blob: f700bfaef129384808cb204374667803c76c0c3b [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
4 *
5 * Copyright (C) 2002 - 2011 Paul Mundt
6 * Copyright (C) 2015 Glider bvba
7 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8 *
9 * based off of the old drivers/char/sh-sci.c by:
10 *
11 * Copyright (C) 1999, 2000 Niibe Yutaka
12 * Copyright (C) 2000 Sugioka Toshinobu
13 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
14 * Modified to support SecureEdge. David McCullough (2002)
15 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16 * Removed SH7300 support (Jul 2007).
17 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000018#undef DEBUG
19
20#include <linux/clk.h>
21#include <linux/console.h>
22#include <linux/ctype.h>
23#include <linux/cpufreq.h>
24#include <linux/delay.h>
25#include <linux/dmaengine.h>
26#include <linux/dma-mapping.h>
27#include <linux/err.h>
28#include <linux/errno.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/ioport.h>
32#include <linux/ktime.h>
33#include <linux/major.h>
34#include <linux/module.h>
35#include <linux/mm.h>
36#include <linux/of.h>
37#include <linux/of_device.h>
38#include <linux/platform_device.h>
39#include <linux/pm_runtime.h>
40#include <linux/scatterlist.h>
41#include <linux/serial.h>
42#include <linux/serial_sci.h>
43#include <linux/sh_dma.h>
44#include <linux/slab.h>
45#include <linux/string.h>
46#include <linux/sysrq.h>
47#include <linux/timer.h>
48#include <linux/tty.h>
49#include <linux/tty_flip.h>
50
51#ifdef CONFIG_SUPERH
52#include <asm/sh_bios.h>
Olivier Deprez157378f2022-04-04 15:47:50 +020053#include <asm/platform_early.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000054#endif
55
56#include "serial_mctrl_gpio.h"
57#include "sh-sci.h"
58
59/* Offsets into the sci_port->irqs array */
60enum {
61 SCIx_ERI_IRQ,
62 SCIx_RXI_IRQ,
63 SCIx_TXI_IRQ,
64 SCIx_BRI_IRQ,
65 SCIx_DRI_IRQ,
66 SCIx_TEI_IRQ,
67 SCIx_NR_IRQS,
68
69 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
70};
71
72#define SCIx_IRQ_IS_MUXED(port) \
73 ((port)->irqs[SCIx_ERI_IRQ] == \
74 (port)->irqs[SCIx_RXI_IRQ]) || \
75 ((port)->irqs[SCIx_ERI_IRQ] && \
76 ((port)->irqs[SCIx_RXI_IRQ] < 0))
77
78enum SCI_CLKS {
79 SCI_FCK, /* Functional Clock */
80 SCI_SCK, /* Optional External Clock */
81 SCI_BRG_INT, /* Optional BRG Internal Clock Source */
82 SCI_SCIF_CLK, /* Optional BRG External Clock Source */
83 SCI_NUM_CLKS
84};
85
86/* Bit x set means sampling rate x + 1 is supported */
87#define SCI_SR(x) BIT((x) - 1)
88#define SCI_SR_RANGE(x, y) GENMASK((y) - 1, (x) - 1)
89
90#define SCI_SR_SCIFAB SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
91 SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
92 SCI_SR(19) | SCI_SR(27)
93
94#define min_sr(_port) ffs((_port)->sampling_rate_mask)
95#define max_sr(_port) fls((_port)->sampling_rate_mask)
96
97/* Iterate over all supported sampling rates, from high to low */
98#define for_each_sr(_sr, _port) \
99 for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--) \
100 if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
101
102struct plat_sci_reg {
103 u8 offset, size;
104};
105
106struct sci_port_params {
107 const struct plat_sci_reg regs[SCIx_NR_REGS];
108 unsigned int fifosize;
109 unsigned int overrun_reg;
110 unsigned int overrun_mask;
111 unsigned int sampling_rate_mask;
112 unsigned int error_mask;
113 unsigned int error_clear;
114};
115
116struct sci_port {
117 struct uart_port port;
118
119 /* Platform configuration */
120 const struct sci_port_params *params;
121 const struct plat_sci_port *cfg;
122 unsigned int sampling_rate_mask;
123 resource_size_t reg_size;
124 struct mctrl_gpios *gpios;
125
126 /* Clocks */
127 struct clk *clks[SCI_NUM_CLKS];
128 unsigned long clk_rates[SCI_NUM_CLKS];
129
130 int irqs[SCIx_NR_IRQS];
131 char *irqstr[SCIx_NR_IRQS];
132
133 struct dma_chan *chan_tx;
134 struct dma_chan *chan_rx;
135
136#ifdef CONFIG_SERIAL_SH_SCI_DMA
137 struct dma_chan *chan_tx_saved;
138 struct dma_chan *chan_rx_saved;
139 dma_cookie_t cookie_tx;
140 dma_cookie_t cookie_rx[2];
141 dma_cookie_t active_rx;
142 dma_addr_t tx_dma_addr;
143 unsigned int tx_dma_len;
144 struct scatterlist sg_rx[2];
145 void *rx_buf[2];
146 size_t buf_len_rx;
147 struct work_struct work_tx;
148 struct hrtimer rx_timer;
149 unsigned int rx_timeout; /* microseconds */
150#endif
151 unsigned int rx_frame;
152 int rx_trigger;
153 struct timer_list rx_fifo_timer;
154 int rx_fifo_timeout;
155 u16 hscif_tot;
156
157 bool has_rtscts;
158 bool autorts;
159};
160
161#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
162
163static struct sci_port sci_ports[SCI_NPORTS];
164static unsigned long sci_ports_in_use;
165static struct uart_driver sci_uart_driver;
166
167static inline struct sci_port *
168to_sci_port(struct uart_port *uart)
169{
170 return container_of(uart, struct sci_port, port);
171}
172
173static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
174 /*
175 * Common SCI definitions, dependent on the port's regshift
176 * value.
177 */
178 [SCIx_SCI_REGTYPE] = {
179 .regs = {
180 [SCSMR] = { 0x00, 8 },
181 [SCBRR] = { 0x01, 8 },
182 [SCSCR] = { 0x02, 8 },
183 [SCxTDR] = { 0x03, 8 },
184 [SCxSR] = { 0x04, 8 },
185 [SCxRDR] = { 0x05, 8 },
186 },
187 .fifosize = 1,
188 .overrun_reg = SCxSR,
189 .overrun_mask = SCI_ORER,
190 .sampling_rate_mask = SCI_SR(32),
191 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
192 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
193 },
194
195 /*
196 * Common definitions for legacy IrDA ports.
197 */
198 [SCIx_IRDA_REGTYPE] = {
199 .regs = {
200 [SCSMR] = { 0x00, 8 },
201 [SCBRR] = { 0x02, 8 },
202 [SCSCR] = { 0x04, 8 },
203 [SCxTDR] = { 0x06, 8 },
204 [SCxSR] = { 0x08, 16 },
205 [SCxRDR] = { 0x0a, 8 },
206 [SCFCR] = { 0x0c, 8 },
207 [SCFDR] = { 0x0e, 16 },
208 },
209 .fifosize = 1,
210 .overrun_reg = SCxSR,
211 .overrun_mask = SCI_ORER,
212 .sampling_rate_mask = SCI_SR(32),
213 .error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
214 .error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
215 },
216
217 /*
218 * Common SCIFA definitions.
219 */
220 [SCIx_SCIFA_REGTYPE] = {
221 .regs = {
222 [SCSMR] = { 0x00, 16 },
223 [SCBRR] = { 0x04, 8 },
224 [SCSCR] = { 0x08, 16 },
225 [SCxTDR] = { 0x20, 8 },
226 [SCxSR] = { 0x14, 16 },
227 [SCxRDR] = { 0x24, 8 },
228 [SCFCR] = { 0x18, 16 },
229 [SCFDR] = { 0x1c, 16 },
230 [SCPCR] = { 0x30, 16 },
231 [SCPDR] = { 0x34, 16 },
232 },
233 .fifosize = 64,
234 .overrun_reg = SCxSR,
235 .overrun_mask = SCIFA_ORER,
236 .sampling_rate_mask = SCI_SR_SCIFAB,
237 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
238 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
239 },
240
241 /*
242 * Common SCIFB definitions.
243 */
244 [SCIx_SCIFB_REGTYPE] = {
245 .regs = {
246 [SCSMR] = { 0x00, 16 },
247 [SCBRR] = { 0x04, 8 },
248 [SCSCR] = { 0x08, 16 },
249 [SCxTDR] = { 0x40, 8 },
250 [SCxSR] = { 0x14, 16 },
251 [SCxRDR] = { 0x60, 8 },
252 [SCFCR] = { 0x18, 16 },
253 [SCTFDR] = { 0x38, 16 },
254 [SCRFDR] = { 0x3c, 16 },
255 [SCPCR] = { 0x30, 16 },
256 [SCPDR] = { 0x34, 16 },
257 },
258 .fifosize = 256,
259 .overrun_reg = SCxSR,
260 .overrun_mask = SCIFA_ORER,
261 .sampling_rate_mask = SCI_SR_SCIFAB,
262 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
263 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
264 },
265
266 /*
267 * Common SH-2(A) SCIF definitions for ports with FIFO data
268 * count registers.
269 */
270 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
271 .regs = {
272 [SCSMR] = { 0x00, 16 },
273 [SCBRR] = { 0x04, 8 },
274 [SCSCR] = { 0x08, 16 },
275 [SCxTDR] = { 0x0c, 8 },
276 [SCxSR] = { 0x10, 16 },
277 [SCxRDR] = { 0x14, 8 },
278 [SCFCR] = { 0x18, 16 },
279 [SCFDR] = { 0x1c, 16 },
280 [SCSPTR] = { 0x20, 16 },
281 [SCLSR] = { 0x24, 16 },
282 },
283 .fifosize = 16,
284 .overrun_reg = SCLSR,
285 .overrun_mask = SCLSR_ORER,
286 .sampling_rate_mask = SCI_SR(32),
287 .error_mask = SCIF_DEFAULT_ERROR_MASK,
288 .error_clear = SCIF_ERROR_CLEAR,
289 },
290
291 /*
292 * The "SCIFA" that is in RZ/T and RZ/A2.
293 * It looks like a normal SCIF with FIFO data, but with a
294 * compressed address space. Also, the break out of interrupts
295 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
296 */
297 [SCIx_RZ_SCIFA_REGTYPE] = {
298 .regs = {
299 [SCSMR] = { 0x00, 16 },
300 [SCBRR] = { 0x02, 8 },
301 [SCSCR] = { 0x04, 16 },
302 [SCxTDR] = { 0x06, 8 },
303 [SCxSR] = { 0x08, 16 },
304 [SCxRDR] = { 0x0A, 8 },
305 [SCFCR] = { 0x0C, 16 },
306 [SCFDR] = { 0x0E, 16 },
307 [SCSPTR] = { 0x10, 16 },
308 [SCLSR] = { 0x12, 16 },
309 },
310 .fifosize = 16,
311 .overrun_reg = SCLSR,
312 .overrun_mask = SCLSR_ORER,
313 .sampling_rate_mask = SCI_SR(32),
314 .error_mask = SCIF_DEFAULT_ERROR_MASK,
315 .error_clear = SCIF_ERROR_CLEAR,
316 },
317
318 /*
319 * Common SH-3 SCIF definitions.
320 */
321 [SCIx_SH3_SCIF_REGTYPE] = {
322 .regs = {
323 [SCSMR] = { 0x00, 8 },
324 [SCBRR] = { 0x02, 8 },
325 [SCSCR] = { 0x04, 8 },
326 [SCxTDR] = { 0x06, 8 },
327 [SCxSR] = { 0x08, 16 },
328 [SCxRDR] = { 0x0a, 8 },
329 [SCFCR] = { 0x0c, 8 },
330 [SCFDR] = { 0x0e, 16 },
331 },
332 .fifosize = 16,
333 .overrun_reg = SCLSR,
334 .overrun_mask = SCLSR_ORER,
335 .sampling_rate_mask = SCI_SR(32),
336 .error_mask = SCIF_DEFAULT_ERROR_MASK,
337 .error_clear = SCIF_ERROR_CLEAR,
338 },
339
340 /*
341 * Common SH-4(A) SCIF(B) definitions.
342 */
343 [SCIx_SH4_SCIF_REGTYPE] = {
344 .regs = {
345 [SCSMR] = { 0x00, 16 },
346 [SCBRR] = { 0x04, 8 },
347 [SCSCR] = { 0x08, 16 },
348 [SCxTDR] = { 0x0c, 8 },
349 [SCxSR] = { 0x10, 16 },
350 [SCxRDR] = { 0x14, 8 },
351 [SCFCR] = { 0x18, 16 },
352 [SCFDR] = { 0x1c, 16 },
353 [SCSPTR] = { 0x20, 16 },
354 [SCLSR] = { 0x24, 16 },
355 },
356 .fifosize = 16,
357 .overrun_reg = SCLSR,
358 .overrun_mask = SCLSR_ORER,
359 .sampling_rate_mask = SCI_SR(32),
360 .error_mask = SCIF_DEFAULT_ERROR_MASK,
361 .error_clear = SCIF_ERROR_CLEAR,
362 },
363
364 /*
365 * Common SCIF definitions for ports with a Baud Rate Generator for
366 * External Clock (BRG).
367 */
368 [SCIx_SH4_SCIF_BRG_REGTYPE] = {
369 .regs = {
370 [SCSMR] = { 0x00, 16 },
371 [SCBRR] = { 0x04, 8 },
372 [SCSCR] = { 0x08, 16 },
373 [SCxTDR] = { 0x0c, 8 },
374 [SCxSR] = { 0x10, 16 },
375 [SCxRDR] = { 0x14, 8 },
376 [SCFCR] = { 0x18, 16 },
377 [SCFDR] = { 0x1c, 16 },
378 [SCSPTR] = { 0x20, 16 },
379 [SCLSR] = { 0x24, 16 },
380 [SCDL] = { 0x30, 16 },
381 [SCCKS] = { 0x34, 16 },
382 },
383 .fifosize = 16,
384 .overrun_reg = SCLSR,
385 .overrun_mask = SCLSR_ORER,
386 .sampling_rate_mask = SCI_SR(32),
387 .error_mask = SCIF_DEFAULT_ERROR_MASK,
388 .error_clear = SCIF_ERROR_CLEAR,
389 },
390
391 /*
392 * Common HSCIF definitions.
