Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * arch-independent dma-mapping routines |
| 4 | * |
| 5 | * Copyright (c) 2006 SUSE Linux Products GmbH |
| 6 | * Copyright (c) 2006 Tejun Heo <teheo@suse.de> |
| 7 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 8 | #include <linux/memblock.h> /* for max_pfn */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 9 | #include <linux/acpi.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 10 | #include <linux/dma-direct.h> |
| 11 | #include <linux/dma-noncoherent.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 12 | #include <linux/export.h> |
| 13 | #include <linux/gfp.h> |
| 14 | #include <linux/of_device.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/vmalloc.h> |
| 17 | |
| 18 | /* |
| 19 | * Managed DMA API |
| 20 | */ |
| 21 | struct dma_devres { |
| 22 | size_t size; |
| 23 | void *vaddr; |
| 24 | dma_addr_t dma_handle; |
| 25 | unsigned long attrs; |
| 26 | }; |
| 27 | |
| 28 | static void dmam_release(struct device *dev, void *res) |
| 29 | { |
| 30 | struct dma_devres *this = res; |
| 31 | |
| 32 | dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, |
| 33 | this->attrs); |
| 34 | } |
| 35 | |
| 36 | static int dmam_match(struct device *dev, void *res, void *match_data) |
| 37 | { |
| 38 | struct dma_devres *this = res, *match = match_data; |
| 39 | |
| 40 | if (this->vaddr == match->vaddr) { |
| 41 | WARN_ON(this->size != match->size || |
| 42 | this->dma_handle != match->dma_handle); |
| 43 | return 1; |
| 44 | } |
| 45 | return 0; |
| 46 | } |
| 47 | |
| 48 | /** |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 49 | * dmam_free_coherent - Managed dma_free_coherent() |
| 50 | * @dev: Device to free coherent memory for |
| 51 | * @size: Size of allocation |
| 52 | * @vaddr: Virtual address of the memory to free |
| 53 | * @dma_handle: DMA handle of the memory to free |
| 54 | * |
| 55 | * Managed dma_free_coherent(). |
| 56 | */ |
| 57 | void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, |
| 58 | dma_addr_t dma_handle) |
| 59 | { |
| 60 | struct dma_devres match_data = { size, vaddr, dma_handle }; |
| 61 | |
| 62 | dma_free_coherent(dev, size, vaddr, dma_handle); |
| 63 | WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); |
| 64 | } |
| 65 | EXPORT_SYMBOL(dmam_free_coherent); |
| 66 | |
| 67 | /** |
| 68 | * dmam_alloc_attrs - Managed dma_alloc_attrs() |
| 69 | * @dev: Device to allocate non_coherent memory for |
| 70 | * @size: Size of allocation |
| 71 | * @dma_handle: Out argument for allocated DMA handle |
| 72 | * @gfp: Allocation flags |
| 73 | * @attrs: Flags in the DMA_ATTR_* namespace. |
| 74 | * |
| 75 | * Managed dma_alloc_attrs(). Memory allocated using this function will be |
| 76 | * automatically released on driver detach. |
| 77 | * |
| 78 | * RETURNS: |
| 79 | * Pointer to allocated memory on success, NULL on failure. |
| 80 | */ |
| 81 | void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| 82 | gfp_t gfp, unsigned long attrs) |
| 83 | { |
| 84 | struct dma_devres *dr; |
| 85 | void *vaddr; |
| 86 | |
| 87 | dr = devres_alloc(dmam_release, sizeof(*dr), gfp); |
| 88 | if (!dr) |
| 89 | return NULL; |
| 90 | |
| 91 | vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); |
| 92 | if (!vaddr) { |
| 93 | devres_free(dr); |
| 94 | return NULL; |
| 95 | } |
| 96 | |
| 97 | dr->vaddr = vaddr; |
| 98 | dr->dma_handle = *dma_handle; |
| 99 | dr->size = size; |
| 100 | dr->attrs = attrs; |
| 101 | |
| 102 | devres_add(dev, dr); |
| 103 | |
| 104 | return vaddr; |
| 105 | } |
| 106 | EXPORT_SYMBOL(dmam_alloc_attrs); |
| 107 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 108 | /* |
| 109 | * Create scatter-list for the already allocated DMA buffer. |
| 110 | */ |
| 111 | int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 112 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 113 | unsigned long attrs) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 114 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 115 | struct page *page; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 116 | int ret; |
| 117 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 118 | if (!dev_is_dma_coherent(dev)) { |
| 119 | unsigned long pfn; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 120 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 121 | if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN)) |
| 122 | return -ENXIO; |
| 123 | |
| 124 | /* If the PFN is not valid, we do not have a struct page */ |
| 125 | pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr); |
| 126 | if (!pfn_valid(pfn)) |
| 127 | return -ENXIO; |
| 128 | page = pfn_to_page(pfn); |
| 129 | } else { |
| 130 | page = virt_to_page(cpu_addr); |
| 131 | } |
| 132 | |
