Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * TI EDMA DMA engine driver |
| 3 | * |
| 4 | * Copyright 2012 Texas Instruments |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License as |
| 8 | * published by the Free Software Foundation version 2. |
| 9 | * |
| 10 | * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| 11 | * kind, whether express or implied; without even the implied warranty |
| 12 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/dmaengine.h> |
| 17 | #include <linux/dma-mapping.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 18 | #include <linux/bitmap.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 19 | #include <linux/err.h> |
| 20 | #include <linux/init.h> |
| 21 | #include <linux/interrupt.h> |
| 22 | #include <linux/list.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/platform_device.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/spinlock.h> |
| 27 | #include <linux/of.h> |
| 28 | #include <linux/of_dma.h> |
| 29 | #include <linux/of_irq.h> |
| 30 | #include <linux/of_address.h> |
| 31 | #include <linux/of_device.h> |
| 32 | #include <linux/pm_runtime.h> |
| 33 | |
| 34 | #include <linux/platform_data/edma.h> |
| 35 | |
| 36 | #include "../dmaengine.h" |
| 37 | #include "../virt-dma.h" |
| 38 | |
| 39 | /* Offsets matching "struct edmacc_param" */ |
| 40 | #define PARM_OPT 0x00 |
| 41 | #define PARM_SRC 0x04 |
| 42 | #define PARM_A_B_CNT 0x08 |
| 43 | #define PARM_DST 0x0c |
| 44 | #define PARM_SRC_DST_BIDX 0x10 |
| 45 | #define PARM_LINK_BCNTRLD 0x14 |
| 46 | #define PARM_SRC_DST_CIDX 0x18 |
| 47 | #define PARM_CCNT 0x1c |
| 48 | |
| 49 | #define PARM_SIZE 0x20 |
| 50 | |
| 51 | /* Offsets for EDMA CC global channel registers and their shadows */ |
| 52 | #define SH_ER 0x00 /* 64 bits */ |
| 53 | #define SH_ECR 0x08 /* 64 bits */ |
| 54 | #define SH_ESR 0x10 /* 64 bits */ |
| 55 | #define SH_CER 0x18 /* 64 bits */ |
| 56 | #define SH_EER 0x20 /* 64 bits */ |
| 57 | #define SH_EECR 0x28 /* 64 bits */ |
| 58 | #define SH_EESR 0x30 /* 64 bits */ |
| 59 | #define SH_SER 0x38 /* 64 bits */ |
| 60 | #define SH_SECR 0x40 /* 64 bits */ |
| 61 | #define SH_IER 0x50 /* 64 bits */ |
| 62 | #define SH_IECR 0x58 /* 64 bits */ |
| 63 | #define SH_IESR 0x60 /* 64 bits */ |
| 64 | #define SH_IPR 0x68 /* 64 bits */ |
| 65 | #define SH_ICR 0x70 /* 64 bits */ |
| 66 | #define SH_IEVAL 0x78 |
| 67 | #define SH_QER 0x80 |
| 68 | #define SH_QEER 0x84 |
| 69 | #define SH_QEECR 0x88 |
| 70 | #define SH_QEESR 0x8c |
| 71 | #define SH_QSER 0x90 |
| 72 | #define SH_QSECR 0x94 |
| 73 | #define SH_SIZE 0x200 |
| 74 | |
| 75 | /* Offsets for EDMA CC global registers */ |
| 76 | #define EDMA_REV 0x0000 |
| 77 | #define EDMA_CCCFG 0x0004 |
| 78 | #define EDMA_QCHMAP 0x0200 /* 8 registers */ |
| 79 | #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ |
| 80 | #define EDMA_QDMAQNUM 0x0260 |
| 81 | #define EDMA_QUETCMAP 0x0280 |
| 82 | #define EDMA_QUEPRI 0x0284 |
| 83 | #define EDMA_EMR 0x0300 /* 64 bits */ |
| 84 | #define EDMA_EMCR 0x0308 /* 64 bits */ |
| 85 | #define EDMA_QEMR 0x0310 |
| 86 | #define EDMA_QEMCR 0x0314 |
| 87 | #define EDMA_CCERR 0x0318 |
| 88 | #define EDMA_CCERRCLR 0x031c |
| 89 | #define EDMA_EEVAL 0x0320 |
| 90 | #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ |
| 91 | #define EDMA_QRAE 0x0380 /* 4 registers */ |
| 92 | #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ |
| 93 | #define EDMA_QSTAT 0x0600 /* 2 registers */ |
| 94 | #define EDMA_QWMTHRA 0x0620 |
| 95 | #define EDMA_QWMTHRB 0x0624 |
| 96 | #define EDMA_CCSTAT 0x0640 |
| 97 | |
| 98 | #define EDMA_M 0x1000 /* global channel registers */ |
| 99 | #define EDMA_ECR 0x1008 |
| 100 | #define EDMA_ECRH 0x100C |
| 101 | #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ |
| 102 | #define EDMA_PARM 0x4000 /* PaRAM entries */ |
| 103 | |
| 104 | #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) |
| 105 | |
| 106 | #define EDMA_DCHMAP 0x0100 /* 64 registers */ |
| 107 | |
| 108 | /* CCCFG register */ |
| 109 | #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ |
| 110 | #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ |
| 111 | #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ |
| 112 | #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ |
| 113 | #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ |
| 114 | #define CHMAP_EXIST BIT(24) |
| 115 | |
| 116 | /* CCSTAT register */ |
| 117 | #define EDMA_CCSTAT_ACTV BIT(4) |
| 118 | |
| 119 | /* |
| 120 | * Max of 20 segments per channel to conserve PaRAM slots |
| 121 | * Also note that MAX_NR_SG should be atleast the no.of periods |
| 122 | * that are required for ASoC, otherwise DMA prep calls will |
| 123 | * fail. Today davinci-pcm is the only user of this driver and |
| 124 | * requires atleast 17 slots, so we setup the default to 20. |
| 125 | */ |
| 126 | #define MAX_NR_SG 20 |
| 127 | #define EDMA_MAX_SLOTS MAX_NR_SG |
| 128 | #define EDMA_DESCRIPTORS 16 |
| 129 | |
| 130 | #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ |
| 131 | #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ |
| 132 | #define EDMA_CONT_PARAMS_ANY 1001 |
| 133 | #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 |
| 134 | #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 |
| 135 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 136 | /* |
| 137 | * 64bit array registers are split into two 32bit registers: |
| 138 | * reg0: channel/event 0-31 |
| 139 | * reg1: channel/event 32-63 |
| 140 | * |
| 141 | * bit 5 in the channel number tells the array index (0/1) |
| 142 | * bit 0-4 (0x1f) is the bit offset within the register |
| 143 | */ |
| 144 | #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5) |
| 145 | #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f)) |
| 146 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 147 | /* PaRAM slots are laid out like this */ |
| 148 | struct edmacc_param { |
| 149 | u32 opt; |
| 150 | u32 src; |
| 151 | u32 a_b_cnt; |
| 152 | u32 dst; |
| 153 | u32 src_dst_bidx; |
| 154 | u32 link_bcntrld; |
| 155 | u32 src_dst_cidx; |
| 156 | u32 ccnt; |
| 157 | } __packed; |
| 158 | |
| 159 | /* fields in edmacc_param.opt */ |
| 160 | #define SAM BIT(0) |
| 161 | #define DAM BIT(1) |
| 162 | #define SYNCDIM BIT(2) |
| 163 | #define STATIC BIT(3) |
| 164 | #define EDMA_FWID (0x07 << 8) |
| 165 | #define TCCMODE BIT(11) |
| 166 | #define EDMA_TCC(t) ((t) << 12) |
| 167 | #define TCINTEN BIT(20) |
| 168 | #define ITCINTEN BIT(21) |
| 169 | #define TCCHEN BIT(22) |
| 170 | #define ITCCHEN BIT(23) |
| 171 | |
| 172 | struct edma_pset { |
| 173 | u32 len; |
| 174 | dma_addr_t addr; |
| 175 | struct edmacc_param param; |
| 176 | }; |
| 177 | |
| 178 | struct edma_desc { |
| 179 | struct virt_dma_desc vdesc; |
| 180 | struct list_head node; |
| 181 | enum dma_transfer_direction direction; |
| 182 | int cyclic; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 183 | bool polled; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 184 | int absync; |
| 185 | int pset_nr; |
| 186 | struct edma_chan *echan; |
| 187 | int processed; |
| 188 | |
| 189 | /* |
| 190 | * The following 4 elements are used for residue accounting. |
| 191 | * |
| 192 | * - processed_stat: the number of SG elements we have traversed |
| 193 | * so far to cover accounting. This is updated directly to processed |
| 194 | * during edma_callback and is always <= processed, because processed |
| 195 | * refers to the number of pending transfer (programmed to EDMA |
| 196 | * controller), where as processed_stat tracks number of transfers |
| 197 | * accounted for so far. |
| 198 | * |
| 199 | * - residue: The amount of bytes we have left to transfer for this desc |
| 200 | * |
| 201 | * - residue_stat: The residue in bytes of data we have covered |
| 202 | * so far for accounting. This is updated directly to residue |
| 203 | * during callbacks to keep it current. |
| 204 | * |
| 205 | * - sg_len: Tracks the length of the current intermediate transfer, |
| 206 | * this is required to update the residue during intermediate transfer |
| 207 | * completion callback. |
| 208 | */ |
| 209 | int processed_stat; |
| 210 | u32 sg_len; |
| 211 | u32 residue; |
| 212 | u32 residue_stat; |
| 213 | |
| 214 | struct edma_pset pset[0]; |
| 215 | }; |
| 216 | |
| 217 | struct edma_cc; |
| 218 | |
| 219 | struct edma_tc { |
| 220 | struct device_node *node; |
| 221 | u16 id; |
| 222 | }; |
| 223 | |
| 224 | struct edma_chan { |
| 225 | struct virt_dma_chan vchan; |
| 226 | struct list_head node; |
| 227 | struct edma_desc *edesc; |
| 228 | struct edma_cc *ecc; |
| 229 | struct edma_tc *tc; |
| 230 | int ch_num; |
| 231 | bool alloced; |
| 232 | bool hw_triggered; |
| 233 | int slot[EDMA_MAX_SLOTS]; |
| 234 | int missed; |
| 235 | struct dma_slave_config cfg; |
| 236 | }; |
| 237 | |
| 238 | struct edma_cc { |
| 239 | struct device *dev; |
| 240 | struct edma_soc_info *info; |
| 241 | void __iomem *base; |
| 242 | int id; |
| 243 | bool legacy_mode; |
| 244 | |
| 245 | /* eDMA3 resource information */ |
| 246 | unsigned num_channels; |
| 247 | unsigned num_qchannels; |
| 248 | unsigned num_region; |
| 249 | unsigned num_slots; |
| 250 | unsigned num_tc; |
| 251 | bool chmap_exist; |
| 252 | enum dma_event_q default_queue; |
| 253 | |
| 254 | unsigned int ccint; |
| 255 | unsigned int ccerrint; |
| 256 | |
| 257 | /* |
| 258 | * The slot_inuse bit for each PaRAM slot is clear unless the slot is |
| 259 | * in use by Linux or if it is allocated to be used by DSP. |
| 260 | */ |
| 261 | unsigned long *slot_inuse; |
| 262 | |
| 263 | struct dma_device dma_slave; |
| 264 | struct dma_device *dma_memcpy; |
| 265 | struct edma_chan *slave_chans; |
| 266 | struct edma_tc *tc_list; |
| 267 | int dummy_slot; |
| 268 | }; |
| 269 | |
| 270 | /* dummy param set used to (re)initialize parameter RAM slots */ |
| 271 | static const struct edmacc_param dummy_paramset = { |
| 272 | .link_bcntrld = 0xffff, |
| 273 | .ccnt = 1, |
| 274 | }; |
| 275 | |
| 276 | #define EDMA_BINDING_LEGACY 0 |
| 277 | #define EDMA_BINDING_TPCC 1 |
| 278 | static const u32 edma_binding_type[] = { |
| 279 | [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, |
| 280 | [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, |
| 281 | }; |
| 282 | |
| 283 | static const struct of_device_id edma_of_ids[] = { |
| 284 | { |
| 285 | .compatible = "ti,edma3", |
| 286 | .data = &edma_binding_type[EDMA_BINDING_LEGACY], |
| 287 | }, |
| 288 | { |
| 289 | .compatible = "ti,edma3-tpcc", |
| 290 | .data = &edma_binding_type[EDMA_BINDING_TPCC], |
| 291 | }, |
| 292 | {} |
| 293 | }; |
| 294 | MODULE_DEVICE_TABLE(of, edma_of_ids); |
| 295 | |
| 296 | static const struct of_device_id edma_tptc_of_ids[] = { |
| 297 | { .compatible = "ti,edma3-tptc", }, |
| 298 | {} |
| 299 | }; |
| 300 | MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); |
| 301 | |
| 302 | static inline unsigned int edma_read(struct edma_cc *ecc, int offset) |
| 303 | { |
| 304 | return (unsigned int)__raw_readl(ecc->base + offset); |
| 305 | } |
| 306 | |
| 307 | static inline void edma_write(struct edma_cc *ecc, int offset, int val) |
| 308 | { |
| 309 | __raw_writel(val, ecc->base + offset); |
| 310 | } |
| 311 | |
| 312 | static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, |
| 313 | unsigned or) |
| 314 | { |
| 315 | unsigned val = edma_read(ecc, offset); |
| 316 | |
| 317 | val &= and; |
| 318 | val |= or; |
| 319 | edma_write(ecc, offset, val); |
| 320 | } |
| 321 | |
| 322 | static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) |
| 323 | { |
| 324 | unsigned val = edma_read(ecc, offset); |
| 325 | |
| 326 | val &= and; |
| 327 | edma_write(ecc, offset, val); |
| 328 | } |
| 329 | |
| 330 | static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) |
| 331 | { |
| 332 | unsigned val = edma_read(ecc, offset); |
| 333 | |
| 334 | val |= or; |
| 335 | edma_write(ecc, offset, val); |
| 336 | } |
| 337 | |
| 338 | static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, |