393 */
394 [SCIx_HSCIF_REGTYPE] = {
395 .regs = {
396 [SCSMR] = { 0x00, 16 },
397 [SCBRR] = { 0x04, 8 },
398 [SCSCR] = { 0x08, 16 },
399 [SCxTDR] = { 0x0c, 8 },
400 [SCxSR] = { 0x10, 16 },
401 [SCxRDR] = { 0x14, 8 },
402 [SCFCR] = { 0x18, 16 },
403 [SCFDR] = { 0x1c, 16 },
404 [SCSPTR] = { 0x20, 16 },
405 [SCLSR] = { 0x24, 16 },
406 [HSSRR] = { 0x40, 16 },
407 [SCDL] = { 0x30, 16 },
408 [SCCKS] = { 0x34, 16 },
409 [HSRTRGR] = { 0x54, 16 },
410 [HSTTRGR] = { 0x58, 16 },
411 },
412 .fifosize = 128,
413 .overrun_reg = SCLSR,
414 .overrun_mask = SCLSR_ORER,
415 .sampling_rate_mask = SCI_SR_RANGE(8, 32),
416 .error_mask = SCIF_DEFAULT_ERROR_MASK,
417 .error_clear = SCIF_ERROR_CLEAR,
418 },
419
420 /*
421 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
422 * register.
423 */
424 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
425 .regs = {
426 [SCSMR] = { 0x00, 16 },
427 [SCBRR] = { 0x04, 8 },
428 [SCSCR] = { 0x08, 16 },
429 [SCxTDR] = { 0x0c, 8 },
430 [SCxSR] = { 0x10, 16 },
431 [SCxRDR] = { 0x14, 8 },
432 [SCFCR] = { 0x18, 16 },
433 [SCFDR] = { 0x1c, 16 },
434 [SCLSR] = { 0x24, 16 },
435 },
436 .fifosize = 16,
437 .overrun_reg = SCLSR,
438 .overrun_mask = SCLSR_ORER,
439 .sampling_rate_mask = SCI_SR(32),
440 .error_mask = SCIF_DEFAULT_ERROR_MASK,
441 .error_clear = SCIF_ERROR_CLEAR,
442 },
443
444 /*
445 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
446 * count registers.
447 */
448 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
449 .regs = {
450 [SCSMR] = { 0x00, 16 },
451 [SCBRR] = { 0x04, 8 },
452 [SCSCR] = { 0x08, 16 },
453 [SCxTDR] = { 0x0c, 8 },
454 [SCxSR] = { 0x10, 16 },
455 [SCxRDR] = { 0x14, 8 },
456 [SCFCR] = { 0x18, 16 },
457 [SCFDR] = { 0x1c, 16 },
458 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
459 [SCRFDR] = { 0x20, 16 },
460 [SCSPTR] = { 0x24, 16 },
461 [SCLSR] = { 0x28, 16 },
462 },
463 .fifosize = 16,
464 .overrun_reg = SCLSR,
465 .overrun_mask = SCLSR_ORER,
466 .sampling_rate_mask = SCI_SR(32),
467 .error_mask = SCIF_DEFAULT_ERROR_MASK,
468 .error_clear = SCIF_ERROR_CLEAR,
469 },
470
471 /*
472 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
473 * registers.
474 */
475 [SCIx_SH7705_SCIF_REGTYPE] = {
476 .regs = {
477 [SCSMR] = { 0x00, 16 },
478 [SCBRR] = { 0x04, 8 },
479 [SCSCR] = { 0x08, 16 },
480 [SCxTDR] = { 0x20, 8 },
481 [SCxSR] = { 0x14, 16 },
482 [SCxRDR] = { 0x24, 8 },
483 [SCFCR] = { 0x18, 16 },
484 [SCFDR] = { 0x1c, 16 },
485 },
486 .fifosize = 64,
487 .overrun_reg = SCxSR,
488 .overrun_mask = SCIFA_ORER,
489 .sampling_rate_mask = SCI_SR(16),
490 .error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
491 .error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
492 },
493};
494
495#define sci_getreg(up, offset) (&to_sci_port(up)->params->regs[offset])
496
497/*
498 * The "offset" here is rather misleading, in that it refers to an enum
499 * value relative to the port mapping rather than the fixed offset
500 * itself, which needs to be manually retrieved from the platform's
501 * register map for the given port.
502 */
503static unsigned int sci_serial_in(struct uart_port *p, int offset)
504{
505 const struct plat_sci_reg *reg = sci_getreg(p, offset);
506
507 if (reg->size == 8)
508 return ioread8(p->membase + (reg->offset << p->regshift));
509 else if (reg->size == 16)
510 return ioread16(p->membase + (reg->offset << p->regshift));
511 else
512 WARN(1, "Invalid register access\n");
513
514 return 0;
515}
516
517static void sci_serial_out(struct uart_port *p, int offset, int value)
518{
519 const struct plat_sci_reg *reg = sci_getreg(p, offset);
520
521 if (reg->size == 8)
522 iowrite8(value, p->membase + (reg->offset << p->regshift));
523 else if (reg->size == 16)
524 iowrite16(value, p->membase + (reg->offset << p->regshift));
525 else
526 WARN(1, "Invalid register access\n");
527}
528
529static void sci_port_enable(struct sci_port *sci_port)
530{
531 unsigned int i;
532
533 if (!sci_port->port.dev)
534 return;
535
536 pm_runtime_get_sync(sci_port->port.dev);
537
538 for (i = 0; i < SCI_NUM_CLKS; i++) {
539 clk_prepare_enable(sci_port->clks[i]);
540 sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
541 }
542 sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
543}
544
545static void sci_port_disable(struct sci_port *sci_port)
546{
547 unsigned int i;
548
549 if (!sci_port->port.dev)
550 return;
551
552 for (i = SCI_NUM_CLKS; i-- > 0; )
553 clk_disable_unprepare(sci_port->clks[i]);
554
555 pm_runtime_put_sync(sci_port->port.dev);
556}
557
558static inline unsigned long port_rx_irq_mask(struct uart_port *port)
559{
560 /*
561 * Not all ports (such as SCIFA) will support REIE. Rather than
562 * special-casing the port type, we check the port initialization
563 * IRQ enable mask to see whether the IRQ is desired at all. If
564 * it's unset, it's logically inferred that there's no point in
565 * testing for it.
566 */
567 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
568}
569
570static void sci_start_tx(struct uart_port *port)
571{
572 struct sci_port *s = to_sci_port(port);
573 unsigned short ctrl;
574
575#ifdef CONFIG_SERIAL_SH_SCI_DMA
576 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
577 u16 new, scr = serial_port_in(port, SCSCR);
578 if (s->chan_tx)
579 new = scr | SCSCR_TDRQE;
580 else
581 new = scr & ~SCSCR_TDRQE;
582 if (new != scr)
583 serial_port_out(port, SCSCR, new);
584 }
585
586 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
587 dma_submit_error(s->cookie_tx)) {
588 s->cookie_tx = 0;
589 schedule_work(&s->work_tx);
590 }
591#endif
592
593 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
594 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
595 ctrl = serial_port_in(port, SCSCR);
596 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
597 }
598}
599
600static void sci_stop_tx(struct uart_port *port)
601{
602 unsigned short ctrl;
603
604 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
605 ctrl = serial_port_in(port, SCSCR);
606
607 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
608 ctrl &= ~SCSCR_TDRQE;
609
610 ctrl &= ~SCSCR_TIE;
611
612 serial_port_out(port, SCSCR, ctrl);
Olivier Deprez0e641232021-09-23 10:07:05 +0200613
614#ifdef CONFIG_SERIAL_SH_SCI_DMA
615 if (to_sci_port(port)->chan_tx &&
616 !dma_submit_error(to_sci_port(port)->cookie_tx)) {
617 dmaengine_terminate_async(to_sci_port(port)->chan_tx);
618 to_sci_port(port)->cookie_tx = -EINVAL;
619 }
620#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000621}
622
623static void sci_start_rx(struct uart_port *port)
624{
625 unsigned short ctrl;
626
627 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
628
629 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
630 ctrl &= ~SCSCR_RDRQE;
631
632 serial_port_out(port, SCSCR, ctrl);
633}
634
635static void sci_stop_rx(struct uart_port *port)
636{
637 unsigned short ctrl;
638
639 ctrl = serial_port_in(port, SCSCR);
640
641 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
642 ctrl &= ~SCSCR_RDRQE;
643
644 ctrl &= ~port_rx_irq_mask(port);
645
646 serial_port_out(port, SCSCR, ctrl);
647}
648
649static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
650{
651 if (port->type == PORT_SCI) {
652 /* Just store the mask */
653 serial_port_out(port, SCxSR, mask);
654 } else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
655 /* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
656 /* Only clear the status bits we want to clear */
657 serial_port_out(port, SCxSR,
658 serial_port_in(port, SCxSR) & mask);
659 } else {
660 /* Store the mask, clear parity/framing errors */
661 serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
662 }
663}
664
665#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
666 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
667
668#ifdef CONFIG_CONSOLE_POLL
669static int sci_poll_get_char(struct uart_port *port)
670{
671 unsigned short status;
672 int c;
673
674 do {
675 status = serial_port_in(port, SCxSR);
676 if (status & SCxSR_ERRORS(port)) {
677 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
678 continue;
679 }
680 break;
681 } while (1);
682
683 if (!(status & SCxSR_RDxF(port)))
684 return NO_POLL_CHAR;
685
686 c = serial_port_in(port, SCxRDR);
687
688 /* Dummy read */
689 serial_port_in(port, SCxSR);
690 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
691
692 return c;
693}
694#endif
695
696static void sci_poll_put_char(struct uart_port *port, unsigned char c)
697{
698 unsigned short status;
699
700 do {
701 status = serial_port_in(port, SCxSR);
702 } while (!(status & SCxSR_TDxE(port)));
703
704 serial_port_out(port, SCxTDR, c);
705 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
706}
707#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
708 CONFIG_SERIAL_SH_SCI_EARLYCON */
709
710static void sci_init_pins(struct uart_port *port, unsigned int cflag)
711{
712 struct sci_port *s = to_sci_port(port);
713
714 /*
715 * Use port-specific handler if provided.
