity than you would get from adding a new
+		 * timer with this expiry.
+		 */
+		long diff = timer->expires - expires;
+
+		if (!diff)
+			return 1;
+		if (options & MOD_TIMER_REDUCE && diff <= 0)
+			return 1;
+
+		/*
+		 * We lock timer base and calculate the bucket index right
+		 * here. If the timer ends up in the same bucket, then we
+		 * just update the expiry time and avoid the whole
+		 * dequeue/enqueue dance.
+		 */
+		base = lock_timer_base(timer, &flags);
+		forward_timer_base(base);
+
+		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
+		    time_before_eq(timer->expires, expires)) {
+			ret = 1;
+			goto out_unlock;
+		}
+
+		clk = base->clk;
+		idx = calc_wheel_index(expires, clk);
+
+		/*
+		 * Retrieve and compare the array index of the pending
+		 * timer. If it matches set the expiry to the new value so a
+		 * subsequent call will exit in the expires check above.
+		 */
+		if (idx == timer_get_idx(timer)) {
+			if (!(options & MOD_TIMER_REDUCE))
+				timer->expires = expires;
+			else if (time_after(timer->expires, expires))
+				timer->expires = expires;
+			ret = 1;
+			goto out_unlock;
+		}
+	} else {
+		base = lock_timer_base(timer, &flags);
+		forward_timer_base(base);
+	}
+
+	ret = detach_if_pending(timer, base, false);
+	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
+		goto out_unlock;
+
+	new_base = get_target_base(base, timer->flags);
+
+	if (base != new_base) {
+		/*
+		 * We are trying to schedule the timer on the new base.
+		 * However we can't change timer's base while it is running,
+		 * otherwise del_timer_sync() can't detect that the timer's
+		 * handler yet has not finished. This also guarantees that the
+		 * timer is serialized wrt itself.
+		 */
+		if (likely(base->running_timer != timer)) {
+			/* See the comment in lock_timer_base() */
+			timer->flags |= TIMER_MIGRATING;
+
+			raw_spin_unlock(&base->lock);
+			base = new_base;
+			raw_spin_lock(&base->lock);
+			WRITE_ONCE(timer->flags,
+				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
+			forward_timer_base(base);
+		}
+	}
+
+	debug_activate(timer, expires);
+
+	timer->expires = expires;
+	/*
+	 * If 'idx' was calculated above and the base time did not advance
+	 * between calculating 'idx' and possibly switching the base, only
+	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
+	 * we need to (re)calculate the wheel index via
+	 * internal_add_timer().
+	 */
+	if (idx != UINT_MAX && clk == base->clk) {
+		enqueue_timer(base, timer, idx);
+		trigger_dyntick_cpu(base, timer);
+	} else {
+		internal_add_timer(base, timer);
+	}
+
+out_unlock:
+	raw_spin_unlock_irqrestore(&base->lock, flags);
+
+	return ret;
+}
+
+/**
+ * mod_timer_pending - modify a pending timer's timeout
+ * @timer: the pending timer to be modified
+ * @expires: new timeout in jiffies
+ *
+ * mod_timer_pending() is the same for pending timers as mod_timer(),
+ * but will not re-activate and modify already deleted timers.
+ *
+ * It is useful for unserialized use of timers.
+ */
+int mod_timer_pending(struct timer_list *timer, unsigned long expires)
+{
+	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
+}
+EXPORT_SYMBOL(mod_timer_pending);
+
+/**
+ * mod_timer - modify a timer's timeout
+ * @timer: the timer to be modified
+ * @expires: new timeout in jiffies
+ *
+ * mod_timer() is a more efficient way to update the expire field of an
+ * active timer (if the timer is inactive it will be activated)
+ *
+ * mod_timer(timer, expires) is equivalent to:
+ *
+ *     del_timer(timer); timer->expires = expires; add_timer(timer);
+ *
+ * Note that if there are multiple unserialized concurrent users of the
+ * same timer, then mod_timer() is the only safe way to modify the timeout,
+ * since add_timer() cannot modify an already running timer.
