Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * TI EDMA DMA engine driver |
| 3 | * |
| 4 | * Copyright 2012 Texas Instruments |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License as |
| 8 | * published by the Free Software Foundation version 2. |
| 9 | * |
| 10 | * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| 11 | * kind, whether express or implied; without even the implied warranty |
| 12 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/dmaengine.h> |
| 17 | #include <linux/dma-mapping.h> |
| 18 | #include <linux/edma.h> |
| 19 | #include <linux/err.h> |
| 20 | #include <linux/init.h> |
| 21 | #include <linux/interrupt.h> |
| 22 | #include <linux/list.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/platform_device.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/spinlock.h> |
| 27 | #include <linux/of.h> |
| 28 | #include <linux/of_dma.h> |
| 29 | #include <linux/of_irq.h> |
| 30 | #include <linux/of_address.h> |
| 31 | #include <linux/of_device.h> |
| 32 | #include <linux/pm_runtime.h> |
| 33 | |
| 34 | #include <linux/platform_data/edma.h> |
| 35 | |
| 36 | #include "../dmaengine.h" |
| 37 | #include "../virt-dma.h" |
| 38 | |
| 39 | /* Offsets matching "struct edmacc_param" */ |
| 40 | #define PARM_OPT 0x00 |
| 41 | #define PARM_SRC 0x04 |
| 42 | #define PARM_A_B_CNT 0x08 |
| 43 | #define PARM_DST 0x0c |
| 44 | #define PARM_SRC_DST_BIDX 0x10 |
| 45 | #define PARM_LINK_BCNTRLD 0x14 |
| 46 | #define PARM_SRC_DST_CIDX 0x18 |
| 47 | #define PARM_CCNT 0x1c |
| 48 | |
| 49 | #define PARM_SIZE 0x20 |
| 50 | |
| 51 | /* Offsets for EDMA CC global channel registers and their shadows */ |
| 52 | #define SH_ER 0x00 /* 64 bits */ |
| 53 | #define SH_ECR 0x08 /* 64 bits */ |
| 54 | #define SH_ESR 0x10 /* 64 bits */ |
| 55 | #define SH_CER 0x18 /* 64 bits */ |
| 56 | #define SH_EER 0x20 /* 64 bits */ |
| 57 | #define SH_EECR 0x28 /* 64 bits */ |
| 58 | #define SH_EESR 0x30 /* 64 bits */ |
| 59 | #define SH_SER 0x38 /* 64 bits */ |
| 60 | #define SH_SECR 0x40 /* 64 bits */ |
| 61 | #define SH_IER 0x50 /* 64 bits */ |
| 62 | #define SH_IECR 0x58 /* 64 bits */ |
| 63 | #define SH_IESR 0x60 /* 64 bits */ |
| 64 | #define SH_IPR 0x68 /* 64 bits */ |
| 65 | #define SH_ICR 0x70 /* 64 bits */ |
| 66 | #define SH_IEVAL 0x78 |
| 67 | #define SH_QER 0x80 |
| 68 | #define SH_QEER 0x84 |
| 69 | #define SH_QEECR 0x88 |
| 70 | #define SH_QEESR 0x8c |
| 71 | #define SH_QSER 0x90 |
| 72 | #define SH_QSECR 0x94 |
| 73 | #define SH_SIZE 0x200 |
| 74 | |
| 75 | /* Offsets for EDMA CC global registers */ |
| 76 | #define EDMA_REV 0x0000 |
| 77 | #define EDMA_CCCFG 0x0004 |
| 78 | #define EDMA_QCHMAP 0x0200 /* 8 registers */ |
| 79 | #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ |
| 80 | #define EDMA_QDMAQNUM 0x0260 |
| 81 | #define EDMA_QUETCMAP 0x0280 |
| 82 | #define EDMA_QUEPRI 0x0284 |
| 83 | #define EDMA_EMR 0x0300 /* 64 bits */ |
| 84 | #define EDMA_EMCR 0x0308 /* 64 bits */ |
| 85 | #define EDMA_QEMR 0x0310 |
| 86 | #define EDMA_QEMCR 0x0314 |
| 87 | #define EDMA_CCERR 0x0318 |
| 88 | #define EDMA_CCERRCLR 0x031c |
| 89 | #define EDMA_EEVAL 0x0320 |
| 90 | #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ |
| 91 | #define EDMA_QRAE 0x0380 /* 4 registers */ |
| 92 | #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ |
| 93 | #define EDMA_QSTAT 0x0600 /* 2 registers */ |
| 94 | #define EDMA_QWMTHRA 0x0620 |
| 95 | #define EDMA_QWMTHRB 0x0624 |
| 96 | #define EDMA_CCSTAT 0x0640 |
| 97 | |
| 98 | #define EDMA_M 0x1000 /* global channel registers */ |
| 99 | #define EDMA_ECR 0x1008 |
| 100 | #define EDMA_ECRH 0x100C |
| 101 | #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ |
| 102 | #define EDMA_PARM 0x4000 /* PaRAM entries */ |
| 103 | |
| 104 | #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) |
| 105 | |
| 106 | #define EDMA_DCHMAP 0x0100 /* 64 registers */ |
| 107 | |
| 108 | /* CCCFG register */ |
| 109 | #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ |
| 110 | #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ |
| 111 | #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ |
| 112 | #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ |
| 113 | #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ |
| 114 | #define CHMAP_EXIST BIT(24) |
| 115 | |
| 116 | /* CCSTAT register */ |
| 117 | #define EDMA_CCSTAT_ACTV BIT(4) |
| 118 | |
| 119 | /* |
| 120 | * Max of 20 segments per channel to conserve PaRAM slots |
| 121 | * Also note that MAX_NR_SG should be atleast the no.of periods |
| 122 | * that are required for ASoC, otherwise DMA prep calls will |
| 123 | * fail. Today davinci-pcm is the only user of this driver and |
| 124 | * requires atleast 17 slots, so we setup the default to 20. |
| 125 | */ |
| 126 | #define MAX_NR_SG 20 |
| 127 | #define EDMA_MAX_SLOTS MAX_NR_SG |
| 128 | #define EDMA_DESCRIPTORS 16 |
| 129 | |
| 130 | #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ |
| 131 | #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ |
| 132 | #define EDMA_CONT_PARAMS_ANY 1001 |
| 133 | #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 |
| 134 | #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 |
| 135 | |
| 136 | /* PaRAM slots are laid out like this */ |
| 137 | struct edmacc_param { |
| 138 | u32 opt; |
| 139 | u32 src; |
| 140 | u32 a_b_cnt; |
| 141 | u32 dst; |
| 142 | u32 src_dst_bidx; |
| 143 | u32 link_bcntrld; |
| 144 | u32 src_dst_cidx; |
| 145 | u32 ccnt; |
| 146 | } __packed; |
| 147 | |
| 148 | /* fields in edmacc_param.opt */ |
| 149 | #define SAM BIT(0) |
| 150 | #define DAM BIT(1) |
| 151 | #define SYNCDIM BIT(2) |
| 152 | #define STATIC BIT(3) |
| 153 | #define EDMA_FWID (0x07 << 8) |
| 154 | #define TCCMODE BIT(11) |
| 155 | #define EDMA_TCC(t) ((t) << 12) |
| 156 | #define TCINTEN BIT(20) |
| 157 | #define ITCINTEN BIT(21) |
| 158 | #define TCCHEN BIT(22) |
| 159 | #define ITCCHEN BIT(23) |
| 160 | |
| 161 | struct edma_pset { |
| 162 | u32 len; |
| 163 | dma_addr_t addr; |
| 164 | struct edmacc_param param; |
| 165 | }; |
| 166 | |
| 167 | struct edma_desc { |
| 168 | struct virt_dma_desc vdesc; |
| 169 | struct list_head node; |
| 170 | enum dma_transfer_direction direction; |
| 171 | int cyclic; |
| 172 | int absync; |
| 173 | int pset_nr; |
| 174 | struct edma_chan *echan; |
| 175 | int processed; |
| 176 | |
| 177 | /* |
| 178 | * The following 4 elements are used for residue accounting. |
| 179 | * |
| 180 | * - processed_stat: the number of SG elements we have traversed |
| 181 | * so far to cover accounting. This is updated directly to processed |
| 182 | * during edma_callback and is always <= processed, because processed |
| 183 | * refers to the number of pending transfer (programmed to EDMA |
| 184 | * controller), where as processed_stat tracks number of transfers |
| 185 | * accounted for so far. |
| 186 | * |
| 187 | * - residue: The amount of bytes we have left to transfer for this desc |
| 188 | * |
| 189 | * - residue_stat: The residue in bytes of data we have covered |
| 190 | * so far for accounting. This is updated directly to residue |
| 191 | * during callbacks to keep it current. |
| 192 | * |
| 193 | * - sg_len: Tracks the length of the current intermediate transfer, |
| 194 | * this is required to update the residue during intermediate transfer |
| 195 | * completion callback. |
| 196 | */ |
| 197 | int processed_stat; |
| 198 | u32 sg_len; |
| 199 | u32 residue; |
| 200 | u32 residue_stat; |
| 201 | |
| 202 | struct edma_pset pset[0]; |
| 203 | }; |
| 204 | |
| 205 | struct edma_cc; |
| 206 | |
| 207 | struct edma_tc { |
| 208 | struct device_node *node; |
| 209 | u16 id; |
| 210 | }; |
| 211 | |
| 212 | struct edma_chan { |
| 213 | struct virt_dma_chan vchan; |
| 214 | struct list_head node; |
| 215 | struct edma_desc *edesc; |
| 216 | struct edma_cc *ecc; |
| 217 | struct edma_tc *tc; |
| 218 | int ch_num; |
| 219 | bool alloced; |
| 220 | bool hw_triggered; |
| 221 | int slot[EDMA_MAX_SLOTS]; |
| 222 | int missed; |
| 223 | struct dma_slave_config cfg; |
| 224 | }; |
| 225 | |
| 226 | struct edma_cc { |
| 227 | struct device *dev; |
| 228 | struct edma_soc_info *info; |
| 229 | void __iomem *base; |
| 230 | int id; |
| 231 | bool legacy_mode; |
| 232 | |