716 */
717 if (s->cfg->ops && s->cfg->ops->init_pins) {
718 s->cfg->ops->init_pins(port, cflag);
719 return;
720 }
721
722 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
723 u16 data = serial_port_in(port, SCPDR);
724 u16 ctrl = serial_port_in(port, SCPCR);
725
726 /* Enable RXD and TXD pin functions */
727 ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
728 if (to_sci_port(port)->has_rtscts) {
729 /* RTS# is output, active low, unless autorts */
730 if (!(port->mctrl & TIOCM_RTS)) {
731 ctrl |= SCPCR_RTSC;
732 data |= SCPDR_RTSD;
733 } else if (!s->autorts) {
734 ctrl |= SCPCR_RTSC;
735 data &= ~SCPDR_RTSD;
736 } else {
737 /* Enable RTS# pin function */
738 ctrl &= ~SCPCR_RTSC;
739 }
740 /* Enable CTS# pin function */
741 ctrl &= ~SCPCR_CTSC;
742 }
743 serial_port_out(port, SCPDR, data);
744 serial_port_out(port, SCPCR, ctrl);
745 } else if (sci_getreg(port, SCSPTR)->size) {
746 u16 status = serial_port_in(port, SCSPTR);
747
748 /* RTS# is always output; and active low, unless autorts */
749 status |= SCSPTR_RTSIO;
750 if (!(port->mctrl & TIOCM_RTS))
751 status |= SCSPTR_RTSDT;
752 else if (!s->autorts)
753 status &= ~SCSPTR_RTSDT;
754 /* CTS# and SCK are inputs */
755 status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
756 serial_port_out(port, SCSPTR, status);
757 }
758}
759
760static int sci_txfill(struct uart_port *port)
761{
762 struct sci_port *s = to_sci_port(port);
763 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
764 const struct plat_sci_reg *reg;
765
766 reg = sci_getreg(port, SCTFDR);
767 if (reg->size)
768 return serial_port_in(port, SCTFDR) & fifo_mask;
769
770 reg = sci_getreg(port, SCFDR);
771 if (reg->size)
772 return serial_port_in(port, SCFDR) >> 8;
773
774 return !(serial_port_in(port, SCxSR) & SCI_TDRE);
775}
776
777static int sci_txroom(struct uart_port *port)
778{
779 return port->fifosize - sci_txfill(port);
780}
781
782static int sci_rxfill(struct uart_port *port)
783{
784 struct sci_port *s = to_sci_port(port);
785 unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
786 const struct plat_sci_reg *reg;
787
788 reg = sci_getreg(port, SCRFDR);
789 if (reg->size)
790 return serial_port_in(port, SCRFDR) & fifo_mask;
791
792 reg = sci_getreg(port, SCFDR);
793 if (reg->size)
794 return serial_port_in(port, SCFDR) & fifo_mask;
795
796 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
797}
798
799/* ********************************************************************** *
800 * the interrupt related routines *
801 * ********************************************************************** */
802
803static void sci_transmit_chars(struct uart_port *port)
804{
805 struct circ_buf *xmit = &port->state->xmit;
806 unsigned int stopped = uart_tx_stopped(port);
807 unsigned short status;
808 unsigned short ctrl;
809 int count;
810
811 status = serial_port_in(port, SCxSR);
812 if (!(status & SCxSR_TDxE(port))) {
813 ctrl = serial_port_in(port, SCSCR);
814 if (uart_circ_empty(xmit))
815 ctrl &= ~SCSCR_TIE;
816 else
817 ctrl |= SCSCR_TIE;
818 serial_port_out(port, SCSCR, ctrl);
819 return;
820 }
821
822 count = sci_txroom(port);
823
824 do {
825 unsigned char c;
826
827 if (port->x_char) {
828 c = port->x_char;
829 port->x_char = 0;
830 } else if (!uart_circ_empty(xmit) && !stopped) {
831 c = xmit->buf[xmit->tail];
832 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
833 } else {
834 break;
835 }
836
837 serial_port_out(port, SCxTDR, c);
838
839 port->icount.tx++;
840 } while (--count > 0);
841
842 sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
843
844 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
845 uart_write_wakeup(port);
David Brazdil0f672f62019-12-10 10:32:29 +0000846 if (uart_circ_empty(xmit))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000847 sci_stop_tx(port);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000848
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000849}
850
851/* On SH3, SCIF may read end-of-break as a space->mark char */
852#define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
853
854static void sci_receive_chars(struct uart_port *port)
855{
856 struct tty_port *tport = &port->state->port;
857 int i, count, copied = 0;
858 unsigned short status;
859 unsigned char flag;
860
861 status = serial_port_in(port, SCxSR);
862 if (!(status & SCxSR_RDxF(port)))
863 return;
864
865 while (1) {
866 /* Don't copy more bytes than there is room for in the buffer */
867 count = tty_buffer_request_room(tport, sci_rxfill(port));
868
869 /* If for any reason we can't copy more data, we're done! */
870 if (count == 0)
871 break;
872
873 if (port->type == PORT_SCI) {
874 char c = serial_port_in(port, SCxRDR);
875 if (uart_handle_sysrq_char(port, c))
876 count = 0;
877 else
878 tty_insert_flip_char(tport, c, TTY_NORMAL);
879 } else {
880 for (i = 0; i < count; i++) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200881 char c;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000882
Olivier Deprez0e641232021-09-23 10:07:05 +0200883 if (port->type == PORT_SCIF ||
884 port->type == PORT_HSCIF) {
885 status = serial_port_in(port, SCxSR);
886 c = serial_port_in(port, SCxRDR);
887 } else {
888 c = serial_port_in(port, SCxRDR);
889 status = serial_port_in(port, SCxSR);
890 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000891 if (uart_handle_sysrq_char(port, c)) {
892 count--; i--;
893 continue;
894 }
895
896 /* Store data and status */
897 if (status & SCxSR_FER(port)) {
898 flag = TTY_FRAME;
899 port->icount.frame++;
900 dev_notice(port->dev, "frame error\n");
901 } else if (status & SCxSR_PER(port)) {
902 flag = TTY_PARITY;
903 port->icount.parity++;
904 dev_notice(port->dev, "parity error\n");
905 } else
906 flag = TTY_NORMAL;
907
908 tty_insert_flip_char(tport, c, flag);
909 }
910 }
911
912 serial_port_in(port, SCxSR); /* dummy read */
913 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
914
915 copied += count;
916 port->icount.rx += count;
917 }
918
919 if (copied) {
920 /* Tell the rest of the system the news. New characters! */
921 tty_flip_buffer_push(tport);
922 } else {
923 /* TTY buffers full; read from RX reg to prevent lockup */
924 serial_port_in(port, SCxRDR);
925 serial_port_in(port, SCxSR); /* dummy read */
926 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
927 }
928}
929
930static int sci_handle_errors(struct uart_port *port)
931{
932 int copied = 0;
933 unsigned short status = serial_port_in(port, SCxSR);
934 struct tty_port *tport = &port->state->port;
935 struct sci_port *s = to_sci_port(port);
936
937 /* Handle overruns */
938 if (status & s->params->overrun_mask) {
939 port->icount.overrun++;
940
941 /* overrun error */
942 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
943 copied++;
944
945 dev_notice(port->dev, "overrun error\n");
946 }
947
948 if (status & SCxSR_FER(port)) {
949 /* frame error */
950 port->icount.frame++;
951
952 if (tty_insert_flip_char(tport, 0, TTY_FRAME))
953 copied++;
954
955 dev_notice(port->dev, "frame error\n");
956 }
957
958 if (status & SCxSR_PER(port)) {
959 /* parity error */
960 port->icount.parity++;
961
962 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
963 copied++;
964
965 dev_notice(port->dev, "parity error\n");
966 }
967
968 if (copied)
969 tty_flip_buffer_push(tport);
970
971 return copied;
972}
973
974static int sci_handle_fifo_overrun(struct uart_port *port)
975{
976 struct tty_port *tport = &port->state->port;
977 struct sci_port *s = to_sci_port(port);
978 const struct plat_sci_reg *reg;
979 int copied = 0;
980 u16 status;
981
982 reg = sci_getreg(port, s->params->overrun_reg);
983 if (!reg->size)
984 return 0;
985
986 status = serial_port_in(port, s->params->overrun_reg);
987 if (status & s->params->overrun_mask) {
988 status &= ~s->params->overrun_mask;
989 serial_port_out(port, s->params->overrun_reg, status);
990
991 port->icount.overrun++;
992
993 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
994 tty_flip_buffer_push(tport);
995
996 dev_dbg(port->dev, "overrun error\n");
997 copied++;
998 }
999
1000 return copied;
1001}
1002
1003static int sci_handle_breaks(struct uart_port *port)
1004{
1005 int copied = 0;
1006 unsigned short status = serial_port_in(port, SCxSR);
1007 struct tty_port *tport = &port->state->port;
1008
1009 if (uart_handle_break(port))
1010 return 0;
1011
1012 if (status & SCxSR_BRK(port)) {
1013 port->icount.brk++;
1014
1015 /* Notify of BREAK */
1016 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1017 copied++;
1018
1019 dev_dbg(port->dev, "BREAK detected\n");
1020 }
1021
1022 if (copied)
1023 tty_flip_buffer_push(tport);
1024
1025 copied += sci_handle_fifo_overrun(port);
1026
1027 return copied;
1028}
1029
1030static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1031{
1032 unsigned int bits;
1033
Olivier Deprez0e641232021-09-23 10:07:05 +02001034 if (rx_trig >= port->fifosize)
1035 rx_trig = port->fifosize - 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001036 if (rx_trig < 1)
1037 rx_trig = 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001038
1039 /* HSCIF can be set to an arbitrary level. */
1040 if (sci_getreg(port, HSRTRGR)->size) {
1041 serial_port_out(port, HSRTRGR, rx_trig);
1042 return rx_trig;
1043 }
1044
1045 switch (port->type) {
1046 case PORT_SCIF:
1047 if (rx_trig < 4) {
1048 bits = 0;
1049 rx_trig = 1;
1050 } else if (rx_trig < 8) {
1051 bits = SCFCR_RTRG0;
1052 rx_trig = 4;
1053 } else if (rx_trig < 14) {
1054 bits = SCFCR_RTRG1;
1055 rx_trig = 8;
1056 } else {
1057 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1058 rx_trig = 14;
1059 }
1060 break;
1061 case PORT_SCIFA:
1062 case PORT_SCIFB:
1063 if (rx_trig < 16) {
1064 bits = 0;
1065 rx_trig = 1;
1066 } else if (rx_trig < 32) {
1067 bits = SCFCR_RTRG0;
1068 rx_trig = 16;
1069 } else if (rx_trig < 48) {
1070 bits = SCFCR_RTRG1;
1071 rx_trig = 32;
1072 } else {
1073 bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1074 rx_trig = 48;
1075 }
1076 break;
1077 default:
1078 WARN(1, "unknown FIFO configuration");
1079 return 1;
1080 }
1081
1082 serial_port_out(port, SCFCR,
1083 (serial_port_in(port, SCFCR) &
1084 ~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1085
1086 return rx_trig;
1087}
1088
1089static int scif_rtrg_enabled(struct uart_port *port)
1090{
1091 if (sci_getreg(port, HSRTRGR)->size)
1092 return serial_port_in(port, HSRTRGR) != 0;
1093 else
1094 return (serial_port_in(port, SCFCR) &
1095 (SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1096}
1097
1098static void rx_fifo_timer_fn(struct timer_list *t)
1099{
1100 struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1101 struct uart_port *port = &s->port;
1102
1103 dev_dbg(port->dev, "Rx timed out\n");
1104 scif_set_rtrg(port, 1);
1105}
1106
David Brazdil0f672f62019-12-10 10:32:29 +00001107static ssize_t rx_fifo_trigger_show(struct device *dev,
1108 struct device_attribute *attr, char *buf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001109{
1110 struct uart_port *port = dev_get_drvdata(dev);
1111 struct sci_port *sci = to_sci_port(port);
1112
1113 return sprintf(buf, "%d\n", sci->rx_trigger);
1114}
1115
David Brazdil0f672f62019-12-10 10:32:29 +00001116static ssize_t rx_fifo_trigger_store(struct device *dev,
1117 struct device_attribute *attr,
1118 const char *buf, size_t count)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001119{
1120 struct uart_port *port = dev_get_drvdata(dev);
1121 struct sci_port *sci = to_sci_port(port);
1122 int ret;
1123 long r;
1124
1125 ret = kstrtol(buf, 0, &r);
1126 if (ret)
1127 return ret;
1128
1129 sci->rx_trigger = scif_set_rtrg(port, r);
1130 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1131 scif_set_rtrg(port, 1);
1132
1133 return count;
1134}
1135
David Brazdil0f672f62019-12-10 10:32:29 +00001136static DEVICE_ATTR_RW(rx_fifo_trigger);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001137
1138static ssize_t rx_fifo_timeout_show(struct device *dev,
1139 struct device_attribute *attr,
1140 char *buf)
1141{
1142 struct uart_port *port = dev_get_drvdata(dev);
1143 struct sci_port *sci = to_sci_port(port);
1144 int v;
1145
1146 if (port->type == PORT_HSCIF)
1147 v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1148 else
1149 v = sci->rx_fifo_timeout;
1150
1151 return sprintf(buf, "%d\n", v);
1152}
1153
1154static ssize_t rx_fifo_timeout_store(struct device *dev,
1155 struct device_attribute *attr,
1156 const char *buf,
1157 size_t count)
1158{
1159 struct uart_port *port = dev_get_drvdata(dev);
1160 struct sci_port *sci = to_sci_port(port);
1161 int ret;
1162 long r;
1163
1164 ret = kstrtol(buf, 0, &r);
1165 if (ret)
1166 return ret;
1167
1168 if (port->type == PORT_HSCIF) {
1169 if (r < 0 || r > 3)
1170 return -EINVAL;
1171 sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1172 } else {
1173 sci->rx_fifo_timeout = r;
1174 scif_set_rtrg(port, 1);
1175 if (r > 0)
1176 timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1177 }
1178
1179 return count;
1180}
1181
1182static DEVICE_ATTR_RW(rx_fifo_timeout);
1183
1184
1185#ifdef CONFIG_SERIAL_SH_SCI_DMA
1186static void sci_dma_tx_complete(void *arg)
1187{
1188 struct sci_port *s = arg;
1189 struct uart_port *port = &s->port;
1190 struct circ_buf *xmit = &port->state->xmit;
1191 unsigned long flags;
1192
1193 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1194
1195 spin_lock_irqsave(&port->lock, flags);
1196
1197 xmit->tail += s->tx_dma_len;
1198 xmit->tail &= UART_XMIT_SIZE - 1;
1199
1200 port->icount.tx += s->tx_dma_len;
1201
1202 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1203 uart_write_wakeup(port);
1204
1205 if (!uart_circ_empty(xmit)) {
1206 s->cookie_tx = 0;
1207 schedule_work(&s->work_tx);
1208 } else {
1209 s->cookie_tx = -EINVAL;
1210 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1211 u16 ctrl = serial_port_in(port, SCSCR);
1212 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1213 }
1214 }
1215
1216 spin_unlock_irqrestore(&port->lock, flags);
1217}
1218
1219/* Locking: called with port lock held */
1220static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1221{
1222 struct uart_port *port = &s->port;
1223 struct tty_port *tport = &port->state->port;
1224 int copied;
1225
1226 copied = tty_insert_flip_string(tport, buf, count);
1227 if (copied < count)
1228 port->icount.buf_overrun++;
1229
1230 port->icount.rx += copied;
1231
1232 return copied;
1233}
1234
1235static int sci_dma_rx_find_active(struct sci_port *s)
1236{
1237 unsigned int i;
1238
1239 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1240 if (s->active_rx == s->cookie_rx[i])
1241 return i;
1242
1243 return -1;
1244}
1245
David Brazdil0f672f62019-12-10 10:32:29 +00001246static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1247{
1248 unsigned int i;
1249
1250 s->chan_rx = NULL;
1251 for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1252 s->cookie_rx[i] = -EINVAL;
1253 s->active_rx = 0;
1254}
1255
1256static void sci_dma_rx_release(struct sci_port *s)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001257{
1258 struct dma_chan *chan = s->chan_rx_saved;
1259
David Brazdil0f672f62019-12-10 10:32:29 +00001260 s->chan_rx_saved = NULL;
1261 sci_dma_rx_chan_invalidate(s);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001262 dmaengine_terminate_sync(chan);
1263 dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1264 sg_dma_address(&s->sg_rx[0]));
1265 dma_release_channel(chan);
1266}
1267
1268static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1269{
1270 long sec = usec / 1000000;
1271 long nsec = (usec % 1000000) * 1000;
1272 ktime_t t = ktime_set(sec, nsec);
1273
1274 hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1275}
1276
David Brazdil0f672f62019-12-10 10:32:29 +00001277static void sci_dma_rx_reenable_irq(struct sci_port *s)
1278{
1279 struct uart_port *port = &s->port;
1280 u16 scr;
1281
1282 /* Direct new serial port interrupts back to CPU */
1283 scr = serial_port_in(port, SCSCR);
1284 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1285 scr &= ~SCSCR_RDRQE;
1286 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1287 }
1288 serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1289}
1290
