Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * arch-independent dma-mapping routines |
| 4 | * |
| 5 | * Copyright (c) 2006 SUSE Linux Products GmbH |
| 6 | * Copyright (c) 2006 Tejun Heo <teheo@suse.de> |
| 7 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 8 | #include <linux/memblock.h> /* for max_pfn */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 9 | #include <linux/acpi.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 10 | #include <linux/dma-map-ops.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 11 | #include <linux/export.h> |
| 12 | #include <linux/gfp.h> |
| 13 | #include <linux/of_device.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/vmalloc.h> |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 16 | #include "debug.h" |
| 17 | #include "direct.h" |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 18 | |
| 19 | /* |
| 20 | * Managed DMA API |
| 21 | */ |
| 22 | struct dma_devres { |
| 23 | size_t size; |
| 24 | void *vaddr; |
| 25 | dma_addr_t dma_handle; |
| 26 | unsigned long attrs; |
| 27 | }; |
| 28 | |
| 29 | static void dmam_release(struct device *dev, void *res) |
| 30 | { |
| 31 | struct dma_devres *this = res; |
| 32 | |
| 33 | dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, |
| 34 | this->attrs); |
| 35 | } |
| 36 | |
| 37 | static int dmam_match(struct device *dev, void *res, void *match_data) |
| 38 | { |
| 39 | struct dma_devres *this = res, *match = match_data; |
| 40 | |
| 41 | if (this->vaddr == match->vaddr) { |
| 42 | WARN_ON(this->size != match->size || |
| 43 | this->dma_handle != match->dma_handle); |
| 44 | return 1; |
| 45 | } |
| 46 | return 0; |
| 47 | } |
| 48 | |
| 49 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 50 | * dmam_free_coherent - Managed dma_free_coherent() |
| 51 | * @dev: Device to free coherent memory for |
| 52 | * @size: Size of allocation |
| 53 | * @vaddr: Virtual address of the memory to free |
| 54 | * @dma_handle: DMA handle of the memory to free |
| 55 | * |
| 56 | * Managed dma_free_coherent(). |
| 57 | */ |
| 58 | void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, |
| 59 | dma_addr_t dma_handle) |
| 60 | { |
| 61 | struct dma_devres match_data = { size, vaddr, dma_handle }; |
| 62 | |
| 63 | dma_free_coherent(dev, size, vaddr, dma_handle); |
| 64 | WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); |
| 65 | } |
| 66 | EXPORT_SYMBOL(dmam_free_coherent); |
| 67 | |
| 68 | /** |
| 69 | * dmam_alloc_attrs - Managed dma_alloc_attrs() |
| 70 | * @dev: Device to allocate non_coherent memory for |
| 71 | * @size: Size of allocation |
| 72 | * @dma_handle: Out argument for allocated DMA handle |
| 73 | * @gfp: Allocation flags |
| 74 | * @attrs: Flags in the DMA_ATTR_* namespace. |
| 75 | * |
| 76 | * Managed dma_alloc_attrs(). Memory allocated using this function will be |
| 77 | * automatically released on driver detach. |
| 78 | * |
| 79 | * RETURNS: |
| 80 | * Pointer to allocated memory on success, NULL on failure. |
| 81 | */ |
| 82 | void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| 83 | gfp_t gfp, unsigned long attrs) |
| 84 | { |
| 85 | struct dma_devres *dr; |
| 86 | void *vaddr; |
| 87 | |
| 88 | dr = devres_alloc(dmam_release, sizeof(*dr), gfp); |
| 89 | if (!dr) |
| 90 | return NULL; |
| 91 | |
| 92 | vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); |
| 93 | if (!vaddr) { |
| 94 | devres_free(dr); |
| 95 | return NULL; |
| 96 | } |
| 97 | |
| 98 | dr->vaddr = vaddr; |
| 99 | dr->dma_handle = *dma_handle; |
| 100 | dr->size = size; |
| 101 | dr->attrs = attrs; |
| 102 | |
| 103 | devres_add(dev, dr); |
| 104 | |
| 105 | return vaddr; |
| 106 | } |
| 107 | EXPORT_SYMBOL(dmam_alloc_attrs); |
| 108 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 109 | static bool dma_go_direct(struct device *dev, dma_addr_t mask, |
| 110 | const struct dma_map_ops *ops) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 111 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 112 | if (likely(!ops)) |
| 113 | return true; |
| 114 | #ifdef CONFIG_DMA_OPS_BYPASS |
| 115 | if (dev->dma_ops_bypass) |
| 116 | return min_not_zero(mask, dev->bus_dma_limit) >= |
| 117 | dma_direct_get_required_mask(dev); |
| 118 | #endif |
| 119 | return false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 120 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 121 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 122 | |
| 123 | /* |
| 124 | * Check if the devices uses a direct mapping for streaming DMA operations. |