| 339 | int i) |
| 340 | { |
| 341 | return edma_read(ecc, offset + (i << 2)); |
| 342 | } |
| 343 | |
| 344 | static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, |
| 345 | unsigned val) |
| 346 | { |
| 347 | edma_write(ecc, offset + (i << 2), val); |
| 348 | } |
| 349 | |
| 350 | static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, |
| 351 | unsigned and, unsigned or) |
| 352 | { |
| 353 | edma_modify(ecc, offset + (i << 2), and, or); |
| 354 | } |
| 355 | |
| 356 | static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, |
| 357 | unsigned or) |
| 358 | { |
| 359 | edma_or(ecc, offset + (i << 2), or); |
| 360 | } |
| 361 | |
| 362 | static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, |
| 363 | unsigned or) |
| 364 | { |
| 365 | edma_or(ecc, offset + ((i * 2 + j) << 2), or); |
| 366 | } |
| 367 | |
| 368 | static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, |
| 369 | int j, unsigned val) |
| 370 | { |
| 371 | edma_write(ecc, offset + ((i * 2 + j) << 2), val); |
| 372 | } |
| 373 | |
| 374 | static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) |
| 375 | { |
| 376 | return edma_read(ecc, EDMA_SHADOW0 + offset); |
| 377 | } |
| 378 | |
| 379 | static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, |
| 380 | int offset, int i) |
| 381 | { |
| 382 | return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); |
| 383 | } |
| 384 | |
| 385 | static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, |
| 386 | unsigned val) |
| 387 | { |
| 388 | edma_write(ecc, EDMA_SHADOW0 + offset, val); |
| 389 | } |
| 390 | |
| 391 | static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, |
| 392 | int i, unsigned val) |
| 393 | { |
| 394 | edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); |
| 395 | } |
| 396 | |
| 397 | static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, |
| 398 | int param_no) |
| 399 | { |
| 400 | return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); |
| 401 | } |
| 402 | |
| 403 | static inline void edma_param_write(struct edma_cc *ecc, int offset, |
| 404 | int param_no, unsigned val) |
| 405 | { |
| 406 | edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); |
| 407 | } |
| 408 | |
| 409 | static inline void edma_param_modify(struct edma_cc *ecc, int offset, |
| 410 | int param_no, unsigned and, unsigned or) |
| 411 | { |
| 412 | edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); |
| 413 | } |
| 414 | |
| 415 | static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, |
| 416 | unsigned and) |
| 417 | { |
| 418 | edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); |
| 419 | } |
| 420 | |
| 421 | static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, |
| 422 | unsigned or) |
| 423 | { |
| 424 | edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); |
| 425 | } |
| 426 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 427 | static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, |
| 428 | int priority) |
| 429 | { |
| 430 | int bit = queue_no * 4; |
| 431 | |
| 432 | edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); |
| 433 | } |
| 434 | |
| 435 | static void edma_set_chmap(struct edma_chan *echan, int slot) |
| 436 | { |
| 437 | struct edma_cc *ecc = echan->ecc; |
| 438 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 439 | |
| 440 | if (ecc->chmap_exist) { |
| 441 | slot = EDMA_CHAN_SLOT(slot); |
| 442 | edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | static void edma_setup_interrupt(struct edma_chan *echan, bool enable) |
| 447 | { |
| 448 | struct edma_cc *ecc = echan->ecc; |
| 449 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 450 | int idx = EDMA_REG_ARRAY_INDEX(channel); |
| 451 | int ch_bit = EDMA_CHANNEL_BIT(channel); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 452 | |
| 453 | if (enable) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 454 | edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); |
| 455 | edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 456 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 457 | edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 458 | } |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * paRAM slot management functions |
| 463 | */ |
| 464 | static void edma_write_slot(struct edma_cc *ecc, unsigned slot, |
| 465 | const struct edmacc_param *param) |
| 466 | { |
| 467 | slot = EDMA_CHAN_SLOT(slot); |
| 468 | if (slot >= ecc->num_slots) |
| 469 | return; |
| 470 | memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); |
| 471 | } |
| 472 | |
| 473 | static int edma_read_slot(struct edma_cc *ecc, unsigned slot, |
| 474 | struct edmacc_param *param) |
| 475 | { |
| 476 | slot = EDMA_CHAN_SLOT(slot); |
| 477 | if (slot >= ecc->num_slots) |
| 478 | return -EINVAL; |
| 479 | memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); |
| 480 | |
| 481 | return 0; |
| 482 | } |
| 483 | |
| 484 | /** |
| 485 | * edma_alloc_slot - allocate DMA parameter RAM |
| 486 | * @ecc: pointer to edma_cc struct |
| 487 | * @slot: specific slot to allocate; negative for "any unused slot" |
| 488 | * |
| 489 | * This allocates a parameter RAM slot, initializing it to hold a |
| 490 | * dummy transfer. Slots allocated using this routine have not been |
| 491 | * mapped to a hardware DMA channel, and will normally be used by |
| 492 | * linking to them from a slot associated with a DMA channel. |
| 493 | * |
| 494 | * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific |
| 495 | * slots may be allocated on behalf of DSP firmware. |
| 496 | * |
| 497 | * Returns the number of the slot, else negative errno. |
| 498 | */ |
| 499 | static int edma_alloc_slot(struct edma_cc *ecc, int slot) |
| 500 | { |
| 501 | if (slot >= 0) { |
| 502 | slot = EDMA_CHAN_SLOT(slot); |
| 503 | /* Requesting entry paRAM slot for a HW triggered channel. */ |
| 504 | if (ecc->chmap_exist && slot < ecc->num_channels) |
| 505 | slot = EDMA_SLOT_ANY; |
| 506 | } |
| 507 | |
| 508 | if (slot < 0) { |
| 509 | if (ecc->chmap_exist) |
| 510 | slot = 0; |
| 511 | else |
| 512 | slot = ecc->num_channels; |
| 513 | for (;;) { |
| 514 | slot = find_next_zero_bit(ecc->slot_inuse, |
| 515 | ecc->num_slots, |
| 516 | slot); |
| 517 | if (slot == ecc->num_slots) |
| 518 | return -ENOMEM; |
| 519 | if (!test_and_set_bit(slot, ecc->slot_inuse)) |
| 520 | break; |
| 521 | } |
| 522 | } else if (slot >= ecc->num_slots) { |
| 523 | return -EINVAL; |
| 524 | } else if (test_and_set_bit(slot, ecc->slot_inuse)) { |
| 525 | return -EBUSY; |
| 526 | } |
| 527 | |
| 528 | edma_write_slot(ecc, slot, &dummy_paramset); |
| 529 | |
| 530 | return EDMA_CTLR_CHAN(ecc->id, slot); |
| 531 | } |
| 532 | |
| 533 | static void edma_free_slot(struct edma_cc *ecc, unsigned slot) |
| 534 | { |
| 535 | slot = EDMA_CHAN_SLOT(slot); |
| 536 | if (slot >= ecc->num_slots) |
| 537 | return; |
| 538 | |
| 539 | edma_write_slot(ecc, slot, &dummy_paramset); |
| 540 | clear_bit(slot, ecc->slot_inuse); |
| 541 | } |
| 542 | |
| 543 | /** |
| 544 | * edma_link - link one parameter RAM slot to another |
| 545 | * @ecc: pointer to edma_cc struct |
| 546 | * @from: parameter RAM slot originating the link |
| 547 | * @to: parameter RAM slot which is the link target |
| 548 | * |
| 549 | * The originating slot should not be part of any active DMA transfer. |
| 550 | */ |
| 551 | static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) |
| 552 | { |
| 553 | if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) |
| 554 | dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); |
| 555 | |
| 556 | from = EDMA_CHAN_SLOT(from); |
| 557 | to = EDMA_CHAN_SLOT(to); |
| 558 | if (from >= ecc->num_slots || to >= ecc->num_slots) |
| 559 | return; |
| 560 | |
| 561 | edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, |
| 562 | PARM_OFFSET(to)); |
| 563 | } |
| 564 | |
| 565 | /** |
| 566 | * edma_get_position - returns the current transfer point |
| 567 | * @ecc: pointer to edma_cc struct |
| 568 | * @slot: parameter RAM slot being examined |
| 569 | * @dst: true selects the dest position, false the source |
| 570 | * |
| 571 | * Returns the position of the current active slot |
| 572 | */ |
| 573 | static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, |
| 574 | bool dst) |
| 575 | { |
| 576 | u32 offs; |
| 577 | |
| 578 | slot = EDMA_CHAN_SLOT(slot); |
| 579 | offs = PARM_OFFSET(slot); |
| 580 | offs += dst ? PARM_DST : PARM_SRC; |
| 581 | |
| 582 | return edma_read(ecc, offs); |
| 583 | } |
| 584 | |
| 585 | /* |
| 586 | * Channels with event associations will be triggered by their hardware |
| 587 | * events, and channels without such associations will be triggered by |
| 588 | * software. (At this writing there is no interface for using software |
| 589 | * triggers except with channels that don't support hardware triggers.) |
| 590 | */ |
| 591 | static void edma_start(struct edma_chan *echan) |
| 592 | { |
| 593 | struct edma_cc *ecc = echan->ecc; |
| 594 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 595 | int idx = EDMA_REG_ARRAY_INDEX(channel); |
| 596 | int ch_bit = EDMA_CHANNEL_BIT(channel); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 597 | |
| 598 | if (!echan->hw_triggered) { |
| 599 | /* EDMA channels without event association */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 600 | dev_dbg(ecc->dev, "ESR%d %08x\n", idx, |
| 601 | edma_shadow0_read_array(ecc, SH_ESR, idx)); |
| 602 | edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 603 | } else { |
| 604 | /* EDMA channel with event association */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 605 | dev_dbg(ecc->dev, "ER%d %08x\n", idx, |
| 606 | edma_shadow0_read_array(ecc, SH_ER, idx)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 607 | /* Clear any pending event or error */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 608 | edma_write_array(ecc, EDMA_ECR, idx, ch_bit); |
| 609 | edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 610 | /* Clear any SER */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 611 | edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); |
| 612 | edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit); |
| 613 | dev_dbg(ecc->dev, "EER%d %08x\n", idx, |
| 614 | edma_shadow0_read_array(ecc, SH_EER, idx)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 615 | } |
| 616 | } |
| 617 | |
| 618 | static void edma_stop(struct edma_chan *echan) |
| 619 | { |
| 620 | struct edma_cc *ecc = echan->ecc; |
| 621 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 622 | int idx = EDMA_REG_ARRAY_INDEX(channel); |
| 623 | int ch_bit = EDMA_CHANNEL_BIT(channel); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 624 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 625 | edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit); |
| 626 | edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); |
| 627 | edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); |
| 628 | edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 629 | |
| 630 | /* clear possibly pending completion interrupt */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 631 | edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 632 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 633 | dev_dbg(ecc->dev, "EER%d %08x\n", idx, |
| 634 | edma_shadow0_read_array(ecc, SH_EER, idx)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 635 | |
| 636 | /* REVISIT: consider guarding against inappropriate event |
| 637 | * chaining by overwriting with dummy_paramset. |
| 638 | */ |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | * Temporarily disable EDMA hardware events on the specified channel, |
| 643 | * preventing them from triggering new transfers |
| 644 | */ |
| 645 | static void edma_pause(struct edma_chan *echan) |
| 646 | { |
| 647 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 648 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 649 | edma_shadow0_write_array(echan->ecc, SH_EECR, |