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001291static void sci_dma_rx_complete(void *arg)
1292{
1293 struct sci_port *s = arg;
1294 struct dma_chan *chan = s->chan_rx;
1295 struct uart_port *port = &s->port;
1296 struct dma_async_tx_descriptor *desc;
1297 unsigned long flags;
1298 int active, count = 0;
1299
1300 dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1301 s->active_rx);
1302
1303 spin_lock_irqsave(&port->lock, flags);
1304
1305 active = sci_dma_rx_find_active(s);
1306 if (active >= 0)
1307 count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1308
1309 start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1310
1311 if (count)
1312 tty_flip_buffer_push(&port->state->port);
1313
1314 desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1315 DMA_DEV_TO_MEM,
1316 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1317 if (!desc)
1318 goto fail;
1319
1320 desc->callback = sci_dma_rx_complete;
1321 desc->callback_param = s;
1322 s->cookie_rx[active] = dmaengine_submit(desc);
1323 if (dma_submit_error(s->cookie_rx[active]))
1324 goto fail;
1325
1326 s->active_rx = s->cookie_rx[!active];
1327
1328 dma_async_issue_pending(chan);
1329
1330 spin_unlock_irqrestore(&port->lock, flags);
1331 dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1332 __func__, s->cookie_rx[active], active, s->active_rx);
1333 return;
1334
1335fail:
1336 spin_unlock_irqrestore(&port->lock, flags);
1337 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1338 /* Switch to PIO */
1339 spin_lock_irqsave(&port->lock, flags);
David Brazdil0f672f62019-12-10 10:32:29 +00001340 dmaengine_terminate_async(chan);
1341 sci_dma_rx_chan_invalidate(s);
1342 sci_dma_rx_reenable_irq(s);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001343 spin_unlock_irqrestore(&port->lock, flags);
1344}
1345
David Brazdil0f672f62019-12-10 10:32:29 +00001346static void sci_dma_tx_release(struct sci_port *s)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001347{
1348 struct dma_chan *chan = s->chan_tx_saved;
1349
1350 cancel_work_sync(&s->work_tx);
1351 s->chan_tx_saved = s->chan_tx = NULL;
1352 s->cookie_tx = -EINVAL;
1353 dmaengine_terminate_sync(chan);
1354 dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1355 DMA_TO_DEVICE);
1356 dma_release_channel(chan);
1357}
1358
David Brazdil0f672f62019-12-10 10:32:29 +00001359static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001360{
1361 struct dma_chan *chan = s->chan_rx;
1362 struct uart_port *port = &s->port;
1363 unsigned long flags;
1364 int i;
1365
1366 for (i = 0; i < 2; i++) {
1367 struct scatterlist *sg = &s->sg_rx[i];
1368 struct dma_async_tx_descriptor *desc;
1369
1370 desc = dmaengine_prep_slave_sg(chan,
1371 sg, 1, DMA_DEV_TO_MEM,
1372 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1373 if (!desc)
1374 goto fail;
1375
1376 desc->callback = sci_dma_rx_complete;
1377 desc->callback_param = s;
1378 s->cookie_rx[i] = dmaengine_submit(desc);
1379 if (dma_submit_error(s->cookie_rx[i]))
1380 goto fail;
1381
1382 }
1383
1384 s->active_rx = s->cookie_rx[0];
1385
1386 dma_async_issue_pending(chan);
David Brazdil0f672f62019-12-10 10:32:29 +00001387 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001388
1389fail:
David Brazdil0f672f62019-12-10 10:32:29 +00001390 /* Switch to PIO */
1391 if (!port_lock_held)
1392 spin_lock_irqsave(&port->lock, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001393 if (i)
1394 dmaengine_terminate_async(chan);
David Brazdil0f672f62019-12-10 10:32:29 +00001395 sci_dma_rx_chan_invalidate(s);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001396 sci_start_rx(port);
David Brazdil0f672f62019-12-10 10:32:29 +00001397 if (!port_lock_held)
1398 spin_unlock_irqrestore(&port->lock, flags);
1399 return -EAGAIN;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001400}
1401
David Brazdil0f672f62019-12-10 10:32:29 +00001402static void sci_dma_tx_work_fn(struct work_struct *work)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001403{
1404 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1405 struct dma_async_tx_descriptor *desc;
1406 struct dma_chan *chan = s->chan_tx;
1407 struct uart_port *port = &s->port;
1408 struct circ_buf *xmit = &port->state->xmit;
1409 unsigned long flags;
1410 dma_addr_t buf;
David Brazdil0f672f62019-12-10 10:32:29 +00001411 int head, tail;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001412
1413 /*
1414 * DMA is idle now.
1415 * Port xmit buffer is already mapped, and it is one page... Just adjust
1416 * offsets and lengths. Since it is a circular buffer, we have to
1417 * transmit till the end, and then the rest. Take the port lock to get a
1418 * consistent xmit buffer state.
1419 */
1420 spin_lock_irq(&port->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00001421 head = xmit->head;
1422 tail = xmit->tail;
1423 buf = s->tx_dma_addr + (tail & (UART_XMIT_SIZE - 1));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001424 s->tx_dma_len = min_t(unsigned int,
David Brazdil0f672f62019-12-10 10:32:29 +00001425 CIRC_CNT(head, tail, UART_XMIT_SIZE),
1426 CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE));
1427 if (!s->tx_dma_len) {
1428 /* Transmit buffer has been flushed */
1429 spin_unlock_irq(&port->lock);
1430 return;
1431 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001432
1433 desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1434 DMA_MEM_TO_DEV,
1435 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1436 if (!desc) {
David Brazdil0f672f62019-12-10 10:32:29 +00001437 spin_unlock_irq(&port->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001438 dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1439 goto switch_to_pio;
1440 }
1441
1442 dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1443 DMA_TO_DEVICE);
1444
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001445 desc->callback = sci_dma_tx_complete;
1446 desc->callback_param = s;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001447 s->cookie_tx = dmaengine_submit(desc);
1448 if (dma_submit_error(s->cookie_tx)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001449 spin_unlock_irq(&port->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001450 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1451 goto switch_to_pio;
1452 }
1453
David Brazdil0f672f62019-12-10 10:32:29 +00001454 spin_unlock_irq(&port->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001455 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
David Brazdil0f672f62019-12-10 10:32:29 +00001456 __func__, xmit->buf, tail, head, s->cookie_tx);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001457
1458 dma_async_issue_pending(chan);
1459 return;
1460
1461switch_to_pio:
1462 spin_lock_irqsave(&port->lock, flags);
1463 s->chan_tx = NULL;
1464 sci_start_tx(port);
1465 spin_unlock_irqrestore(&port->lock, flags);
1466 return;
1467}
1468
David Brazdil0f672f62019-12-10 10:32:29 +00001469static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001470{
1471 struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1472 struct dma_chan *chan = s->chan_rx;
1473 struct uart_port *port = &s->port;
1474 struct dma_tx_state state;
1475 enum dma_status status;
1476 unsigned long flags;
1477 unsigned int read;
1478 int active, count;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001479
1480 dev_dbg(port->dev, "DMA Rx timed out\n");
1481
1482 spin_lock_irqsave(&port->lock, flags);
1483
1484 active = sci_dma_rx_find_active(s);
1485 if (active < 0) {
1486 spin_unlock_irqrestore(&port->lock, flags);
1487 return HRTIMER_NORESTART;
1488 }
1489
1490 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1491 if (status == DMA_COMPLETE) {
1492 spin_unlock_irqrestore(&port->lock, flags);
1493 dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1494 s->active_rx, active);
1495
1496 /* Let packet complete handler take care of the packet */
1497 return HRTIMER_NORESTART;
1498 }
1499
1500 dmaengine_pause(chan);
1501
1502 /*
1503 * sometimes DMA transfer doesn't stop even if it is stopped and
1504 * data keeps on coming until transaction is complete so check
1505 * for DMA_COMPLETE again
1506 * Let packet complete handler take care of the packet
1507 */
1508 status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1509 if (status == DMA_COMPLETE) {
1510 spin_unlock_irqrestore(&port->lock, flags);
1511 dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1512 return HRTIMER_NORESTART;
1513 }
1514
1515 /* Handle incomplete DMA receive */
1516 dmaengine_terminate_async(s->chan_rx);
1517 read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1518
1519 if (read) {
1520 count = sci_dma_rx_push(s, s->rx_buf[active], read);
1521 if (count)
1522 tty_flip_buffer_push(&port->state->port);
1523 }
1524
1525 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
David Brazdil0f672f62019-12-10 10:32:29 +00001526 sci_dma_rx_submit(s, true);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001527
David Brazdil0f672f62019-12-10 10:32:29 +00001528 sci_dma_rx_reenable_irq(s);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001529
1530 spin_unlock_irqrestore(&port->lock, flags);
1531
1532 return HRTIMER_NORESTART;
1533}
1534
1535static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1536 enum dma_transfer_direction dir)
1537{
1538 struct dma_chan *chan;
1539 struct dma_slave_config cfg;
1540 int ret;
1541
1542 chan = dma_request_slave_channel(port->dev,
1543 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1544 if (!chan) {
David Brazdil0f672f62019-12-10 10:32:29 +00001545 dev_dbg(port->dev, "dma_request_slave_channel failed\n");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001546 return NULL;
1547 }
1548
1549 memset(&cfg, 0, sizeof(cfg));
1550 cfg.direction = dir;
1551 if (dir == DMA_MEM_TO_DEV) {
1552 cfg.dst_addr = port->mapbase +
1553 (sci_getreg(port, SCxTDR)->offset << port->regshift);
1554 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1555 } else {
1556 cfg.src_addr = port->mapbase +
1557 (sci_getreg(port, SCxRDR)->offset << port->regshift);
1558 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1559 }
1560
1561 ret = dmaengine_slave_config(chan, &cfg);
1562 if (ret) {
1563 dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1564 dma_release_channel(chan);
1565 return NULL;
1566 }
1567
1568 return chan;
1569}
1570
1571static void sci_request_dma(struct uart_port *port)
1572{
1573 struct sci_port *s = to_sci_port(port);
1574 struct dma_chan *chan;
1575
1576 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1577
David Brazdil0f672f62019-12-10 10:32:29 +00001578 /*
1579 * DMA on console may interfere with Kernel log messages which use
1580 * plain putchar(). So, simply don't use it with a console.
1581 */
1582 if (uart_console(port))
1583 return;
1584
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001585 if (!port->dev->of_node)
1586 return;
1587
1588 s->cookie_tx = -EINVAL;
1589
1590 /*
1591 * Don't request a dma channel if no channel was specified
1592 * in the device tree.
1593 */
1594 if (!of_find_property(port->dev->of_node, "dmas", NULL))
1595 return;
1596
1597 chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1598 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1599 if (chan) {
1600 /* UART circular tx buffer is an aligned page. */
1601 s->tx_dma_addr = dma_map_single(chan->device->dev,
1602 port->state->xmit.buf,
1603 UART_XMIT_SIZE,
1604 DMA_TO_DEVICE);
1605 if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1606 dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1607 dma_release_channel(chan);
1608 } else {
1609 dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1610 __func__, UART_XMIT_SIZE,
1611 port->state->xmit.buf, &s->tx_dma_addr);
1612
David Brazdil0f672f62019-12-10 10:32:29 +00001613 INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001614 s->chan_tx_saved = s->chan_tx = chan;
1615 }
1616 }
1617
1618 chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1619 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1620 if (chan) {
1621 unsigned int i;
1622 dma_addr_t dma;
1623 void *buf;
1624
1625 s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1626 buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1627 &dma, GFP_KERNEL);
1628 if (!buf) {
1629 dev_warn(port->dev,
1630 "Failed to allocate Rx dma buffer, using PIO\n");
1631 dma_release_channel(chan);
1632 return;
1633 }
1634
1635 for (i = 0; i < 2; i++) {
1636 struct scatterlist *sg = &s->sg_rx[i];
1637
1638 sg_init_table(sg, 1);
1639 s->rx_buf[i] = buf;
1640 sg_dma_address(sg) = dma;
1641 sg_dma_len(sg) = s->buf_len_rx;
1642
1643 buf += s->buf_len_rx;
1644 dma += s->buf_len_rx;
1645 }
1646
1647 hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
David Brazdil0f672f62019-12-10 10:32:29 +00001648 s->rx_timer.function = sci_dma_rx_timer_fn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001649
1650 s->chan_rx_saved = s->chan_rx = chan;
1651
1652 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
David Brazdil0f672f62019-12-10 10:32:29 +00001653 sci_dma_rx_submit(s, false);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001654 }
1655}
1656
1657static void sci_free_dma(struct uart_port *port)
1658{
1659 struct sci_port *s = to_sci_port(port);
1660
1661 if (s->chan_tx_saved)
David Brazdil0f672f62019-12-10 10:32:29 +00001662 sci_dma_tx_release(s);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001663 if (s->chan_rx_saved)
David Brazdil0f672f62019-12-10 10:32:29 +00001664 sci_dma_rx_release(s);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001665}
1666
1667static void sci_flush_buffer(struct uart_port *port)
1668{
David Brazdil0f672f62019-12-10 10:32:29 +00001669 struct sci_port *s = to_sci_port(port);
1670
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001671 /*
1672 * In uart_flush_buffer(), the xmit circular buffer has just been
David Brazdil0f672f62019-12-10 10:32:29 +00001673 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1674 * pending transfers
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001675 */
David Brazdil0f672f62019-12-10 10:32:29 +00001676 s->tx_dma_len = 0;
1677 if (s->chan_tx) {
1678 dmaengine_terminate_async(s->chan_tx);
1679 s->cookie_tx = -EINVAL;
1680 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001681}
1682#else /* !CONFIG_SERIAL_SH_SCI_DMA */
1683static inline void sci_request_dma(struct uart_port *port)
1684{
1685}
1686
1687static inline void sci_free_dma(struct uart_port *port)
1688{
1689}
1690
1691#define sci_flush_buffer NULL
1692#endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1693
1694static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1695{
1696 struct uart_port *port = ptr;
1697 struct sci_port *s = to_sci_port(port);
1698
1699#ifdef CONFIG_SERIAL_SH_SCI_DMA
1700 if (s->chan_rx) {
1701 u16 scr = serial_port_in(port, SCSCR);
1702 u16 ssr = serial_port_in(port, SCxSR);
1703
1704 /* Disable future Rx interrupts */
1705 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1706 disable_irq_nosync(irq);
1707 scr |= SCSCR_RDRQE;
1708 } else {
David Brazdil0f672f62019-12-10 10:32:29 +00001709 if (sci_dma_rx_submit(s, false) < 0)
1710 goto handle_pio;
1711
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001712 scr &= ~SCSCR_RIE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001713 }
1714 serial_port_out(port, SCSCR, scr);
1715 /* Clear current interrupt */
1716 serial_port_out(port, SCxSR,
1717 ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1718 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1719 jiffies, s->rx_timeout);
1720 start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1721
1722 return IRQ_HANDLED;
1723 }
David Brazdil0f672f62019-12-10 10:32:29 +00001724
1725handle_pio:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001726#endif
1727
1728 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1729 if (!scif_rtrg_enabled(port))
1730 scif_set_rtrg(port, s->rx_trigger);
1731
1732 mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1733 s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1734 }
1735
1736 /* I think sci_receive_chars has to be called irrespective
1737 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1738 * to be disabled?