| 233 | /* eDMA3 resource information */ |
| 234 | unsigned num_channels; |
| 235 | unsigned num_qchannels; |
| 236 | unsigned num_region; |
| 237 | unsigned num_slots; |
| 238 | unsigned num_tc; |
| 239 | bool chmap_exist; |
| 240 | enum dma_event_q default_queue; |
| 241 | |
| 242 | unsigned int ccint; |
| 243 | unsigned int ccerrint; |
| 244 | |
| 245 | /* |
| 246 | * The slot_inuse bit for each PaRAM slot is clear unless the slot is |
| 247 | * in use by Linux or if it is allocated to be used by DSP. |
| 248 | */ |
| 249 | unsigned long *slot_inuse; |
| 250 | |
| 251 | struct dma_device dma_slave; |
| 252 | struct dma_device *dma_memcpy; |
| 253 | struct edma_chan *slave_chans; |
| 254 | struct edma_tc *tc_list; |
| 255 | int dummy_slot; |
| 256 | }; |
| 257 | |
| 258 | /* dummy param set used to (re)initialize parameter RAM slots */ |
| 259 | static const struct edmacc_param dummy_paramset = { |
| 260 | .link_bcntrld = 0xffff, |
| 261 | .ccnt = 1, |
| 262 | }; |
| 263 | |
| 264 | #define EDMA_BINDING_LEGACY 0 |
| 265 | #define EDMA_BINDING_TPCC 1 |
| 266 | static const u32 edma_binding_type[] = { |
| 267 | [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, |
| 268 | [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, |
| 269 | }; |
| 270 | |
| 271 | static const struct of_device_id edma_of_ids[] = { |
| 272 | { |
| 273 | .compatible = "ti,edma3", |
| 274 | .data = &edma_binding_type[EDMA_BINDING_LEGACY], |
| 275 | }, |
| 276 | { |
| 277 | .compatible = "ti,edma3-tpcc", |
| 278 | .data = &edma_binding_type[EDMA_BINDING_TPCC], |
| 279 | }, |
| 280 | {} |
| 281 | }; |
| 282 | MODULE_DEVICE_TABLE(of, edma_of_ids); |
| 283 | |
| 284 | static const struct of_device_id edma_tptc_of_ids[] = { |
| 285 | { .compatible = "ti,edma3-tptc", }, |
| 286 | {} |
| 287 | }; |
| 288 | MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); |
| 289 | |
| 290 | static inline unsigned int edma_read(struct edma_cc *ecc, int offset) |
| 291 | { |
| 292 | return (unsigned int)__raw_readl(ecc->base + offset); |
| 293 | } |
| 294 | |
| 295 | static inline void edma_write(struct edma_cc *ecc, int offset, int val) |
| 296 | { |
| 297 | __raw_writel(val, ecc->base + offset); |
| 298 | } |
| 299 | |
| 300 | static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, |
| 301 | unsigned or) |
| 302 | { |
| 303 | unsigned val = edma_read(ecc, offset); |
| 304 | |
| 305 | val &= and; |
| 306 | val |= or; |
| 307 | edma_write(ecc, offset, val); |
| 308 | } |
| 309 | |
| 310 | static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) |
| 311 | { |
| 312 | unsigned val = edma_read(ecc, offset); |
| 313 | |
| 314 | val &= and; |
| 315 | edma_write(ecc, offset, val); |
| 316 | } |
| 317 | |
| 318 | static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) |
| 319 | { |
| 320 | unsigned val = edma_read(ecc, offset); |
| 321 | |
| 322 | val |= or; |
| 323 | edma_write(ecc, offset, val); |
| 324 | } |
| 325 | |
| 326 | static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, |
| 327 | int i) |
| 328 | { |
| 329 | return edma_read(ecc, offset + (i << 2)); |
| 330 | } |
| 331 | |
| 332 | static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, |
| 333 | unsigned val) |
| 334 | { |
| 335 | edma_write(ecc, offset + (i << 2), val); |
| 336 | } |
| 337 | |
| 338 | static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, |
| 339 | unsigned and, unsigned or) |
| 340 | { |
| 341 | edma_modify(ecc, offset + (i << 2), and, or); |
| 342 | } |
| 343 | |
| 344 | static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, |
| 345 | unsigned or) |
| 346 | { |
| 347 | edma_or(ecc, offset + (i << 2), or); |
| 348 | } |
| 349 | |
| 350 | static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, |
| 351 | unsigned or) |
| 352 | { |
| 353 | edma_or(ecc, offset + ((i * 2 + j) << 2), or); |
| 354 | } |
| 355 | |
| 356 | static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, |
| 357 | int j, unsigned val) |
| 358 | { |
| 359 | edma_write(ecc, offset + ((i * 2 + j) << 2), val); |
| 360 | } |
| 361 | |
| 362 | static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) |
| 363 | { |
| 364 | return edma_read(ecc, EDMA_SHADOW0 + offset); |
| 365 | } |
| 366 | |
| 367 | static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, |
| 368 | int offset, int i) |
| 369 | { |
| 370 | return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); |
| 371 | } |
| 372 | |
| 373 | static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, |
| 374 | unsigned val) |
| 375 | { |
| 376 | edma_write(ecc, EDMA_SHADOW0 + offset, val); |
| 377 | } |
| 378 | |
| 379 | static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, |
| 380 | int i, unsigned val) |
| 381 | { |
| 382 | edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); |
| 383 | } |
| 384 | |
| 385 | static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, |
| 386 | int param_no) |
| 387 | { |
| 388 | return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); |
| 389 | } |
| 390 | |
| 391 | static inline void edma_param_write(struct edma_cc *ecc, int offset, |
| 392 | int param_no, unsigned val) |
| 393 | { |
| 394 | edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); |
| 395 | } |
| 396 | |
| 397 | static inline void edma_param_modify(struct edma_cc *ecc, int offset, |
| 398 | int param_no, unsigned and, unsigned or) |
| 399 | { |
| 400 | edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); |
| 401 | } |
| 402 | |
| 403 | static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, |
| 404 | unsigned and) |
| 405 | { |
| 406 | edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); |
| 407 | } |
| 408 | |
| 409 | static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, |
| 410 | unsigned or) |
| 411 | { |
| 412 | edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); |
| 413 | } |
| 414 | |
| 415 | static inline void edma_set_bits(int offset, int len, unsigned long *p) |
| 416 | { |
| 417 | for (; len > 0; len--) |
| 418 | set_bit(offset + (len - 1), p); |
| 419 | } |
| 420 | |
| 421 | static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, |
| 422 | int priority) |
| 423 | { |
| 424 | int bit = queue_no * 4; |
| 425 | |
| 426 | edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); |
| 427 | } |
| 428 | |
| 429 | static void edma_set_chmap(struct edma_chan *echan, int slot) |
| 430 | { |
| 431 | struct edma_cc *ecc = echan->ecc; |
| 432 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 433 | |
| 434 | if (ecc->chmap_exist) { |
| 435 | slot = EDMA_CHAN_SLOT(slot); |
| 436 | edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | static void edma_setup_interrupt(struct edma_chan *echan, bool enable) |
| 441 | { |
| 442 | struct edma_cc *ecc = echan->ecc; |
| 443 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 444 | |
| 445 | if (enable) { |
| 446 | edma_shadow0_write_array(ecc, SH_ICR, channel >> 5, |
| 447 | BIT(channel & 0x1f)); |
| 448 | edma_shadow0_write_array(ecc, SH_IESR, channel >> 5, |
| 449 | BIT(channel & 0x1f)); |
| 450 | } else { |
| 451 | edma_shadow0_write_array(ecc, SH_IECR, channel >> 5, |
| 452 | BIT(channel & 0x1f)); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * paRAM slot management functions |
| 458 | */ |
| 459 | static void edma_write_slot(struct edma_cc *ecc, unsigned slot, |
| 460 | const struct edmacc_param *param) |
| 461 | { |
| 462 | slot = EDMA_CHAN_SLOT(slot); |
| 463 | if (slot >= ecc->num_slots) |
| 464 | return; |
| 465 | memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); |
| 466 | } |
| 467 | |
| 468 | static int edma_read_slot(struct edma_cc *ecc, unsigned slot, |
| 469 | struct edmacc_param *param) |
| 470 | { |
| 471 | slot = EDMA_CHAN_SLOT(slot); |
| 472 | if (slot >= ecc->num_slots) |
| 473 | return -EINVAL; |
| 474 | memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); |
| 475 | |
| 476 | return 0; |
| 477 | } |
| 478 | |
| 479 | /** |
| 480 | * edma_alloc_slot - allocate DMA parameter RAM |
| 481 | * @ecc: pointer to edma_cc struct |
| 482 | * @slot: specific slot to allocate; negative for "any unused slot" |
| 483 | * |
| 484 | * This allocates a parameter RAM slot, initializing it to hold a |
| 485 | * dummy transfer. Slots allocated using this routine have not been |