| 650 | EDMA_REG_ARRAY_INDEX(channel), |
| 651 | EDMA_CHANNEL_BIT(channel)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 652 | } |
| 653 | |
| 654 | /* Re-enable EDMA hardware events on the specified channel. */ |
| 655 | static void edma_resume(struct edma_chan *echan) |
| 656 | { |
| 657 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 658 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 659 | edma_shadow0_write_array(echan->ecc, SH_EESR, |
| 660 | EDMA_REG_ARRAY_INDEX(channel), |
| 661 | EDMA_CHANNEL_BIT(channel)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 662 | } |
| 663 | |
| 664 | static void edma_trigger_channel(struct edma_chan *echan) |
| 665 | { |
| 666 | struct edma_cc *ecc = echan->ecc; |
| 667 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 668 | int idx = EDMA_REG_ARRAY_INDEX(channel); |
| 669 | int ch_bit = EDMA_CHANNEL_BIT(channel); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 670 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 671 | edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 672 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 673 | dev_dbg(ecc->dev, "ESR%d %08x\n", idx, |
| 674 | edma_shadow0_read_array(ecc, SH_ESR, idx)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 675 | } |
| 676 | |
| 677 | static void edma_clean_channel(struct edma_chan *echan) |
| 678 | { |
| 679 | struct edma_cc *ecc = echan->ecc; |
| 680 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 681 | int idx = EDMA_REG_ARRAY_INDEX(channel); |
| 682 | int ch_bit = EDMA_CHANNEL_BIT(channel); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 683 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 684 | dev_dbg(ecc->dev, "EMR%d %08x\n", idx, |
| 685 | edma_read_array(ecc, EDMA_EMR, idx)); |
| 686 | edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 687 | /* Clear the corresponding EMR bits */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 688 | edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 689 | /* Clear any SER */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 690 | edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 691 | edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); |
| 692 | } |
| 693 | |
| 694 | /* Move channel to a specific event queue */ |
| 695 | static void edma_assign_channel_eventq(struct edma_chan *echan, |
| 696 | enum dma_event_q eventq_no) |
| 697 | { |
| 698 | struct edma_cc *ecc = echan->ecc; |
| 699 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 700 | int bit = (channel & 0x7) * 4; |
| 701 | |
| 702 | /* default to low priority queue */ |
| 703 | if (eventq_no == EVENTQ_DEFAULT) |
| 704 | eventq_no = ecc->default_queue; |
| 705 | if (eventq_no >= ecc->num_tc) |
| 706 | return; |
| 707 | |
| 708 | eventq_no &= 7; |
| 709 | edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), |
| 710 | eventq_no << bit); |
| 711 | } |
| 712 | |
| 713 | static int edma_alloc_channel(struct edma_chan *echan, |
| 714 | enum dma_event_q eventq_no) |
| 715 | { |
| 716 | struct edma_cc *ecc = echan->ecc; |
| 717 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 718 | |
| 719 | /* ensure access through shadow region 0 */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 720 | edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel), |
| 721 | EDMA_CHANNEL_BIT(channel)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 722 | |
| 723 | /* ensure no events are pending */ |
| 724 | edma_stop(echan); |
| 725 | |
| 726 | edma_setup_interrupt(echan, true); |
| 727 | |
| 728 | edma_assign_channel_eventq(echan, eventq_no); |
| 729 | |
| 730 | return 0; |
| 731 | } |
| 732 | |
| 733 | static void edma_free_channel(struct edma_chan *echan) |
| 734 | { |
| 735 | /* ensure no events are pending */ |
| 736 | edma_stop(echan); |
| 737 | /* REVISIT should probably take out of shadow region 0 */ |
| 738 | edma_setup_interrupt(echan, false); |
| 739 | } |
| 740 | |
| 741 | static inline struct edma_cc *to_edma_cc(struct dma_device *d) |
| 742 | { |
| 743 | return container_of(d, struct edma_cc, dma_slave); |
| 744 | } |
| 745 | |
| 746 | static inline struct edma_chan *to_edma_chan(struct dma_chan *c) |
| 747 | { |
| 748 | return container_of(c, struct edma_chan, vchan.chan); |
| 749 | } |
| 750 | |
| 751 | static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) |
| 752 | { |
| 753 | return container_of(tx, struct edma_desc, vdesc.tx); |
| 754 | } |
| 755 | |
| 756 | static void edma_desc_free(struct virt_dma_desc *vdesc) |
| 757 | { |
| 758 | kfree(container_of(vdesc, struct edma_desc, vdesc)); |
| 759 | } |
| 760 | |
| 761 | /* Dispatch a queued descriptor to the controller (caller holds lock) */ |
| 762 | static void edma_execute(struct edma_chan *echan) |
| 763 | { |
| 764 | struct edma_cc *ecc = echan->ecc; |
| 765 | struct virt_dma_desc *vdesc; |
| 766 | struct edma_desc *edesc; |
| 767 | struct device *dev = echan->vchan.chan.device->dev; |
| 768 | int i, j, left, nslots; |
| 769 | |
| 770 | if (!echan->edesc) { |
| 771 | /* Setup is needed for the first transfer */ |
| 772 | vdesc = vchan_next_desc(&echan->vchan); |
| 773 | if (!vdesc) |
| 774 | return; |
| 775 | list_del(&vdesc->node); |
| 776 | echan->edesc = to_edma_desc(&vdesc->tx); |
| 777 | } |
| 778 | |
| 779 | edesc = echan->edesc; |
| 780 | |
| 781 | /* Find out how many left */ |
| 782 | left = edesc->pset_nr - edesc->processed; |
| 783 | nslots = min(MAX_NR_SG, left); |
| 784 | edesc->sg_len = 0; |
| 785 | |
| 786 | /* Write descriptor PaRAM set(s) */ |
| 787 | for (i = 0; i < nslots; i++) { |
| 788 | j = i + edesc->processed; |
| 789 | edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); |
| 790 | edesc->sg_len += edesc->pset[j].len; |
| 791 | dev_vdbg(dev, |
| 792 | "\n pset[%d]:\n" |
| 793 | " chnum\t%d\n" |
| 794 | " slot\t%d\n" |
| 795 | " opt\t%08x\n" |
| 796 | " src\t%08x\n" |
| 797 | " dst\t%08x\n" |
| 798 | " abcnt\t%08x\n" |
| 799 | " ccnt\t%08x\n" |
| 800 | " bidx\t%08x\n" |
| 801 | " cidx\t%08x\n" |
| 802 | " lkrld\t%08x\n", |
| 803 | j, echan->ch_num, echan->slot[i], |
| 804 | edesc->pset[j].param.opt, |
| 805 | edesc->pset[j].param.src, |
| 806 | edesc->pset[j].param.dst, |
| 807 | edesc->pset[j].param.a_b_cnt, |
| 808 | edesc->pset[j].param.ccnt, |
| 809 | edesc->pset[j].param.src_dst_bidx, |
| 810 | edesc->pset[j].param.src_dst_cidx, |
| 811 | edesc->pset[j].param.link_bcntrld); |
| 812 | /* Link to the previous slot if not the last set */ |
| 813 | if (i != (nslots - 1)) |
| 814 | edma_link(ecc, echan->slot[i], echan->slot[i + 1]); |
| 815 | } |
| 816 | |
| 817 | edesc->processed += nslots; |
| 818 | |
| 819 | /* |
| 820 | * If this is either the last set in a set of SG-list transactions |
| 821 | * then setup a link to the dummy slot, this results in all future |
| 822 | * events being absorbed and that's OK because we're done |
| 823 | */ |
| 824 | if (edesc->processed == edesc->pset_nr) { |
| 825 | if (edesc->cyclic) |
| 826 | edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); |
| 827 | else |
| 828 | edma_link(ecc, echan->slot[nslots - 1], |
| 829 | echan->ecc->dummy_slot); |
| 830 | } |
| 831 | |
| 832 | if (echan->missed) { |
| 833 | /* |
| 834 | * This happens due to setup times between intermediate |
| 835 | * transfers in long SG lists which have to be broken up into |
| 836 | * transfers of MAX_NR_SG |
| 837 | */ |
| 838 | dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); |
| 839 | edma_clean_channel(echan); |
| 840 | edma_stop(echan); |
| 841 | edma_start(echan); |
| 842 | edma_trigger_channel(echan); |
| 843 | echan->missed = 0; |
| 844 | } else if (edesc->processed <= MAX_NR_SG) { |
| 845 | dev_dbg(dev, "first transfer starting on channel %d\n", |
| 846 | echan->ch_num); |
| 847 | edma_start(echan); |
| 848 | } else { |
| 849 | dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", |
| 850 | echan->ch_num, edesc->processed); |
| 851 | edma_resume(echan); |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | static int edma_terminate_all(struct dma_chan *chan) |
| 856 | { |
| 857 | struct edma_chan *echan = to_edma_chan(chan); |
| 858 | unsigned long flags; |
| 859 | LIST_HEAD(head); |
| 860 | |
| 861 | spin_lock_irqsave(&echan->vchan.lock, flags); |
| 862 | |
| 863 | /* |
| 864 | * Stop DMA activity: we assume the callback will not be called |
| 865 | * after edma_dma() returns (even if it does, it will see |
| 866 | * echan->edesc is NULL and exit.) |
| 867 | */ |
| 868 | if (echan->edesc) { |
| 869 | edma_stop(echan); |
| 870 | /* Move the cyclic channel back to default queue */ |
| 871 | if (!echan->tc && echan->edesc->cyclic) |
| 872 | edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); |
| 873 | |
| 874 | vchan_terminate_vdesc(&echan->edesc->vdesc); |
| 875 | echan->edesc = NULL; |
| 876 | } |
| 877 | |
| 878 | vchan_get_all_descriptors(&echan->vchan, &head); |
| 879 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 880 | vchan_dma_desc_free_list(&echan->vchan, &head); |
| 881 | |
| 882 | return 0; |
| 883 | } |
| 884 | |
| 885 | static void edma_synchronize(struct dma_chan *chan) |
| 886 | { |
| 887 | struct edma_chan *echan = to_edma_chan(chan); |
| 888 | |
| 889 | vchan_synchronize(&echan->vchan); |
| 890 | } |
| 891 | |
| 892 | static int edma_slave_config(struct dma_chan *chan, |
| 893 | struct dma_slave_config *cfg) |
| 894 | { |
| 895 | struct edma_chan *echan = to_edma_chan(chan); |
| 896 | |
| 897 | if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || |
| 898 | cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) |
| 899 | return -EINVAL; |
| 900 | |
| 901 | if (cfg->src_maxburst > chan->device->max_burst || |
| 902 | cfg->dst_maxburst > chan->device->max_burst) |
| 903 | return -EINVAL; |
| 904 | |
| 905 | memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); |
| 906 | |
| 907 | return 0; |
| 908 | } |
| 909 | |
| 910 | static int edma_dma_pause(struct dma_chan *chan) |
| 911 | { |
| 912 | struct edma_chan *echan = to_edma_chan(chan); |
| 913 | |
| 914 | if (!echan->edesc) |
| 915 | return -EINVAL; |
| 916 | |
| 917 | edma_pause(echan); |
| 918 | return 0; |
| 919 | } |
| 920 | |
| 921 | static int edma_dma_resume(struct dma_chan *chan) |
| 922 | { |
| 923 | struct edma_chan *echan = to_edma_chan(chan); |
| 924 | |
| 925 | edma_resume(echan); |
| 926 | return 0; |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * A PaRAM set configuration abstraction used by other modes |
| 931 | * @chan: Channel who's PaRAM set we're configuring |
| 932 | * @pset: PaRAM set to initialize and setup. |
| 933 | * @src_addr: Source address of the DMA |
| 934 | * @dst_addr: Destination address of the DMA |
| 935 | * @burst: In units of dev_width, how much to send |
| 936 | * @dev_width: How much is the dev_width |
| 937 | * @dma_length: Total length of the DMA transfer |
| 938 | * @direction: Direction of the transfer |
| 939 | */ |
| 940 | static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, |
| 941 | dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, |
| 942 | unsigned int acnt, unsigned int dma_length, |
| 943 | enum dma_transfer_direction direction) |
| 944 | { |
| 945 | struct edma_chan *echan = to_edma_chan(chan); |
| 946 | struct device *dev = chan->device->dev; |
| 947 | struct edmacc_param *param = &epset->param; |
| 948 | int bcnt, ccnt, cidx; |
| 949 | int src_bidx, dst_bidx, src_cidx, dst_cidx; |
| 950 | int absync; |
| 951 | |
| 952 | /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ |
| 953 | if (!burst) |
| 954 | burst = 1; |
| 955 | /* |
| 956 | * If the maxburst is equal to the fifo width, use |
| 957 | * A-synced transfers. This allows for large contiguous |
| 958 | * buffer transfers using only one PaRAM set. |
| 959 | */ |
| 960 | if (burst == 1) { |
| 961 | /* |
| 962 | * For the A-sync case, bcnt and ccnt are the remainder |
| 963 | * and quotient respectively of the division of: |
| 964 | * (dma_length / acnt) by (SZ_64K -1). This is so |
| 965 | * that in case bcnt over flows, we have ccnt to use. |