1739 */
David Brazdil0f672f62019-12-10 10:32:29 +00001740 sci_receive_chars(port);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001741
1742 return IRQ_HANDLED;
1743}
1744
1745static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1746{
1747 struct uart_port *port = ptr;
1748 unsigned long flags;
1749
1750 spin_lock_irqsave(&port->lock, flags);
1751 sci_transmit_chars(port);
1752 spin_unlock_irqrestore(&port->lock, flags);
1753
1754 return IRQ_HANDLED;
1755}
1756
1757static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1758{
1759 struct uart_port *port = ptr;
1760
1761 /* Handle BREAKs */
1762 sci_handle_breaks(port);
Olivier Deprez0e641232021-09-23 10:07:05 +02001763
1764 /* drop invalid character received before break was detected */
1765 serial_port_in(port, SCxRDR);
1766
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001767 sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1768
1769 return IRQ_HANDLED;
1770}
1771
1772static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1773{
1774 struct uart_port *port = ptr;
1775 struct sci_port *s = to_sci_port(port);
1776
1777 if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1778 /* Break and Error interrupts are muxed */
1779 unsigned short ssr_status = serial_port_in(port, SCxSR);
1780
1781 /* Break Interrupt */
1782 if (ssr_status & SCxSR_BRK(port))
1783 sci_br_interrupt(irq, ptr);
1784
1785 /* Break only? */
1786 if (!(ssr_status & SCxSR_ERRORS(port)))
1787 return IRQ_HANDLED;
1788 }
1789
1790 /* Handle errors */
1791 if (port->type == PORT_SCI) {
1792 if (sci_handle_errors(port)) {
1793 /* discard character in rx buffer */
1794 serial_port_in(port, SCxSR);
1795 sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1796 }
1797 } else {
1798 sci_handle_fifo_overrun(port);
1799 if (!s->chan_rx)
David Brazdil0f672f62019-12-10 10:32:29 +00001800 sci_receive_chars(port);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001801 }
1802
1803 sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1804
1805 /* Kick the transmission */
1806 if (!s->chan_tx)
1807 sci_tx_interrupt(irq, ptr);
1808
1809 return IRQ_HANDLED;
1810}
1811
1812static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1813{
1814 unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1815 struct uart_port *port = ptr;
1816 struct sci_port *s = to_sci_port(port);
1817 irqreturn_t ret = IRQ_NONE;
1818
1819 ssr_status = serial_port_in(port, SCxSR);
1820 scr_status = serial_port_in(port, SCSCR);
1821 if (s->params->overrun_reg == SCxSR)
1822 orer_status = ssr_status;
1823 else if (sci_getreg(port, s->params->overrun_reg)->size)
1824 orer_status = serial_port_in(port, s->params->overrun_reg);
1825
1826 err_enabled = scr_status & port_rx_irq_mask(port);
1827
1828 /* Tx Interrupt */
1829 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1830 !s->chan_tx)
1831 ret = sci_tx_interrupt(irq, ptr);
1832
1833 /*
1834 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1835 * DR flags
1836 */
1837 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1838 (scr_status & SCSCR_RIE))
1839 ret = sci_rx_interrupt(irq, ptr);
1840
1841 /* Error Interrupt */
1842 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1843 ret = sci_er_interrupt(irq, ptr);
1844
1845 /* Break Interrupt */
Olivier Deprez0e641232021-09-23 10:07:05 +02001846 if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1847 (ssr_status & SCxSR_BRK(port)) && err_enabled)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001848 ret = sci_br_interrupt(irq, ptr);
1849
1850 /* Overrun Interrupt */
1851 if (orer_status & s->params->overrun_mask) {
1852 sci_handle_fifo_overrun(port);
1853 ret = IRQ_HANDLED;
1854 }
1855
1856 return ret;
1857}
1858
1859static const struct sci_irq_desc {
1860 const char *desc;
1861 irq_handler_t handler;
1862} sci_irq_desc[] = {
1863 /*
1864 * Split out handlers, the default case.
1865 */
1866 [SCIx_ERI_IRQ] = {
1867 .desc = "rx err",
1868 .handler = sci_er_interrupt,
1869 },
1870
1871 [SCIx_RXI_IRQ] = {
1872 .desc = "rx full",
1873 .handler = sci_rx_interrupt,
1874 },
1875
1876 [SCIx_TXI_IRQ] = {
1877 .desc = "tx empty",
1878 .handler = sci_tx_interrupt,
1879 },
1880
1881 [SCIx_BRI_IRQ] = {
1882 .desc = "break",
1883 .handler = sci_br_interrupt,
1884 },
1885
1886 [SCIx_DRI_IRQ] = {
1887 .desc = "rx ready",
1888 .handler = sci_rx_interrupt,
1889 },
1890
1891 [SCIx_TEI_IRQ] = {
1892 .desc = "tx end",
1893 .handler = sci_tx_interrupt,
1894 },
1895
1896 /*
1897 * Special muxed handler.
1898 */
1899 [SCIx_MUX_IRQ] = {
1900 .desc = "mux",
1901 .handler = sci_mpxed_interrupt,
1902 },
1903};
1904
1905static int sci_request_irq(struct sci_port *port)
1906{
1907 struct uart_port *up = &port->port;
1908 int i, j, w, ret = 0;
1909
1910 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1911 const struct sci_irq_desc *desc;
1912 int irq;
1913
1914 /* Check if already registered (muxed) */
1915 for (w = 0; w < i; w++)
1916 if (port->irqs[w] == port->irqs[i])
1917 w = i + 1;
1918 if (w > i)
1919 continue;
1920
1921 if (SCIx_IRQ_IS_MUXED(port)) {
1922 i = SCIx_MUX_IRQ;
1923 irq = up->irq;
1924 } else {
1925 irq = port->irqs[i];
1926
1927 /*
1928 * Certain port types won't support all of the
1929 * available interrupt sources.
1930 */
1931 if (unlikely(irq < 0))
1932 continue;
1933 }
1934
1935 desc = sci_irq_desc + i;
1936 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1937 dev_name(up->dev), desc->desc);
1938 if (!port->irqstr[j]) {
1939 ret = -ENOMEM;
1940 goto out_nomem;
1941 }
1942
1943 ret = request_irq(irq, desc->handler, up->irqflags,
1944 port->irqstr[j], port);
1945 if (unlikely(ret)) {
1946 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1947 goto out_noirq;
1948 }
1949 }
1950
1951 return 0;
1952
1953out_noirq:
1954 while (--i >= 0)
1955 free_irq(port->irqs[i], port);
1956
1957out_nomem:
1958 while (--j >= 0)
1959 kfree(port->irqstr[j]);
1960
1961 return ret;
1962}
1963
1964static void sci_free_irq(struct sci_port *port)
1965{
David Brazdil0f672f62019-12-10 10:32:29 +00001966 int i, j;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001967
1968 /*
1969 * Intentionally in reverse order so we iterate over the muxed
1970 * IRQ first.
1971 */
1972 for (i = 0; i < SCIx_NR_IRQS; i++) {
1973 int irq = port->irqs[i];
1974
1975 /*
1976 * Certain port types won't support all of the available
1977 * interrupt sources.
1978 */
1979 if (unlikely(irq < 0))
1980 continue;
1981
David Brazdil0f672f62019-12-10 10:32:29 +00001982 /* Check if already freed (irq was muxed) */
1983 for (j = 0; j < i; j++)
1984 if (port->irqs[j] == irq)
1985 j = i + 1;
1986 if (j > i)
1987 continue;
1988
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001989 free_irq(port->irqs[i], port);
1990 kfree(port->irqstr[i]);
1991
1992 if (SCIx_IRQ_IS_MUXED(port)) {
1993 /* If there's only one IRQ, we're done. */
1994 return;
1995 }
1996 }
1997}
1998
1999static unsigned int sci_tx_empty(struct uart_port *port)
2000{
2001 unsigned short status = serial_port_in(port, SCxSR);
2002 unsigned short in_tx_fifo = sci_txfill(port);
2003
2004 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2005}
2006
2007static void sci_set_rts(struct uart_port *port, bool state)
2008{
2009 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2010 u16 data = serial_port_in(port, SCPDR);
2011
2012 /* Active low */
2013 if (state)
2014 data &= ~SCPDR_RTSD;
2015 else
2016 data |= SCPDR_RTSD;
2017 serial_port_out(port, SCPDR, data);
2018
2019 /* RTS# is output */
2020 serial_port_out(port, SCPCR,
2021 serial_port_in(port, SCPCR) | SCPCR_RTSC);
2022 } else if (sci_getreg(port, SCSPTR)->size) {
2023 u16 ctrl = serial_port_in(port, SCSPTR);
2024
2025 /* Active low */
2026 if (state)
2027 ctrl &= ~SCSPTR_RTSDT;
2028 else
2029 ctrl |= SCSPTR_RTSDT;
2030 serial_port_out(port, SCSPTR, ctrl);
2031 }
2032}
2033
2034static bool sci_get_cts(struct uart_port *port)
2035{
2036 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2037 /* Active low */
2038 return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2039 } else if (sci_getreg(port, SCSPTR)->size) {
2040 /* Active low */
2041 return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2042 }
2043
2044 return true;
2045}
2046
2047/*
2048 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2049 * CTS/RTS is supported in hardware by at least one port and controlled
2050 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2051 * handled via the ->init_pins() op, which is a bit of a one-way street,
2052 * lacking any ability to defer pin control -- this will later be
2053 * converted over to the GPIO framework).
2054 *
2055 * Other modes (such as loopback) are supported generically on certain
2056 * port types, but not others. For these it's sufficient to test for the
2057 * existence of the support register and simply ignore the port type.
2058 */
2059static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2060{
2061 struct sci_port *s = to_sci_port(port);
2062
2063 if (mctrl & TIOCM_LOOP) {
2064 const struct plat_sci_reg *reg;
2065
2066 /*
2067 * Standard loopback mode for SCFCR ports.
2068 */
2069 reg = sci_getreg(port, SCFCR);
2070 if (reg->size)
2071 serial_port_out(port, SCFCR,
2072 serial_port_in(port, SCFCR) |
2073 SCFCR_LOOP);
2074 }
2075
2076 mctrl_gpio_set(s->gpios, mctrl);
2077
2078 if (!s->has_rtscts)
2079 return;
2080
2081 if (!(mctrl & TIOCM_RTS)) {
2082 /* Disable Auto RTS */
2083 serial_port_out(port, SCFCR,
2084 serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2085
2086 /* Clear RTS */
2087 sci_set_rts(port, 0);
2088 } else if (s->autorts) {
2089 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2090 /* Enable RTS# pin function */
2091 serial_port_out(port, SCPCR,
2092 serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2093 }
2094
2095 /* Enable Auto RTS */
2096 serial_port_out(port, SCFCR,
2097 serial_port_in(port, SCFCR) | SCFCR_MCE);
2098 } else {
2099 /* Set RTS */
2100 sci_set_rts(port, 1);
2101 }
2102}
2103
2104static unsigned int sci_get_mctrl(struct uart_port *port)
2105{
2106 struct sci_port *s = to_sci_port(port);
2107 struct mctrl_gpios *gpios = s->gpios;
2108 unsigned int mctrl = 0;
2109
2110 mctrl_gpio_get(gpios, &mctrl);
2111
2112 /*
2113 * CTS/RTS is handled in hardware when supported, while nothing
2114 * else is wired up.
2115 */
2116 if (s->autorts) {
2117 if (sci_get_cts(port))
2118 mctrl |= TIOCM_CTS;
David Brazdil0f672f62019-12-10 10:32:29 +00002119 } else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002120 mctrl |= TIOCM_CTS;
2121 }
David Brazdil0f672f62019-12-10 10:32:29 +00002122 if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002123 mctrl |= TIOCM_DSR;
David Brazdil0f672f62019-12-10 10:32:29 +00002124 if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002125 mctrl |= TIOCM_CAR;
2126
2127 return mctrl;
2128}
2129
2130static void sci_enable_ms(struct uart_port *port)
2131{
2132 mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2133}
2134
2135static void sci_break_ctl(struct uart_port *port, int break_state)
2136{
2137 unsigned short scscr, scsptr;
2138 unsigned long flags;
2139
2140 /* check wheter the port has SCSPTR */
2141 if (!sci_getreg(port, SCSPTR)->size) {
2142 /*
2143 * Not supported by hardware. Most parts couple break and rx
2144 * interrupts together, with break detection always enabled.