| 125 | * This allows IOMMU drivers to set a bypass mode if the DMA mask is large |
| 126 | * enough. |
| 127 | */ |
| 128 | static inline bool dma_alloc_direct(struct device *dev, |
| 129 | const struct dma_map_ops *ops) |
| 130 | { |
| 131 | return dma_go_direct(dev, dev->coherent_dma_mask, ops); |
| 132 | } |
| 133 | |
| 134 | static inline bool dma_map_direct(struct device *dev, |
| 135 | const struct dma_map_ops *ops) |
| 136 | { |
| 137 | return dma_go_direct(dev, *dev->dma_mask, ops); |
| 138 | } |
| 139 | |
| 140 | dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, |
| 141 | size_t offset, size_t size, enum dma_data_direction dir, |
| 142 | unsigned long attrs) |
| 143 | { |
| 144 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 145 | dma_addr_t addr; |
| 146 | |
| 147 | BUG_ON(!valid_dma_direction(dir)); |
| 148 | |
| 149 | if (WARN_ON_ONCE(!dev->dma_mask)) |
| 150 | return DMA_MAPPING_ERROR; |
| 151 | |
| 152 | if (dma_map_direct(dev, ops)) |
| 153 | addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); |
| 154 | else |
| 155 | addr = ops->map_page(dev, page, offset, size, dir, attrs); |
| 156 | debug_dma_map_page(dev, page, offset, size, dir, addr); |
| 157 | |
| 158 | return addr; |
| 159 | } |
| 160 | EXPORT_SYMBOL(dma_map_page_attrs); |
| 161 | |
| 162 | void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, |
| 163 | enum dma_data_direction dir, unsigned long attrs) |
| 164 | { |
| 165 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 166 | |
| 167 | BUG_ON(!valid_dma_direction(dir)); |
| 168 | if (dma_map_direct(dev, ops)) |
| 169 | dma_direct_unmap_page(dev, addr, size, dir, attrs); |
| 170 | else if (ops->unmap_page) |
| 171 | ops->unmap_page(dev, addr, size, dir, attrs); |
| 172 | debug_dma_unmap_page(dev, addr, size, dir); |
| 173 | } |
| 174 | EXPORT_SYMBOL(dma_unmap_page_attrs); |
| 175 | |
| 176 | /* |
| 177 | * dma_maps_sg_attrs returns 0 on error and > 0 on success. |
| 178 | * It should never return a value < 0. |
| 179 | */ |
| 180 | int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, |
| 181 | enum dma_data_direction dir, unsigned long attrs) |
| 182 | { |
| 183 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 184 | int ents; |
| 185 | |
| 186 | BUG_ON(!valid_dma_direction(dir)); |
| 187 | |
| 188 | if (WARN_ON_ONCE(!dev->dma_mask)) |
| 189 | return 0; |
| 190 | |
| 191 | if (dma_map_direct(dev, ops)) |
| 192 | ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); |
| 193 | else |
| 194 | ents = ops->map_sg(dev, sg, nents, dir, attrs); |
| 195 | BUG_ON(ents < 0); |
| 196 | debug_dma_map_sg(dev, sg, nents, ents, dir); |
| 197 | |
| 198 | return ents; |
| 199 | } |
| 200 | EXPORT_SYMBOL(dma_map_sg_attrs); |
| 201 | |
| 202 | void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, |
| 203 | int nents, enum dma_data_direction dir, |
| 204 | unsigned long attrs) |
| 205 | { |
| 206 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 207 | |
| 208 | BUG_ON(!valid_dma_direction(dir)); |
| 209 | debug_dma_unmap_sg(dev, sg, nents, dir); |
| 210 | if (dma_map_direct(dev, ops)) |
| 211 | dma_direct_unmap_sg(dev, sg, nents, dir, attrs); |
| 212 | else if (ops->unmap_sg) |
| 213 | ops->unmap_sg(dev, sg, nents, dir, attrs); |
| 214 | } |
| 215 | EXPORT_SYMBOL(dma_unmap_sg_attrs); |
| 216 | |
| 217 | dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, |
| 218 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 219 | { |
| 220 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 221 | dma_addr_t addr = DMA_MAPPING_ERROR; |
| 222 | |
| 223 | BUG_ON(!valid_dma_direction(dir)); |
| 224 | |
| 225 | if (WARN_ON_ONCE(!dev->dma_mask)) |
| 226 | return DMA_MAPPING_ERROR; |
| 227 | |
| 228 | /* Don't allow RAM to be mapped */ |
| 229 | if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr)))) |
| 230 | return DMA_MAPPING_ERROR; |
| 231 | |
| 232 | if (dma_map_direct(dev, ops)) |
| 233 | addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); |
| 234 | else if (ops->map_resource) |
| 235 | addr = ops->map_resource(dev, phys_addr, size, dir, attrs); |
| 236 | |
| 237 | debug_dma_map_resource(dev, phys_addr, size, dir, addr); |
| 238 | return addr; |
| 239 | } |
| 240 | EXPORT_SYMBOL(dma_map_resource); |
| 241 | |
| 242 | void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, |
| 243 | enum dma_data_direction dir, unsigned long attrs) |
| 244 | { |
| 245 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 246 | |
| 247 | BUG_ON(!valid_dma_direction(dir)); |