+ *
+ * The function returns whether it has modified a pending timer or not.
+ * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
+ * active timer returns 1.)
+ */
+int mod_timer(struct timer_list *timer, unsigned long expires)
+{
+	return __mod_timer(timer, expires, 0);
+}
+EXPORT_SYMBOL(mod_timer);
+
+/**
+ * timer_reduce - Modify a timer's timeout if it would reduce the timeout
+ * @timer:	The timer to be modified
+ * @expires:	New timeout in jiffies
+ *
+ * timer_reduce() is very similar to mod_timer(), except that it will only
+ * modify a running timer if that would reduce the expiration time (it will
+ * start a timer that isn't running).
+ */
+int timer_reduce(struct timer_list *timer, unsigned long expires)
+{
+	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
+}
+EXPORT_SYMBOL(timer_reduce);
+
+/**
+ * add_timer - start a timer
+ * @timer: the timer to be added
+ *
+ * The kernel will do a ->function(@timer) callback from the
+ * timer interrupt at the ->expires point in the future. The
+ * current time is 'jiffies'.
+ *
+ * The timer's ->expires, ->function fields must be set prior calling this
+ * function.
+ *
+ * Timers with an ->expires field in the past will be executed in the next
+ * timer tick.
+ */
+void add_timer(struct timer_list *timer)
+{
+	BUG_ON(timer_pending(timer));
+	mod_timer(timer, timer->expires);
+}
+EXPORT_SYMBOL(add_timer);
+
+/**
+ * add_timer_on - start a timer on a particular CPU
+ * @timer: the timer to be added
+ * @cpu: the CPU to start it on
+ *
+ * This is not very scalable on SMP. Double adds are not possible.
+ */
+void add_timer_on(struct timer_list *timer, int cpu)
+{
+	struct timer_base *new_base, *base;
+	unsigned long flags;
+
+	BUG_ON(timer_pending(timer) || !timer->function);
+
+	new_base = get_timer_cpu_base(timer->flags, cpu);
+
+	/*
+	 * If @timer was on a different CPU, it should be migrated with the
+	 * old base locked to prevent other operations proceeding with the
+	 * wrong base locked.  See lock_timer_base().
+	 */
+	base = lock_timer_base(timer, &flags);
+	if (base != new_base) {
+		timer->flags |= TIMER_MIGRATING;
+
+		raw_spin_unlock(&base->lock);
+		base = new_base;
+		raw_spin_lock(&base->lock);
+		WRITE_ONCE(timer->flags,
+			   (timer->flags & ~TIMER_BASEMASK) | cpu);
+	}
+	forward_timer_base(base);
+
+	debug_activate(timer, timer->expires);
+	internal_add_timer(base, timer);
+	raw_spin_unlock_irqrestore(&base->lock, flags);
+}
+EXPORT_SYMBOL_GPL(add_timer_on);
+
+/**
+ * del_timer - deactivate a timer.
+ * @timer: the timer to be deactivated
+ *
+ * del_timer() deactivates a timer - this works on both active and inactive
+ * timers.
+ *
+ * The function returns whether it has deactivated a pending timer or not.
+ * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
+ * active timer returns 1.)
+ */
+int del_timer(struct timer_list *timer)
+{
+	struct timer_base *base;
+	unsigned long flags;
+	int ret = 0;
+
+	debug_assert_init(timer);
+
+	if (timer_pending(timer)) {
+		base = lock_timer_base(timer, &flags);
+		ret = detach_if_pending(timer, base, true);
+		raw_spin_unlock_irqrestore(&base->lock, flags);
+	}
+
+	return ret;
+}
+EXPORT_SYMBOL(del_timer);
+
+/**
+ * try_to_del_timer_sync - Try to deactivate a timer
+ * @timer: timer to delete
+ *
+ * This function tries to deactivate a timer. Upon successful (ret >= 0)
+ * exit the timer is not queued and the handler is not running on any CPU.