| 966 | * Note: In A-sync tranfer only, bcntrld is used, but it |
| 967 | * only applies for sg_dma_len(sg) >= SZ_64K. |
| 968 | * In this case, the best way adopted is- bccnt for the |
| 969 | * first frame will be the remainder below. Then for |
| 970 | * every successive frame, bcnt will be SZ_64K-1. This |
| 971 | * is assured as bcntrld = 0xffff in end of function. |
| 972 | */ |
| 973 | absync = false; |
| 974 | ccnt = dma_length / acnt / (SZ_64K - 1); |
| 975 | bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); |
| 976 | /* |
| 977 | * If bcnt is non-zero, we have a remainder and hence an |
| 978 | * extra frame to transfer, so increment ccnt. |
| 979 | */ |
| 980 | if (bcnt) |
| 981 | ccnt++; |
| 982 | else |
| 983 | bcnt = SZ_64K - 1; |
| 984 | cidx = acnt; |
| 985 | } else { |
| 986 | /* |
| 987 | * If maxburst is greater than the fifo address_width, |
| 988 | * use AB-synced transfers where A count is the fifo |
| 989 | * address_width and B count is the maxburst. In this |
| 990 | * case, we are limited to transfers of C count frames |
| 991 | * of (address_width * maxburst) where C count is limited |
| 992 | * to SZ_64K-1. This places an upper bound on the length |
| 993 | * of an SG segment that can be handled. |
| 994 | */ |
| 995 | absync = true; |
| 996 | bcnt = burst; |
| 997 | ccnt = dma_length / (acnt * bcnt); |
| 998 | if (ccnt > (SZ_64K - 1)) { |
| 999 | dev_err(dev, "Exceeded max SG segment size\n"); |
| 1000 | return -EINVAL; |
| 1001 | } |
| 1002 | cidx = acnt * bcnt; |
| 1003 | } |
| 1004 | |
| 1005 | epset->len = dma_length; |
| 1006 | |
| 1007 | if (direction == DMA_MEM_TO_DEV) { |
| 1008 | src_bidx = acnt; |
| 1009 | src_cidx = cidx; |
| 1010 | dst_bidx = 0; |
| 1011 | dst_cidx = 0; |
| 1012 | epset->addr = src_addr; |
| 1013 | } else if (direction == DMA_DEV_TO_MEM) { |
| 1014 | src_bidx = 0; |
| 1015 | src_cidx = 0; |
| 1016 | dst_bidx = acnt; |
| 1017 | dst_cidx = cidx; |
| 1018 | epset->addr = dst_addr; |
| 1019 | } else if (direction == DMA_MEM_TO_MEM) { |
| 1020 | src_bidx = acnt; |
| 1021 | src_cidx = cidx; |
| 1022 | dst_bidx = acnt; |
| 1023 | dst_cidx = cidx; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1024 | epset->addr = src_addr; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1025 | } else { |
| 1026 | dev_err(dev, "%s: direction not implemented yet\n", __func__); |
| 1027 | return -EINVAL; |
| 1028 | } |
| 1029 | |
| 1030 | param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); |
| 1031 | /* Configure A or AB synchronized transfers */ |
| 1032 | if (absync) |
| 1033 | param->opt |= SYNCDIM; |
| 1034 | |
| 1035 | param->src = src_addr; |
| 1036 | param->dst = dst_addr; |
| 1037 | |
| 1038 | param->src_dst_bidx = (dst_bidx << 16) | src_bidx; |
| 1039 | param->src_dst_cidx = (dst_cidx << 16) | src_cidx; |
| 1040 | |
| 1041 | param->a_b_cnt = bcnt << 16 | acnt; |
| 1042 | param->ccnt = ccnt; |
| 1043 | /* |
| 1044 | * Only time when (bcntrld) auto reload is required is for |
| 1045 | * A-sync case, and in this case, a requirement of reload value |
| 1046 | * of SZ_64K-1 only is assured. 'link' is initially set to NULL |
| 1047 | * and then later will be populated by edma_execute. |
| 1048 | */ |
| 1049 | param->link_bcntrld = 0xffffffff; |
| 1050 | return absync; |
| 1051 | } |
| 1052 | |
| 1053 | static struct dma_async_tx_descriptor *edma_prep_slave_sg( |
| 1054 | struct dma_chan *chan, struct scatterlist *sgl, |
| 1055 | unsigned int sg_len, enum dma_transfer_direction direction, |
| 1056 | unsigned long tx_flags, void *context) |
| 1057 | { |
| 1058 | struct edma_chan *echan = to_edma_chan(chan); |
| 1059 | struct device *dev = chan->device->dev; |
| 1060 | struct edma_desc *edesc; |
| 1061 | dma_addr_t src_addr = 0, dst_addr = 0; |
| 1062 | enum dma_slave_buswidth dev_width; |
| 1063 | u32 burst; |
| 1064 | struct scatterlist *sg; |
| 1065 | int i, nslots, ret; |
| 1066 | |
| 1067 | if (unlikely(!echan || !sgl || !sg_len)) |
| 1068 | return NULL; |
| 1069 | |
| 1070 | if (direction == DMA_DEV_TO_MEM) { |
| 1071 | src_addr = echan->cfg.src_addr; |
| 1072 | dev_width = echan->cfg.src_addr_width; |
| 1073 | burst = echan->cfg.src_maxburst; |
| 1074 | } else if (direction == DMA_MEM_TO_DEV) { |
| 1075 | dst_addr = echan->cfg.dst_addr; |
| 1076 | dev_width = echan->cfg.dst_addr_width; |
| 1077 | burst = echan->cfg.dst_maxburst; |
| 1078 | } else { |
| 1079 | dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
| 1080 | return NULL; |
| 1081 | } |
| 1082 | |
| 1083 | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| 1084 | dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
| 1085 | return NULL; |
| 1086 | } |
| 1087 | |
| 1088 | edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); |
| 1089 | if (!edesc) |
| 1090 | return NULL; |
| 1091 | |
| 1092 | edesc->pset_nr = sg_len; |
| 1093 | edesc->residue = 0; |
| 1094 | edesc->direction = direction; |
| 1095 | edesc->echan = echan; |
| 1096 | |
| 1097 | /* Allocate a PaRAM slot, if needed */ |
| 1098 | nslots = min_t(unsigned, MAX_NR_SG, sg_len); |
| 1099 | |
| 1100 | for (i = 0; i < nslots; i++) { |
| 1101 | if (echan->slot[i] < 0) { |
| 1102 | echan->slot[i] = |
| 1103 | edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); |
| 1104 | if (echan->slot[i] < 0) { |
| 1105 | kfree(edesc); |
| 1106 | dev_err(dev, "%s: Failed to allocate slot\n", |
| 1107 | __func__); |
| 1108 | return NULL; |
| 1109 | } |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | /* Configure PaRAM sets for each SG */ |
| 1114 | for_each_sg(sgl, sg, sg_len, i) { |
| 1115 | /* Get address for each SG */ |
| 1116 | if (direction == DMA_DEV_TO_MEM) |
| 1117 | dst_addr = sg_dma_address(sg); |
| 1118 | else |
| 1119 | src_addr = sg_dma_address(sg); |
| 1120 | |
| 1121 | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, |
| 1122 | dst_addr, burst, dev_width, |
| 1123 | sg_dma_len(sg), direction); |
| 1124 | if (ret < 0) { |
| 1125 | kfree(edesc); |
| 1126 | return NULL; |
| 1127 | } |
| 1128 | |
| 1129 | edesc->absync = ret; |
| 1130 | edesc->residue += sg_dma_len(sg); |
| 1131 | |
| 1132 | if (i == sg_len - 1) |
| 1133 | /* Enable completion interrupt */ |
| 1134 | edesc->pset[i].param.opt |= TCINTEN; |
| 1135 | else if (!((i+1) % MAX_NR_SG)) |
| 1136 | /* |
| 1137 | * Enable early completion interrupt for the |
| 1138 | * intermediateset. In this case the driver will be |
| 1139 | * notified when the paRAM set is submitted to TC. This |
| 1140 | * will allow more time to set up the next set of slots. |
| 1141 | */ |
| 1142 | edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); |
| 1143 | } |
| 1144 | edesc->residue_stat = edesc->residue; |
| 1145 | |
| 1146 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| 1147 | } |
| 1148 | |
| 1149 | static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( |
| 1150 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| 1151 | size_t len, unsigned long tx_flags) |
| 1152 | { |
| 1153 | int ret, nslots; |
| 1154 | struct edma_desc *edesc; |
| 1155 | struct device *dev = chan->device->dev; |
| 1156 | struct edma_chan *echan = to_edma_chan(chan); |
| 1157 | unsigned int width, pset_len, array_size; |
| 1158 | |
| 1159 | if (unlikely(!echan || !len)) |
| 1160 | return NULL; |
| 1161 | |
| 1162 | /* Align the array size (acnt block) with the transfer properties */ |
| 1163 | switch (__ffs((src | dest | len))) { |
| 1164 | case 0: |
| 1165 | array_size = SZ_32K - 1; |
| 1166 | break; |
| 1167 | case 1: |
| 1168 | array_size = SZ_32K - 2; |
| 1169 | break; |
| 1170 | default: |
| 1171 | array_size = SZ_32K - 4; |
| 1172 | break; |
| 1173 | } |
| 1174 | |
| 1175 | if (len < SZ_64K) { |
| 1176 | /* |
| 1177 | * Transfer size less than 64K can be handled with one paRAM |
| 1178 | * slot and with one burst. |
| 1179 | * ACNT = length |
| 1180 | */ |
| 1181 | width = len; |
| 1182 | pset_len = len; |
| 1183 | nslots = 1; |
| 1184 | } else { |
| 1185 | /* |
| 1186 | * Transfer size bigger than 64K will be handled with maximum of |
| 1187 | * two paRAM slots. |
| 1188 | * slot1: (full_length / 32767) times 32767 bytes bursts. |
| 1189 | * ACNT = 32767, length1: (full_length / 32767) * 32767 |
| 1190 | * slot2: the remaining amount of data after slot1. |
| 1191 | * ACNT = full_length - length1, length2 = ACNT |
| 1192 | * |
| 1193 | * When the full_length is multibple of 32767 one slot can be |
| 1194 | * used to complete the transfer. |
| 1195 | */ |
| 1196 | width = array_size; |
| 1197 | pset_len = rounddown(len, width); |
| 1198 | /* One slot is enough for lengths multiple of (SZ_32K -1) */ |
| 1199 | if (unlikely(pset_len == len)) |
| 1200 | nslots = 1; |
| 1201 | else |
| 1202 | nslots = 2; |
| 1203 | } |
| 1204 | |
| 1205 | edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); |
| 1206 | if (!edesc) |
| 1207 | return NULL; |
| 1208 | |
| 1209 | edesc->pset_nr = nslots; |
| 1210 | edesc->residue = edesc->residue_stat = len; |
| 1211 | edesc->direction = DMA_MEM_TO_MEM; |
| 1212 | edesc->echan = echan; |
| 1213 | |
| 1214 | ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, |
| 1215 | width, pset_len, DMA_MEM_TO_MEM); |
| 1216 | if (ret < 0) { |
| 1217 | kfree(edesc); |
| 1218 | return NULL; |
| 1219 | } |
| 1220 | |
| 1221 | edesc->absync = ret; |
| 1222 | |
| 1223 | edesc->pset[0].param.opt |= ITCCHEN; |
| 1224 | if (nslots == 1) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1225 | /* Enable transfer complete interrupt if requested */ |
| 1226 | if (tx_flags & DMA_PREP_INTERRUPT) |
| 1227 | edesc->pset[0].param.opt |= TCINTEN; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1228 | } else { |
| 1229 | /* Enable transfer complete chaining for the first slot */ |
| 1230 | edesc->pset[0].param.opt |= TCCHEN; |
| 1231 | |
| 1232 | if (echan->slot[1] < 0) { |
| 1233 | echan->slot[1] = edma_alloc_slot(echan->ecc, |
| 1234 | EDMA_SLOT_ANY); |
| 1235 | if (echan->slot[1] < 0) { |
| 1236 | kfree(edesc); |
| 1237 | dev_err(dev, "%s: Failed to allocate slot\n", |
| 1238 | __func__); |
| 1239 | return NULL; |
| 1240 | } |
| 1241 | } |
| 1242 | dest += pset_len; |
| 1243 | src += pset_len; |
| 1244 | pset_len = width = len % array_size; |
| 1245 | |
| 1246 | ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, |
| 1247 | width, pset_len, DMA_MEM_TO_MEM); |
| 1248 | if (ret < 0) { |
| 1249 | kfree(edesc); |
| 1250 | return NULL; |
| 1251 | } |
| 1252 | |
| 1253 | edesc->pset[1].param.opt |= ITCCHEN; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1254 | /* Enable transfer complete interrupt if requested */ |
| 1255 | if (tx_flags & DMA_PREP_INTERRUPT) |
| 1256 | edesc->pset[1].param.opt |= TCINTEN; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1257 | } |
| 1258 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1259 | if (!(tx_flags & DMA_PREP_INTERRUPT)) |
| 1260 | edesc->polled = true; |
| 1261 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1262 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| 1263 | } |
| 1264 | |
| 1265 | static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( |
| 1266 | struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
| 1267 | size_t period_len, enum dma_transfer_direction direction, |
| 1268 | unsigned long tx_flags) |
| 1269 | { |
| 1270 | struct edma_chan *echan = to_edma_chan(chan); |
| 1271 | struct device *dev = chan->device->dev; |
| 1272 | struct edma_desc *edesc; |
| 1273 | dma_addr_t src_addr, dst_addr; |
| 1274 | enum dma_slave_buswidth dev_width; |
| 1275 | bool use_intermediate = false; |
| 1276 | u32 burst; |
| 1277 | int i, ret, nslots; |
| 1278 | |
| 1279 | if (unlikely(!echan || !buf_len || !period_len)) |
| 1280 | return NULL; |
| 1281 | |
| 1282 | if (direction == DMA_DEV_TO_MEM) { |
| 1283 | src_addr = echan->cfg.src_addr; |
| 1284 | dst_addr = buf_addr; |
| 1285 | dev_width = echan->cfg.src_addr_width; |
| 1286 | burst = echan->cfg.src_maxburst; |
| 1287 | } else if (direction == DMA_MEM_TO_DEV) { |
| 1288 | src_addr = buf_addr; |