| 248 | if (!dma_map_direct(dev, ops) && ops->unmap_resource) |
| 249 | ops->unmap_resource(dev, addr, size, dir, attrs); |
| 250 | debug_dma_unmap_resource(dev, addr, size, dir); |
| 251 | } |
| 252 | EXPORT_SYMBOL(dma_unmap_resource); |
| 253 | |
| 254 | void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, |
| 255 | enum dma_data_direction dir) |
| 256 | { |
| 257 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 258 | |
| 259 | BUG_ON(!valid_dma_direction(dir)); |
| 260 | if (dma_map_direct(dev, ops)) |
| 261 | dma_direct_sync_single_for_cpu(dev, addr, size, dir); |
| 262 | else if (ops->sync_single_for_cpu) |
| 263 | ops->sync_single_for_cpu(dev, addr, size, dir); |
| 264 | debug_dma_sync_single_for_cpu(dev, addr, size, dir); |
| 265 | } |
| 266 | EXPORT_SYMBOL(dma_sync_single_for_cpu); |
| 267 | |
| 268 | void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, |
| 269 | size_t size, enum dma_data_direction dir) |
| 270 | { |
| 271 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 272 | |
| 273 | BUG_ON(!valid_dma_direction(dir)); |
| 274 | if (dma_map_direct(dev, ops)) |
| 275 | dma_direct_sync_single_for_device(dev, addr, size, dir); |
| 276 | else if (ops->sync_single_for_device) |
| 277 | ops->sync_single_for_device(dev, addr, size, dir); |
| 278 | debug_dma_sync_single_for_device(dev, addr, size, dir); |
| 279 | } |
| 280 | EXPORT_SYMBOL(dma_sync_single_for_device); |
| 281 | |
| 282 | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, |
| 283 | int nelems, enum dma_data_direction dir) |
| 284 | { |
| 285 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 286 | |
| 287 | BUG_ON(!valid_dma_direction(dir)); |
| 288 | if (dma_map_direct(dev, ops)) |
| 289 | dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); |
| 290 | else if (ops->sync_sg_for_cpu) |
| 291 | ops->sync_sg_for_cpu(dev, sg, nelems, dir); |
| 292 | debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); |
| 293 | } |
| 294 | EXPORT_SYMBOL(dma_sync_sg_for_cpu); |
| 295 | |
| 296 | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, |
| 297 | int nelems, enum dma_data_direction dir) |
| 298 | { |
| 299 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 300 | |
| 301 | BUG_ON(!valid_dma_direction(dir)); |
| 302 | if (dma_map_direct(dev, ops)) |
| 303 | dma_direct_sync_sg_for_device(dev, sg, nelems, dir); |
| 304 | else if (ops->sync_sg_for_device) |
| 305 | ops->sync_sg_for_device(dev, sg, nelems, dir); |
| 306 | debug_dma_sync_sg_for_device(dev, sg, nelems, dir); |
| 307 | } |
| 308 | EXPORT_SYMBOL(dma_sync_sg_for_device); |
| 309 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 310 | /* |
| 311 | * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems |
| 312 | * that the intention is to allow exporting memory allocated via the |
| 313 | * coherent DMA APIs through the dma_buf API, which only accepts a |
| 314 | * scattertable. This presents a couple of problems: |
| 315 | * 1. Not all memory allocated via the coherent DMA APIs is backed by |
| 316 | * a struct page |
| 317 | * 2. Passing coherent DMA memory into the streaming APIs is not allowed |
| 318 | * as we will try to flush the memory through a different alias to that |
| 319 | * actually being used (and the flushes are redundant.) |
| 320 | */ |
| 321 | int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, |
| 322 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 323 | unsigned long attrs) |
| 324 | { |
| 325 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 326 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 327 | if (dma_alloc_direct(dev, ops)) |
| 328 | return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 329 | size, attrs); |
| 330 | if (!ops->get_sgtable) |
| 331 | return -ENXIO; |
| 332 | return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); |
| 333 | } |
| 334 | EXPORT_SYMBOL(dma_get_sgtable_attrs); |
| 335 | |
| 336 | #ifdef CONFIG_MMU |
| 337 | /* |
| 338 | * Return the page attributes used for mapping dma_alloc_* memory, either in |
| 339 | * kernel space if remapping is needed, or to userspace through dma_mmap_*. |
| 340 | */ |
| 341 | pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) |
| 342 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 343 | if (force_dma_unencrypted(dev)) |
| 344 | prot = pgprot_decrypted(prot); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 345 | if (dev_is_dma_coherent(dev)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 346 | return prot; |
| 347 | #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE |
| 348 | if (attrs & DMA_ATTR_WRITE_COMBINE) |
| 349 | return pgprot_writecombine(prot); |
| 350 | #endif |
| 351 | return pgprot_dmacoherent(prot); |
| 352 | } |
| 353 | #endif /* CONFIG_MMU */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 354 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 355 | /** |
| 356 | * dma_can_mmap - check if a given device supports dma_mmap_* |
| 357 | * @dev: device to check |
| 358 | * |
| 359 | * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to |
| 360 | * map DMA allocations to userspace. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 361 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 362 | bool dma_can_mmap(struct device *dev) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 363 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 364 | const struct dma_map_ops *ops = get_dma_ops(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 365 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 366 | if (dma_alloc_direct(dev, ops)) |
| 367 | return dma_direct_can_mmap(dev); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 368 | return ops->mmap != NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 369 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 370 | EXPORT_SYMBOL_GPL(dma_can_mmap); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 371 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 372 | /** |
| 373 | * dma_mmap_attrs - map a coherent DMA allocation into user space |
| 374 | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| 375 | * @vma: vm_area_struct describing requested user mapping |
| 376 | * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs |
| 377 | * @dma_addr: device-view address returned from dma_alloc_attrs |
| 378 | * @size: size of memory originally requested in dma_alloc_attrs |
| 379 | * @attrs: attributes of mapping properties requested in dma_alloc_attrs |
| 380 | * |
| 381 | * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user |
| 382 | * space. The coherent DMA buffer must not be freed by the driver until the |
| 383 | * user space mapping has been released. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 384 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 385 | int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, |
| 386 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 387 | unsigned long attrs) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 388 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 389 | const struct dma_map_ops *ops = get_dma_ops(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 390 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 391 | if (dma_alloc_direct(dev, ops)) |
| 392 | return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 393 | attrs); |
| 394 | if (!ops->mmap) |
| 395 | return -ENXIO; |
| 396 | return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 397 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 398 | EXPORT_SYMBOL(dma_mmap_attrs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 399 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 400 | u64 dma_get_required_mask(struct device *dev) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 401 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 402 | const struct dma_map_ops *ops = get_dma_ops(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 403 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 404 | if (dma_alloc_direct(dev, ops)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 405 | return dma_direct_get_required_mask(dev); |
| 406 | if (ops->get_required_mask) |
| 407 | return ops->get_required_mask(dev); |
| 408 | |
| 409 | /* |
| 410 | * We require every DMA ops implementation to at least support a 32-bit |
| 411 | * DMA mask (and use bounce buffering if that isn't supported in |
| 412 | * hardware). As the direct mapping code has its own routine to |
| 413 | * actually report an optimal mask we default to 32-bit here as that |
| 414 | * is the right thing for most IOMMUs, and at least not actively |
| 415 | * harmful in general. |
| 416 | */ |
| 417 | return DMA_BIT_MASK(32); |
| 418 | } |
| 419 | EXPORT_SYMBOL_GPL(dma_get_required_mask); |
| 420 | |
| 421 | void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| 422 | gfp_t flag, unsigned long attrs) |
| 423 | { |
| 424 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 425 | void *cpu_addr; |
| 426 | |
| 427 | WARN_ON_ONCE(!dev->coherent_dma_mask); |
| 428 | |
| 429 | if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) |