+ */
+int try_to_del_timer_sync(struct timer_list *timer)
+{
+	struct timer_base *base;
+	unsigned long flags;
+	int ret = -1;
+
+	debug_assert_init(timer);
+
+	base = lock_timer_base(timer, &flags);
+
+	if (base->running_timer != timer)
+		ret = detach_if_pending(timer, base, true);
+
+	raw_spin_unlock_irqrestore(&base->lock, flags);
+
+	return ret;
+}
+EXPORT_SYMBOL(try_to_del_timer_sync);
+
+#ifdef CONFIG_SMP
+/**
+ * del_timer_sync - deactivate a timer and wait for the handler to finish.
+ * @timer: the timer to be deactivated
+ *
+ * This function only differs from del_timer() on SMP: besides deactivating
+ * the timer it also makes sure the handler has finished executing on other
+ * CPUs.
+ *
+ * Synchronization rules: Callers must prevent restarting of the timer,
+ * otherwise this function is meaningless. It must not be called from
+ * interrupt contexts unless the timer is an irqsafe one. The caller must
+ * not hold locks which would prevent completion of the timer's
+ * handler. The timer's handler must not call add_timer_on(). Upon exit the
+ * timer is not queued and the handler is not running on any CPU.
+ *
+ * Note: For !irqsafe timers, you must not hold locks that are held in
+ *   interrupt context while calling this function. Even if the lock has
+ *   nothing to do with the timer in question.  Here's why::
+ *
+ *    CPU0                             CPU1
+ *    ----                             ----
+ *                                     <SOFTIRQ>
+ *                                       call_timer_fn();
+ *                                       base->running_timer = mytimer;
+ *    spin_lock_irq(somelock);
+ *                                     <IRQ>
+ *                                        spin_lock(somelock);
+ *    del_timer_sync(mytimer);
+ *    while (base->running_timer == mytimer);
+ *
+ * Now del_timer_sync() will never return and never release somelock.
+ * The interrupt on the other CPU is waiting to grab somelock but
+ * it has interrupted the softirq that CPU0 is waiting to finish.
+ *
+ * The function returns whether it has deactivated a pending timer or not.
+ */
+int del_timer_sync(struct timer_list *timer)
+{
+#ifdef CONFIG_LOCKDEP
+	unsigned long flags;
+
+	/*
+	 * If lockdep gives a backtrace here, please reference
+	 * the synchronization rules above.
+	 */
+	local_irq_save(flags);
+	lock_map_acquire(&timer->lockdep_map);
+	lock_map_release(&timer->lockdep_map);
+	local_irq_restore(flags);
+#endif
+	/*
+	 * don't use it in hardirq context, because it
+	 * could lead to deadlock.
+	 */
+	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
+	for (;;) {
+		int ret = try_to_del_timer_sync(timer);
+		if (ret >= 0)
+			return ret;
+		cpu_relax();
+	}
+}
+EXPORT_SYMBOL(del_timer_sync);
+#endif
+
+static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *))
+{
+	int count = preempt_count();
+
+#ifdef CONFIG_LOCKDEP
+	/*
+	 * It is permissible to free the timer from inside the
+	 * function that is called from it, this we need to take into
+	 * account for lockdep too. To avoid bogus "held lock freed"
+	 * warnings as well as problems when looking into
+	 * timer->lockdep_map, make a copy and use that here.
+	 */
+	struct lockdep_map lockdep_map;
+
+	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
+#endif
+	/*
+	 * Couple the lock chain with the lock chain at
+	 * del_timer_sync() by acquiring the lock_map around the fn()
+	 * call here and in del_timer_sync().
+	 */
+	lock_map_acquire(&lockdep_map);
+
+	trace_timer_expire_entry(timer);
+	fn(timer);
+	trace_timer_expire_exit(timer);
+
+	lock_map_release(&lockdep_map);
+
+	if (count != preempt_count()) {
+		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
+			  fn, count, preempt_count());
+		/*
+		 * Restore the preempt count. That gives us a decent
+		 * chance to survive and extract information. If the
+		 * callback kept a lock held, bad luck, but not worse
+		 * than the BUG() we had.