2145 */
2146 return;
2147 }
2148
2149 spin_lock_irqsave(&port->lock, flags);
2150 scsptr = serial_port_in(port, SCSPTR);
2151 scscr = serial_port_in(port, SCSCR);
2152
2153 if (break_state == -1) {
2154 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2155 scscr &= ~SCSCR_TE;
2156 } else {
2157 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2158 scscr |= SCSCR_TE;
2159 }
2160
2161 serial_port_out(port, SCSPTR, scsptr);
2162 serial_port_out(port, SCSCR, scscr);
2163 spin_unlock_irqrestore(&port->lock, flags);
2164}
2165
2166static int sci_startup(struct uart_port *port)
2167{
2168 struct sci_port *s = to_sci_port(port);
2169 int ret;
2170
2171 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2172
2173 sci_request_dma(port);
2174
2175 ret = sci_request_irq(s);
2176 if (unlikely(ret < 0)) {
2177 sci_free_dma(port);
2178 return ret;
2179 }
2180
2181 return 0;
2182}
2183
2184static void sci_shutdown(struct uart_port *port)
2185{
2186 struct sci_port *s = to_sci_port(port);
2187 unsigned long flags;
2188 u16 scr;
2189
2190 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2191
2192 s->autorts = false;
2193 mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2194
2195 spin_lock_irqsave(&port->lock, flags);
2196 sci_stop_rx(port);
2197 sci_stop_tx(port);
2198 /*
2199 * Stop RX and TX, disable related interrupts, keep clock source
2200 * and HSCIF TOT bits
2201 */
2202 scr = serial_port_in(port, SCSCR);
2203 serial_port_out(port, SCSCR, scr &
2204 (SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2205 spin_unlock_irqrestore(&port->lock, flags);
2206
2207#ifdef CONFIG_SERIAL_SH_SCI_DMA
2208 if (s->chan_rx_saved) {
2209 dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2210 port->line);
2211 hrtimer_cancel(&s->rx_timer);
2212 }
2213#endif
2214
2215 if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2216 del_timer_sync(&s->rx_fifo_timer);
2217 sci_free_irq(s);
2218 sci_free_dma(port);
2219}
2220
2221static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2222 unsigned int *srr)
2223{
2224 unsigned long freq = s->clk_rates[SCI_SCK];
2225 int err, min_err = INT_MAX;
2226 unsigned int sr;
2227
2228 if (s->port.type != PORT_HSCIF)
2229 freq *= 2;
2230
2231 for_each_sr(sr, s) {
2232 err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2233 if (abs(err) >= abs(min_err))
2234 continue;
2235
2236 min_err = err;
2237 *srr = sr - 1;
2238
2239 if (!err)
2240 break;
2241 }
2242
2243 dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2244 *srr + 1);
2245 return min_err;
2246}
2247
2248static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2249 unsigned long freq, unsigned int *dlr,
2250 unsigned int *srr)
2251{
2252 int err, min_err = INT_MAX;
2253 unsigned int sr, dl;
2254
2255 if (s->port.type != PORT_HSCIF)
2256 freq *= 2;
2257
2258 for_each_sr(sr, s) {
2259 dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2260 dl = clamp(dl, 1U, 65535U);
2261
2262 err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2263 if (abs(err) >= abs(min_err))
2264 continue;
2265
2266 min_err = err;
2267 *dlr = dl;
2268 *srr = sr - 1;
2269
2270 if (!err)
2271 break;
2272 }
2273
2274 dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2275 min_err, *dlr, *srr + 1);
2276 return min_err;
2277}
2278
2279/* calculate sample rate, BRR, and clock select */
2280static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2281 unsigned int *brr, unsigned int *srr,
2282 unsigned int *cks)
2283{
2284 unsigned long freq = s->clk_rates[SCI_FCK];
2285 unsigned int sr, br, prediv, scrate, c;
2286 int err, min_err = INT_MAX;
2287
2288 if (s->port.type != PORT_HSCIF)
2289 freq *= 2;
2290
2291 /*
2292 * Find the combination of sample rate and clock select with the
2293 * smallest deviation from the desired baud rate.
2294 * Prefer high sample rates to maximise the receive margin.
2295 *
2296 * M: Receive margin (%)
2297 * N: Ratio of bit rate to clock (N = sampling rate)
2298 * D: Clock duty (D = 0 to 1.0)
2299 * L: Frame length (L = 9 to 12)
2300 * F: Absolute value of clock frequency deviation
2301 *
2302 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2303 * (|D - 0.5| / N * (1 + F))|
2304 * NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2305 */
2306 for_each_sr(sr, s) {
2307 for (c = 0; c <= 3; c++) {
2308 /* integerized formulas from HSCIF documentation */
2309 prediv = sr * (1 << (2 * c + 1));
2310
2311 /*
2312 * We need to calculate:
2313 *
2314 * br = freq / (prediv * bps) clamped to [1..256]
2315 * err = freq / (br * prediv) - bps
2316 *
2317 * Watch out for overflow when calculating the desired
2318 * sampling clock rate!
2319 */
2320 if (bps > UINT_MAX / prediv)
2321 break;
2322
2323 scrate = prediv * bps;
2324 br = DIV_ROUND_CLOSEST(freq, scrate);
2325 br = clamp(br, 1U, 256U);
2326
2327 err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2328 if (abs(err) >= abs(min_err))
2329 continue;
2330
2331 min_err = err;
2332 *brr = br - 1;
2333 *srr = sr - 1;
2334 *cks = c;
2335
2336 if (!err)
2337 goto found;
2338 }
2339 }
2340
2341found:
2342 dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2343 min_err, *brr, *srr + 1, *cks);
2344 return min_err;
2345}
2346
2347static void sci_reset(struct uart_port *port)
2348{
2349 const struct plat_sci_reg *reg;
2350 unsigned int status;
2351 struct sci_port *s = to_sci_port(port);
2352
2353 serial_port_out(port, SCSCR, s->hscif_tot); /* TE=0, RE=0, CKE1=0 */
2354
2355 reg = sci_getreg(port, SCFCR);
2356 if (reg->size)
2357 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2358
2359 sci_clear_SCxSR(port,
2360 SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2361 SCxSR_BREAK_CLEAR(port));
2362 if (sci_getreg(port, SCLSR)->size) {
2363 status = serial_port_in(port, SCLSR);
2364 status &= ~(SCLSR_TO | SCLSR_ORER);
2365 serial_port_out(port, SCLSR, status);
2366 }
2367
2368 if (s->rx_trigger > 1) {
2369 if (s->rx_fifo_timeout) {
2370 scif_set_rtrg(port, 1);
2371 timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2372 } else {
2373 if (port->type == PORT_SCIFA ||
2374 port->type == PORT_SCIFB)
2375 scif_set_rtrg(port, 1);
2376 else
2377 scif_set_rtrg(port, s->rx_trigger);
2378 }
2379 }
2380}
2381
2382static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2383 struct ktermios *old)
2384{
2385 unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2386 unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2387 unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2388 struct sci_port *s = to_sci_port(port);
2389 const struct plat_sci_reg *reg;
2390 int min_err = INT_MAX, err;
2391 unsigned long max_freq = 0;
2392 int best_clk = -1;
2393 unsigned long flags;
2394
2395 if ((termios->c_cflag & CSIZE) == CS7)
2396 smr_val |= SCSMR_CHR;
2397 if (termios->c_cflag & PARENB)
2398 smr_val |= SCSMR_PE;
2399 if (termios->c_cflag & PARODD)
2400 smr_val |= SCSMR_PE | SCSMR_ODD;
2401 if (termios->c_cflag & CSTOPB)
2402 smr_val |= SCSMR_STOP;
2403
2404 /*
2405 * earlyprintk comes here early on with port->uartclk set to zero.
2406 * the clock framework is not up and running at this point so here
2407 * we assume that 115200 is the maximum baud rate. please note that
2408 * the baud rate is not programmed during earlyprintk - it is assumed
2409 * that the previous boot loader has enabled required clocks and
2410 * setup the baud rate generator hardware for us already.
2411 */
2412 if (!port->uartclk) {
2413 baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2414 goto done;
2415 }
2416
2417 for (i = 0; i < SCI_NUM_CLKS; i++)
2418 max_freq = max(max_freq, s->clk_rates[i]);
2419
2420 baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2421 if (!baud)
2422 goto done;
2423
2424 /*
2425 * There can be multiple sources for the sampling clock. Find the one
2426 * that gives us the smallest deviation from the desired baud rate.
2427 */
2428
2429 /* Optional Undivided External Clock */
2430 if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2431 port->type != PORT_SCIFB) {
2432 err = sci_sck_calc(s, baud, &srr1);
2433 if (abs(err) < abs(min_err)) {
2434 best_clk = SCI_SCK;
2435 scr_val = SCSCR_CKE1;
2436 sccks = SCCKS_CKS;
2437 min_err = err;
2438 srr = srr1;
2439 if (!err)
2440 goto done;
2441 }
2442 }
2443
2444 /* Optional BRG Frequency Divided External Clock */
2445 if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2446 err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2447 &srr1);
2448 if (abs(err) < abs(min_err)) {
2449 best_clk = SCI_SCIF_CLK;
2450 scr_val = SCSCR_CKE1;
2451 sccks = 0;
2452 min_err = err;
2453 dl = dl1;
2454 srr = srr1;
2455 if (!err)
2456 goto done;
2457 }
2458 }
2459
2460 /* Optional BRG Frequency Divided Internal Clock */
2461 if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2462 err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2463 &srr1);
2464 if (abs(err) < abs(min_err)) {
2465 best_clk = SCI_BRG_INT;
2466 scr_val = SCSCR_CKE1;
2467 sccks = SCCKS_XIN;
2468 min_err = err;
2469 dl = dl1;
2470 srr = srr1;
2471 if (!min_err)
2472 goto done;
2473 }
2474 }
2475
2476 /* Divided Functional Clock using standard Bit Rate Register */
2477 err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2478 if (abs(err) < abs(min_err)) {
2479 best_clk = SCI_FCK;
2480 scr_val = 0;
2481 min_err = err;
2482 brr = brr1;
2483 srr = srr1;
2484 cks = cks1;
2485 }
2486
2487done:
2488 if (best_clk >= 0)
2489 dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2490 s->clks[best_clk], baud, min_err);
2491
2492 sci_port_enable(s);
2493
2494 /*
2495 * Program the optional External Baud Rate Generator (BRG) first.
2496 * It controls the mux to select (H)SCK or frequency divided clock.
2497 */
2498 if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2499 serial_port_out(port, SCDL, dl);
2500 serial_port_out(port, SCCKS, sccks);
2501 }
2502
2503 spin_lock_irqsave(&port->lock, flags);
2504
2505 sci_reset(port);
2506
2507 uart_update_timeout(port, termios->c_cflag, baud);
2508
2509 /* byte size and parity */
2510 switch (termios->c_cflag & CSIZE) {
2511 case CS5:
2512 bits = 7;
2513 break;
2514 case CS6:
2515 bits = 8;
2516 break;
2517 case CS7:
2518 bits = 9;
2519 break;
2520 default:
2521 bits = 10;
2522 break;
2523 }
2524
2525 if (termios->c_cflag & CSTOPB)
2526 bits++;
2527 if (termios->c_cflag & PARENB)
2528 bits++;
2529
2530 if (best_clk >= 0) {
2531 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2532 switch (srr + 1) {
2533 case 5: smr_val |= SCSMR_SRC_5; break;
2534 case 7: smr_val |= SCSMR_SRC_7; break;
2535 case 11: smr_val |= SCSMR_SRC_11; break;
2536 case 13: smr_val |= SCSMR_SRC_13; break;
2537 case 16: smr_val |= SCSMR_SRC_16; break;
2538 case 17: smr_val |= SCSMR_SRC_17; break;
2539 case 19: smr_val |= SCSMR_SRC_19; break;
2540 case 27: smr_val |= SCSMR_SRC_27; break;
2541 }
2542 smr_val |= cks;
2543 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2544 serial_port_out(port, SCSMR, smr_val);
2545 serial_port_out(port, SCBRR, brr);
2546 if (sci_getreg(port, HSSRR)->size) {
2547 unsigned int hssrr = srr | HSCIF_SRE;
2548 /* Calculate deviation from intended rate at the
2549 * center of the last stop bit in sampling clocks.
2550 */
2551 int last_stop = bits * 2 - 1;
David Brazdil0f672f62019-12-10 10:32:29 +00002552 int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2553 (int)(srr + 1),
2554 2 * (int)baud);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002555
2556 if (abs(deviation) >= 2) {
2557 /* At least two sampling clocks off at the
2558 * last stop bit; we can increase the error
2559 * margin by shifting the sampling point.
2560 */
David Brazdil0f672f62019-12-10 10:32:29 +00002561 int shift = clamp(deviation / 2, -8, 7);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002562
2563 hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2564 HSCIF_SRHP_MASK;
2565 hssrr |= HSCIF_SRDE;
2566 }
2567 serial_port_out(port, HSSRR, hssrr);
2568 }
2569
2570 /* Wait one bit interval */
2571 udelay((1000000 + (baud - 1)) / baud);
2572 } else {
2573 /* Don't touch the bit rate configuration */
2574 scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2575 smr_val |= serial_port_in(port, SCSMR) &
2576 (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2577 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2578 serial_port_out(port, SCSMR, smr_val);
2579 }
2580
2581 sci_init_pins(port, termios->c_cflag);
2582
2583 port->status &= ~UPSTAT_AUTOCTS;
2584 s->autorts = false;
2585 reg = sci_getreg(port, SCFCR);
2586 if (reg->size) {
2587 unsigned short ctrl = serial_port_in(port, SCFCR);
2588
2589 if ((port->flags & UPF_HARD_FLOW) &&
2590 (termios->c_cflag & CRTSCTS)) {
2591 /* There is no CTS interrupt to restart the hardware */
2592 port->status |= UPSTAT_AUTOCTS;
2593 /* MCE is enabled when RTS is raised */
2594 s->autorts = true;
2595 }
2596
2597 /*
2598 * As we've done a sci_reset() above, ensure we don't
2599 * interfere with the FIFOs while toggling MCE. As the
2600 * reset values could still be set, simply mask them out.