| 430 | return cpu_addr; |
| 431 | |
| 432 | /* let the implementation decide on the zone to allocate from: */ |
| 433 | flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); |
| 434 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 435 | if (dma_alloc_direct(dev, ops)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 436 | cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); |
| 437 | else if (ops->alloc) |
| 438 | cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); |
| 439 | else |
| 440 | return NULL; |
| 441 | |
| 442 | debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); |
| 443 | return cpu_addr; |
| 444 | } |
| 445 | EXPORT_SYMBOL(dma_alloc_attrs); |
| 446 | |
| 447 | void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, |
| 448 | dma_addr_t dma_handle, unsigned long attrs) |
| 449 | { |
| 450 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 451 | |
| 452 | if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 453 | return; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 454 | /* |
| 455 | * On non-coherent platforms which implement DMA-coherent buffers via |
| 456 | * non-cacheable remaps, ops->free() may call vunmap(). Thus getting |
| 457 | * this far in IRQ context is a) at risk of a BUG_ON() or trying to |
| 458 | * sleep on some machines, and b) an indication that the driver is |
| 459 | * probably misusing the coherent API anyway. |
| 460 | */ |
| 461 | WARN_ON(irqs_disabled()); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 462 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 463 | if (!cpu_addr) |
| 464 | return; |
| 465 | |
| 466 | debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 467 | if (dma_alloc_direct(dev, ops)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 468 | dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); |
| 469 | else if (ops->free) |
| 470 | ops->free(dev, size, cpu_addr, dma_handle, attrs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 471 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 472 | EXPORT_SYMBOL(dma_free_attrs); |
| 473 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 474 | struct page *dma_alloc_pages(struct device *dev, size_t size, |
| 475 | dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) |
| 476 | { |
| 477 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 478 | struct page *page; |
| 479 | |
| 480 | if (WARN_ON_ONCE(!dev->coherent_dma_mask)) |
| 481 | return NULL; |
| 482 | if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) |
| 483 | return NULL; |
| 484 | |
| 485 | size = PAGE_ALIGN(size); |
| 486 | if (dma_alloc_direct(dev, ops)) |
| 487 | page = dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); |
| 488 | else if (ops->alloc_pages) |
| 489 | page = ops->alloc_pages(dev, size, dma_handle, dir, gfp); |
| 490 | else |
| 491 | return NULL; |
| 492 | |
| 493 | debug_dma_map_page(dev, page, 0, size, dir, *dma_handle); |
| 494 | |
| 495 | return page; |
| 496 | } |
| 497 | EXPORT_SYMBOL_GPL(dma_alloc_pages); |
| 498 | |
| 499 | void dma_free_pages(struct device *dev, size_t size, struct page *page, |
| 500 | dma_addr_t dma_handle, enum dma_data_direction dir) |
| 501 | { |
| 502 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 503 | |
| 504 | size = PAGE_ALIGN(size); |
| 505 | debug_dma_unmap_page(dev, dma_handle, size, dir); |
| 506 | |
| 507 | if (dma_alloc_direct(dev, ops)) |
| 508 | dma_direct_free_pages(dev, size, page, dma_handle, dir); |
| 509 | else if (ops->free_pages) |
| 510 | ops->free_pages(dev, size, page, dma_handle, dir); |
| 511 | } |
| 512 | EXPORT_SYMBOL_GPL(dma_free_pages); |
| 513 | |
| 514 | void *dma_alloc_noncoherent(struct device *dev, size_t size, |
| 515 | dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) |
| 516 | { |
| 517 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 518 | void *vaddr; |
| 519 | |
| 520 | if (!ops || !ops->alloc_noncoherent) { |
| 521 | struct page *page; |
| 522 | |
| 523 | page = dma_alloc_pages(dev, size, dma_handle, dir, gfp); |
| 524 | if (!page) |
| 525 | return NULL; |
| 526 | return page_address(page); |
| 527 | } |
| 528 | |
| 529 | size = PAGE_ALIGN(size); |
| 530 | vaddr = ops->alloc_noncoherent(dev, size, dma_handle, dir, gfp); |
| 531 | if (vaddr) |
| 532 | debug_dma_map_page(dev, virt_to_page(vaddr), 0, size, dir, |
| 533 | *dma_handle); |
| 534 | return vaddr; |
| 535 | } |
| 536 | EXPORT_SYMBOL_GPL(dma_alloc_noncoherent); |
| 537 | |
| 538 | void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, |