+		 */
+		preempt_count_set(count);
+	}
+}
+
+static void expire_timers(struct timer_base *base, struct hlist_head *head)
+{
+	while (!hlist_empty(head)) {
+		struct timer_list *timer;
+		void (*fn)(struct timer_list *);
+
+		timer = hlist_entry(head->first, struct timer_list, entry);
+
+		base->running_timer = timer;
+		detach_timer(timer, true);
+
+		fn = timer->function;
+
+		if (timer->flags & TIMER_IRQSAFE) {
+			raw_spin_unlock(&base->lock);
+			call_timer_fn(timer, fn);
+			raw_spin_lock(&base->lock);
+		} else {
+			raw_spin_unlock_irq(&base->lock);
+			call_timer_fn(timer, fn);
+			raw_spin_lock_irq(&base->lock);
+		}
+	}
+}
+
+static int __collect_expired_timers(struct timer_base *base,
+				    struct hlist_head *heads)
+{
+	unsigned long clk = base->clk;
+	struct hlist_head *vec;
+	int i, levels = 0;
+	unsigned int idx;
+
+	for (i = 0; i < LVL_DEPTH; i++) {
+		idx = (clk & LVL_MASK) + i * LVL_SIZE;
+
+		if (__test_and_clear_bit(idx, base->pending_map)) {
+			vec = base->vectors + idx;
+			hlist_move_list(vec, heads++);
+			levels++;
+		}
+		/* Is it time to look at the next level? */
+		if (clk & LVL_CLK_MASK)
+			break;
+		/* Shift clock for the next level granularity */
+		clk >>= LVL_CLK_SHIFT;
+	}
+	return levels;
+}
+
+#ifdef CONFIG_NO_HZ_COMMON
+/*
+ * Find the next pending bucket of a level. Search from level start (@offset)
+ * + @clk upwards and if nothing there, search from start of the level
+ * (@offset) up to @offset + clk.
+ */
+static int next_pending_bucket(struct timer_base *base, unsigned offset,
+			       unsigned clk)
+{
+	unsigned pos, start = offset + clk;
+	unsigned end = offset + LVL_SIZE;
+
+	pos = find_next_bit(base->pending_map, end, start);
+	if (pos < end)
+		return pos - start;
+
+	pos = find_next_bit(base->pending_map, start, offset);
+	return pos < start ? pos + LVL_SIZE - start : -1;
+}
+
+/*
+ * Search the first expiring timer in the various clock levels. Caller must
+ * hold base->lock.
+ */
+static unsigned long __next_timer_interrupt(struct timer_base *base)
+{
+	unsigned long clk, next, adj;
+	unsigned lvl, offset = 0;
+
+	next = base->clk + NEXT_TIMER_MAX_DELTA;
+	clk = base->clk;
+	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
+		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
+
+		if (pos >= 0) {
+			unsigned long tmp = clk + (unsigned long) pos;
+
+			tmp <<= LVL_SHIFT(lvl);
+			if (time_before(tmp, next))
+				next = tmp;
+		}
+		/*
+		 * Clock for the next level. If the current level clock lower
+		 * bits are zero, we look at the next level as is. If not we
+		 * need to advance it by one because that's going to be the
+		 * next expiring bucket in that level. base->clk is the next
+		 * expiring jiffie. So in case of:
+		 *
+		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
+		 *  0    0    0    0    0    0
+		 *
+		 * we have to look at all levels @index 0. With
+		 *
+		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
+		 *  0    0    0    0    0    2
+		 *
+		 * LVL0 has the next expiring bucket @index 2. The upper
+		 * levels have the next expiring bucket @index 1.