2601 */
2602 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2603
2604 serial_port_out(port, SCFCR, ctrl);
2605 }
2606 if (port->flags & UPF_HARD_FLOW) {
2607 /* Refresh (Auto) RTS */
2608 sci_set_mctrl(port, port->mctrl);
2609 }
2610
2611 scr_val |= SCSCR_RE | SCSCR_TE |
2612 (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2613 serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2614 if ((srr + 1 == 5) &&
2615 (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2616 /*
2617 * In asynchronous mode, when the sampling rate is 1/5, first
2618 * received data may become invalid on some SCIFA and SCIFB.
2619 * To avoid this problem wait more than 1 serial data time (1
2620 * bit time x serial data number) after setting SCSCR.RE = 1.
2621 */
2622 udelay(DIV_ROUND_UP(10 * 1000000, baud));
2623 }
2624
2625 /*
2626 * Calculate delay for 2 DMA buffers (4 FIFO).
2627 * See serial_core.c::uart_update_timeout().
2628 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2629 * function calculates 1 jiffie for the data plus 5 jiffies for the
2630 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2631 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2632 * value obtained by this formula is too small. Therefore, if the value
2633 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2634 */
2635 s->rx_frame = (10000 * bits) / (baud / 100);
2636#ifdef CONFIG_SERIAL_SH_SCI_DMA
2637 s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2638 if (s->rx_timeout < 20)
2639 s->rx_timeout = 20;
2640#endif
2641
2642 if ((termios->c_cflag & CREAD) != 0)
2643 sci_start_rx(port);
2644
2645 spin_unlock_irqrestore(&port->lock, flags);
2646
2647 sci_port_disable(s);
2648
2649 if (UART_ENABLE_MS(port, termios->c_cflag))
2650 sci_enable_ms(port);
2651}
2652
2653static void sci_pm(struct uart_port *port, unsigned int state,
2654 unsigned int oldstate)
2655{
2656 struct sci_port *sci_port = to_sci_port(port);
2657
2658 switch (state) {
2659 case UART_PM_STATE_OFF:
2660 sci_port_disable(sci_port);
2661 break;
2662 default:
2663 sci_port_enable(sci_port);
2664 break;
2665 }
2666}
2667
2668static const char *sci_type(struct uart_port *port)
2669{
2670 switch (port->type) {
2671 case PORT_IRDA:
2672 return "irda";
2673 case PORT_SCI:
2674 return "sci";
2675 case PORT_SCIF:
2676 return "scif";
2677 case PORT_SCIFA:
2678 return "scifa";
2679 case PORT_SCIFB:
2680 return "scifb";
2681 case PORT_HSCIF:
2682 return "hscif";
2683 }
2684
2685 return NULL;
2686}
2687
2688static int sci_remap_port(struct uart_port *port)
2689{
2690 struct sci_port *sport = to_sci_port(port);
2691
2692 /*
2693 * Nothing to do if there's already an established membase.
2694 */
2695 if (port->membase)
2696 return 0;
2697
2698 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
Olivier Deprez157378f2022-04-04 15:47:50 +02002699 port->membase = ioremap(port->mapbase, sport->reg_size);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002700 if (unlikely(!port->membase)) {
2701 dev_err(port->dev, "can't remap port#%d\n", port->line);
2702 return -ENXIO;
2703 }
2704 } else {
2705 /*
2706 * For the simple (and majority of) cases where we don't
2707 * need to do any remapping, just cast the cookie
2708 * directly.
2709 */
2710 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2711 }
2712
2713 return 0;
2714}
2715
2716static void sci_release_port(struct uart_port *port)
2717{
2718 struct sci_port *sport = to_sci_port(port);
2719
2720 if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2721 iounmap(port->membase);
2722 port->membase = NULL;
2723 }
2724
2725 release_mem_region(port->mapbase, sport->reg_size);
2726}
2727
2728static int sci_request_port(struct uart_port *port)
2729{
2730 struct resource *res;
2731 struct sci_port *sport = to_sci_port(port);
2732 int ret;
2733
2734 res = request_mem_region(port->mapbase, sport->reg_size,
2735 dev_name(port->dev));
2736 if (unlikely(res == NULL)) {
2737 dev_err(port->dev, "request_mem_region failed.");
2738 return -EBUSY;
2739 }
2740
2741 ret = sci_remap_port(port);
2742 if (unlikely(ret != 0)) {
2743 release_resource(res);
2744 return ret;
2745 }
2746
2747 return 0;
2748}
2749
2750static void sci_config_port(struct uart_port *port, int flags)
2751{
2752 if (flags & UART_CONFIG_TYPE) {
2753 struct sci_port *sport = to_sci_port(port);
2754
2755 port->type = sport->cfg->type;
2756 sci_request_port(port);
2757 }
2758}
2759
2760static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2761{
2762 if (ser->baud_base < 2400)
2763 /* No paper tape reader for Mitch.. */
2764 return -EINVAL;
2765
2766 return 0;
2767}
2768
2769static const struct uart_ops sci_uart_ops = {
2770 .tx_empty = sci_tx_empty,
2771 .set_mctrl = sci_set_mctrl,
2772 .get_mctrl = sci_get_mctrl,
2773 .start_tx = sci_start_tx,
2774 .stop_tx = sci_stop_tx,
2775 .stop_rx = sci_stop_rx,
2776 .enable_ms = sci_enable_ms,
2777 .break_ctl = sci_break_ctl,
2778 .startup = sci_startup,
2779 .shutdown = sci_shutdown,
2780 .flush_buffer = sci_flush_buffer,
2781 .set_termios = sci_set_termios,
2782 .pm = sci_pm,
2783 .type = sci_type,
2784 .release_port = sci_release_port,
2785 .request_port = sci_request_port,
2786 .config_port = sci_config_port,
2787 .verify_port = sci_verify_port,
2788#ifdef CONFIG_CONSOLE_POLL
2789 .poll_get_char = sci_poll_get_char,
2790 .poll_put_char = sci_poll_put_char,
2791#endif
2792};
2793
2794static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2795{
2796 const char *clk_names[] = {
2797 [SCI_FCK] = "fck",
2798 [SCI_SCK] = "sck",
2799 [SCI_BRG_INT] = "brg_int",
2800 [SCI_SCIF_CLK] = "scif_clk",
2801 };
2802 struct clk *clk;
2803 unsigned int i;
2804
2805 if (sci_port->cfg->type == PORT_HSCIF)
2806 clk_names[SCI_SCK] = "hsck";
2807
2808 for (i = 0; i < SCI_NUM_CLKS; i++) {
2809 clk = devm_clk_get(dev, clk_names[i]);
2810 if (PTR_ERR(clk) == -EPROBE_DEFER)
2811 return -EPROBE_DEFER;
2812
2813 if (IS_ERR(clk) && i == SCI_FCK) {
2814 /*
2815 * "fck" used to be called "sci_ick", and we need to
2816 * maintain DT backward compatibility.
2817 */
2818 clk = devm_clk_get(dev, "sci_ick");
2819 if (PTR_ERR(clk) == -EPROBE_DEFER)
2820 return -EPROBE_DEFER;
2821
2822 if (!IS_ERR(clk))
2823 goto found;
2824
2825 /*
2826 * Not all SH platforms declare a clock lookup entry
2827 * for SCI devices, in which case we need to get the
2828 * global "peripheral_clk" clock.
2829 */
2830 clk = devm_clk_get(dev, "peripheral_clk");
2831 if (!IS_ERR(clk))
2832 goto found;
2833
2834 dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2835 PTR_ERR(clk));
2836 return PTR_ERR(clk);
2837 }
2838
2839found:
2840 if (IS_ERR(clk))
2841 dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2842 PTR_ERR(clk));
2843 else
2844 dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2845 clk, clk_get_rate(clk));
2846 sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2847 }
2848 return 0;
2849}
2850
2851static const struct sci_port_params *
2852sci_probe_regmap(const struct plat_sci_port *cfg)
2853{
2854 unsigned int regtype;
2855
2856 if (cfg->regtype != SCIx_PROBE_REGTYPE)
2857 return &sci_port_params[cfg->regtype];
2858
2859 switch (cfg->type) {
2860 case PORT_SCI:
2861 regtype = SCIx_SCI_REGTYPE;
2862 break;
2863 case PORT_IRDA:
2864 regtype = SCIx_IRDA_REGTYPE;
2865 break;
2866 case PORT_SCIFA:
2867 regtype = SCIx_SCIFA_REGTYPE;
2868 break;
2869 case PORT_SCIFB:
2870 regtype = SCIx_SCIFB_REGTYPE;
2871 break;
2872 case PORT_SCIF:
2873 /*
2874 * The SH-4 is a bit of a misnomer here, although that's
2875 * where this particular port layout originated. This
2876 * configuration (or some slight variation thereof)
2877 * remains the dominant model for all SCIFs.
2878 */
2879 regtype = SCIx_SH4_SCIF_REGTYPE;
2880 break;
2881 case PORT_HSCIF:
2882 regtype = SCIx_HSCIF_REGTYPE;
2883 break;
2884 default:
2885 pr_err("Can't probe register map for given port\n");
2886 return NULL;
2887 }
2888
2889 return &sci_port_params[regtype];
2890}
2891
2892static int sci_init_single(struct platform_device *dev,
2893 struct sci_port *sci_port, unsigned int index,
2894 const struct plat_sci_port *p, bool early)
2895{
2896 struct uart_port *port = &sci_port->port;
2897 const struct resource *res;
2898 unsigned int i;
2899 int ret;
2900
2901 sci_port->cfg = p;
2902
2903 port->ops = &sci_uart_ops;
2904 port->iotype = UPIO_MEM;
2905 port->line = index;
Olivier Deprez157378f2022-04-04 15:47:50 +02002906 port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002907
2908 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2909 if (res == NULL)
2910 return -ENOMEM;
2911
2912 port->mapbase = res->start;
2913 sci_port->reg_size = resource_size(res);
2914
David Brazdil0f672f62019-12-10 10:32:29 +00002915 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2916 if (i)
2917 sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2918 else
2919 sci_port->irqs[i] = platform_get_irq(dev, i);
2920 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002921
2922 /* The SCI generates several interrupts. They can be muxed together or
2923 * connected to different interrupt lines. In the muxed case only one
2924 * interrupt resource is specified as there is only one interrupt ID.
2925 * In the non-muxed case, up to 6 interrupt signals might be generated
2926 * from the SCI, however those signals might have their own individual
2927 * interrupt ID numbers, or muxed together with another interrupt.
2928 */
2929 if (sci_port->irqs[0] < 0)
2930 return -ENXIO;
2931
2932 if (sci_port->irqs[1] < 0)
2933 for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2934 sci_port->irqs[i] = sci_port->irqs[0];
2935
2936 sci_port->params = sci_probe_regmap(p);
2937 if (unlikely(sci_port->params == NULL))
2938 return -EINVAL;
2939
2940 switch (p->type) {
2941 case PORT_SCIFB:
2942 sci_port->rx_trigger = 48;
2943 break;
2944 case PORT_HSCIF:
2945 sci_port->rx_trigger = 64;
2946 break;
2947 case PORT_SCIFA:
2948 sci_port->rx_trigger = 32;
2949 break;
2950 case PORT_SCIF:
2951 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2952 /* RX triggering not implemented for this IP */
2953 sci_port->rx_trigger = 1;
2954 else
2955 sci_port->rx_trigger = 8;
2956 break;
2957 default:
2958 sci_port->rx_trigger = 1;
2959 break;
2960 }
2961
2962 sci_port->rx_fifo_timeout = 0;
2963 sci_port->hscif_tot = 0;
2964
2965 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2966 * match the SoC datasheet, this should be investigated. Let platform
2967 * data override the sampling rate for now.
2968 */
2969 sci_port->sampling_rate_mask = p->sampling_rate
2970 ? SCI_SR(p->sampling_rate)
2971 : sci_port->params->sampling_rate_mask;
2972
2973 if (!early) {
2974 ret = sci_init_clocks(sci_port, &dev->dev);
2975 if (ret < 0)
2976 return ret;
2977
2978 port->dev = &dev->dev;
2979
2980 pm_runtime_enable(&dev->dev);
2981 }
2982
2983 port->type = p->type;
2984 port->flags = UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2985 port->fifosize = sci_port->params->fifosize;
2986
2987 if (port->type == PORT_SCI) {
2988 if (sci_port->reg_size >= 0x20)
2989 port->regshift = 2;
2990 else
2991 port->regshift = 1;
2992 }
2993
2994 /*
2995 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2996 * for the multi-IRQ ports, which is where we are primarily
2997 * concerned with the shutdown path synchronization.
2998 *
2999 * For the muxed case there's nothing more to do.
3000 */
3001 port->irq = sci_port->irqs[SCIx_RXI_IRQ];
3002 port->irqflags = 0;
3003
3004 port->serial_in = sci_serial_in;
3005 port->serial_out = sci_serial_out;
3006
3007 return 0;
3008}
3009
3010static void sci_cleanup_single(struct sci_port *port)
3011{
3012 pm_runtime_disable(port->port.dev);
3013}
3014
3015#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3016 defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
3017static void serial_console_putchar(struct uart_port *port, int ch)
3018{
3019 sci_poll_put_char(port, ch);
3020}
3021
3022/*
3023 * Print a string to the serial port trying not to disturb
3024 * any possible real use of the port...
