Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * arch-independent dma-mapping routines |
| 4 | * |
| 5 | * Copyright (c) 2006 SUSE Linux Products GmbH |
| 6 | * Copyright (c) 2006 Tejun Heo <teheo@suse.de> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/acpi.h> |
| 10 | #include <linux/dma-mapping.h> |
| 11 | #include <linux/export.h> |
| 12 | #include <linux/gfp.h> |
| 13 | #include <linux/of_device.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/vmalloc.h> |
| 16 | |
| 17 | /* |
| 18 | * Managed DMA API |
| 19 | */ |
| 20 | struct dma_devres { |
| 21 | size_t size; |
| 22 | void *vaddr; |
| 23 | dma_addr_t dma_handle; |
| 24 | unsigned long attrs; |
| 25 | }; |
| 26 | |
| 27 | static void dmam_release(struct device *dev, void *res) |
| 28 | { |
| 29 | struct dma_devres *this = res; |
| 30 | |
| 31 | dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, |
| 32 | this->attrs); |
| 33 | } |
| 34 | |
| 35 | static int dmam_match(struct device *dev, void *res, void *match_data) |
| 36 | { |
| 37 | struct dma_devres *this = res, *match = match_data; |
| 38 | |
| 39 | if (this->vaddr == match->vaddr) { |
| 40 | WARN_ON(this->size != match->size || |
| 41 | this->dma_handle != match->dma_handle); |
| 42 | return 1; |
| 43 | } |
| 44 | return 0; |
| 45 | } |
| 46 | |
| 47 | /** |
| 48 | * dmam_alloc_coherent - Managed dma_alloc_coherent() |
| 49 | * @dev: Device to allocate coherent memory for |
| 50 | * @size: Size of allocation |
| 51 | * @dma_handle: Out argument for allocated DMA handle |
| 52 | * @gfp: Allocation flags |
| 53 | * |
| 54 | * Managed dma_alloc_coherent(). Memory allocated using this function |
| 55 | * will be automatically released on driver detach. |
| 56 | * |
| 57 | * RETURNS: |
| 58 | * Pointer to allocated memory on success, NULL on failure. |
| 59 | */ |
| 60 | void *dmam_alloc_coherent(struct device *dev, size_t size, |
| 61 | dma_addr_t *dma_handle, gfp_t gfp) |
| 62 | { |
| 63 | struct dma_devres *dr; |
| 64 | void *vaddr; |
| 65 | |
| 66 | dr = devres_alloc(dmam_release, sizeof(*dr), gfp); |
| 67 | if (!dr) |
| 68 | return NULL; |
| 69 | |
| 70 | vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp); |
| 71 | if (!vaddr) { |
| 72 | devres_free(dr); |
| 73 | return NULL; |
| 74 | } |
| 75 | |
| 76 | dr->vaddr = vaddr; |
| 77 | dr->dma_handle = *dma_handle; |
| 78 | dr->size = size; |
| 79 | |
| 80 | devres_add(dev, dr); |
| 81 | |
| 82 | return vaddr; |
| 83 | } |
| 84 | EXPORT_SYMBOL(dmam_alloc_coherent); |
| 85 | |
| 86 | /** |
| 87 | * dmam_free_coherent - Managed dma_free_coherent() |
| 88 | * @dev: Device to free coherent memory for |
| 89 | * @size: Size of allocation |
| 90 | * @vaddr: Virtual address of the memory to free |
| 91 | * @dma_handle: DMA handle of the memory to free |
| 92 | * |
| 93 | * Managed dma_free_coherent(). |
| 94 | */ |
| 95 | void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, |
| 96 | dma_addr_t dma_handle) |
| 97 | { |
| 98 | struct dma_devres match_data = { size, vaddr, dma_handle }; |
| 99 | |
| 100 | dma_free_coherent(dev, size, vaddr, dma_handle); |
| 101 | WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); |
| 102 | } |
| 103 | EXPORT_SYMBOL(dmam_free_coherent); |
| 104 | |
| 105 | /** |
| 106 | * dmam_alloc_attrs - Managed dma_alloc_attrs() |
| 107 | * @dev: Device to allocate non_coherent memory for |
| 108 | * @size: Size of allocation |
| 109 | * @dma_handle: Out argument for allocated DMA handle |
| 110 | * @gfp: Allocation flags |
| 111 | * @attrs: Flags in the DMA_ATTR_* namespace. |
| 112 | * |
| 113 | * Managed dma_alloc_attrs(). Memory allocated using this function will be |