| 1289 | dst_addr = echan->cfg.dst_addr; |
| 1290 | dev_width = echan->cfg.dst_addr_width; |
| 1291 | burst = echan->cfg.dst_maxburst; |
| 1292 | } else { |
| 1293 | dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
| 1294 | return NULL; |
| 1295 | } |
| 1296 | |
| 1297 | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| 1298 | dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
| 1299 | return NULL; |
| 1300 | } |
| 1301 | |
| 1302 | if (unlikely(buf_len % period_len)) { |
| 1303 | dev_err(dev, "Period should be multiple of Buffer length\n"); |
| 1304 | return NULL; |
| 1305 | } |
| 1306 | |
| 1307 | nslots = (buf_len / period_len) + 1; |
| 1308 | |
| 1309 | /* |
| 1310 | * Cyclic DMA users such as audio cannot tolerate delays introduced |
| 1311 | * by cases where the number of periods is more than the maximum |
| 1312 | * number of SGs the EDMA driver can handle at a time. For DMA types |
| 1313 | * such as Slave SGs, such delays are tolerable and synchronized, |
| 1314 | * but the synchronization is difficult to achieve with Cyclic and |
| 1315 | * cannot be guaranteed, so we error out early. |
| 1316 | */ |
| 1317 | if (nslots > MAX_NR_SG) { |
| 1318 | /* |
| 1319 | * If the burst and period sizes are the same, we can put |
| 1320 | * the full buffer into a single period and activate |
| 1321 | * intermediate interrupts. This will produce interrupts |
| 1322 | * after each burst, which is also after each desired period. |
| 1323 | */ |
| 1324 | if (burst == period_len) { |
| 1325 | period_len = buf_len; |
| 1326 | nslots = 2; |
| 1327 | use_intermediate = true; |
| 1328 | } else { |
| 1329 | return NULL; |
| 1330 | } |
| 1331 | } |
| 1332 | |
| 1333 | edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); |
| 1334 | if (!edesc) |
| 1335 | return NULL; |
| 1336 | |
| 1337 | edesc->cyclic = 1; |
| 1338 | edesc->pset_nr = nslots; |
| 1339 | edesc->residue = edesc->residue_stat = buf_len; |
| 1340 | edesc->direction = direction; |
| 1341 | edesc->echan = echan; |
| 1342 | |
| 1343 | dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", |
| 1344 | __func__, echan->ch_num, nslots, period_len, buf_len); |
| 1345 | |
| 1346 | for (i = 0; i < nslots; i++) { |
| 1347 | /* Allocate a PaRAM slot, if needed */ |
| 1348 | if (echan->slot[i] < 0) { |
| 1349 | echan->slot[i] = |
| 1350 | edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); |
| 1351 | if (echan->slot[i] < 0) { |
| 1352 | kfree(edesc); |
| 1353 | dev_err(dev, "%s: Failed to allocate slot\n", |
| 1354 | __func__); |
| 1355 | return NULL; |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | if (i == nslots - 1) { |
| 1360 | memcpy(&edesc->pset[i], &edesc->pset[0], |
| 1361 | sizeof(edesc->pset[0])); |
| 1362 | break; |
| 1363 | } |
| 1364 | |
| 1365 | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, |
| 1366 | dst_addr, burst, dev_width, period_len, |
| 1367 | direction); |
| 1368 | if (ret < 0) { |
| 1369 | kfree(edesc); |
| 1370 | return NULL; |
| 1371 | } |
| 1372 | |
| 1373 | if (direction == DMA_DEV_TO_MEM) |
| 1374 | dst_addr += period_len; |
| 1375 | else |
| 1376 | src_addr += period_len; |
| 1377 | |
| 1378 | dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); |
| 1379 | dev_vdbg(dev, |
| 1380 | "\n pset[%d]:\n" |
| 1381 | " chnum\t%d\n" |
| 1382 | " slot\t%d\n" |
| 1383 | " opt\t%08x\n" |
| 1384 | " src\t%08x\n" |
| 1385 | " dst\t%08x\n" |
| 1386 | " abcnt\t%08x\n" |
| 1387 | " ccnt\t%08x\n" |
| 1388 | " bidx\t%08x\n" |
| 1389 | " cidx\t%08x\n" |
| 1390 | " lkrld\t%08x\n", |
| 1391 | i, echan->ch_num, echan->slot[i], |
| 1392 | edesc->pset[i].param.opt, |
| 1393 | edesc->pset[i].param.src, |
| 1394 | edesc->pset[i].param.dst, |
| 1395 | edesc->pset[i].param.a_b_cnt, |
| 1396 | edesc->pset[i].param.ccnt, |
| 1397 | edesc->pset[i].param.src_dst_bidx, |
| 1398 | edesc->pset[i].param.src_dst_cidx, |
| 1399 | edesc->pset[i].param.link_bcntrld); |
| 1400 | |
| 1401 | edesc->absync = ret; |
| 1402 | |
| 1403 | /* |
| 1404 | * Enable period interrupt only if it is requested |
| 1405 | */ |
| 1406 | if (tx_flags & DMA_PREP_INTERRUPT) { |
| 1407 | edesc->pset[i].param.opt |= TCINTEN; |
| 1408 | |
| 1409 | /* Also enable intermediate interrupts if necessary */ |
| 1410 | if (use_intermediate) |
| 1411 | edesc->pset[i].param.opt |= ITCINTEN; |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | /* Place the cyclic channel to highest priority queue */ |
| 1416 | if (!echan->tc) |
| 1417 | edma_assign_channel_eventq(echan, EVENTQ_0); |
| 1418 | |
| 1419 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| 1420 | } |
| 1421 | |
| 1422 | static void edma_completion_handler(struct edma_chan *echan) |
| 1423 | { |
| 1424 | struct device *dev = echan->vchan.chan.device->dev; |
| 1425 | struct edma_desc *edesc; |
| 1426 | |
| 1427 | spin_lock(&echan->vchan.lock); |
| 1428 | edesc = echan->edesc; |
| 1429 | if (edesc) { |
| 1430 | if (edesc->cyclic) { |
| 1431 | vchan_cyclic_callback(&edesc->vdesc); |
| 1432 | spin_unlock(&echan->vchan.lock); |
| 1433 | return; |
| 1434 | } else if (edesc->processed == edesc->pset_nr) { |
| 1435 | edesc->residue = 0; |
| 1436 | edma_stop(echan); |
| 1437 | vchan_cookie_complete(&edesc->vdesc); |
| 1438 | echan->edesc = NULL; |
| 1439 | |
| 1440 | dev_dbg(dev, "Transfer completed on channel %d\n", |
| 1441 | echan->ch_num); |
| 1442 | } else { |
| 1443 | dev_dbg(dev, "Sub transfer completed on channel %d\n", |
| 1444 | echan->ch_num); |
| 1445 | |
| 1446 | edma_pause(echan); |
| 1447 | |
| 1448 | /* Update statistics for tx_status */ |
| 1449 | edesc->residue -= edesc->sg_len; |
| 1450 | edesc->residue_stat = edesc->residue; |
| 1451 | edesc->processed_stat = edesc->processed; |
| 1452 | } |
| 1453 | edma_execute(echan); |
| 1454 | } |
| 1455 | |
| 1456 | spin_unlock(&echan->vchan.lock); |
| 1457 | } |
| 1458 | |
| 1459 | /* eDMA interrupt handler */ |
| 1460 | static irqreturn_t dma_irq_handler(int irq, void *data) |
| 1461 | { |
| 1462 | struct edma_cc *ecc = data; |
| 1463 | int ctlr; |
| 1464 | u32 sh_ier; |
| 1465 | u32 sh_ipr; |
| 1466 | u32 bank; |
| 1467 | |
| 1468 | ctlr = ecc->id; |
| 1469 | if (ctlr < 0) |
| 1470 | return IRQ_NONE; |
| 1471 | |
| 1472 | dev_vdbg(ecc->dev, "dma_irq_handler\n"); |
| 1473 | |
| 1474 | sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); |
| 1475 | if (!sh_ipr) { |
| 1476 | sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); |
| 1477 | if (!sh_ipr) |
| 1478 | return IRQ_NONE; |
| 1479 | sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); |
| 1480 | bank = 1; |
| 1481 | } else { |
| 1482 | sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); |
| 1483 | bank = 0; |
| 1484 | } |
| 1485 | |
| 1486 | do { |
| 1487 | u32 slot; |
| 1488 | u32 channel; |
| 1489 | |
| 1490 | slot = __ffs(sh_ipr); |
| 1491 | sh_ipr &= ~(BIT(slot)); |
| 1492 | |
| 1493 | if (sh_ier & BIT(slot)) { |
| 1494 | channel = (bank << 5) | slot; |
| 1495 | /* Clear the corresponding IPR bits */ |
| 1496 | edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); |
| 1497 | edma_completion_handler(&ecc->slave_chans[channel]); |
| 1498 | } |
| 1499 | } while (sh_ipr); |
| 1500 | |
| 1501 | edma_shadow0_write(ecc, SH_IEVAL, 1); |
| 1502 | return IRQ_HANDLED; |
| 1503 | } |
| 1504 | |
| 1505 | static void edma_error_handler(struct edma_chan *echan) |
| 1506 | { |
| 1507 | struct edma_cc *ecc = echan->ecc; |
| 1508 | struct device *dev = echan->vchan.chan.device->dev; |
| 1509 | struct edmacc_param p; |
| 1510 | int err; |
| 1511 | |
| 1512 | if (!echan->edesc) |
| 1513 | return; |
| 1514 | |
| 1515 | spin_lock(&echan->vchan.lock); |
| 1516 | |
| 1517 | err = edma_read_slot(ecc, echan->slot[0], &p); |
| 1518 | |
| 1519 | /* |
| 1520 | * Issue later based on missed flag which will be sure |
| 1521 | * to happen as: |
| 1522 | * (1) we finished transmitting an intermediate slot and |
| 1523 | * edma_execute is coming up. |
| 1524 | * (2) or we finished current transfer and issue will |
| 1525 | * call edma_execute. |
| 1526 | * |
| 1527 | * Important note: issuing can be dangerous here and |
| 1528 | * lead to some nasty recursion when we are in a NULL |
| 1529 | * slot. So we avoid doing so and set the missed flag. |
| 1530 | */ |
| 1531 | if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { |
| 1532 | dev_dbg(dev, "Error on null slot, setting miss\n"); |
| 1533 | echan->missed = 1; |
| 1534 | } else { |
| 1535 | /* |
| 1536 | * The slot is already programmed but the event got |
| 1537 | * missed, so its safe to issue it here. |
| 1538 | */ |
| 1539 | dev_dbg(dev, "Missed event, TRIGGERING\n"); |
| 1540 | edma_clean_channel(echan); |
| 1541 | edma_stop(echan); |
| 1542 | edma_start(echan); |
| 1543 | edma_trigger_channel(echan); |
| 1544 | } |
| 1545 | spin_unlock(&echan->vchan.lock); |
| 1546 | } |
| 1547 | |
| 1548 | static inline bool edma_error_pending(struct edma_cc *ecc) |
| 1549 | { |
| 1550 | if (edma_read_array(ecc, EDMA_EMR, 0) || |
| 1551 | edma_read_array(ecc, EDMA_EMR, 1) || |
| 1552 | edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) |
| 1553 | return true; |
| 1554 | |
| 1555 | return false; |
| 1556 | } |
| 1557 | |
| 1558 | /* eDMA error interrupt handler */ |
| 1559 | static irqreturn_t dma_ccerr_handler(int irq, void *data) |
| 1560 | { |
| 1561 | struct edma_cc *ecc = data; |
| 1562 | int i, j; |
| 1563 | int ctlr; |
| 1564 | unsigned int cnt = 0; |
| 1565 | unsigned int val; |
| 1566 | |
| 1567 | ctlr = ecc->id; |
| 1568 | if (ctlr < 0) |
| 1569 | return IRQ_NONE; |
| 1570 | |
| 1571 | dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); |
| 1572 | |
| 1573 | if (!edma_error_pending(ecc)) { |
| 1574 | /* |
| 1575 | * The registers indicate no pending error event but the irq |
| 1576 | * handler has been called. |
| 1577 | * Ask eDMA to re-evaluate the error registers. |
| 1578 | */ |
| 1579 | dev_err(ecc->dev, "%s: Error interrupt without error event!\n", |
| 1580 | __func__); |
| 1581 | edma_write(ecc, EDMA_EEVAL, 1); |
| 1582 | return IRQ_NONE; |
| 1583 | } |
| 1584 | |
| 1585 | while (1) { |
| 1586 | /* Event missed register(s) */ |
| 1587 | for (j = 0; j < 2; j++) { |
| 1588 | unsigned long emr; |
| 1589 | |
| 1590 | val = edma_read_array(ecc, EDMA_EMR, j); |
| 1591 | if (!val) |
| 1592 | continue; |
| 1593 | |
| 1594 | dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); |
| 1595 | emr = val; |
| 1596 | for (i = find_next_bit(&emr, 32, 0); i < 32; |
| 1597 | i = find_next_bit(&emr, 32, i + 1)) { |
| 1598 | int k = (j << 5) + i; |
| 1599 | |
| 1600 | /* Clear the corresponding EMR bits */ |
| 1601 | edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); |
| 1602 | /* Clear any SER */ |
| 1603 | edma_shadow0_write_array(ecc, SH_SECR, j, |
| 1604 | BIT(i)); |
| 1605 | edma_error_handler(&ecc->slave_chans[k]); |
| 1606 | } |
| 1607 | } |
| 1608 | |
| 1609 | val = edma_read(ecc, EDMA_QEMR); |
| 1610 | if (val) { |
| 1611 | dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); |
| 1612 | /* Not reported, just clear the interrupt reason. */ |
| 1613 | edma_write(ecc, EDMA_QEMCR, val); |
| 1614 | edma_shadow0_write(ecc, SH_QSECR, val); |
| 1615 | } |
| 1616 | |
| 1617 | val = edma_read(ecc, EDMA_CCERR); |
| 1618 | if (val) { |
| 1619 | dev_warn(ecc->dev, "CCERR 0x%08x\n", val); |
| 1620 | /* Not reported, just clear the interrupt reason. */ |
| 1621 | edma_write(ecc, EDMA_CCERRCLR, val); |
| 1622 | } |
| 1623 | |
| 1624 | if (!edma_error_pending(ecc)) |
| 1625 | break; |
| 1626 | cnt++; |
| 1627 | if (cnt > 10) |
| 1628 | break; |
| 1629 | } |
| 1630 | edma_write(ecc, EDMA_EEVAL, 1); |
| 1631 | return IRQ_HANDLED; |
| 1632 | } |
| 1633 | |
| 1634 | /* Alloc channel resources */ |
| 1635 | static int edma_alloc_chan_resources(struct dma_chan *chan) |
| 1636 | { |
| 1637 | struct edma_chan *echan = to_edma_chan(chan); |
| 1638 | struct edma_cc *ecc = echan->ecc; |
| 1639 | struct device *dev = ecc->dev; |
| 1640 | enum dma_event_q eventq_no = EVENTQ_DEFAULT; |
| 1641 | int ret; |
| 1642 | |
| 1643 | if (echan->tc) { |