| 486 | * mapped to a hardware DMA channel, and will normally be used by |
| 487 | * linking to them from a slot associated with a DMA channel. |
| 488 | * |
| 489 | * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific |
| 490 | * slots may be allocated on behalf of DSP firmware. |
| 491 | * |
| 492 | * Returns the number of the slot, else negative errno. |
| 493 | */ |
| 494 | static int edma_alloc_slot(struct edma_cc *ecc, int slot) |
| 495 | { |
| 496 | if (slot >= 0) { |
| 497 | slot = EDMA_CHAN_SLOT(slot); |
| 498 | /* Requesting entry paRAM slot for a HW triggered channel. */ |
| 499 | if (ecc->chmap_exist && slot < ecc->num_channels) |
| 500 | slot = EDMA_SLOT_ANY; |
| 501 | } |
| 502 | |
| 503 | if (slot < 0) { |
| 504 | if (ecc->chmap_exist) |
| 505 | slot = 0; |
| 506 | else |
| 507 | slot = ecc->num_channels; |
| 508 | for (;;) { |
| 509 | slot = find_next_zero_bit(ecc->slot_inuse, |
| 510 | ecc->num_slots, |
| 511 | slot); |
| 512 | if (slot == ecc->num_slots) |
| 513 | return -ENOMEM; |
| 514 | if (!test_and_set_bit(slot, ecc->slot_inuse)) |
| 515 | break; |
| 516 | } |
| 517 | } else if (slot >= ecc->num_slots) { |
| 518 | return -EINVAL; |
| 519 | } else if (test_and_set_bit(slot, ecc->slot_inuse)) { |
| 520 | return -EBUSY; |
| 521 | } |
| 522 | |
| 523 | edma_write_slot(ecc, slot, &dummy_paramset); |
| 524 | |
| 525 | return EDMA_CTLR_CHAN(ecc->id, slot); |
| 526 | } |
| 527 | |
| 528 | static void edma_free_slot(struct edma_cc *ecc, unsigned slot) |
| 529 | { |
| 530 | slot = EDMA_CHAN_SLOT(slot); |
| 531 | if (slot >= ecc->num_slots) |
| 532 | return; |
| 533 | |
| 534 | edma_write_slot(ecc, slot, &dummy_paramset); |
| 535 | clear_bit(slot, ecc->slot_inuse); |
| 536 | } |
| 537 | |
| 538 | /** |
| 539 | * edma_link - link one parameter RAM slot to another |
| 540 | * @ecc: pointer to edma_cc struct |
| 541 | * @from: parameter RAM slot originating the link |
| 542 | * @to: parameter RAM slot which is the link target |
| 543 | * |
| 544 | * The originating slot should not be part of any active DMA transfer. |
| 545 | */ |
| 546 | static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) |
| 547 | { |
| 548 | if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) |
| 549 | dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); |
| 550 | |
| 551 | from = EDMA_CHAN_SLOT(from); |
| 552 | to = EDMA_CHAN_SLOT(to); |
| 553 | if (from >= ecc->num_slots || to >= ecc->num_slots) |
| 554 | return; |
| 555 | |
| 556 | edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, |
| 557 | PARM_OFFSET(to)); |
| 558 | } |
| 559 | |
| 560 | /** |
| 561 | * edma_get_position - returns the current transfer point |
| 562 | * @ecc: pointer to edma_cc struct |
| 563 | * @slot: parameter RAM slot being examined |
| 564 | * @dst: true selects the dest position, false the source |
| 565 | * |
| 566 | * Returns the position of the current active slot |
| 567 | */ |
| 568 | static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, |
| 569 | bool dst) |
| 570 | { |
| 571 | u32 offs; |
| 572 | |
| 573 | slot = EDMA_CHAN_SLOT(slot); |
| 574 | offs = PARM_OFFSET(slot); |
| 575 | offs += dst ? PARM_DST : PARM_SRC; |
| 576 | |
| 577 | return edma_read(ecc, offs); |
| 578 | } |
| 579 | |
| 580 | /* |
| 581 | * Channels with event associations will be triggered by their hardware |
| 582 | * events, and channels without such associations will be triggered by |
| 583 | * software. (At this writing there is no interface for using software |
| 584 | * triggers except with channels that don't support hardware triggers.) |
| 585 | */ |
| 586 | static void edma_start(struct edma_chan *echan) |
| 587 | { |
| 588 | struct edma_cc *ecc = echan->ecc; |
| 589 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 590 | int j = (channel >> 5); |
| 591 | unsigned int mask = BIT(channel & 0x1f); |
| 592 | |
| 593 | if (!echan->hw_triggered) { |
| 594 | /* EDMA channels without event association */ |
| 595 | dev_dbg(ecc->dev, "ESR%d %08x\n", j, |
| 596 | edma_shadow0_read_array(ecc, SH_ESR, j)); |
| 597 | edma_shadow0_write_array(ecc, SH_ESR, j, mask); |
| 598 | } else { |
| 599 | /* EDMA channel with event association */ |
| 600 | dev_dbg(ecc->dev, "ER%d %08x\n", j, |
| 601 | edma_shadow0_read_array(ecc, SH_ER, j)); |
| 602 | /* Clear any pending event or error */ |
| 603 | edma_write_array(ecc, EDMA_ECR, j, mask); |
| 604 | edma_write_array(ecc, EDMA_EMCR, j, mask); |
| 605 | /* Clear any SER */ |
| 606 | edma_shadow0_write_array(ecc, SH_SECR, j, mask); |
| 607 | edma_shadow0_write_array(ecc, SH_EESR, j, mask); |
| 608 | dev_dbg(ecc->dev, "EER%d %08x\n", j, |
| 609 | edma_shadow0_read_array(ecc, SH_EER, j)); |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | static void edma_stop(struct edma_chan *echan) |
| 614 | { |
| 615 | struct edma_cc *ecc = echan->ecc; |
| 616 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 617 | int j = (channel >> 5); |
| 618 | unsigned int mask = BIT(channel & 0x1f); |
| 619 | |
| 620 | edma_shadow0_write_array(ecc, SH_EECR, j, mask); |
| 621 | edma_shadow0_write_array(ecc, SH_ECR, j, mask); |
| 622 | edma_shadow0_write_array(ecc, SH_SECR, j, mask); |
| 623 | edma_write_array(ecc, EDMA_EMCR, j, mask); |
| 624 | |
| 625 | /* clear possibly pending completion interrupt */ |
| 626 | edma_shadow0_write_array(ecc, SH_ICR, j, mask); |
| 627 | |
| 628 | dev_dbg(ecc->dev, "EER%d %08x\n", j, |
| 629 | edma_shadow0_read_array(ecc, SH_EER, j)); |
| 630 | |
| 631 | /* REVISIT: consider guarding against inappropriate event |
| 632 | * chaining by overwriting with dummy_paramset. |
| 633 | */ |
| 634 | } |
| 635 | |
| 636 | /* |
| 637 | * Temporarily disable EDMA hardware events on the specified channel, |
| 638 | * preventing them from triggering new transfers |
| 639 | */ |
| 640 | static void edma_pause(struct edma_chan *echan) |
| 641 | { |
| 642 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 643 | unsigned int mask = BIT(channel & 0x1f); |
| 644 | |
| 645 | edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask); |
| 646 | } |
| 647 | |
| 648 | /* Re-enable EDMA hardware events on the specified channel. */ |
| 649 | static void edma_resume(struct edma_chan *echan) |
| 650 | { |
| 651 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 652 | unsigned int mask = BIT(channel & 0x1f); |
| 653 | |
| 654 | edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask); |
| 655 | } |
| 656 | |
| 657 | static void edma_trigger_channel(struct edma_chan *echan) |
| 658 | { |
| 659 | struct edma_cc *ecc = echan->ecc; |
| 660 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 661 | unsigned int mask = BIT(channel & 0x1f); |
| 662 | |
| 663 | edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask); |
| 664 | |
| 665 | dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5), |
| 666 | edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5))); |
| 667 | } |
| 668 | |
| 669 | static void edma_clean_channel(struct edma_chan *echan) |
| 670 | { |
| 671 | struct edma_cc *ecc = echan->ecc; |
| 672 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 673 | int j = (channel >> 5); |
| 674 | unsigned int mask = BIT(channel & 0x1f); |
| 675 | |
| 676 | dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j)); |
| 677 | edma_shadow0_write_array(ecc, SH_ECR, j, mask); |
| 678 | /* Clear the corresponding EMR bits */ |
| 679 | edma_write_array(ecc, EDMA_EMCR, j, mask); |
| 680 | /* Clear any SER */ |
| 681 | edma_shadow0_write_array(ecc, SH_SECR, j, mask); |
| 682 | edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); |
| 683 | } |
| 684 | |
| 685 | /* Move channel to a specific event queue */ |
| 686 | static void edma_assign_channel_eventq(struct edma_chan *echan, |
| 687 | enum dma_event_q eventq_no) |
| 688 | { |
| 689 | struct edma_cc *ecc = echan->ecc; |
| 690 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 691 | int bit = (channel & 0x7) * 4; |
| 692 | |
| 693 | /* default to low priority queue */ |
| 694 | if (eventq_no == EVENTQ_DEFAULT) |
| 695 | eventq_no = ecc->default_queue; |
| 696 | if (eventq_no >= ecc->num_tc) |
| 697 | return; |
| 698 | |
| 699 | eventq_no &= 7; |
| 700 | edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), |
| 701 | eventq_no << bit); |