+		 *
+		 * In case that the propagation wraps the next level the same
+		 * rules apply:
+		 *
+		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
+		 *  0    0    0    0    F    2
+		 *
+		 * So after looking at LVL0 we get:
+		 *
+		 * LVL5 LVL4 LVL3 LVL2 LVL1
+		 *  0    0    0    1    0
+		 *
+		 * So no propagation from LVL1 to LVL2 because that happened
+		 * with the add already, but then we need to propagate further
+		 * from LVL2 to LVL3.
+		 *
+		 * So the simple check whether the lower bits of the current
+		 * level are 0 or not is sufficient for all cases.
+		 */
+		adj = clk & LVL_CLK_MASK ? 1 : 0;
+		clk >>= LVL_CLK_SHIFT;
+		clk += adj;
+	}
+	return next;
+}
+
+/*
+ * Check, if the next hrtimer event is before the next timer wheel
+ * event:
+ */
+static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
+{
+	u64 nextevt = hrtimer_get_next_event();
+
+	/*
+	 * If high resolution timers are enabled
+	 * hrtimer_get_next_event() returns KTIME_MAX.
+	 */
+	if (expires <= nextevt)
+		return expires;
+
+	/*
+	 * If the next timer is already expired, return the tick base
+	 * time so the tick is fired immediately.
+	 */
+	if (nextevt <= basem)
+		return basem;
+
+	/*
+	 * Round up to the next jiffie. High resolution timers are
+	 * off, so the hrtimers are expired in the tick and we need to
+	 * make sure that this tick really expires the timer to avoid
+	 * a ping pong of the nohz stop code.
+	 *
+	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
+	 */
+	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
+}
+
+/**
+ * get_next_timer_interrupt - return the time (clock mono) of the next timer
+ * @basej:	base time jiffies
+ * @basem:	base time clock monotonic
+ *
+ * Returns the tick aligned clock monotonic time of the next pending
+ * timer or KTIME_MAX if no timer is pending.
+ */
+u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
+{
+	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
+	u64 expires = KTIME_MAX;
+	unsigned long nextevt;
+	bool is_max_delta;
+
+	/*
+	 * Pretend that there is no timer pending if the cpu is offline.
+	 * Possible pending timers will be migrated later to an active cpu.
+	 */
+	if (cpu_is_offline(smp_processor_id()))
+		return expires;
+
+	raw_spin_lock(&base->lock);
+	nextevt = __next_timer_interrupt(base);
+	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
+	base->next_expiry = nextevt;
+	/*
+	 * We have a fresh next event. Check whether we can forward the
+	 * base. We can only do that when @basej is past base->clk
+	 * otherwise we might rewind base->clk.
+	 */
+	if (time_after(basej, base->clk)) {
+		if (time_after(nextevt, basej))
+			base->clk = basej;
+		else if (time_after(nextevt, base->clk))
+			base->clk = nextevt;
+	}
+
+	if (time_before_eq(nextevt, basej)) {
+		expires = basem;
+		base->is_idle = false;
+	} else {
+		if (!is_max_delta)
+			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
+		/*
+		 * If we expect to sleep more than a tick, mark the base idle.
+		 * Also the tick is stopped so any added timer must forward
+		 * the base clk itself to keep granularity small. This idle
+		 * logic is only maintained for the BASE_STD base, deferrable
+		 * timers may still see large granularity skew (by design).
+		 */
+		if ((expires - basem) > TICK_NSEC) {
+			base->must_forward_clk = true;
+			base->is_idle = true;
+		}
+	}
+	raw_spin_unlock(&base->lock);
+
+	return cmp_next_hrtimer_event(basem, expires);
+}
+
+/**
+ * timer_clear_idle - Clear the idle state of the timer base
+ *
+ * Called with interrupts disabled
+ */
+void timer_clear_idle(void)
+{
+	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
+
+	/*
+	 * We do this unlocked. The worst outcome is a remote enqueue sending
+	 * a pointless IPI, but taking the lock would just make the window for
+	 * sending the IPI a few instructions smaller for the cost of taking
+	 * the lock in the exit from idle path.