| 1644 | eventq_no = echan->tc->id; |
| 1645 | } else if (ecc->tc_list) { |
| 1646 | /* memcpy channel */ |
| 1647 | echan->tc = &ecc->tc_list[ecc->info->default_queue]; |
| 1648 | eventq_no = echan->tc->id; |
| 1649 | } |
| 1650 | |
| 1651 | ret = edma_alloc_channel(echan, eventq_no); |
| 1652 | if (ret) |
| 1653 | return ret; |
| 1654 | |
| 1655 | echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); |
| 1656 | if (echan->slot[0] < 0) { |
| 1657 | dev_err(dev, "Entry slot allocation failed for channel %u\n", |
| 1658 | EDMA_CHAN_SLOT(echan->ch_num)); |
| 1659 | ret = echan->slot[0]; |
| 1660 | goto err_slot; |
| 1661 | } |
| 1662 | |
| 1663 | /* Set up channel -> slot mapping for the entry slot */ |
| 1664 | edma_set_chmap(echan, echan->slot[0]); |
| 1665 | echan->alloced = true; |
| 1666 | |
| 1667 | dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", |
| 1668 | EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, |
| 1669 | echan->hw_triggered ? "HW" : "SW"); |
| 1670 | |
| 1671 | return 0; |
| 1672 | |
| 1673 | err_slot: |
| 1674 | edma_free_channel(echan); |
| 1675 | return ret; |
| 1676 | } |
| 1677 | |
| 1678 | /* Free channel resources */ |
| 1679 | static void edma_free_chan_resources(struct dma_chan *chan) |
| 1680 | { |
| 1681 | struct edma_chan *echan = to_edma_chan(chan); |
| 1682 | struct device *dev = echan->ecc->dev; |
| 1683 | int i; |
| 1684 | |
| 1685 | /* Terminate transfers */ |
| 1686 | edma_stop(echan); |
| 1687 | |
| 1688 | vchan_free_chan_resources(&echan->vchan); |
| 1689 | |
| 1690 | /* Free EDMA PaRAM slots */ |
| 1691 | for (i = 0; i < EDMA_MAX_SLOTS; i++) { |
| 1692 | if (echan->slot[i] >= 0) { |
| 1693 | edma_free_slot(echan->ecc, echan->slot[i]); |
| 1694 | echan->slot[i] = -1; |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | /* Set entry slot to the dummy slot */ |
| 1699 | edma_set_chmap(echan, echan->ecc->dummy_slot); |
| 1700 | |
| 1701 | /* Free EDMA channel */ |
| 1702 | if (echan->alloced) { |
| 1703 | edma_free_channel(echan); |
| 1704 | echan->alloced = false; |
| 1705 | } |
| 1706 | |
| 1707 | echan->tc = NULL; |
| 1708 | echan->hw_triggered = false; |
| 1709 | |
| 1710 | dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", |
| 1711 | EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); |
| 1712 | } |
| 1713 | |
| 1714 | /* Send pending descriptor to hardware */ |
| 1715 | static void edma_issue_pending(struct dma_chan *chan) |
| 1716 | { |
| 1717 | struct edma_chan *echan = to_edma_chan(chan); |
| 1718 | unsigned long flags; |
| 1719 | |
| 1720 | spin_lock_irqsave(&echan->vchan.lock, flags); |
| 1721 | if (vchan_issue_pending(&echan->vchan) && !echan->edesc) |
| 1722 | edma_execute(echan); |
| 1723 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 1724 | } |
| 1725 | |
| 1726 | /* |
| 1727 | * This limit exists to avoid a possible infinite loop when waiting for proof |
| 1728 | * that a particular transfer is completed. This limit can be hit if there |
| 1729 | * are large bursts to/from slow devices or the CPU is never able to catch |
| 1730 | * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART |
| 1731 | * RX-FIFO, as many as 55 loops have been seen. |
| 1732 | */ |
| 1733 | #define EDMA_MAX_TR_WAIT_LOOPS 1000 |
| 1734 | |
| 1735 | static u32 edma_residue(struct edma_desc *edesc) |
| 1736 | { |
| 1737 | bool dst = edesc->direction == DMA_DEV_TO_MEM; |
| 1738 | int loop_count = EDMA_MAX_TR_WAIT_LOOPS; |
| 1739 | struct edma_chan *echan = edesc->echan; |
| 1740 | struct edma_pset *pset = edesc->pset; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1741 | dma_addr_t done, pos, pos_old; |
| 1742 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 1743 | int idx = EDMA_REG_ARRAY_INDEX(channel); |
| 1744 | int ch_bit = EDMA_CHANNEL_BIT(channel); |
| 1745 | int event_reg; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1746 | int i; |
| 1747 | |
| 1748 | /* |
| 1749 | * We always read the dst/src position from the first RamPar |
| 1750 | * pset. That's the one which is active now. |
| 1751 | */ |
| 1752 | pos = edma_get_position(echan->ecc, echan->slot[0], dst); |
| 1753 | |
| 1754 | /* |
| 1755 | * "pos" may represent a transfer request that is still being |
| 1756 | * processed by the EDMACC or EDMATC. We will busy wait until |
| 1757 | * any one of the situations occurs: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1758 | * 1. while and event is pending for the channel |
| 1759 | * 2. a position updated |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1760 | * 3. we hit the loop limit |
| 1761 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1762 | if (is_slave_direction(edesc->direction)) |
| 1763 | event_reg = SH_ER; |
| 1764 | else |
| 1765 | event_reg = SH_ESR; |
| 1766 | |
| 1767 | pos_old = pos; |
| 1768 | while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) { |
| 1769 | pos = edma_get_position(echan->ecc, echan->slot[0], dst); |
| 1770 | if (pos != pos_old) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1771 | break; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1772 | |
| 1773 | if (!--loop_count) { |
| 1774 | dev_dbg_ratelimited(echan->vchan.chan.device->dev, |
| 1775 | "%s: timeout waiting for PaRAM update\n", |
| 1776 | __func__); |
| 1777 | break; |
| 1778 | } |
| 1779 | |
| 1780 | cpu_relax(); |
| 1781 | } |
| 1782 | |
| 1783 | /* |
| 1784 | * Cyclic is simple. Just subtract pset[0].addr from pos. |
| 1785 | * |
| 1786 | * We never update edesc->residue in the cyclic case, so we |
| 1787 | * can tell the remaining room to the end of the circular |
| 1788 | * buffer. |
| 1789 | */ |
| 1790 | if (edesc->cyclic) { |
| 1791 | done = pos - pset->addr; |
| 1792 | edesc->residue_stat = edesc->residue - done; |
| 1793 | return edesc->residue_stat; |
| 1794 | } |
| 1795 | |
| 1796 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1797 | * If the position is 0, then EDMA loaded the closing dummy slot, the |
| 1798 | * transfer is completed |
| 1799 | */ |
| 1800 | if (!pos) |
| 1801 | return 0; |
| 1802 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1803 | * For SG operation we catch up with the last processed |
| 1804 | * status. |
| 1805 | */ |
| 1806 | pset += edesc->processed_stat; |
| 1807 | |
| 1808 | for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { |
| 1809 | /* |
| 1810 | * If we are inside this pset address range, we know |
| 1811 | * this is the active one. Get the current delta and |
| 1812 | * stop walking the psets. |
| 1813 | */ |
| 1814 | if (pos >= pset->addr && pos < pset->addr + pset->len) |
| 1815 | return edesc->residue_stat - (pos - pset->addr); |
| 1816 | |
| 1817 | /* Otherwise mark it done and update residue_stat. */ |
| 1818 | edesc->processed_stat++; |
| 1819 | edesc->residue_stat -= pset->len; |
| 1820 | } |
| 1821 | return edesc->residue_stat; |
| 1822 | } |
| 1823 | |
| 1824 | /* Check request completion status */ |
| 1825 | static enum dma_status edma_tx_status(struct dma_chan *chan, |
| 1826 | dma_cookie_t cookie, |
| 1827 | struct dma_tx_state *txstate) |
| 1828 | { |
| 1829 | struct edma_chan *echan = to_edma_chan(chan); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1830 | struct dma_tx_state txstate_tmp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1831 | enum dma_status ret; |
| 1832 | unsigned long flags; |
| 1833 | |
| 1834 | ret = dma_cookie_status(chan, cookie, txstate); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1835 | |
| 1836 | if (ret == DMA_COMPLETE) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1837 | return ret; |
| 1838 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1839 | /* Provide a dummy dma_tx_state for completion checking */ |
| 1840 | if (!txstate) |
| 1841 | txstate = &txstate_tmp; |
| 1842 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1843 | spin_lock_irqsave(&echan->vchan.lock, flags); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1844 | if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1845 | txstate->residue = edma_residue(echan->edesc); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 1846 | } else { |
| 1847 | struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan, |
| 1848 | cookie); |
| 1849 | |
| 1850 | if (vdesc) |
| 1851 | txstate->residue = to_edma_desc(&vdesc->tx)->residue; |
| 1852 | else |
| 1853 | txstate->residue = 0; |
| 1854 | } |
| 1855 | |
| 1856 | /* |
| 1857 | * Mark the cookie completed if the residue is 0 for non cyclic |
| 1858 | * transfers |
| 1859 | */ |
| 1860 | if (ret != DMA_COMPLETE && !txstate->residue && |
| 1861 | echan->edesc && echan->edesc->polled && |
| 1862 | echan->edesc->vdesc.tx.cookie == cookie) { |
| 1863 | edma_stop(echan); |
| 1864 | vchan_cookie_complete(&echan->edesc->vdesc); |
| 1865 | echan->edesc = NULL; |
| 1866 | edma_execute(echan); |
| 1867 | ret = DMA_COMPLETE; |
| 1868 | } |
| 1869 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1870 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 1871 | |
| 1872 | return ret; |
| 1873 | } |
| 1874 | |
| 1875 | static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) |
| 1876 | { |
| 1877 | if (!memcpy_channels) |
| 1878 | return false; |
| 1879 | while (*memcpy_channels != -1) { |
| 1880 | if (*memcpy_channels == ch_num) |
| 1881 | return true; |
| 1882 | memcpy_channels++; |
| 1883 | } |
| 1884 | return false; |
| 1885 | } |
| 1886 | |
| 1887 | #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| 1888 | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| 1889 | BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ |
| 1890 | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) |
| 1891 | |
| 1892 | static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) |
| 1893 | { |
| 1894 | struct dma_device *s_ddev = &ecc->dma_slave; |
| 1895 | struct dma_device *m_ddev = NULL; |
| 1896 | s32 *memcpy_channels = ecc->info->memcpy_channels; |
| 1897 | int i, j; |
| 1898 | |
| 1899 | dma_cap_zero(s_ddev->cap_mask); |
| 1900 | dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); |
| 1901 | dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); |
| 1902 | if (ecc->legacy_mode && !memcpy_channels) { |
| 1903 | dev_warn(ecc->dev, |
| 1904 | "Legacy memcpy is enabled, things might not work\n"); |
| 1905 | |
| 1906 | dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); |
| 1907 | s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; |
| 1908 | s_ddev->directions = BIT(DMA_MEM_TO_MEM); |
| 1909 | } |
| 1910 | |
| 1911 | s_ddev->device_prep_slave_sg = edma_prep_slave_sg; |
| 1912 | s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; |
| 1913 | s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; |
| 1914 | s_ddev->device_free_chan_resources = edma_free_chan_resources; |
| 1915 | s_ddev->device_issue_pending = edma_issue_pending; |
| 1916 | s_ddev->device_tx_status = edma_tx_status; |
| 1917 | s_ddev->device_config = edma_slave_config; |
| 1918 | s_ddev->device_pause = edma_dma_pause; |
| 1919 | s_ddev->device_resume = edma_dma_resume; |
| 1920 | s_ddev->device_terminate_all = edma_terminate_all; |
| 1921 | s_ddev->device_synchronize = edma_synchronize; |
| 1922 | |
| 1923 | s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; |
| 1924 | s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; |
| 1925 | s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); |
| 1926 | s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| 1927 | s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ |
| 1928 | |
| 1929 | s_ddev->dev = ecc->dev; |
| 1930 | INIT_LIST_HEAD(&s_ddev->channels); |
| 1931 | |
| 1932 | if (memcpy_channels) { |
| 1933 | m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); |
| 1934 | if (!m_ddev) { |
| 1935 | dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); |
| 1936 | memcpy_channels = NULL; |
| 1937 | goto ch_setup; |
| 1938 | } |
| 1939 | ecc->dma_memcpy = m_ddev; |
| 1940 | |
| 1941 | dma_cap_zero(m_ddev->cap_mask); |
| 1942 | dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); |