| 702 | } |
| 703 | |
| 704 | static int edma_alloc_channel(struct edma_chan *echan, |
| 705 | enum dma_event_q eventq_no) |
| 706 | { |
| 707 | struct edma_cc *ecc = echan->ecc; |
| 708 | int channel = EDMA_CHAN_SLOT(echan->ch_num); |
| 709 | |
| 710 | /* ensure access through shadow region 0 */ |
| 711 | edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f)); |
| 712 | |
| 713 | /* ensure no events are pending */ |
| 714 | edma_stop(echan); |
| 715 | |
| 716 | edma_setup_interrupt(echan, true); |
| 717 | |
| 718 | edma_assign_channel_eventq(echan, eventq_no); |
| 719 | |
| 720 | return 0; |
| 721 | } |
| 722 | |
| 723 | static void edma_free_channel(struct edma_chan *echan) |
| 724 | { |
| 725 | /* ensure no events are pending */ |
| 726 | edma_stop(echan); |
| 727 | /* REVISIT should probably take out of shadow region 0 */ |
| 728 | edma_setup_interrupt(echan, false); |
| 729 | } |
| 730 | |
| 731 | static inline struct edma_cc *to_edma_cc(struct dma_device *d) |
| 732 | { |
| 733 | return container_of(d, struct edma_cc, dma_slave); |
| 734 | } |
| 735 | |
| 736 | static inline struct edma_chan *to_edma_chan(struct dma_chan *c) |
| 737 | { |
| 738 | return container_of(c, struct edma_chan, vchan.chan); |
| 739 | } |
| 740 | |
| 741 | static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) |
| 742 | { |
| 743 | return container_of(tx, struct edma_desc, vdesc.tx); |
| 744 | } |
| 745 | |
| 746 | static void edma_desc_free(struct virt_dma_desc *vdesc) |
| 747 | { |
| 748 | kfree(container_of(vdesc, struct edma_desc, vdesc)); |
| 749 | } |
| 750 | |
| 751 | /* Dispatch a queued descriptor to the controller (caller holds lock) */ |
| 752 | static void edma_execute(struct edma_chan *echan) |
| 753 | { |
| 754 | struct edma_cc *ecc = echan->ecc; |
| 755 | struct virt_dma_desc *vdesc; |
| 756 | struct edma_desc *edesc; |
| 757 | struct device *dev = echan->vchan.chan.device->dev; |
| 758 | int i, j, left, nslots; |
| 759 | |
| 760 | if (!echan->edesc) { |
| 761 | /* Setup is needed for the first transfer */ |
| 762 | vdesc = vchan_next_desc(&echan->vchan); |
| 763 | if (!vdesc) |
| 764 | return; |
| 765 | list_del(&vdesc->node); |
| 766 | echan->edesc = to_edma_desc(&vdesc->tx); |
| 767 | } |
| 768 | |
| 769 | edesc = echan->edesc; |
| 770 | |
| 771 | /* Find out how many left */ |
| 772 | left = edesc->pset_nr - edesc->processed; |
| 773 | nslots = min(MAX_NR_SG, left); |
| 774 | edesc->sg_len = 0; |
| 775 | |
| 776 | /* Write descriptor PaRAM set(s) */ |
| 777 | for (i = 0; i < nslots; i++) { |
| 778 | j = i + edesc->processed; |
| 779 | edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); |
| 780 | edesc->sg_len += edesc->pset[j].len; |
| 781 | dev_vdbg(dev, |
| 782 | "\n pset[%d]:\n" |
| 783 | " chnum\t%d\n" |
| 784 | " slot\t%d\n" |
| 785 | " opt\t%08x\n" |
| 786 | " src\t%08x\n" |
| 787 | " dst\t%08x\n" |
| 788 | " abcnt\t%08x\n" |
| 789 | " ccnt\t%08x\n" |
| 790 | " bidx\t%08x\n" |
| 791 | " cidx\t%08x\n" |
| 792 | " lkrld\t%08x\n", |
| 793 | j, echan->ch_num, echan->slot[i], |
| 794 | edesc->pset[j].param.opt, |
| 795 | edesc->pset[j].param.src, |
| 796 | edesc->pset[j].param.dst, |
| 797 | edesc->pset[j].param.a_b_cnt, |
| 798 | edesc->pset[j].param.ccnt, |
| 799 | edesc->pset[j].param.src_dst_bidx, |
| 800 | edesc->pset[j].param.src_dst_cidx, |
| 801 | edesc->pset[j].param.link_bcntrld); |
| 802 | /* Link to the previous slot if not the last set */ |
| 803 | if (i != (nslots - 1)) |
| 804 | edma_link(ecc, echan->slot[i], echan->slot[i + 1]); |
| 805 | } |
| 806 | |
| 807 | edesc->processed += nslots; |
| 808 | |
| 809 | /* |
| 810 | * If this is either the last set in a set of SG-list transactions |
| 811 | * then setup a link to the dummy slot, this results in all future |
| 812 | * events being absorbed and that's OK because we're done |
| 813 | */ |
| 814 | if (edesc->processed == edesc->pset_nr) { |
| 815 | if (edesc->cyclic) |
| 816 | edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); |
| 817 | else |
| 818 | edma_link(ecc, echan->slot[nslots - 1], |
| 819 | echan->ecc->dummy_slot); |
| 820 | } |
| 821 | |
| 822 | if (echan->missed) { |
| 823 | /* |
| 824 | * This happens due to setup times between intermediate |
| 825 | * transfers in long SG lists which have to be broken up into |
| 826 | * transfers of MAX_NR_SG |
| 827 | */ |
| 828 | dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); |
| 829 | edma_clean_channel(echan); |
| 830 | edma_stop(echan); |
| 831 | edma_start(echan); |
| 832 | edma_trigger_channel(echan); |
| 833 | echan->missed = 0; |
| 834 | } else if (edesc->processed <= MAX_NR_SG) { |
| 835 | dev_dbg(dev, "first transfer starting on channel %d\n", |
| 836 | echan->ch_num); |
| 837 | edma_start(echan); |
| 838 | } else { |
| 839 | dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", |
| 840 | echan->ch_num, edesc->processed); |
| 841 | edma_resume(echan); |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | static int edma_terminate_all(struct dma_chan *chan) |
| 846 | { |
| 847 | struct edma_chan *echan = to_edma_chan(chan); |
| 848 | unsigned long flags; |
| 849 | LIST_HEAD(head); |
| 850 | |
| 851 | spin_lock_irqsave(&echan->vchan.lock, flags); |
| 852 | |
| 853 | /* |
| 854 | * Stop DMA activity: we assume the callback will not be called |
| 855 | * after edma_dma() returns (even if it does, it will see |
| 856 | * echan->edesc is NULL and exit.) |
| 857 | */ |
| 858 | if (echan->edesc) { |
| 859 | edma_stop(echan); |
| 860 | /* Move the cyclic channel back to default queue */ |
| 861 | if (!echan->tc && echan->edesc->cyclic) |
| 862 | edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); |
| 863 | |
| 864 | vchan_terminate_vdesc(&echan->edesc->vdesc); |
| 865 | echan->edesc = NULL; |
| 866 | } |
| 867 | |
| 868 | vchan_get_all_descriptors(&echan->vchan, &head); |
| 869 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 870 | vchan_dma_desc_free_list(&echan->vchan, &head); |
| 871 | |
| 872 | return 0; |
| 873 | } |
| 874 | |
| 875 | static void edma_synchronize(struct dma_chan *chan) |
| 876 | { |
| 877 | struct edma_chan *echan = to_edma_chan(chan); |
| 878 | |
| 879 | vchan_synchronize(&echan->vchan); |
| 880 | } |
| 881 | |
| 882 | static int edma_slave_config(struct dma_chan *chan, |
| 883 | struct dma_slave_config *cfg) |
| 884 | { |
| 885 | struct edma_chan *echan = to_edma_chan(chan); |
| 886 | |
| 887 | if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || |
| 888 | cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) |
| 889 | return -EINVAL; |
| 890 | |
| 891 | if (cfg->src_maxburst > chan->device->max_burst || |
| 892 | cfg->dst_maxburst > chan->device->max_burst) |
| 893 | return -EINVAL; |
| 894 | |
| 895 | memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); |
| 896 | |
| 897 | return 0; |
| 898 | } |
| 899 | |
| 900 | static int edma_dma_pause(struct dma_chan *chan) |
| 901 | { |
| 902 | struct edma_chan *echan = to_edma_chan(chan); |
| 903 | |
| 904 | if (!echan->edesc) |
| 905 | return -EINVAL; |
| 906 | |
| 907 | edma_pause(echan); |
| 908 | return 0; |
| 909 | } |
| 910 | |
| 911 | static int edma_dma_resume(struct dma_chan *chan) |
| 912 | { |
| 913 | struct edma_chan *echan = to_edma_chan(chan); |
| 914 | |
| 915 | edma_resume(echan); |
| 916 | return 0; |
| 917 | } |
| 918 | |
| 919 | /* |
| 920 | * A PaRAM set configuration abstraction used by other modes |
| 921 | * @chan: Channel who's PaRAM set we're configuring |
| 922 | * @pset: PaRAM set to initialize and setup. |
| 923 | * @src_addr: Source address of the DMA |
| 924 | * @dst_addr: Destination address of the DMA |
| 925 | * @burst: In units of dev_width, how much to send |
| 926 | * @dev_width: How much is the dev_width |
| 927 | * @dma_length: Total length of the DMA transfer |
| 928 | * @direction: Direction of the transfer |
| 929 | */ |
| 930 | static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, |
| 931 | dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, |
| 932 | unsigned int acnt, unsigned int dma_length, |
| 933 | enum dma_transfer_direction direction) |
| 934 | { |
| 935 | struct edma_chan *echan = to_edma_chan(chan); |
| 936 | struct device *dev = chan->device->dev; |