+	 */
+	base->is_idle = false;
+}
+
+static int collect_expired_timers(struct timer_base *base,
+				  struct hlist_head *heads)
+{
+	/*
+	 * NOHZ optimization. After a long idle sleep we need to forward the
+	 * base to current jiffies. Avoid a loop by searching the bitfield for
+	 * the next expiring timer.
+	 */
+	if ((long)(jiffies - base->clk) > 2) {
+		unsigned long next = __next_timer_interrupt(base);
+
+		/*
+		 * If the next timer is ahead of time forward to current
+		 * jiffies, otherwise forward to the next expiry time:
+		 */
+		if (time_after(next, jiffies)) {
+			/*
+			 * The call site will increment base->clk and then
+			 * terminate the expiry loop immediately.
+			 */
+			base->clk = jiffies;
+			return 0;
+		}
+		base->clk = next;
+	}
+	return __collect_expired_timers(base, heads);
+}
+#else
+static inline int collect_expired_timers(struct timer_base *base,
+					 struct hlist_head *heads)
+{
+	return __collect_expired_timers(base, heads);
+}
+#endif
+
+/*
+ * Called from the timer interrupt handler to charge one tick to the current
+ * process.  user_tick is 1 if the tick is user time, 0 for system.
+ */
+void update_process_times(int user_tick)
+{
+	struct task_struct *p = current;
+
+	/* Note: this timer irq context must be accounted for as well. */
+	account_process_tick(p, user_tick);
+	run_local_timers();
+	rcu_check_callbacks(user_tick);
+#ifdef CONFIG_IRQ_WORK
+	if (in_irq())
+		irq_work_tick();
+#endif
+	scheduler_tick();
+	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
+		run_posix_cpu_timers(p);
+}
+
+/**
+ * __run_timers - run all expired timers (if any) on this CPU.
+ * @base: the timer vector to be processed.
+ */
+static inline void __run_timers(struct timer_base *base)
+{
+	struct hlist_head heads[LVL_DEPTH];
+	int levels;
+
+	if (!time_after_eq(jiffies, base->clk))
+		return;
+
+	raw_spin_lock_irq(&base->lock);
+
+	/*
+	 * timer_base::must_forward_clk must be cleared before running
+	 * timers so that any timer functions that call mod_timer() will
+	 * not try to forward the base. Idle tracking / clock forwarding
+	 * logic is only used with BASE_STD timers.
+	 *
+	 * The must_forward_clk flag is cleared unconditionally also for
+	 * the deferrable base. The deferrable base is not affected by idle
+	 * tracking and never forwarded, so clearing the flag is a NOOP.
+	 *
+	 * The fact that the deferrable base is never forwarded can cause
+	 * large variations in granularity for deferrable timers, but they
+	 * can be deferred for long periods due to idle anyway.
+	 */
+	base->must_forward_clk = false;
+
+	while (time_after_eq(jiffies, base->clk)) {
+
+		levels = collect_expired_timers(base, heads);
+		base->clk++;
+
+		while (levels--)
+			expire_timers(base, heads + levels);
+	}
+	base->running_timer = NULL;
+	raw_spin_unlock_irq(&base->lock);
+}
+
+/*
+ * This function runs timers and the timer-tq in bottom half context.
+ */
+static __latent_entropy void run_timer_softirq(struct softirq_action *h)
+{
+	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
+
+	__run_timers(base);
+	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
+		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
+}
+
+/*
+ * Called by the local, per-CPU timer interrupt on SMP.
+ */
+void run_local_timers(void)
+{
+	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
+
+	hrtimer_run_queues();
+	/* Raise the softirq only if required. */
+	if (time_before(jiffies, base->clk)) {
+		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
+			return;
+		/* CPU is awake, so check the deferrable base. */
+		base++;
+		if (time_before(jiffies, base->clk))
+			return;
+	}
+	raise_softirq(TIMER_SOFTIRQ);
+}
+
+/*
+ * Since schedule_timeout()'s timer is defined on the stack, it must store
+ * the target task on the stack as well.