| 539 | dma_addr_t dma_handle, enum dma_data_direction dir) |
| 540 | { |
| 541 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 542 | |
| 543 | if (!ops || !ops->free_noncoherent) { |
| 544 | dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir); |
| 545 | return; |
| 546 | } |
| 547 | |
| 548 | size = PAGE_ALIGN(size); |
| 549 | debug_dma_unmap_page(dev, dma_handle, size, dir); |
| 550 | ops->free_noncoherent(dev, size, vaddr, dma_handle, dir); |
| 551 | } |
| 552 | EXPORT_SYMBOL_GPL(dma_free_noncoherent); |
| 553 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 554 | int dma_supported(struct device *dev, u64 mask) |
| 555 | { |
| 556 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 557 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 558 | /* |
| 559 | * ->dma_supported sets the bypass flag, so we must always call |
| 560 | * into the method here unless the device is truly direct mapped. |
| 561 | */ |
| 562 | if (!ops) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 563 | return dma_direct_supported(dev, mask); |
| 564 | if (!ops->dma_supported) |
| 565 | return 1; |
| 566 | return ops->dma_supported(dev, mask); |
| 567 | } |
| 568 | EXPORT_SYMBOL(dma_supported); |
| 569 | |
| 570 | #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK |
| 571 | void arch_dma_set_mask(struct device *dev, u64 mask); |
| 572 | #else |
| 573 | #define arch_dma_set_mask(dev, mask) do { } while (0) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 574 | #endif |
| 575 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 576 | int dma_set_mask(struct device *dev, u64 mask) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 577 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 578 | /* |
| 579 | * Truncate the mask to the actually supported dma_addr_t width to |
| 580 | * avoid generating unsupportable addresses. |
| 581 | */ |
| 582 | mask = (dma_addr_t)mask; |
| 583 | |
| 584 | if (!dev->dma_mask || !dma_supported(dev, mask)) |
| 585 | return -EIO; |
| 586 | |
| 587 | arch_dma_set_mask(dev, mask); |
| 588 | *dev->dma_mask = mask; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 589 | return 0; |
| 590 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 591 | EXPORT_SYMBOL(dma_set_mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 592 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 593 | #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK |
| 594 | int dma_set_coherent_mask(struct device *dev, u64 mask) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 595 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 596 | /* |
| 597 | * Truncate the mask to the actually supported dma_addr_t width to |
| 598 | * avoid generating unsupportable addresses. |
| 599 | */ |
| 600 | mask = (dma_addr_t)mask; |
| 601 | |
| 602 | if (!dma_supported(dev, mask)) |
| 603 | return -EIO; |
| 604 | |
| 605 | dev->coherent_dma_mask = mask; |
| 606 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 607 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 608 | EXPORT_SYMBOL(dma_set_coherent_mask); |
| 609 | #endif |
| 610 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 611 | size_t dma_max_mapping_size(struct device *dev) |
| 612 | { |
| 613 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 614 | size_t size = SIZE_MAX; |
| 615 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 616 | if (dma_map_direct(dev, ops)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 617 | size = dma_direct_max_mapping_size(dev); |
| 618 | else if (ops && ops->max_mapping_size) |
| 619 | size = ops->max_mapping_size(dev); |
| 620 | |
| 621 | return size; |
| 622 | } |
| 623 | EXPORT_SYMBOL_GPL(dma_max_mapping_size); |
| 624 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 625 | bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) |
| 626 | { |
| 627 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 628 | |
| 629 | if (dma_map_direct(dev, ops)) |
| 630 | return dma_direct_need_sync(dev, dma_addr); |
| 631 | return ops->sync_single_for_cpu || ops->sync_single_for_device; |
| 632 | } |
| 633 | EXPORT_SYMBOL_GPL(dma_need_sync); |
| 634 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 635 | unsigned long dma_get_merge_boundary(struct device *dev) |
| 636 | { |
| 637 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 638 | |
| 639 | if (!ops || !ops->get_merge_boundary) |
| 640 | return 0; /* can't merge */ |
| 641 | |
| 642 | return ops->get_merge_boundary(dev); |
| 643 | } |
| 644 | EXPORT_SYMBOL_GPL(dma_get_merge_boundary); |