3025 */
3026static void serial_console_write(struct console *co, const char *s,
3027 unsigned count)
3028{
3029 struct sci_port *sci_port = &sci_ports[co->index];
3030 struct uart_port *port = &sci_port->port;
3031 unsigned short bits, ctrl, ctrl_temp;
3032 unsigned long flags;
3033 int locked = 1;
3034
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003035 if (port->sysrq)
3036 locked = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02003037 else if (oops_in_progress)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003038 locked = spin_trylock_irqsave(&port->lock, flags);
3039 else
3040 spin_lock_irqsave(&port->lock, flags);
3041
3042 /* first save SCSCR then disable interrupts, keep clock source */
3043 ctrl = serial_port_in(port, SCSCR);
3044 ctrl_temp = SCSCR_RE | SCSCR_TE |
3045 (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3046 (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3047 serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3048
3049 uart_console_write(port, s, count, serial_console_putchar);
3050
3051 /* wait until fifo is empty and last bit has been transmitted */
3052 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3053 while ((serial_port_in(port, SCxSR) & bits) != bits)
3054 cpu_relax();
3055
3056 /* restore the SCSCR */
3057 serial_port_out(port, SCSCR, ctrl);
3058
3059 if (locked)
3060 spin_unlock_irqrestore(&port->lock, flags);
3061}
3062
3063static int serial_console_setup(struct console *co, char *options)
3064{
3065 struct sci_port *sci_port;
3066 struct uart_port *port;
3067 int baud = 115200;
3068 int bits = 8;
3069 int parity = 'n';
3070 int flow = 'n';
3071 int ret;
3072
3073 /*
3074 * Refuse to handle any bogus ports.
3075 */
3076 if (co->index < 0 || co->index >= SCI_NPORTS)
3077 return -ENODEV;
3078
3079 sci_port = &sci_ports[co->index];
3080 port = &sci_port->port;
3081
3082 /*
3083 * Refuse to handle uninitialized ports.
3084 */
3085 if (!port->ops)
3086 return -ENODEV;
3087
3088 ret = sci_remap_port(port);
3089 if (unlikely(ret != 0))
3090 return ret;
3091
3092 if (options)
3093 uart_parse_options(options, &baud, &parity, &bits, &flow);
3094
3095 return uart_set_options(port, co, baud, parity, bits, flow);
3096}
3097
3098static struct console serial_console = {
3099 .name = "ttySC",
3100 .device = uart_console_device,
3101 .write = serial_console_write,
3102 .setup = serial_console_setup,
3103 .flags = CON_PRINTBUFFER,
3104 .index = -1,
3105 .data = &sci_uart_driver,
3106};
3107
Olivier Deprez157378f2022-04-04 15:47:50 +02003108#ifdef CONFIG_SUPERH
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003109static struct console early_serial_console = {
3110 .name = "early_ttySC",
3111 .write = serial_console_write,
3112 .flags = CON_PRINTBUFFER,
3113 .index = -1,
3114};
3115
3116static char early_serial_buf[32];
3117
3118static int sci_probe_earlyprintk(struct platform_device *pdev)
3119{
3120 const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3121
3122 if (early_serial_console.data)
3123 return -EEXIST;
3124
3125 early_serial_console.index = pdev->id;
3126
3127 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3128
3129 serial_console_setup(&early_serial_console, early_serial_buf);
3130
3131 if (!strstr(early_serial_buf, "keep"))
3132 early_serial_console.flags |= CON_BOOT;
3133
3134 register_console(&early_serial_console);
3135 return 0;
3136}
Olivier Deprez157378f2022-04-04 15:47:50 +02003137#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003138
3139#define SCI_CONSOLE (&serial_console)
3140
3141#else
3142static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3143{
3144 return -EINVAL;
3145}
3146
3147#define SCI_CONSOLE NULL
3148
3149#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3150
3151static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3152
3153static DEFINE_MUTEX(sci_uart_registration_lock);
3154static struct uart_driver sci_uart_driver = {
3155 .owner = THIS_MODULE,
3156 .driver_name = "sci",
3157 .dev_name = "ttySC",
3158 .major = SCI_MAJOR,
3159 .minor = SCI_MINOR_START,
3160 .nr = SCI_NPORTS,
3161 .cons = SCI_CONSOLE,
3162};
3163
3164static int sci_remove(struct platform_device *dev)
3165{
3166 struct sci_port *port = platform_get_drvdata(dev);
3167 unsigned int type = port->port.type; /* uart_remove_... clears it */
3168
3169 sci_ports_in_use &= ~BIT(port->port.line);
3170 uart_remove_one_port(&sci_uart_driver, &port->port);
3171
3172 sci_cleanup_single(port);
3173
David Brazdil0f672f62019-12-10 10:32:29 +00003174 if (port->port.fifosize > 1)
3175 device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3176 if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3177 device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003178
3179 return 0;
3180}
3181
3182
3183#define SCI_OF_DATA(type, regtype) (void *)((type) << 16 | (regtype))
3184#define SCI_OF_TYPE(data) ((unsigned long)(data) >> 16)
3185#define SCI_OF_REGTYPE(data) ((unsigned long)(data) & 0xffff)
3186
3187static const struct of_device_id of_sci_match[] = {
3188 /* SoC-specific types */
3189 {
3190 .compatible = "renesas,scif-r7s72100",
3191 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3192 },
3193 {
3194 .compatible = "renesas,scif-r7s9210",
3195 .data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3196 },
3197 /* Family-specific types */
3198 {
3199 .compatible = "renesas,rcar-gen1-scif",
3200 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3201 }, {
3202 .compatible = "renesas,rcar-gen2-scif",
3203 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3204 }, {
3205 .compatible = "renesas,rcar-gen3-scif",
3206 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3207 },
3208 /* Generic types */
3209 {
3210 .compatible = "renesas,scif",
3211 .data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3212 }, {
3213 .compatible = "renesas,scifa",
3214 .data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3215 }, {
3216 .compatible = "renesas,scifb",
3217 .data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3218 }, {
3219 .compatible = "renesas,hscif",
3220 .data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3221 }, {
3222 .compatible = "renesas,sci",
3223 .data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3224 }, {
3225 /* Terminator */
3226 },
3227};
3228MODULE_DEVICE_TABLE(of, of_sci_match);
3229
3230static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3231 unsigned int *dev_id)
3232{
3233 struct device_node *np = pdev->dev.of_node;
3234 struct plat_sci_port *p;
3235 struct sci_port *sp;
3236 const void *data;
3237 int id;
3238
3239 if (!IS_ENABLED(CONFIG_OF) || !np)
3240 return NULL;
3241
3242 data = of_device_get_match_data(&pdev->dev);
3243
3244 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3245 if (!p)
3246 return NULL;
3247
3248 /* Get the line number from the aliases node. */
3249 id = of_alias_get_id(np, "serial");
3250 if (id < 0 && ~sci_ports_in_use)
3251 id = ffz(sci_ports_in_use);
3252 if (id < 0) {
3253 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3254 return NULL;
3255 }
3256 if (id >= ARRAY_SIZE(sci_ports)) {
3257 dev_err(&pdev->dev, "serial%d out of range\n", id);
3258 return NULL;
3259 }
3260
3261 sp = &sci_ports[id];
3262 *dev_id = id;
3263
3264 p->type = SCI_OF_TYPE(data);
3265 p->regtype = SCI_OF_REGTYPE(data);
3266
3267 sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3268
3269 return p;
3270}
3271
3272static int sci_probe_single(struct platform_device *dev,
3273 unsigned int index,
3274 struct plat_sci_port *p,
3275 struct sci_port *sciport)
3276{
3277 int ret;
3278
3279 /* Sanity check */
3280 if (unlikely(index >= SCI_NPORTS)) {
3281 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3282 index+1, SCI_NPORTS);
3283 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3284 return -EINVAL;
3285 }
3286 BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3287 if (sci_ports_in_use & BIT(index))
3288 return -EBUSY;
3289
3290 mutex_lock(&sci_uart_registration_lock);
3291 if (!sci_uart_driver.state) {
3292 ret = uart_register_driver(&sci_uart_driver);
3293 if (ret) {
3294 mutex_unlock(&sci_uart_registration_lock);
3295 return ret;
3296 }
3297 }
3298 mutex_unlock(&sci_uart_registration_lock);
3299
3300 ret = sci_init_single(dev, sciport, index, p, false);
3301 if (ret)
3302 return ret;
3303
3304 sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
David Brazdil0f672f62019-12-10 10:32:29 +00003305 if (IS_ERR(sciport->gpios))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003306 return PTR_ERR(sciport->gpios);
3307
3308 if (sciport->has_rtscts) {
David Brazdil0f672f62019-12-10 10:32:29 +00003309 if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3310 mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003311 dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3312 return -EINVAL;
3313 }
3314 sciport->port.flags |= UPF_HARD_FLOW;
3315 }
3316
3317 ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3318 if (ret) {
3319 sci_cleanup_single(sciport);
3320 return ret;
3321 }
3322
3323 return 0;
3324}
3325
3326static int sci_probe(struct platform_device *dev)
3327{
3328 struct plat_sci_port *p;
3329 struct sci_port *sp;
3330 unsigned int dev_id;
3331 int ret;
3332
3333 /*
3334 * If we've come here via earlyprintk initialization, head off to
3335 * the special early probe. We don't have sufficient device state
3336 * to make it beyond this yet.
3337 */
Olivier Deprez157378f2022-04-04 15:47:50 +02003338#ifdef CONFIG_SUPERH
3339 if (is_sh_early_platform_device(dev))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003340 return sci_probe_earlyprintk(dev);
Olivier Deprez157378f2022-04-04 15:47:50 +02003341#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003342
3343 if (dev->dev.of_node) {
3344 p = sci_parse_dt(dev, &dev_id);
3345 if (p == NULL)
3346 return -EINVAL;
3347 } else {
3348 p = dev->dev.platform_data;
3349 if (p == NULL) {
3350 dev_err(&dev->dev, "no platform data supplied\n");
3351 return -EINVAL;
3352 }
3353
3354 dev_id = dev->id;
3355 }
3356
3357 sp = &sci_ports[dev_id];
3358 platform_set_drvdata(dev, sp);
3359
3360 ret = sci_probe_single(dev, dev_id, p, sp);
3361 if (ret)
3362 return ret;
3363
3364 if (sp->port.fifosize > 1) {
David Brazdil0f672f62019-12-10 10:32:29 +00003365 ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003366 if (ret)
3367 return ret;
3368 }
3369 if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3370 sp->port.type == PORT_HSCIF) {
David Brazdil0f672f62019-12-10 10:32:29 +00003371 ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003372 if (ret) {
3373 if (sp->port.fifosize > 1) {
David Brazdil0f672f62019-12-10 10:32:29 +00003374 device_remove_file(&dev->dev,
3375 &dev_attr_rx_fifo_trigger);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003376 }
3377 return ret;
3378 }
3379 }
3380
3381#ifdef CONFIG_SH_STANDARD_BIOS
3382 sh_bios_gdb_detach();
3383#endif
3384
3385 sci_ports_in_use |= BIT(dev_id);
3386 return 0;
3387}
3388
3389static __maybe_unused int sci_suspend(struct device *dev)
3390{
3391 struct sci_port *sport = dev_get_drvdata(dev);
3392
3393 if (sport)
3394 uart_suspend_port(&sci_uart_driver, &sport->port);
3395
3396 return 0;
3397}
3398
3399static __maybe_unused int sci_resume(struct device *dev)
3400{
3401 struct sci_port *sport = dev_get_drvdata(dev);
3402
3403 if (sport)
3404 uart_resume_port(&sci_uart_driver, &sport->port);
3405
3406 return 0;
3407}
3408
3409static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3410
3411static struct platform_driver sci_driver = {
3412 .probe = sci_probe,
3413 .remove = sci_remove,
3414 .driver = {
3415 .name = "sh-sci",
3416 .pm = &sci_dev_pm_ops,
3417 .of_match_table = of_match_ptr(of_sci_match),
3418 },
3419};
3420
3421static int __init sci_init(void)
3422{
3423 pr_info("%s\n", banner);
3424
3425 return platform_driver_register(&sci_driver);
3426}
3427
3428static void __exit sci_exit(void)
3429{
3430 platform_driver_unregister(&sci_driver);
3431
3432 if (sci_uart_driver.state)
3433 uart_unregister_driver(&sci_uart_driver);
3434}
3435
Olivier Deprez157378f2022-04-04 15:47:50 +02003436#if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3437sh_early_platform_init_buffer("earlyprintk", &sci_driver,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003438 early_serial_buf, ARRAY_SIZE(early_serial_buf));
3439#endif
3440#ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3441static struct plat_sci_port port_cfg __initdata;
3442
3443static int __init early_console_setup(struct earlycon_device *device,
3444 int type)
3445{
3446 if (!device->port.membase)
3447 return -ENODEV;
3448
3449 device->port.serial_in = sci_serial_in;
3450 device->port.serial_out = sci_serial_out;
3451 device->port.type = type;
3452 memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3453 port_cfg.type = type;
3454 sci_ports[0].cfg = &port_cfg;
3455 sci_ports[0].params = sci_probe_regmap(&port_cfg);
3456 port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3457 sci_serial_out(&sci_ports[0].port, SCSCR,
3458 SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3459
3460 device->con->write = serial_console_write;
3461 return 0;
3462}
3463static int __init sci_early_console_setup(struct earlycon_device *device,
3464 const char *opt)
3465{
3466 return early_console_setup(device, PORT_SCI);
3467}
3468static int __init scif_early_console_setup(struct earlycon_device *device,
3469 const char *opt)
3470{
3471 return early_console_setup(device, PORT_SCIF);
3472}
David Brazdil0f672f62019-12-10 10:32:29 +00003473static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3474 const char *opt)
3475{
3476 port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3477 return early_console_setup(device, PORT_SCIF);
3478}
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003479static int __init scifa_early_console_setup(struct earlycon_device *device,
3480 const char *opt)
3481{
3482 return early_console_setup(device, PORT_SCIFA);
3483}
3484static int __init scifb_early_console_setup(struct earlycon_device *device,
3485 const char *opt)
3486{
3487 return early_console_setup(device, PORT_SCIFB);
3488}
3489static int __init hscif_early_console_setup(struct earlycon_device *device,
3490 const char *opt)
3491{
3492 return early_console_setup(device, PORT_HSCIF);
3493}
3494
3495OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3496OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
David Brazdil0f672f62019-12-10 10:32:29 +00003497OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003498OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3499OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3500OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3501#endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3502
3503module_init(sci_init);
3504module_exit(sci_exit);
3505
3506MODULE_LICENSE("GPL");
3507MODULE_ALIAS("platform:sh-sci");
3508MODULE_AUTHOR("Paul Mundt");
3509MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");