+ */
+struct process_timer {
+	struct timer_list timer;
+	struct task_struct *task;
+};
+
+static void process_timeout(struct timer_list *t)
+{
+	struct process_timer *timeout = from_timer(timeout, t, timer);
+
+	wake_up_process(timeout->task);
+}
+
+/**
+ * schedule_timeout - sleep until timeout
+ * @timeout: timeout value in jiffies
+ *
+ * Make the current task sleep until @timeout jiffies have
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
+ * pass before the routine returns unless the current task is explicitly
+ * woken up, (e.g. by wake_up_process())".
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task or the current task is explicitly woken
+ * up.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
+ * the CPU away without a bound on the timeout. In this case the return
+ * value will be %MAX_SCHEDULE_TIMEOUT.
+ *
+ * Returns 0 when the timer has expired otherwise the remaining time in
+ * jiffies will be returned.  In all cases the return value is guaranteed
+ * to be non-negative.
+ */
+signed long __sched schedule_timeout(signed long timeout)
+{
+	struct process_timer timer;
+	unsigned long expire;
+
+	switch (timeout)
+	{
+	case MAX_SCHEDULE_TIMEOUT:
+		/*
+		 * These two special cases are useful to be comfortable
+		 * in the caller. Nothing more. We could take
+		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
+		 * but I' d like to return a valid offset (>=0) to allow
+		 * the caller to do everything it want with the retval.
+		 */
+		schedule();
+		goto out;
+	default:
+		/*
+		 * Another bit of PARANOID. Note that the retval will be
+		 * 0 since no piece of kernel is supposed to do a check
+		 * for a negative retval of schedule_timeout() (since it
+		 * should never happens anyway). You just have the printk()
+		 * that will tell you if something is gone wrong and where.
+		 */
+		if (timeout < 0) {
+			printk(KERN_ERR "schedule_timeout: wrong timeout "
+				"value %lx\n", timeout);
+			dump_stack();
+			current->state = TASK_RUNNING;
+			goto out;
+		}
+	}
+
+	expire = timeout + jiffies;
+
+	timer.task = current;
+	timer_setup_on_stack(&timer.timer, process_timeout, 0);
+	__mod_timer(&timer.timer, expire, 0);
+	schedule();
+	del_singleshot_timer_sync(&timer.timer);
+
+	/* Remove the timer from the object tracker */
+	destroy_timer_on_stack(&timer.timer);
+
+	timeout = expire - jiffies;
+
+ out:
+	return timeout < 0 ? 0 : timeout;
+}
+EXPORT_SYMBOL(schedule_timeout);
+
+/*
+ * We can use __set_current_state() here because schedule_timeout() calls
+ * schedule() unconditionally.
+ */
+signed long __sched schedule_timeout_interruptible(signed long timeout)
+{
+	__set_current_state(TASK_INTERRUPTIBLE);
+	return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_interruptible);
+
+signed long __sched schedule_timeout_killable(signed long timeout)
+{
+	__set_current_state(TASK_KILLABLE);
+	return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_killable);
+
+signed long __sched schedule_timeout_uninterruptible(signed long timeout)
+{
+	__set_current_state(TASK_UNINTERRUPTIBLE);
+	return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_uninterruptible);
+
+/*
+ * Like schedule_timeout_uninterruptible(), except this task will not contribute
+ * to load average.