| 114 | * automatically released on driver detach. |
| 115 | * |
| 116 | * RETURNS: |
| 117 | * Pointer to allocated memory on success, NULL on failure. |
| 118 | */ |
| 119 | void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| 120 | gfp_t gfp, unsigned long attrs) |
| 121 | { |
| 122 | struct dma_devres *dr; |
| 123 | void *vaddr; |
| 124 | |
| 125 | dr = devres_alloc(dmam_release, sizeof(*dr), gfp); |
| 126 | if (!dr) |
| 127 | return NULL; |
| 128 | |
| 129 | vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); |
| 130 | if (!vaddr) { |
| 131 | devres_free(dr); |
| 132 | return NULL; |
| 133 | } |
| 134 | |
| 135 | dr->vaddr = vaddr; |
| 136 | dr->dma_handle = *dma_handle; |
| 137 | dr->size = size; |
| 138 | dr->attrs = attrs; |
| 139 | |
| 140 | devres_add(dev, dr); |
| 141 | |
| 142 | return vaddr; |
| 143 | } |
| 144 | EXPORT_SYMBOL(dmam_alloc_attrs); |
| 145 | |
| 146 | #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT |
| 147 | |
| 148 | static void dmam_coherent_decl_release(struct device *dev, void *res) |
| 149 | { |
| 150 | dma_release_declared_memory(dev); |
| 151 | } |
| 152 | |
| 153 | /** |
| 154 | * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory() |
| 155 | * @dev: Device to declare coherent memory for |
| 156 | * @phys_addr: Physical address of coherent memory to be declared |
| 157 | * @device_addr: Device address of coherent memory to be declared |
| 158 | * @size: Size of coherent memory to be declared |
| 159 | * @flags: Flags |
| 160 | * |
| 161 | * Managed dma_declare_coherent_memory(). |
| 162 | * |
| 163 | * RETURNS: |
| 164 | * 0 on success, -errno on failure. |
| 165 | */ |
| 166 | int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, |
| 167 | dma_addr_t device_addr, size_t size, int flags) |
| 168 | { |
| 169 | void *res; |
| 170 | int rc; |
| 171 | |
| 172 | res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL); |
| 173 | if (!res) |
| 174 | return -ENOMEM; |
| 175 | |
| 176 | rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size, |
| 177 | flags); |
| 178 | if (!rc) |
| 179 | devres_add(dev, res); |
| 180 | else |
| 181 | devres_free(res); |
| 182 | |
| 183 | return rc; |
| 184 | } |
| 185 | EXPORT_SYMBOL(dmam_declare_coherent_memory); |
| 186 | |
| 187 | /** |
| 188 | * dmam_release_declared_memory - Managed dma_release_declared_memory(). |
| 189 | * @dev: Device to release declared coherent memory for |
| 190 | * |
| 191 | * Managed dmam_release_declared_memory(). |
| 192 | */ |
| 193 | void dmam_release_declared_memory(struct device *dev) |
| 194 | { |
| 195 | WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL)); |
| 196 | } |
| 197 | EXPORT_SYMBOL(dmam_release_declared_memory); |
| 198 | |
| 199 | #endif |
| 200 | |
| 201 | /* |
| 202 | * Create scatter-list for the already allocated DMA buffer. |
| 203 | */ |
| 204 | int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, |
| 205 | void *cpu_addr, dma_addr_t handle, size_t size) |
| 206 | { |
| 207 | struct page *page = virt_to_page(cpu_addr); |
| 208 | int ret; |
| 209 | |
| 210 | ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| 211 | if (unlikely(ret)) |
| 212 | return ret; |
| 213 | |
| 214 | sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| 215 | return 0; |
| 216 | } |
| 217 | EXPORT_SYMBOL(dma_common_get_sgtable); |
| 218 | |
| 219 | /* |
| 220 | * Create userspace mapping for the DMA-coherent memory. |
| 221 | */ |
| 222 | int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, |
| 223 | void *cpu_addr, dma_addr_t dma_addr, size_t size) |
| 224 | { |
| 225 | int ret = -ENXIO; |
| 226 | #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP |
| 227 | unsigned long user_count = vma_pages(vma); |
| 228 | unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 229 | unsigned long off = vma->vm_pgoff; |
| 230 | |
| 231 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| 232 | |
| 233 | if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| 234 | return ret; |
| 235 | |
| 236 | if (off < count && user_count <= (count - off)) |
| 237 | ret = remap_pfn_range(vma, vma->vm_start, |
| 238 | page_to_pfn(virt_to_page(cpu_addr)) + off, |
| 239 | user_count << PAGE_SHIFT, |
| 240 | vma->vm_page_prot); |
| 241 | #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */ |
| 242 | |
| 243 | return ret; |
| 244 | } |
| 245 | EXPORT_SYMBOL(dma_common_mmap); |
| 246 | |
| 247 | #ifdef CONFIG_MMU |
| 248 | static struct vm_struct *__dma_common_pages_remap(struct page **pages, |
| 249 | size_t size, unsigned long vm_flags, pgprot_t prot, |
| 250 | const void *caller) |
| 251 | { |
| 252 | struct vm_struct *area; |
| 253 | |
| 254 | area = get_vm_area_caller(size, vm_flags, caller); |
| 255 | if (!area) |
| 256 | return NULL; |
| 257 | |
| 258 | if (map_vm_area(area, prot, pages)) { |
| 259 | vunmap(area->addr); |
| 260 | return NULL; |
| 261 | } |
| 262 | |
| 263 | return area; |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * remaps an array of PAGE_SIZE pages into another vm_area |
| 268 | * Cannot be used in non-sleeping contexts |
| 269 | */ |
| 270 | void *dma_common_pages_remap(struct page **pages, size_t size, |
| 271 | unsigned long vm_flags, pgprot_t prot, |
| 272 | const void *caller) |
| 273 | { |
| 274 | struct vm_struct *area; |
| 275 | |
| 276 | area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller); |
| 277 | if (!area) |
| 278 | return NULL; |
| 279 | |
| 280 | area->pages = pages; |
| 281 | |
| 282 | return area->addr; |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * remaps an allocated contiguous region into another vm_area. |
| 287 | * Cannot be used in non-sleeping contexts |
| 288 | */ |
| 289 | |
| 290 | void *dma_common_contiguous_remap(struct page *page, size_t size, |
| 291 | unsigned long vm_flags, |
| 292 | pgprot_t prot, const void *caller) |
| 293 | { |
| 294 | int i; |
| 295 | struct page **pages; |
| 296 | struct vm_struct *area; |
| 297 | |
| 298 | pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL); |
| 299 | if (!pages) |
| 300 | return NULL; |
| 301 | |
| 302 | for (i = 0; i < (size >> PAGE_SHIFT); i++) |
| 303 | pages[i] = nth_page(page, i); |
| 304 | |
| 305 | area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller); |
| 306 | |
| 307 | kfree(pages); |
| 308 | |
| 309 | if (!area) |
| 310 | return NULL; |
| 311 | return area->addr; |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * unmaps a range previously mapped by dma_common_*_remap |
| 316 | */ |
| 317 | void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags) |
| 318 | { |
| 319 | struct vm_struct *area = find_vm_area(cpu_addr); |
| 320 | |
| 321 | if (!area || (area->flags & vm_flags) != vm_flags) { |
| 322 | WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); |
| 323 | return; |
| 324 | } |
| 325 | |
| 326 | unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size)); |
| 327 | vunmap(cpu_addr); |
| 328 | } |
| 329 | #endif |
| 330 | |
| 331 | /* |
| 332 | * enables DMA API use for a device |
| 333 | */ |
| 334 | int dma_configure(struct device *dev) |
| 335 | { |
| 336 | if (dev->bus->dma_configure) |
| 337 | return dev->bus->dma_configure(dev); |
| 338 | return 0; |
| 339 | } |
| 340 | |
| 341 | void dma_deconfigure(struct device *dev) |
| 342 | { |
| 343 | of_dma_deconfigure(dev); |
| 344 | acpi_dma_deconfigure(dev); |
| 345 | } |