| 1943 | |
| 1944 | m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; |
| 1945 | m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; |
| 1946 | m_ddev->device_free_chan_resources = edma_free_chan_resources; |
| 1947 | m_ddev->device_issue_pending = edma_issue_pending; |
| 1948 | m_ddev->device_tx_status = edma_tx_status; |
| 1949 | m_ddev->device_config = edma_slave_config; |
| 1950 | m_ddev->device_pause = edma_dma_pause; |
| 1951 | m_ddev->device_resume = edma_dma_resume; |
| 1952 | m_ddev->device_terminate_all = edma_terminate_all; |
| 1953 | m_ddev->device_synchronize = edma_synchronize; |
| 1954 | |
| 1955 | m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; |
| 1956 | m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; |
| 1957 | m_ddev->directions = BIT(DMA_MEM_TO_MEM); |
| 1958 | m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| 1959 | |
| 1960 | m_ddev->dev = ecc->dev; |
| 1961 | INIT_LIST_HEAD(&m_ddev->channels); |
| 1962 | } else if (!ecc->legacy_mode) { |
| 1963 | dev_info(ecc->dev, "memcpy is disabled\n"); |
| 1964 | } |
| 1965 | |
| 1966 | ch_setup: |
| 1967 | for (i = 0; i < ecc->num_channels; i++) { |
| 1968 | struct edma_chan *echan = &ecc->slave_chans[i]; |
| 1969 | echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); |
| 1970 | echan->ecc = ecc; |
| 1971 | echan->vchan.desc_free = edma_desc_free; |
| 1972 | |
| 1973 | if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) |
| 1974 | vchan_init(&echan->vchan, m_ddev); |
| 1975 | else |
| 1976 | vchan_init(&echan->vchan, s_ddev); |
| 1977 | |
| 1978 | INIT_LIST_HEAD(&echan->node); |
| 1979 | for (j = 0; j < EDMA_MAX_SLOTS; j++) |
| 1980 | echan->slot[j] = -1; |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, |
| 1985 | struct edma_cc *ecc) |
| 1986 | { |
| 1987 | int i; |
| 1988 | u32 value, cccfg; |
| 1989 | s8 (*queue_priority_map)[2]; |
| 1990 | |
| 1991 | /* Decode the eDMA3 configuration from CCCFG register */ |
| 1992 | cccfg = edma_read(ecc, EDMA_CCCFG); |
| 1993 | |
| 1994 | value = GET_NUM_REGN(cccfg); |
| 1995 | ecc->num_region = BIT(value); |
| 1996 | |
| 1997 | value = GET_NUM_DMACH(cccfg); |
| 1998 | ecc->num_channels = BIT(value + 1); |
| 1999 | |
| 2000 | value = GET_NUM_QDMACH(cccfg); |
| 2001 | ecc->num_qchannels = value * 2; |
| 2002 | |
| 2003 | value = GET_NUM_PAENTRY(cccfg); |
| 2004 | ecc->num_slots = BIT(value + 4); |
| 2005 | |
| 2006 | value = GET_NUM_EVQUE(cccfg); |
| 2007 | ecc->num_tc = value + 1; |
| 2008 | |
| 2009 | ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; |
| 2010 | |
| 2011 | dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); |
| 2012 | dev_dbg(dev, "num_region: %u\n", ecc->num_region); |
| 2013 | dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); |
| 2014 | dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); |
| 2015 | dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); |
| 2016 | dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); |
| 2017 | dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); |
| 2018 | |
| 2019 | /* Nothing need to be done if queue priority is provided */ |
| 2020 | if (pdata->queue_priority_mapping) |
| 2021 | return 0; |
| 2022 | |
| 2023 | /* |
| 2024 | * Configure TC/queue priority as follows: |
| 2025 | * Q0 - priority 0 |
| 2026 | * Q1 - priority 1 |
| 2027 | * Q2 - priority 2 |
| 2028 | * ... |
| 2029 | * The meaning of priority numbers: 0 highest priority, 7 lowest |
| 2030 | * priority. So Q0 is the highest priority queue and the last queue has |
| 2031 | * the lowest priority. |
| 2032 | */ |
| 2033 | queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), |
| 2034 | GFP_KERNEL); |
| 2035 | if (!queue_priority_map) |
| 2036 | return -ENOMEM; |
| 2037 | |
| 2038 | for (i = 0; i < ecc->num_tc; i++) { |
| 2039 | queue_priority_map[i][0] = i; |
| 2040 | queue_priority_map[i][1] = i; |
| 2041 | } |
| 2042 | queue_priority_map[i][0] = -1; |
| 2043 | queue_priority_map[i][1] = -1; |
| 2044 | |
| 2045 | pdata->queue_priority_mapping = queue_priority_map; |
| 2046 | /* Default queue has the lowest priority */ |
| 2047 | pdata->default_queue = i - 1; |
| 2048 | |
| 2049 | return 0; |
| 2050 | } |
| 2051 | |
| 2052 | #if IS_ENABLED(CONFIG_OF) |
| 2053 | static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, |
| 2054 | size_t sz) |
| 2055 | { |
| 2056 | const char pname[] = "ti,edma-xbar-event-map"; |
| 2057 | struct resource res; |
| 2058 | void __iomem *xbar; |
| 2059 | s16 (*xbar_chans)[2]; |
| 2060 | size_t nelm = sz / sizeof(s16); |
| 2061 | u32 shift, offset, mux; |
| 2062 | int ret, i; |
| 2063 | |
| 2064 | xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); |
| 2065 | if (!xbar_chans) |
| 2066 | return -ENOMEM; |
| 2067 | |
| 2068 | ret = of_address_to_resource(dev->of_node, 1, &res); |
| 2069 | if (ret) |
| 2070 | return -ENOMEM; |
| 2071 | |
| 2072 | xbar = devm_ioremap(dev, res.start, resource_size(&res)); |
| 2073 | if (!xbar) |
| 2074 | return -ENOMEM; |
| 2075 | |
| 2076 | ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, |
| 2077 | nelm); |
| 2078 | if (ret) |
| 2079 | return -EIO; |
| 2080 | |
| 2081 | /* Invalidate last entry for the other user of this mess */ |
| 2082 | nelm >>= 1; |
| 2083 | xbar_chans[nelm][0] = -1; |
| 2084 | xbar_chans[nelm][1] = -1; |
| 2085 | |
| 2086 | for (i = 0; i < nelm; i++) { |
| 2087 | shift = (xbar_chans[i][1] & 0x03) << 3; |
| 2088 | offset = xbar_chans[i][1] & 0xfffffffc; |
| 2089 | mux = readl(xbar + offset); |
| 2090 | mux &= ~(0xff << shift); |
| 2091 | mux |= xbar_chans[i][0] << shift; |
| 2092 | writel(mux, (xbar + offset)); |
| 2093 | } |
| 2094 | |
| 2095 | pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; |
| 2096 | return 0; |
| 2097 | } |
| 2098 | |
| 2099 | static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
| 2100 | bool legacy_mode) |
| 2101 | { |
| 2102 | struct edma_soc_info *info; |
| 2103 | struct property *prop; |
| 2104 | int sz, ret; |
| 2105 | |
| 2106 | info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); |
| 2107 | if (!info) |
| 2108 | return ERR_PTR(-ENOMEM); |
| 2109 | |
| 2110 | if (legacy_mode) { |
| 2111 | prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", |
| 2112 | &sz); |
| 2113 | if (prop) { |
| 2114 | ret = edma_xbar_event_map(dev, info, sz); |
| 2115 | if (ret) |
| 2116 | return ERR_PTR(ret); |
| 2117 | } |
| 2118 | return info; |
| 2119 | } |
| 2120 | |
| 2121 | /* Get the list of channels allocated to be used for memcpy */ |
| 2122 | prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); |
| 2123 | if (prop) { |
| 2124 | const char pname[] = "ti,edma-memcpy-channels"; |
| 2125 | size_t nelm = sz / sizeof(s32); |
| 2126 | s32 *memcpy_ch; |
| 2127 | |
| 2128 | memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), |
| 2129 | GFP_KERNEL); |
| 2130 | if (!memcpy_ch) |
| 2131 | return ERR_PTR(-ENOMEM); |
| 2132 | |
| 2133 | ret = of_property_read_u32_array(dev->of_node, pname, |
| 2134 | (u32 *)memcpy_ch, nelm); |
| 2135 | if (ret) |
| 2136 | return ERR_PTR(ret); |
| 2137 | |
| 2138 | memcpy_ch[nelm] = -1; |
| 2139 | info->memcpy_channels = memcpy_ch; |
| 2140 | } |
| 2141 | |
| 2142 | prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", |
| 2143 | &sz); |
| 2144 | if (prop) { |
| 2145 | const char pname[] = "ti,edma-reserved-slot-ranges"; |
| 2146 | u32 (*tmp)[2]; |
| 2147 | s16 (*rsv_slots)[2]; |
| 2148 | size_t nelm = sz / sizeof(*tmp); |
| 2149 | struct edma_rsv_info *rsv_info; |
| 2150 | int i; |
| 2151 | |
| 2152 | if (!nelm) |
| 2153 | return info; |
| 2154 | |
| 2155 | tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); |
| 2156 | if (!tmp) |
| 2157 | return ERR_PTR(-ENOMEM); |
| 2158 | |
| 2159 | rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); |
| 2160 | if (!rsv_info) { |
| 2161 | kfree(tmp); |
| 2162 | return ERR_PTR(-ENOMEM); |
| 2163 | } |
| 2164 | |
| 2165 | rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), |
| 2166 | GFP_KERNEL); |
| 2167 | if (!rsv_slots) { |
| 2168 | kfree(tmp); |
| 2169 | return ERR_PTR(-ENOMEM); |
| 2170 | } |
| 2171 | |
| 2172 | ret = of_property_read_u32_array(dev->of_node, pname, |
| 2173 | (u32 *)tmp, nelm * 2); |
| 2174 | if (ret) { |
| 2175 | kfree(tmp); |
| 2176 | return ERR_PTR(ret); |
| 2177 | } |
| 2178 | |
| 2179 | for (i = 0; i < nelm; i++) { |
| 2180 | rsv_slots[i][0] = tmp[i][0]; |
| 2181 | rsv_slots[i][1] = tmp[i][1]; |
| 2182 | } |
| 2183 | rsv_slots[nelm][0] = -1; |
| 2184 | rsv_slots[nelm][1] = -1; |
| 2185 | |
| 2186 | info->rsv = rsv_info; |
| 2187 | info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; |
| 2188 | |
| 2189 | kfree(tmp); |
| 2190 | } |
| 2191 | |
| 2192 | return info; |
| 2193 | } |
| 2194 | |
| 2195 | static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, |
| 2196 | struct of_dma *ofdma) |
| 2197 | { |
| 2198 | struct edma_cc *ecc = ofdma->of_dma_data; |
| 2199 | struct dma_chan *chan = NULL; |
| 2200 | struct edma_chan *echan; |
| 2201 | int i; |
| 2202 | |
| 2203 | if (!ecc || dma_spec->args_count < 1) |
| 2204 | return NULL; |
| 2205 | |
| 2206 | for (i = 0; i < ecc->num_channels; i++) { |
| 2207 | echan = &ecc->slave_chans[i]; |
| 2208 | if (echan->ch_num == dma_spec->args[0]) { |
| 2209 | chan = &echan->vchan.chan; |
| 2210 | break; |
| 2211 | } |
| 2212 | } |
| 2213 | |
| 2214 | if (!chan) |
| 2215 | return NULL; |
| 2216 | |
| 2217 | if (echan->ecc->legacy_mode && dma_spec->args_count == 1) |
| 2218 | goto out; |
| 2219 | |
| 2220 | if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && |
| 2221 | dma_spec->args[1] < echan->ecc->num_tc) { |
| 2222 | echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; |
| 2223 | goto out; |
| 2224 | } |
| 2225 | |
| 2226 | return NULL; |
| 2227 | out: |
| 2228 | /* The channel is going to be used as HW synchronized */ |
| 2229 | echan->hw_triggered = true; |
| 2230 | return dma_get_slave_channel(chan); |
| 2231 | } |
| 2232 | #else |
| 2233 | static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
| 2234 | bool legacy_mode) |
| 2235 | { |
| 2236 | return ERR_PTR(-EINVAL); |
| 2237 | } |
| 2238 | |
| 2239 | static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, |
| 2240 | struct of_dma *ofdma) |
| 2241 | { |
| 2242 | return NULL; |
| 2243 | } |
| 2244 | #endif |
| 2245 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2246 | static bool edma_filter_fn(struct dma_chan *chan, void *param); |
| 2247 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2248 | static int edma_probe(struct platform_device *pdev) |
| 2249 | { |
| 2250 | struct edma_soc_info *info = pdev->dev.platform_data; |
| 2251 | s8 (*queue_priority_mapping)[2]; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2252 | int i, off; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2253 | const s16 (*rsv_slots)[2]; |
| 2254 | const s16 (*xbar_chans)[2]; |
| 2255 | int irq; |
| 2256 | char *irq_name; |
| 2257 | struct resource *mem; |
| 2258 | struct device_node *node = pdev->dev.of_node; |
| 2259 | struct device *dev = &pdev->dev; |
| 2260 | struct edma_cc *ecc; |
| 2261 | bool legacy_mode = true; |
| 2262 | int ret; |
| 2263 | |
| 2264 | if (node) { |
| 2265 | const struct of_device_id *match; |
| 2266 | |
| 2267 | match = of_match_node(edma_of_ids, node); |
| 2268 | if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) |
| 2269 | legacy_mode = false; |
| 2270 | |
| 2271 | info = edma_setup_info_from_dt(dev, legacy_mode); |
| 2272 | if (IS_ERR(info)) { |
| 2273 | dev_err(dev, "failed to get DT data\n"); |
| 2274 | return PTR_ERR(info); |
| 2275 | } |
| 2276 | } |
| 2277 | |
| 2278 | if (!info) |
| 2279 | return -ENODEV; |
| 2280 | |
| 2281 | pm_runtime_enable(dev); |
| 2282 | ret = pm_runtime_get_sync(dev); |
| 2283 | if (ret < 0) { |
| 2284 | dev_err(dev, "pm_runtime_get_sync() failed\n"); |
| 2285 | return ret; |
| 2286 | } |
| 2287 | |
| 2288 | ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); |
| 2289 | if (ret) |
| 2290 | return ret; |
| 2291 | |
| 2292 | ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); |