| 937 | struct edmacc_param *param = &epset->param; |
| 938 | int bcnt, ccnt, cidx; |
| 939 | int src_bidx, dst_bidx, src_cidx, dst_cidx; |
| 940 | int absync; |
| 941 | |
| 942 | /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ |
| 943 | if (!burst) |
| 944 | burst = 1; |
| 945 | /* |
| 946 | * If the maxburst is equal to the fifo width, use |
| 947 | * A-synced transfers. This allows for large contiguous |
| 948 | * buffer transfers using only one PaRAM set. |
| 949 | */ |
| 950 | if (burst == 1) { |
| 951 | /* |
| 952 | * For the A-sync case, bcnt and ccnt are the remainder |
| 953 | * and quotient respectively of the division of: |
| 954 | * (dma_length / acnt) by (SZ_64K -1). This is so |
| 955 | * that in case bcnt over flows, we have ccnt to use. |
| 956 | * Note: In A-sync tranfer only, bcntrld is used, but it |
| 957 | * only applies for sg_dma_len(sg) >= SZ_64K. |
| 958 | * In this case, the best way adopted is- bccnt for the |
| 959 | * first frame will be the remainder below. Then for |
| 960 | * every successive frame, bcnt will be SZ_64K-1. This |
| 961 | * is assured as bcntrld = 0xffff in end of function. |
| 962 | */ |
| 963 | absync = false; |
| 964 | ccnt = dma_length / acnt / (SZ_64K - 1); |
| 965 | bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); |
| 966 | /* |
| 967 | * If bcnt is non-zero, we have a remainder and hence an |
| 968 | * extra frame to transfer, so increment ccnt. |
| 969 | */ |
| 970 | if (bcnt) |
| 971 | ccnt++; |
| 972 | else |
| 973 | bcnt = SZ_64K - 1; |
| 974 | cidx = acnt; |
| 975 | } else { |
| 976 | /* |
| 977 | * If maxburst is greater than the fifo address_width, |
| 978 | * use AB-synced transfers where A count is the fifo |
| 979 | * address_width and B count is the maxburst. In this |
| 980 | * case, we are limited to transfers of C count frames |
| 981 | * of (address_width * maxburst) where C count is limited |
| 982 | * to SZ_64K-1. This places an upper bound on the length |
| 983 | * of an SG segment that can be handled. |
| 984 | */ |
| 985 | absync = true; |
| 986 | bcnt = burst; |
| 987 | ccnt = dma_length / (acnt * bcnt); |
| 988 | if (ccnt > (SZ_64K - 1)) { |
| 989 | dev_err(dev, "Exceeded max SG segment size\n"); |
| 990 | return -EINVAL; |
| 991 | } |
| 992 | cidx = acnt * bcnt; |
| 993 | } |
| 994 | |
| 995 | epset->len = dma_length; |
| 996 | |
| 997 | if (direction == DMA_MEM_TO_DEV) { |
| 998 | src_bidx = acnt; |
| 999 | src_cidx = cidx; |
| 1000 | dst_bidx = 0; |
| 1001 | dst_cidx = 0; |
| 1002 | epset->addr = src_addr; |
| 1003 | } else if (direction == DMA_DEV_TO_MEM) { |
| 1004 | src_bidx = 0; |
| 1005 | src_cidx = 0; |
| 1006 | dst_bidx = acnt; |
| 1007 | dst_cidx = cidx; |
| 1008 | epset->addr = dst_addr; |
| 1009 | } else if (direction == DMA_MEM_TO_MEM) { |
| 1010 | src_bidx = acnt; |
| 1011 | src_cidx = cidx; |
| 1012 | dst_bidx = acnt; |
| 1013 | dst_cidx = cidx; |
| 1014 | } else { |
| 1015 | dev_err(dev, "%s: direction not implemented yet\n", __func__); |
| 1016 | return -EINVAL; |
| 1017 | } |
| 1018 | |
| 1019 | param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); |
| 1020 | /* Configure A or AB synchronized transfers */ |
| 1021 | if (absync) |
| 1022 | param->opt |= SYNCDIM; |
| 1023 | |
| 1024 | param->src = src_addr; |
| 1025 | param->dst = dst_addr; |
| 1026 | |
| 1027 | param->src_dst_bidx = (dst_bidx << 16) | src_bidx; |
| 1028 | param->src_dst_cidx = (dst_cidx << 16) | src_cidx; |
| 1029 | |
| 1030 | param->a_b_cnt = bcnt << 16 | acnt; |
| 1031 | param->ccnt = ccnt; |
| 1032 | /* |
| 1033 | * Only time when (bcntrld) auto reload is required is for |
| 1034 | * A-sync case, and in this case, a requirement of reload value |
| 1035 | * of SZ_64K-1 only is assured. 'link' is initially set to NULL |
| 1036 | * and then later will be populated by edma_execute. |
| 1037 | */ |
| 1038 | param->link_bcntrld = 0xffffffff; |
| 1039 | return absync; |
| 1040 | } |
| 1041 | |
| 1042 | static struct dma_async_tx_descriptor *edma_prep_slave_sg( |
| 1043 | struct dma_chan *chan, struct scatterlist *sgl, |
| 1044 | unsigned int sg_len, enum dma_transfer_direction direction, |
| 1045 | unsigned long tx_flags, void *context) |
| 1046 | { |
| 1047 | struct edma_chan *echan = to_edma_chan(chan); |
| 1048 | struct device *dev = chan->device->dev; |
| 1049 | struct edma_desc *edesc; |
| 1050 | dma_addr_t src_addr = 0, dst_addr = 0; |
| 1051 | enum dma_slave_buswidth dev_width; |
| 1052 | u32 burst; |
| 1053 | struct scatterlist *sg; |
| 1054 | int i, nslots, ret; |
| 1055 | |
| 1056 | if (unlikely(!echan || !sgl || !sg_len)) |
| 1057 | return NULL; |
| 1058 | |
| 1059 | if (direction == DMA_DEV_TO_MEM) { |
| 1060 | src_addr = echan->cfg.src_addr; |
| 1061 | dev_width = echan->cfg.src_addr_width; |
| 1062 | burst = echan->cfg.src_maxburst; |
| 1063 | } else if (direction == DMA_MEM_TO_DEV) { |
| 1064 | dst_addr = echan->cfg.dst_addr; |
| 1065 | dev_width = echan->cfg.dst_addr_width; |
| 1066 | burst = echan->cfg.dst_maxburst; |
| 1067 | } else { |
| 1068 | dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
| 1069 | return NULL; |
| 1070 | } |
| 1071 | |
| 1072 | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| 1073 | dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
| 1074 | return NULL; |
| 1075 | } |
| 1076 | |
| 1077 | edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); |
| 1078 | if (!edesc) |
| 1079 | return NULL; |
| 1080 | |
| 1081 | edesc->pset_nr = sg_len; |
| 1082 | edesc->residue = 0; |
| 1083 | edesc->direction = direction; |
| 1084 | edesc->echan = echan; |
| 1085 | |
| 1086 | /* Allocate a PaRAM slot, if needed */ |
| 1087 | nslots = min_t(unsigned, MAX_NR_SG, sg_len); |
| 1088 | |
| 1089 | for (i = 0; i < nslots; i++) { |
| 1090 | if (echan->slot[i] < 0) { |
| 1091 | echan->slot[i] = |
| 1092 | edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); |
| 1093 | if (echan->slot[i] < 0) { |
| 1094 | kfree(edesc); |
| 1095 | dev_err(dev, "%s: Failed to allocate slot\n", |
| 1096 | __func__); |
| 1097 | return NULL; |
| 1098 | } |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | /* Configure PaRAM sets for each SG */ |
| 1103 | for_each_sg(sgl, sg, sg_len, i) { |
| 1104 | /* Get address for each SG */ |
| 1105 | if (direction == DMA_DEV_TO_MEM) |
| 1106 | dst_addr = sg_dma_address(sg); |
| 1107 | else |
| 1108 | src_addr = sg_dma_address(sg); |
| 1109 | |
| 1110 | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, |
| 1111 | dst_addr, burst, dev_width, |
| 1112 | sg_dma_len(sg), direction); |
| 1113 | if (ret < 0) { |
| 1114 | kfree(edesc); |
| 1115 | return NULL; |
| 1116 | } |
| 1117 | |
| 1118 | edesc->absync = ret; |
| 1119 | edesc->residue += sg_dma_len(sg); |
| 1120 | |
| 1121 | if (i == sg_len - 1) |
| 1122 | /* Enable completion interrupt */ |
| 1123 | edesc->pset[i].param.opt |= TCINTEN; |
| 1124 | else if (!((i+1) % MAX_NR_SG)) |
| 1125 | /* |
| 1126 | * Enable early completion interrupt for the |
| 1127 | * intermediateset. In this case the driver will be |
| 1128 | * notified when the paRAM set is submitted to TC. This |
| 1129 | * will allow more time to set up the next set of slots. |
| 1130 | */ |
| 1131 | edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); |
| 1132 | } |
| 1133 | edesc->residue_stat = edesc->residue; |
| 1134 | |
| 1135 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| 1136 | } |
| 1137 | |
| 1138 | static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( |
| 1139 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| 1140 | size_t len, unsigned long tx_flags) |
| 1141 | { |
| 1142 | int ret, nslots; |
| 1143 | struct edma_desc *edesc; |
| 1144 | struct device *dev = chan->device->dev; |
| 1145 | struct edma_chan *echan = to_edma_chan(chan); |
| 1146 | unsigned int width, pset_len, array_size; |
| 1147 | |
| 1148 | if (unlikely(!echan || !len)) |
| 1149 | return NULL; |
| 1150 | |
| 1151 | /* Align the array size (acnt block) with the transfer properties */ |
| 1152 | switch (__ffs((src | dest | len))) { |
| 1153 | case 0: |
| 1154 | array_size = SZ_32K - 1; |
| 1155 | break; |
| 1156 | case 1: |
| 1157 | array_size = SZ_32K - 2; |
| 1158 | break; |
| 1159 | default: |
| 1160 | array_size = SZ_32K - 4; |
| 1161 | break; |
| 1162 | } |
| 1163 | |