| 133 | ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| 134 | if (!ret) |
| 135 | sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| 136 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 137 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 138 | |
| 139 | /* |
| 140 | * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems |
| 141 | * that the intention is to allow exporting memory allocated via the |
| 142 | * coherent DMA APIs through the dma_buf API, which only accepts a |
| 143 | * scattertable. This presents a couple of problems: |
| 144 | * 1. Not all memory allocated via the coherent DMA APIs is backed by |
| 145 | * a struct page |
| 146 | * 2. Passing coherent DMA memory into the streaming APIs is not allowed |
| 147 | * as we will try to flush the memory through a different alias to that |
| 148 | * actually being used (and the flushes are redundant.) |
| 149 | */ |
| 150 | int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, |
| 151 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 152 | unsigned long attrs) |
| 153 | { |
| 154 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 155 | |
| 156 | if (dma_is_direct(ops)) |
| 157 | return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, |
| 158 | size, attrs); |
| 159 | if (!ops->get_sgtable) |
| 160 | return -ENXIO; |
| 161 | return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); |
| 162 | } |
| 163 | EXPORT_SYMBOL(dma_get_sgtable_attrs); |
| 164 | |
| 165 | #ifdef CONFIG_MMU |
| 166 | /* |
| 167 | * Return the page attributes used for mapping dma_alloc_* memory, either in |
| 168 | * kernel space if remapping is needed, or to userspace through dma_mmap_*. |
| 169 | */ |
| 170 | pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) |
| 171 | { |
| 172 | if (dev_is_dma_coherent(dev) || |
| 173 | (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) && |
| 174 | (attrs & DMA_ATTR_NON_CONSISTENT))) |
| 175 | return prot; |
| 176 | #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE |
| 177 | if (attrs & DMA_ATTR_WRITE_COMBINE) |
| 178 | return pgprot_writecombine(prot); |
| 179 | #endif |
| 180 | return pgprot_dmacoherent(prot); |
| 181 | } |
| 182 | #endif /* CONFIG_MMU */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 183 | |
| 184 | /* |
| 185 | * Create userspace mapping for the DMA-coherent memory. |
| 186 | */ |
| 187 | int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 188 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 189 | unsigned long attrs) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 190 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 191 | #ifdef CONFIG_MMU |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 192 | unsigned long user_count = vma_pages(vma); |
| 193 | unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 194 | unsigned long off = vma->vm_pgoff; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 195 | unsigned long pfn; |
| 196 | int ret = -ENXIO; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 197 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 198 | vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 199 | |
| 200 | if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| 201 | return ret; |
| 202 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 203 | if (off >= count || user_count > count - off) |
| 204 | return -ENXIO; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 205 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 206 | if (!dev_is_dma_coherent(dev)) { |
| 207 | if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN)) |
| 208 | return -ENXIO; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 209 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 210 | /* If the PFN is not valid, we do not have a struct page */ |
| 211 | pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr); |
| 212 | if (!pfn_valid(pfn)) |
| 213 | return -ENXIO; |
| 214 | } else { |
| 215 | pfn = page_to_pfn(virt_to_page(cpu_addr)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 216 | } |
| 217 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 218 | return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, |
| 219 | user_count << PAGE_SHIFT, vma->vm_page_prot); |
| 220 | #else |
| 221 | return -ENXIO; |
| 222 | #endif /* CONFIG_MMU */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 223 | } |
| 224 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 225 | /** |
| 226 | * dma_can_mmap - check if a given device supports dma_mmap_* |
| 227 | * @dev: device to check |
| 228 | * |
| 229 | * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to |