+ */
+signed long __sched schedule_timeout_idle(signed long timeout)
+{
+	__set_current_state(TASK_IDLE);
+	return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_idle);
+
+#ifdef CONFIG_HOTPLUG_CPU
+static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
+{
+	struct timer_list *timer;
+	int cpu = new_base->cpu;
+
+	while (!hlist_empty(head)) {
+		timer = hlist_entry(head->first, struct timer_list, entry);
+		detach_timer(timer, false);
+		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
+		internal_add_timer(new_base, timer);
+	}
+}
+
+int timers_prepare_cpu(unsigned int cpu)
+{
+	struct timer_base *base;
+	int b;
+
+	for (b = 0; b < NR_BASES; b++) {
+		base = per_cpu_ptr(&timer_bases[b], cpu);
+		base->clk = jiffies;
+		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
+		base->is_idle = false;
+		base->must_forward_clk = true;
+	}
+	return 0;
+}
+
+int timers_dead_cpu(unsigned int cpu)
+{
+	struct timer_base *old_base;
+	struct timer_base *new_base;
+	int b, i;
+
+	BUG_ON(cpu_online(cpu));
+
+	for (b = 0; b < NR_BASES; b++) {
+		old_base = per_cpu_ptr(&timer_bases[b], cpu);
+		new_base = get_cpu_ptr(&timer_bases[b]);
+		/*
+		 * The caller is globally serialized and nobody else
+		 * takes two locks at once, deadlock is not possible.
+		 */
+		raw_spin_lock_irq(&new_base->lock);
+		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
+
+		/*
+		 * The current CPUs base clock might be stale. Update it
+		 * before moving the timers over.
+		 */
+		forward_timer_base(new_base);
+
+		BUG_ON(old_base->running_timer);
+
+		for (i = 0; i < WHEEL_SIZE; i++)
+			migrate_timer_list(new_base, old_base->vectors + i);
+
+		raw_spin_unlock(&old_base->lock);
+		raw_spin_unlock_irq(&new_base->lock);
+		put_cpu_ptr(&timer_bases);
+	}
+	return 0;
+}
+
+#endif /* CONFIG_HOTPLUG_CPU */
+
+static void __init init_timer_cpu(int cpu)
+{
+	struct timer_base *base;
+	int i;
+
+	for (i = 0; i < NR_BASES; i++) {
+		base = per_cpu_ptr(&timer_bases[i], cpu);
+		base->cpu = cpu;
+		raw_spin_lock_init(&base->lock);
+		base->clk = jiffies;
+	}
+}
+
+static void __init init_timer_cpus(void)
+{
+	int cpu;
+
+	for_each_possible_cpu(cpu)
+		init_timer_cpu(cpu);
+}
+
+void __init init_timers(void)
+{
+	init_timer_cpus();
+	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
+}
+
+/**
+ * msleep - sleep safely even with waitqueue interruptions
+ * @msecs: Time in milliseconds to sleep for
+ */
+void msleep(unsigned int msecs)
+{
+	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
+
+	while (timeout)
+		timeout = schedule_timeout_uninterruptible(timeout);
+}
+
+EXPORT_SYMBOL(msleep);
+
+/**
+ * msleep_interruptible - sleep waiting for signals
+ * @msecs: Time in milliseconds to sleep for
+ */
+unsigned long msleep_interruptible(unsigned int msecs)
+{
+	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
+
+	while (timeout && !signal_pending(current))
+		timeout = schedule_timeout_interruptible(timeout);
+	return jiffies_to_msecs(timeout);
+}
+
+EXPORT_SYMBOL(msleep_interruptible);
+
+/**
+ * usleep_range - Sleep for an approximate time
+ * @min: Minimum time in usecs to sleep
+ * @max: Maximum time in usecs to sleep
+ *
+ * In non-atomic context where the exact wakeup time is flexible, use
+ * usleep_range() instead of udelay().  The sleep improves responsiveness
+ * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
+ * power usage by allowing hrtimers to take advantage of an already-
+ * scheduled interrupt instead of scheduling a new one just for this sleep.
+ */
+void __sched usleep_range(unsigned long min, unsigned long max)
+{
+	ktime_t exp = ktime_add_us(ktime_get(), min);
+	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
+
+	for (;;) {
+		__set_current_state(TASK_UNINTERRUPTIBLE);
+		/* Do not return before the requested sleep time has elapsed */
+		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
+			break;
+	}
+}
+EXPORT_SYMBOL(usleep_range);