| 1164 | if (len < SZ_64K) { |
| 1165 | /* |
| 1166 | * Transfer size less than 64K can be handled with one paRAM |
| 1167 | * slot and with one burst. |
| 1168 | * ACNT = length |
| 1169 | */ |
| 1170 | width = len; |
| 1171 | pset_len = len; |
| 1172 | nslots = 1; |
| 1173 | } else { |
| 1174 | /* |
| 1175 | * Transfer size bigger than 64K will be handled with maximum of |
| 1176 | * two paRAM slots. |
| 1177 | * slot1: (full_length / 32767) times 32767 bytes bursts. |
| 1178 | * ACNT = 32767, length1: (full_length / 32767) * 32767 |
| 1179 | * slot2: the remaining amount of data after slot1. |
| 1180 | * ACNT = full_length - length1, length2 = ACNT |
| 1181 | * |
| 1182 | * When the full_length is multibple of 32767 one slot can be |
| 1183 | * used to complete the transfer. |
| 1184 | */ |
| 1185 | width = array_size; |
| 1186 | pset_len = rounddown(len, width); |
| 1187 | /* One slot is enough for lengths multiple of (SZ_32K -1) */ |
| 1188 | if (unlikely(pset_len == len)) |
| 1189 | nslots = 1; |
| 1190 | else |
| 1191 | nslots = 2; |
| 1192 | } |
| 1193 | |
| 1194 | edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); |
| 1195 | if (!edesc) |
| 1196 | return NULL; |
| 1197 | |
| 1198 | edesc->pset_nr = nslots; |
| 1199 | edesc->residue = edesc->residue_stat = len; |
| 1200 | edesc->direction = DMA_MEM_TO_MEM; |
| 1201 | edesc->echan = echan; |
| 1202 | |
| 1203 | ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, |
| 1204 | width, pset_len, DMA_MEM_TO_MEM); |
| 1205 | if (ret < 0) { |
| 1206 | kfree(edesc); |
| 1207 | return NULL; |
| 1208 | } |
| 1209 | |
| 1210 | edesc->absync = ret; |
| 1211 | |
| 1212 | edesc->pset[0].param.opt |= ITCCHEN; |
| 1213 | if (nslots == 1) { |
| 1214 | /* Enable transfer complete interrupt */ |
| 1215 | edesc->pset[0].param.opt |= TCINTEN; |
| 1216 | } else { |
| 1217 | /* Enable transfer complete chaining for the first slot */ |
| 1218 | edesc->pset[0].param.opt |= TCCHEN; |
| 1219 | |
| 1220 | if (echan->slot[1] < 0) { |
| 1221 | echan->slot[1] = edma_alloc_slot(echan->ecc, |
| 1222 | EDMA_SLOT_ANY); |
| 1223 | if (echan->slot[1] < 0) { |
| 1224 | kfree(edesc); |
| 1225 | dev_err(dev, "%s: Failed to allocate slot\n", |
| 1226 | __func__); |
| 1227 | return NULL; |
| 1228 | } |
| 1229 | } |
| 1230 | dest += pset_len; |
| 1231 | src += pset_len; |
| 1232 | pset_len = width = len % array_size; |
| 1233 | |
| 1234 | ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, |
| 1235 | width, pset_len, DMA_MEM_TO_MEM); |
| 1236 | if (ret < 0) { |
| 1237 | kfree(edesc); |
| 1238 | return NULL; |
| 1239 | } |
| 1240 | |
| 1241 | edesc->pset[1].param.opt |= ITCCHEN; |
| 1242 | edesc->pset[1].param.opt |= TCINTEN; |
| 1243 | } |
| 1244 | |
| 1245 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| 1246 | } |
| 1247 | |
| 1248 | static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( |
| 1249 | struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
| 1250 | size_t period_len, enum dma_transfer_direction direction, |
| 1251 | unsigned long tx_flags) |
| 1252 | { |
| 1253 | struct edma_chan *echan = to_edma_chan(chan); |
| 1254 | struct device *dev = chan->device->dev; |
| 1255 | struct edma_desc *edesc; |
| 1256 | dma_addr_t src_addr, dst_addr; |
| 1257 | enum dma_slave_buswidth dev_width; |
| 1258 | bool use_intermediate = false; |
| 1259 | u32 burst; |
| 1260 | int i, ret, nslots; |
| 1261 | |
| 1262 | if (unlikely(!echan || !buf_len || !period_len)) |
| 1263 | return NULL; |
| 1264 | |
| 1265 | if (direction == DMA_DEV_TO_MEM) { |
| 1266 | src_addr = echan->cfg.src_addr; |
| 1267 | dst_addr = buf_addr; |
| 1268 | dev_width = echan->cfg.src_addr_width; |
| 1269 | burst = echan->cfg.src_maxburst; |
| 1270 | } else if (direction == DMA_MEM_TO_DEV) { |
| 1271 | src_addr = buf_addr; |
| 1272 | dst_addr = echan->cfg.dst_addr; |
| 1273 | dev_width = echan->cfg.dst_addr_width; |
| 1274 | burst = echan->cfg.dst_maxburst; |
| 1275 | } else { |
| 1276 | dev_err(dev, "%s: bad direction: %d\n", __func__, direction); |
| 1277 | return NULL; |
| 1278 | } |
| 1279 | |
| 1280 | if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| 1281 | dev_err(dev, "%s: Undefined slave buswidth\n", __func__); |
| 1282 | return NULL; |
| 1283 | } |
| 1284 | |
| 1285 | if (unlikely(buf_len % period_len)) { |
| 1286 | dev_err(dev, "Period should be multiple of Buffer length\n"); |
| 1287 | return NULL; |
| 1288 | } |
| 1289 | |
| 1290 | nslots = (buf_len / period_len) + 1; |
| 1291 | |
| 1292 | /* |
| 1293 | * Cyclic DMA users such as audio cannot tolerate delays introduced |
| 1294 | * by cases where the number of periods is more than the maximum |
| 1295 | * number of SGs the EDMA driver can handle at a time. For DMA types |
| 1296 | * such as Slave SGs, such delays are tolerable and synchronized, |
| 1297 | * but the synchronization is difficult to achieve with Cyclic and |
| 1298 | * cannot be guaranteed, so we error out early. |
| 1299 | */ |
| 1300 | if (nslots > MAX_NR_SG) { |
| 1301 | /* |
| 1302 | * If the burst and period sizes are the same, we can put |
| 1303 | * the full buffer into a single period and activate |
| 1304 | * intermediate interrupts. This will produce interrupts |
| 1305 | * after each burst, which is also after each desired period. |
| 1306 | */ |
| 1307 | if (burst == period_len) { |
| 1308 | period_len = buf_len; |
| 1309 | nslots = 2; |
| 1310 | use_intermediate = true; |
| 1311 | } else { |
| 1312 | return NULL; |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); |
| 1317 | if (!edesc) |
| 1318 | return NULL; |
| 1319 | |
| 1320 | edesc->cyclic = 1; |
| 1321 | edesc->pset_nr = nslots; |
| 1322 | edesc->residue = edesc->residue_stat = buf_len; |
| 1323 | edesc->direction = direction; |
| 1324 | edesc->echan = echan; |
| 1325 | |
| 1326 | dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", |
| 1327 | __func__, echan->ch_num, nslots, period_len, buf_len); |
| 1328 | |
| 1329 | for (i = 0; i < nslots; i++) { |
| 1330 | /* Allocate a PaRAM slot, if needed */ |
| 1331 | if (echan->slot[i] < 0) { |
| 1332 | echan->slot[i] = |
| 1333 | edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); |
| 1334 | if (echan->slot[i] < 0) { |
| 1335 | kfree(edesc); |
| 1336 | dev_err(dev, "%s: Failed to allocate slot\n", |
| 1337 | __func__); |
| 1338 | return NULL; |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | if (i == nslots - 1) { |
| 1343 | memcpy(&edesc->pset[i], &edesc->pset[0], |
| 1344 | sizeof(edesc->pset[0])); |
| 1345 | break; |
| 1346 | } |
| 1347 | |
| 1348 | ret = edma_config_pset(chan, &edesc->pset[i], src_addr, |
| 1349 | dst_addr, burst, dev_width, period_len, |
| 1350 | direction); |
| 1351 | if (ret < 0) { |
| 1352 | kfree(edesc); |
| 1353 | return NULL; |
| 1354 | } |
| 1355 | |
| 1356 | if (direction == DMA_DEV_TO_MEM) |
| 1357 | dst_addr += period_len; |
| 1358 | else |
| 1359 | src_addr += period_len; |
| 1360 | |
| 1361 | dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); |
| 1362 | dev_vdbg(dev, |
| 1363 | "\n pset[%d]:\n" |
| 1364 | " chnum\t%d\n" |
| 1365 | " slot\t%d\n" |
| 1366 | " opt\t%08x\n" |
| 1367 | " src\t%08x\n" |
| 1368 | " dst\t%08x\n" |
| 1369 | " abcnt\t%08x\n" |
| 1370 | " ccnt\t%08x\n" |
| 1371 | " bidx\t%08x\n" |
| 1372 | " cidx\t%08x\n" |
| 1373 | " lkrld\t%08x\n", |
| 1374 | i, echan->ch_num, echan->slot[i], |
| 1375 | edesc->pset[i].param.opt, |
| 1376 | edesc->pset[i].param.src, |
| 1377 | edesc->pset[i].param.dst, |
| 1378 | edesc->pset[i].param.a_b_cnt, |
| 1379 | edesc->pset[i].param.ccnt, |
| 1380 | edesc->pset[i].param.src_dst_bidx, |
| 1381 | edesc->pset[i].param.src_dst_cidx, |
| 1382 | edesc->pset[i].param.link_bcntrld); |
| 1383 | |
| 1384 | edesc->absync = ret; |
| 1385 | |
| 1386 | /* |
| 1387 | * Enable period interrupt only if it is requested |
| 1388 | */ |
| 1389 | if (tx_flags & DMA_PREP_INTERRUPT) { |
| 1390 | edesc->pset[i].param.opt |= TCINTEN; |
| 1391 | |
| 1392 | /* Also enable intermediate interrupts if necessary */ |
| 1393 | if (use_intermediate) |
| 1394 | edesc->pset[i].param.opt |= ITCINTEN; |
| 1395 | } |
| 1396 | } |
| 1397 | |
| 1398 | /* Place the cyclic channel to highest priority queue */ |
| 1399 | if (!echan->tc) |
| 1400 | edma_assign_channel_eventq(echan, EVENTQ_0); |