| 230 | * map DMA allocations to userspace. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 231 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 232 | bool dma_can_mmap(struct device *dev) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 233 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 234 | const struct dma_map_ops *ops = get_dma_ops(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 235 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 236 | if (dma_is_direct(ops)) { |
| 237 | return IS_ENABLED(CONFIG_MMU) && |
| 238 | (dev_is_dma_coherent(dev) || |
| 239 | IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN)); |
| 240 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 241 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 242 | return ops->mmap != NULL; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 243 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 244 | EXPORT_SYMBOL_GPL(dma_can_mmap); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 245 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 246 | /** |
| 247 | * dma_mmap_attrs - map a coherent DMA allocation into user space |
| 248 | * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| 249 | * @vma: vm_area_struct describing requested user mapping |
| 250 | * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs |
| 251 | * @dma_addr: device-view address returned from dma_alloc_attrs |
| 252 | * @size: size of memory originally requested in dma_alloc_attrs |
| 253 | * @attrs: attributes of mapping properties requested in dma_alloc_attrs |
| 254 | * |
| 255 | * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user |
| 256 | * space. The coherent DMA buffer must not be freed by the driver until the |
| 257 | * user space mapping has been released. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 258 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 259 | int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, |
| 260 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| 261 | unsigned long attrs) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 262 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 263 | const struct dma_map_ops *ops = get_dma_ops(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 264 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 265 | if (dma_is_direct(ops)) |
| 266 | return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, |
| 267 | attrs); |
| 268 | if (!ops->mmap) |
| 269 | return -ENXIO; |
| 270 | return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 271 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 272 | EXPORT_SYMBOL(dma_mmap_attrs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 273 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 274 | u64 dma_get_required_mask(struct device *dev) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 275 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 276 | const struct dma_map_ops *ops = get_dma_ops(dev); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 277 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 278 | if (dma_is_direct(ops)) |
| 279 | return dma_direct_get_required_mask(dev); |
| 280 | if (ops->get_required_mask) |
| 281 | return ops->get_required_mask(dev); |
| 282 | |
| 283 | /* |
| 284 | * We require every DMA ops implementation to at least support a 32-bit |
| 285 | * DMA mask (and use bounce buffering if that isn't supported in |
| 286 | * hardware). As the direct mapping code has its own routine to |
| 287 | * actually report an optimal mask we default to 32-bit here as that |
| 288 | * is the right thing for most IOMMUs, and at least not actively |
| 289 | * harmful in general. |
| 290 | */ |
| 291 | return DMA_BIT_MASK(32); |
| 292 | } |
| 293 | EXPORT_SYMBOL_GPL(dma_get_required_mask); |
| 294 | |
| 295 | void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| 296 | gfp_t flag, unsigned long attrs) |
| 297 | { |
| 298 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 299 | void *cpu_addr; |
| 300 | |
| 301 | WARN_ON_ONCE(!dev->coherent_dma_mask); |
| 302 | |
| 303 | if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) |
| 304 | return cpu_addr; |
| 305 | |
| 306 | /* let the implementation decide on the zone to allocate from: */ |
| 307 | flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); |
| 308 | |
| 309 | if (dma_is_direct(ops)) |
| 310 | cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); |
| 311 | else if (ops->alloc) |
| 312 | cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); |
| 313 | else |
| 314 | return NULL; |
| 315 | |
| 316 | debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); |
| 317 | return cpu_addr; |
| 318 | } |
| 319 | EXPORT_SYMBOL(dma_alloc_attrs); |
| 320 | |
| 321 | void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, |
| 322 | dma_addr_t dma_handle, unsigned long attrs) |
| 323 | { |