| 2293 | if (!ecc) |
| 2294 | return -ENOMEM; |
| 2295 | |
| 2296 | ecc->dev = dev; |
| 2297 | ecc->id = pdev->id; |
| 2298 | ecc->legacy_mode = legacy_mode; |
| 2299 | /* When booting with DT the pdev->id is -1 */ |
| 2300 | if (ecc->id < 0) |
| 2301 | ecc->id = 0; |
| 2302 | |
| 2303 | mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); |
| 2304 | if (!mem) { |
| 2305 | dev_dbg(dev, "mem resource not found, using index 0\n"); |
| 2306 | mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 2307 | if (!mem) { |
| 2308 | dev_err(dev, "no mem resource?\n"); |
| 2309 | return -ENODEV; |
| 2310 | } |
| 2311 | } |
| 2312 | ecc->base = devm_ioremap_resource(dev, mem); |
| 2313 | if (IS_ERR(ecc->base)) |
| 2314 | return PTR_ERR(ecc->base); |
| 2315 | |
| 2316 | platform_set_drvdata(pdev, ecc); |
| 2317 | |
| 2318 | /* Get eDMA3 configuration from IP */ |
| 2319 | ret = edma_setup_from_hw(dev, info, ecc); |
| 2320 | if (ret) |
| 2321 | return ret; |
| 2322 | |
| 2323 | /* Allocate memory based on the information we got from the IP */ |
| 2324 | ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, |
| 2325 | sizeof(*ecc->slave_chans), GFP_KERNEL); |
| 2326 | if (!ecc->slave_chans) |
| 2327 | return -ENOMEM; |
| 2328 | |
| 2329 | ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), |
| 2330 | sizeof(unsigned long), GFP_KERNEL); |
| 2331 | if (!ecc->slot_inuse) |
| 2332 | return -ENOMEM; |
| 2333 | |
| 2334 | ecc->default_queue = info->default_queue; |
| 2335 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2336 | if (info->rsv) { |
| 2337 | /* Set the reserved slots in inuse list */ |
| 2338 | rsv_slots = info->rsv->rsv_slots; |
| 2339 | if (rsv_slots) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2340 | for (i = 0; rsv_slots[i][0] != -1; i++) |
| 2341 | bitmap_set(ecc->slot_inuse, rsv_slots[i][0], |
| 2342 | rsv_slots[i][1]); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2343 | } |
| 2344 | } |
| 2345 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2346 | for (i = 0; i < ecc->num_slots; i++) { |
| 2347 | /* Reset only unused - not reserved - paRAM slots */ |
| 2348 | if (!test_bit(i, ecc->slot_inuse)) |
| 2349 | edma_write_slot(ecc, i, &dummy_paramset); |
| 2350 | } |
| 2351 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2352 | /* Clear the xbar mapped channels in unused list */ |
| 2353 | xbar_chans = info->xbar_chans; |
| 2354 | if (xbar_chans) { |
| 2355 | for (i = 0; xbar_chans[i][1] != -1; i++) { |
| 2356 | off = xbar_chans[i][1]; |
| 2357 | } |
| 2358 | } |
| 2359 | |
| 2360 | irq = platform_get_irq_byname(pdev, "edma3_ccint"); |
| 2361 | if (irq < 0 && node) |
| 2362 | irq = irq_of_parse_and_map(node, 0); |
| 2363 | |
| 2364 | if (irq >= 0) { |
| 2365 | irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", |
| 2366 | dev_name(dev)); |
| 2367 | ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, |
| 2368 | ecc); |
| 2369 | if (ret) { |
| 2370 | dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); |
| 2371 | return ret; |
| 2372 | } |
| 2373 | ecc->ccint = irq; |
| 2374 | } |
| 2375 | |
| 2376 | irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); |
| 2377 | if (irq < 0 && node) |
| 2378 | irq = irq_of_parse_and_map(node, 2); |
| 2379 | |
| 2380 | if (irq >= 0) { |
| 2381 | irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", |
| 2382 | dev_name(dev)); |
| 2383 | ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, |
| 2384 | ecc); |
| 2385 | if (ret) { |
| 2386 | dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); |
| 2387 | return ret; |
| 2388 | } |
| 2389 | ecc->ccerrint = irq; |
| 2390 | } |
| 2391 | |
| 2392 | ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); |
| 2393 | if (ecc->dummy_slot < 0) { |
| 2394 | dev_err(dev, "Can't allocate PaRAM dummy slot\n"); |
| 2395 | return ecc->dummy_slot; |
| 2396 | } |
| 2397 | |
| 2398 | queue_priority_mapping = info->queue_priority_mapping; |
| 2399 | |
| 2400 | if (!ecc->legacy_mode) { |
| 2401 | int lowest_priority = 0; |
| 2402 | struct of_phandle_args tc_args; |
| 2403 | |
| 2404 | ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, |
| 2405 | sizeof(*ecc->tc_list), GFP_KERNEL); |
| 2406 | if (!ecc->tc_list) |
| 2407 | return -ENOMEM; |
| 2408 | |
| 2409 | for (i = 0;; i++) { |
| 2410 | ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", |
| 2411 | 1, i, &tc_args); |
| 2412 | if (ret || i == ecc->num_tc) |
| 2413 | break; |
| 2414 | |
| 2415 | ecc->tc_list[i].node = tc_args.np; |
| 2416 | ecc->tc_list[i].id = i; |
| 2417 | queue_priority_mapping[i][1] = tc_args.args[0]; |
| 2418 | if (queue_priority_mapping[i][1] > lowest_priority) { |
| 2419 | lowest_priority = queue_priority_mapping[i][1]; |
| 2420 | info->default_queue = i; |
| 2421 | } |
| 2422 | } |
| 2423 | } |
| 2424 | |
| 2425 | /* Event queue priority mapping */ |
| 2426 | for (i = 0; queue_priority_mapping[i][0] != -1; i++) |
| 2427 | edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], |
| 2428 | queue_priority_mapping[i][1]); |
| 2429 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2430 | edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0); |
| 2431 | edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0); |
| 2432 | edma_write_array(ecc, EDMA_QRAE, 0, 0x0); |
| 2433 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2434 | ecc->info = info; |
| 2435 | |
| 2436 | /* Init the dma device and channels */ |
| 2437 | edma_dma_init(ecc, legacy_mode); |
| 2438 | |
| 2439 | for (i = 0; i < ecc->num_channels; i++) { |
| 2440 | /* Assign all channels to the default queue */ |
| 2441 | edma_assign_channel_eventq(&ecc->slave_chans[i], |
| 2442 | info->default_queue); |
| 2443 | /* Set entry slot to the dummy slot */ |
| 2444 | edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); |
| 2445 | } |
| 2446 | |
| 2447 | ecc->dma_slave.filter.map = info->slave_map; |
| 2448 | ecc->dma_slave.filter.mapcnt = info->slavecnt; |
| 2449 | ecc->dma_slave.filter.fn = edma_filter_fn; |
| 2450 | |
| 2451 | ret = dma_async_device_register(&ecc->dma_slave); |
| 2452 | if (ret) { |
| 2453 | dev_err(dev, "slave ddev registration failed (%d)\n", ret); |
| 2454 | goto err_reg1; |
| 2455 | } |
| 2456 | |
| 2457 | if (ecc->dma_memcpy) { |
| 2458 | ret = dma_async_device_register(ecc->dma_memcpy); |
| 2459 | if (ret) { |
| 2460 | dev_err(dev, "memcpy ddev registration failed (%d)\n", |
| 2461 | ret); |
| 2462 | dma_async_device_unregister(&ecc->dma_slave); |
| 2463 | goto err_reg1; |
| 2464 | } |
| 2465 | } |
| 2466 | |
| 2467 | if (node) |
| 2468 | of_dma_controller_register(node, of_edma_xlate, ecc); |
| 2469 | |
| 2470 | dev_info(dev, "TI EDMA DMA engine driver\n"); |
| 2471 | |
| 2472 | return 0; |
| 2473 | |
| 2474 | err_reg1: |
| 2475 | edma_free_slot(ecc, ecc->dummy_slot); |
| 2476 | return ret; |
| 2477 | } |
| 2478 | |
| 2479 | static void edma_cleanupp_vchan(struct dma_device *dmadev) |
| 2480 | { |
| 2481 | struct edma_chan *echan, *_echan; |
| 2482 | |
| 2483 | list_for_each_entry_safe(echan, _echan, |
| 2484 | &dmadev->channels, vchan.chan.device_node) { |
| 2485 | list_del(&echan->vchan.chan.device_node); |
| 2486 | tasklet_kill(&echan->vchan.task); |
| 2487 | } |
| 2488 | } |
| 2489 | |
| 2490 | static int edma_remove(struct platform_device *pdev) |
| 2491 | { |
| 2492 | struct device *dev = &pdev->dev; |
| 2493 | struct edma_cc *ecc = dev_get_drvdata(dev); |
| 2494 | |
| 2495 | devm_free_irq(dev, ecc->ccint, ecc); |
| 2496 | devm_free_irq(dev, ecc->ccerrint, ecc); |
| 2497 | |
| 2498 | edma_cleanupp_vchan(&ecc->dma_slave); |
| 2499 | |
| 2500 | if (dev->of_node) |
| 2501 | of_dma_controller_free(dev->of_node); |
| 2502 | dma_async_device_unregister(&ecc->dma_slave); |
| 2503 | if (ecc->dma_memcpy) |
| 2504 | dma_async_device_unregister(ecc->dma_memcpy); |
| 2505 | edma_free_slot(ecc, ecc->dummy_slot); |
| 2506 | |
| 2507 | return 0; |
| 2508 | } |
| 2509 | |
| 2510 | #ifdef CONFIG_PM_SLEEP |
| 2511 | static int edma_pm_suspend(struct device *dev) |
| 2512 | { |
| 2513 | struct edma_cc *ecc = dev_get_drvdata(dev); |
| 2514 | struct edma_chan *echan = ecc->slave_chans; |
| 2515 | int i; |
| 2516 | |
| 2517 | for (i = 0; i < ecc->num_channels; i++) { |
| 2518 | if (echan[i].alloced) |
| 2519 | edma_setup_interrupt(&echan[i], false); |
| 2520 | } |
| 2521 | |
| 2522 | return 0; |
| 2523 | } |
| 2524 | |
| 2525 | static int edma_pm_resume(struct device *dev) |
| 2526 | { |
| 2527 | struct edma_cc *ecc = dev_get_drvdata(dev); |
| 2528 | struct edma_chan *echan = ecc->slave_chans; |
| 2529 | int i; |
| 2530 | s8 (*queue_priority_mapping)[2]; |
| 2531 | |
| 2532 | /* re initialize dummy slot to dummy param set */ |
| 2533 | edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); |
| 2534 | |
| 2535 | queue_priority_mapping = ecc->info->queue_priority_mapping; |
| 2536 | |
| 2537 | /* Event queue priority mapping */ |
| 2538 | for (i = 0; queue_priority_mapping[i][0] != -1; i++) |
| 2539 | edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], |
| 2540 | queue_priority_mapping[i][1]); |
| 2541 | |
| 2542 | for (i = 0; i < ecc->num_channels; i++) { |
| 2543 | if (echan[i].alloced) { |
| 2544 | /* ensure access through shadow region 0 */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2545 | edma_or_array2(ecc, EDMA_DRAE, 0, |
| 2546 | EDMA_REG_ARRAY_INDEX(i), |
| 2547 | EDMA_CHANNEL_BIT(i)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2548 | |
| 2549 | edma_setup_interrupt(&echan[i], true); |
| 2550 | |
| 2551 | /* Set up channel -> slot mapping for the entry slot */ |
| 2552 | edma_set_chmap(&echan[i], echan[i].slot[0]); |
| 2553 | } |
| 2554 | } |
| 2555 | |
| 2556 | return 0; |
| 2557 | } |
| 2558 | #endif |
| 2559 | |
| 2560 | static const struct dev_pm_ops edma_pm_ops = { |
| 2561 | SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) |
| 2562 | }; |
| 2563 | |
| 2564 | static struct platform_driver edma_driver = { |
| 2565 | .probe = edma_probe, |
| 2566 | .remove = edma_remove, |
| 2567 | .driver = { |
| 2568 | .name = "edma", |
| 2569 | .pm = &edma_pm_ops, |
| 2570 | .of_match_table = edma_of_ids, |
| 2571 | }, |
| 2572 | }; |
| 2573 | |
| 2574 | static int edma_tptc_probe(struct platform_device *pdev) |
| 2575 | { |
| 2576 | pm_runtime_enable(&pdev->dev); |
| 2577 | return pm_runtime_get_sync(&pdev->dev); |
| 2578 | } |
| 2579 | |
| 2580 | static struct platform_driver edma_tptc_driver = { |
| 2581 | .probe = edma_tptc_probe, |
| 2582 | .driver = { |
| 2583 | .name = "edma3-tptc", |
| 2584 | .of_match_table = edma_tptc_of_ids, |
| 2585 | }, |
| 2586 | }; |
| 2587 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame^] | 2588 | static bool edma_filter_fn(struct dma_chan *chan, void *param) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2589 | { |
| 2590 | bool match = false; |
| 2591 | |
| 2592 | if (chan->device->dev->driver == &edma_driver.driver) { |
| 2593 | struct edma_chan *echan = to_edma_chan(chan); |
| 2594 | unsigned ch_req = *(unsigned *)param; |
| 2595 | if (ch_req == echan->ch_num) { |
| 2596 | /* The channel is going to be used as HW synchronized */ |
| 2597 | echan->hw_triggered = true; |
| 2598 | match = true; |
| 2599 | } |
| 2600 | } |
| 2601 | return match; |
| 2602 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2603 | |
| 2604 | static int edma_init(void) |
| 2605 | { |
| 2606 | int ret; |
| 2607 | |
| 2608 | ret = platform_driver_register(&edma_tptc_driver); |
| 2609 | if (ret) |
| 2610 | return ret; |
| 2611 | |
| 2612 | return platform_driver_register(&edma_driver); |
| 2613 | } |
| 2614 | subsys_initcall(edma_init); |
| 2615 | |
| 2616 | static void __exit edma_exit(void) |
| 2617 | { |
| 2618 | platform_driver_unregister(&edma_driver); |
| 2619 | platform_driver_unregister(&edma_tptc_driver); |
| 2620 | } |
| 2621 | module_exit(edma_exit); |
| 2622 | |
| 2623 | MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); |
| 2624 | MODULE_DESCRIPTION("TI EDMA DMA engine driver"); |
| 2625 | MODULE_LICENSE("GPL v2"); |