| 1401 | |
| 1402 | return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); |
| 1403 | } |
| 1404 | |
| 1405 | static void edma_completion_handler(struct edma_chan *echan) |
| 1406 | { |
| 1407 | struct device *dev = echan->vchan.chan.device->dev; |
| 1408 | struct edma_desc *edesc; |
| 1409 | |
| 1410 | spin_lock(&echan->vchan.lock); |
| 1411 | edesc = echan->edesc; |
| 1412 | if (edesc) { |
| 1413 | if (edesc->cyclic) { |
| 1414 | vchan_cyclic_callback(&edesc->vdesc); |
| 1415 | spin_unlock(&echan->vchan.lock); |
| 1416 | return; |
| 1417 | } else if (edesc->processed == edesc->pset_nr) { |
| 1418 | edesc->residue = 0; |
| 1419 | edma_stop(echan); |
| 1420 | vchan_cookie_complete(&edesc->vdesc); |
| 1421 | echan->edesc = NULL; |
| 1422 | |
| 1423 | dev_dbg(dev, "Transfer completed on channel %d\n", |
| 1424 | echan->ch_num); |
| 1425 | } else { |
| 1426 | dev_dbg(dev, "Sub transfer completed on channel %d\n", |
| 1427 | echan->ch_num); |
| 1428 | |
| 1429 | edma_pause(echan); |
| 1430 | |
| 1431 | /* Update statistics for tx_status */ |
| 1432 | edesc->residue -= edesc->sg_len; |
| 1433 | edesc->residue_stat = edesc->residue; |
| 1434 | edesc->processed_stat = edesc->processed; |
| 1435 | } |
| 1436 | edma_execute(echan); |
| 1437 | } |
| 1438 | |
| 1439 | spin_unlock(&echan->vchan.lock); |
| 1440 | } |
| 1441 | |
| 1442 | /* eDMA interrupt handler */ |
| 1443 | static irqreturn_t dma_irq_handler(int irq, void *data) |
| 1444 | { |
| 1445 | struct edma_cc *ecc = data; |
| 1446 | int ctlr; |
| 1447 | u32 sh_ier; |
| 1448 | u32 sh_ipr; |
| 1449 | u32 bank; |
| 1450 | |
| 1451 | ctlr = ecc->id; |
| 1452 | if (ctlr < 0) |
| 1453 | return IRQ_NONE; |
| 1454 | |
| 1455 | dev_vdbg(ecc->dev, "dma_irq_handler\n"); |
| 1456 | |
| 1457 | sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); |
| 1458 | if (!sh_ipr) { |
| 1459 | sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); |
| 1460 | if (!sh_ipr) |
| 1461 | return IRQ_NONE; |
| 1462 | sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); |
| 1463 | bank = 1; |
| 1464 | } else { |
| 1465 | sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); |
| 1466 | bank = 0; |
| 1467 | } |
| 1468 | |
| 1469 | do { |
| 1470 | u32 slot; |
| 1471 | u32 channel; |
| 1472 | |
| 1473 | slot = __ffs(sh_ipr); |
| 1474 | sh_ipr &= ~(BIT(slot)); |
| 1475 | |
| 1476 | if (sh_ier & BIT(slot)) { |
| 1477 | channel = (bank << 5) | slot; |
| 1478 | /* Clear the corresponding IPR bits */ |
| 1479 | edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); |
| 1480 | edma_completion_handler(&ecc->slave_chans[channel]); |
| 1481 | } |
| 1482 | } while (sh_ipr); |
| 1483 | |
| 1484 | edma_shadow0_write(ecc, SH_IEVAL, 1); |
| 1485 | return IRQ_HANDLED; |
| 1486 | } |
| 1487 | |
| 1488 | static void edma_error_handler(struct edma_chan *echan) |
| 1489 | { |
| 1490 | struct edma_cc *ecc = echan->ecc; |
| 1491 | struct device *dev = echan->vchan.chan.device->dev; |
| 1492 | struct edmacc_param p; |
| 1493 | int err; |
| 1494 | |
| 1495 | if (!echan->edesc) |
| 1496 | return; |
| 1497 | |
| 1498 | spin_lock(&echan->vchan.lock); |
| 1499 | |
| 1500 | err = edma_read_slot(ecc, echan->slot[0], &p); |
| 1501 | |
| 1502 | /* |
| 1503 | * Issue later based on missed flag which will be sure |
| 1504 | * to happen as: |
| 1505 | * (1) we finished transmitting an intermediate slot and |
| 1506 | * edma_execute is coming up. |
| 1507 | * (2) or we finished current transfer and issue will |
| 1508 | * call edma_execute. |
| 1509 | * |
| 1510 | * Important note: issuing can be dangerous here and |
| 1511 | * lead to some nasty recursion when we are in a NULL |
| 1512 | * slot. So we avoid doing so and set the missed flag. |
| 1513 | */ |
| 1514 | if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { |
| 1515 | dev_dbg(dev, "Error on null slot, setting miss\n"); |
| 1516 | echan->missed = 1; |
| 1517 | } else { |
| 1518 | /* |
| 1519 | * The slot is already programmed but the event got |
| 1520 | * missed, so its safe to issue it here. |
| 1521 | */ |
| 1522 | dev_dbg(dev, "Missed event, TRIGGERING\n"); |
| 1523 | edma_clean_channel(echan); |
| 1524 | edma_stop(echan); |
| 1525 | edma_start(echan); |
| 1526 | edma_trigger_channel(echan); |
| 1527 | } |
| 1528 | spin_unlock(&echan->vchan.lock); |
| 1529 | } |
| 1530 | |
| 1531 | static inline bool edma_error_pending(struct edma_cc *ecc) |
| 1532 | { |
| 1533 | if (edma_read_array(ecc, EDMA_EMR, 0) || |
| 1534 | edma_read_array(ecc, EDMA_EMR, 1) || |
| 1535 | edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) |
| 1536 | return true; |
| 1537 | |
| 1538 | return false; |
| 1539 | } |
| 1540 | |
| 1541 | /* eDMA error interrupt handler */ |
| 1542 | static irqreturn_t dma_ccerr_handler(int irq, void *data) |
| 1543 | { |
| 1544 | struct edma_cc *ecc = data; |
| 1545 | int i, j; |
| 1546 | int ctlr; |
| 1547 | unsigned int cnt = 0; |
| 1548 | unsigned int val; |
| 1549 | |
| 1550 | ctlr = ecc->id; |
| 1551 | if (ctlr < 0) |
| 1552 | return IRQ_NONE; |
| 1553 | |
| 1554 | dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); |
| 1555 | |
| 1556 | if (!edma_error_pending(ecc)) { |
| 1557 | /* |
| 1558 | * The registers indicate no pending error event but the irq |
| 1559 | * handler has been called. |
| 1560 | * Ask eDMA to re-evaluate the error registers. |
| 1561 | */ |
| 1562 | dev_err(ecc->dev, "%s: Error interrupt without error event!\n", |
| 1563 | __func__); |
| 1564 | edma_write(ecc, EDMA_EEVAL, 1); |
| 1565 | return IRQ_NONE; |
| 1566 | } |
| 1567 | |
| 1568 | while (1) { |
| 1569 | /* Event missed register(s) */ |
| 1570 | for (j = 0; j < 2; j++) { |
| 1571 | unsigned long emr; |
| 1572 | |
| 1573 | val = edma_read_array(ecc, EDMA_EMR, j); |
| 1574 | if (!val) |
| 1575 | continue; |
| 1576 | |
| 1577 | dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); |
| 1578 | emr = val; |
| 1579 | for (i = find_next_bit(&emr, 32, 0); i < 32; |
| 1580 | i = find_next_bit(&emr, 32, i + 1)) { |
| 1581 | int k = (j << 5) + i; |
| 1582 | |
| 1583 | /* Clear the corresponding EMR bits */ |
| 1584 | edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); |
| 1585 | /* Clear any SER */ |
| 1586 | edma_shadow0_write_array(ecc, SH_SECR, j, |
| 1587 | BIT(i)); |
| 1588 | edma_error_handler(&ecc->slave_chans[k]); |
| 1589 | } |
| 1590 | } |
| 1591 | |
| 1592 | val = edma_read(ecc, EDMA_QEMR); |
| 1593 | if (val) { |
| 1594 | dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); |
| 1595 | /* Not reported, just clear the interrupt reason. */ |
| 1596 | edma_write(ecc, EDMA_QEMCR, val); |
| 1597 | edma_shadow0_write(ecc, SH_QSECR, val); |
| 1598 | } |
| 1599 | |
| 1600 | val = edma_read(ecc, EDMA_CCERR); |
| 1601 | if (val) { |
| 1602 | dev_warn(ecc->dev, "CCERR 0x%08x\n", val); |
| 1603 | /* Not reported, just clear the interrupt reason. */ |
| 1604 | edma_write(ecc, EDMA_CCERRCLR, val); |
| 1605 | } |
| 1606 | |
| 1607 | if (!edma_error_pending(ecc)) |
| 1608 | break; |
| 1609 | cnt++; |
| 1610 | if (cnt > 10) |
| 1611 | break; |
| 1612 | } |
| 1613 | edma_write(ecc, EDMA_EEVAL, 1); |
| 1614 | return IRQ_HANDLED; |
| 1615 | } |
| 1616 | |
| 1617 | /* Alloc channel resources */ |
| 1618 | static int edma_alloc_chan_resources(struct dma_chan *chan) |
| 1619 | { |
| 1620 | struct edma_chan *echan = to_edma_chan(chan); |
| 1621 | struct edma_cc *ecc = echan->ecc; |
| 1622 | struct device *dev = ecc->dev; |
| 1623 | enum dma_event_q eventq_no = EVENTQ_DEFAULT; |
| 1624 | int ret; |
| 1625 | |
| 1626 | if (echan->tc) { |
| 1627 | eventq_no = echan->tc->id; |
| 1628 | } else if (ecc->tc_list) { |
| 1629 | /* memcpy channel */ |
| 1630 | echan->tc = &ecc->tc_list[ecc->info->default_queue]; |
| 1631 | eventq_no = echan->tc->id; |
| 1632 | } |
| 1633 | |
| 1634 | ret = edma_alloc_channel(echan, eventq_no); |
| 1635 | if (ret) |
| 1636 | return ret; |
| 1637 | |
| 1638 | echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); |
| 1639 | if (echan->slot[0] < 0) { |
| 1640 | dev_err(dev, "Entry slot allocation failed for channel %u\n", |
| 1641 | EDMA_CHAN_SLOT(echan->ch_num)); |
| 1642 | ret = echan->slot[0]; |
| 1643 | goto err_slot; |
| 1644 | } |
| 1645 | |
| 1646 | /* Set up channel -> slot mapping for the entry slot */ |