| 324 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 325 | |
| 326 | if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 327 | return; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 328 | /* |
| 329 | * On non-coherent platforms which implement DMA-coherent buffers via |
| 330 | * non-cacheable remaps, ops->free() may call vunmap(). Thus getting |
| 331 | * this far in IRQ context is a) at risk of a BUG_ON() or trying to |
| 332 | * sleep on some machines, and b) an indication that the driver is |
| 333 | * probably misusing the coherent API anyway. |
| 334 | */ |
| 335 | WARN_ON(irqs_disabled()); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 336 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 337 | if (!cpu_addr) |
| 338 | return; |
| 339 | |
| 340 | debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); |
| 341 | if (dma_is_direct(ops)) |
| 342 | dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); |
| 343 | else if (ops->free) |
| 344 | ops->free(dev, size, cpu_addr, dma_handle, attrs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 345 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 346 | EXPORT_SYMBOL(dma_free_attrs); |
| 347 | |
| 348 | int dma_supported(struct device *dev, u64 mask) |
| 349 | { |
| 350 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 351 | |
| 352 | if (dma_is_direct(ops)) |
| 353 | return dma_direct_supported(dev, mask); |
| 354 | if (!ops->dma_supported) |
| 355 | return 1; |
| 356 | return ops->dma_supported(dev, mask); |
| 357 | } |
| 358 | EXPORT_SYMBOL(dma_supported); |
| 359 | |
| 360 | #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK |
| 361 | void arch_dma_set_mask(struct device *dev, u64 mask); |
| 362 | #else |
| 363 | #define arch_dma_set_mask(dev, mask) do { } while (0) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 364 | #endif |
| 365 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 366 | int dma_set_mask(struct device *dev, u64 mask) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 367 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 368 | /* |
| 369 | * Truncate the mask to the actually supported dma_addr_t width to |
| 370 | * avoid generating unsupportable addresses. |
| 371 | */ |
| 372 | mask = (dma_addr_t)mask; |
| 373 | |
| 374 | if (!dev->dma_mask || !dma_supported(dev, mask)) |
| 375 | return -EIO; |
| 376 | |
| 377 | arch_dma_set_mask(dev, mask); |
| 378 | *dev->dma_mask = mask; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 379 | return 0; |
| 380 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 381 | EXPORT_SYMBOL(dma_set_mask); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 382 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 383 | #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK |
| 384 | int dma_set_coherent_mask(struct device *dev, u64 mask) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 385 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 386 | /* |
| 387 | * Truncate the mask to the actually supported dma_addr_t width to |
| 388 | * avoid generating unsupportable addresses. |
| 389 | */ |
| 390 | mask = (dma_addr_t)mask; |
| 391 | |
| 392 | if (!dma_supported(dev, mask)) |
| 393 | return -EIO; |
| 394 | |
| 395 | dev->coherent_dma_mask = mask; |
| 396 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 397 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 398 | EXPORT_SYMBOL(dma_set_coherent_mask); |
| 399 | #endif |
| 400 | |
| 401 | void dma_cache_sync(struct device *dev, void *vaddr, size_t size, |
| 402 | enum dma_data_direction dir) |
| 403 | { |
| 404 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 405 | |
| 406 | BUG_ON(!valid_dma_direction(dir)); |
| 407 | |
| 408 | if (dma_is_direct(ops)) |
| 409 | arch_dma_cache_sync(dev, vaddr, size, dir); |
| 410 | else if (ops->cache_sync) |
| 411 | ops->cache_sync(dev, vaddr, size, dir); |
| 412 | } |
| 413 | EXPORT_SYMBOL(dma_cache_sync); |
| 414 | |
| 415 | size_t dma_max_mapping_size(struct device *dev) |
| 416 | { |
| 417 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 418 | size_t size = SIZE_MAX; |
| 419 | |
| 420 | if (dma_is_direct(ops)) |
| 421 | size = dma_direct_max_mapping_size(dev); |
| 422 | else if (ops && ops->max_mapping_size) |
| 423 | size = ops->max_mapping_size(dev); |
| 424 | |
| 425 | return size; |
| 426 | } |
| 427 | EXPORT_SYMBOL_GPL(dma_max_mapping_size); |
| 428 | |
| 429 | unsigned long dma_get_merge_boundary(struct device *dev) |
| 430 | { |
| 431 | const struct dma_map_ops *ops = get_dma_ops(dev); |
| 432 | |
| 433 | if (!ops || !ops->get_merge_boundary) |
| 434 | return 0; /* can't merge */ |
| 435 | |
| 436 | return ops->get_merge_boundary(dev); |
| 437 | } |
| 438 | EXPORT_SYMBOL_GPL(dma_get_merge_boundary); |