| 1647 | edma_set_chmap(echan, echan->slot[0]); |
| 1648 | echan->alloced = true; |
| 1649 | |
| 1650 | dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", |
| 1651 | EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, |
| 1652 | echan->hw_triggered ? "HW" : "SW"); |
| 1653 | |
| 1654 | return 0; |
| 1655 | |
| 1656 | err_slot: |
| 1657 | edma_free_channel(echan); |
| 1658 | return ret; |
| 1659 | } |
| 1660 | |
| 1661 | /* Free channel resources */ |
| 1662 | static void edma_free_chan_resources(struct dma_chan *chan) |
| 1663 | { |
| 1664 | struct edma_chan *echan = to_edma_chan(chan); |
| 1665 | struct device *dev = echan->ecc->dev; |
| 1666 | int i; |
| 1667 | |
| 1668 | /* Terminate transfers */ |
| 1669 | edma_stop(echan); |
| 1670 | |
| 1671 | vchan_free_chan_resources(&echan->vchan); |
| 1672 | |
| 1673 | /* Free EDMA PaRAM slots */ |
| 1674 | for (i = 0; i < EDMA_MAX_SLOTS; i++) { |
| 1675 | if (echan->slot[i] >= 0) { |
| 1676 | edma_free_slot(echan->ecc, echan->slot[i]); |
| 1677 | echan->slot[i] = -1; |
| 1678 | } |
| 1679 | } |
| 1680 | |
| 1681 | /* Set entry slot to the dummy slot */ |
| 1682 | edma_set_chmap(echan, echan->ecc->dummy_slot); |
| 1683 | |
| 1684 | /* Free EDMA channel */ |
| 1685 | if (echan->alloced) { |
| 1686 | edma_free_channel(echan); |
| 1687 | echan->alloced = false; |
| 1688 | } |
| 1689 | |
| 1690 | echan->tc = NULL; |
| 1691 | echan->hw_triggered = false; |
| 1692 | |
| 1693 | dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", |
| 1694 | EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); |
| 1695 | } |
| 1696 | |
| 1697 | /* Send pending descriptor to hardware */ |
| 1698 | static void edma_issue_pending(struct dma_chan *chan) |
| 1699 | { |
| 1700 | struct edma_chan *echan = to_edma_chan(chan); |
| 1701 | unsigned long flags; |
| 1702 | |
| 1703 | spin_lock_irqsave(&echan->vchan.lock, flags); |
| 1704 | if (vchan_issue_pending(&echan->vchan) && !echan->edesc) |
| 1705 | edma_execute(echan); |
| 1706 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 1707 | } |
| 1708 | |
| 1709 | /* |
| 1710 | * This limit exists to avoid a possible infinite loop when waiting for proof |
| 1711 | * that a particular transfer is completed. This limit can be hit if there |
| 1712 | * are large bursts to/from slow devices or the CPU is never able to catch |
| 1713 | * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART |
| 1714 | * RX-FIFO, as many as 55 loops have been seen. |
| 1715 | */ |
| 1716 | #define EDMA_MAX_TR_WAIT_LOOPS 1000 |
| 1717 | |
| 1718 | static u32 edma_residue(struct edma_desc *edesc) |
| 1719 | { |
| 1720 | bool dst = edesc->direction == DMA_DEV_TO_MEM; |
| 1721 | int loop_count = EDMA_MAX_TR_WAIT_LOOPS; |
| 1722 | struct edma_chan *echan = edesc->echan; |
| 1723 | struct edma_pset *pset = edesc->pset; |
| 1724 | dma_addr_t done, pos; |
| 1725 | int i; |
| 1726 | |
| 1727 | /* |
| 1728 | * We always read the dst/src position from the first RamPar |
| 1729 | * pset. That's the one which is active now. |
| 1730 | */ |
| 1731 | pos = edma_get_position(echan->ecc, echan->slot[0], dst); |
| 1732 | |
| 1733 | /* |
| 1734 | * "pos" may represent a transfer request that is still being |
| 1735 | * processed by the EDMACC or EDMATC. We will busy wait until |
| 1736 | * any one of the situations occurs: |
| 1737 | * 1. the DMA hardware is idle |
| 1738 | * 2. a new transfer request is setup |
| 1739 | * 3. we hit the loop limit |
| 1740 | */ |
| 1741 | while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) { |
| 1742 | /* check if a new transfer request is setup */ |
| 1743 | if (edma_get_position(echan->ecc, |
| 1744 | echan->slot[0], dst) != pos) { |
| 1745 | break; |
| 1746 | } |
| 1747 | |
| 1748 | if (!--loop_count) { |
| 1749 | dev_dbg_ratelimited(echan->vchan.chan.device->dev, |
| 1750 | "%s: timeout waiting for PaRAM update\n", |
| 1751 | __func__); |
| 1752 | break; |
| 1753 | } |
| 1754 | |
| 1755 | cpu_relax(); |
| 1756 | } |
| 1757 | |
| 1758 | /* |
| 1759 | * Cyclic is simple. Just subtract pset[0].addr from pos. |
| 1760 | * |
| 1761 | * We never update edesc->residue in the cyclic case, so we |
| 1762 | * can tell the remaining room to the end of the circular |
| 1763 | * buffer. |
| 1764 | */ |
| 1765 | if (edesc->cyclic) { |
| 1766 | done = pos - pset->addr; |
| 1767 | edesc->residue_stat = edesc->residue - done; |
| 1768 | return edesc->residue_stat; |
| 1769 | } |
| 1770 | |
| 1771 | /* |
| 1772 | * For SG operation we catch up with the last processed |
| 1773 | * status. |
| 1774 | */ |
| 1775 | pset += edesc->processed_stat; |
| 1776 | |
| 1777 | for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { |
| 1778 | /* |
| 1779 | * If we are inside this pset address range, we know |
| 1780 | * this is the active one. Get the current delta and |
| 1781 | * stop walking the psets. |
| 1782 | */ |
| 1783 | if (pos >= pset->addr && pos < pset->addr + pset->len) |
| 1784 | return edesc->residue_stat - (pos - pset->addr); |
| 1785 | |
| 1786 | /* Otherwise mark it done and update residue_stat. */ |
| 1787 | edesc->processed_stat++; |
| 1788 | edesc->residue_stat -= pset->len; |
| 1789 | } |
| 1790 | return edesc->residue_stat; |
| 1791 | } |
| 1792 | |
| 1793 | /* Check request completion status */ |
| 1794 | static enum dma_status edma_tx_status(struct dma_chan *chan, |
| 1795 | dma_cookie_t cookie, |
| 1796 | struct dma_tx_state *txstate) |
| 1797 | { |
| 1798 | struct edma_chan *echan = to_edma_chan(chan); |
| 1799 | struct virt_dma_desc *vdesc; |
| 1800 | enum dma_status ret; |
| 1801 | unsigned long flags; |
| 1802 | |
| 1803 | ret = dma_cookie_status(chan, cookie, txstate); |
| 1804 | if (ret == DMA_COMPLETE || !txstate) |
| 1805 | return ret; |
| 1806 | |
| 1807 | spin_lock_irqsave(&echan->vchan.lock, flags); |
| 1808 | if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) |
| 1809 | txstate->residue = edma_residue(echan->edesc); |
| 1810 | else if ((vdesc = vchan_find_desc(&echan->vchan, cookie))) |
| 1811 | txstate->residue = to_edma_desc(&vdesc->tx)->residue; |
| 1812 | spin_unlock_irqrestore(&echan->vchan.lock, flags); |
| 1813 | |
| 1814 | return ret; |
| 1815 | } |
| 1816 | |
| 1817 | static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) |
| 1818 | { |
| 1819 | if (!memcpy_channels) |
| 1820 | return false; |
| 1821 | while (*memcpy_channels != -1) { |
| 1822 | if (*memcpy_channels == ch_num) |
| 1823 | return true; |
| 1824 | memcpy_channels++; |
| 1825 | } |
| 1826 | return false; |
| 1827 | } |
| 1828 | |
| 1829 | #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| 1830 | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| 1831 | BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ |
| 1832 | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) |
| 1833 | |
| 1834 | static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) |
| 1835 | { |
| 1836 | struct dma_device *s_ddev = &ecc->dma_slave; |
| 1837 | struct dma_device *m_ddev = NULL; |
| 1838 | s32 *memcpy_channels = ecc->info->memcpy_channels; |
| 1839 | int i, j; |
| 1840 | |
| 1841 | dma_cap_zero(s_ddev->cap_mask); |
| 1842 | dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); |
| 1843 | dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); |
| 1844 | if (ecc->legacy_mode && !memcpy_channels) { |
| 1845 | dev_warn(ecc->dev, |
| 1846 | "Legacy memcpy is enabled, things might not work\n"); |
| 1847 | |
| 1848 | dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); |
| 1849 | s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; |
| 1850 | s_ddev->directions = BIT(DMA_MEM_TO_MEM); |
| 1851 | } |
| 1852 | |
| 1853 | s_ddev->device_prep_slave_sg = edma_prep_slave_sg; |
| 1854 | s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; |
| 1855 | s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; |
| 1856 | s_ddev->device_free_chan_resources = edma_free_chan_resources; |
| 1857 | s_ddev->device_issue_pending = edma_issue_pending; |
| 1858 | s_ddev->device_tx_status = edma_tx_status; |
| 1859 | s_ddev->device_config = edma_slave_config; |
| 1860 | s_ddev->device_pause = edma_dma_pause; |
| 1861 | s_ddev->device_resume = edma_dma_resume; |
| 1862 | s_ddev->device_terminate_all = edma_terminate_all; |
| 1863 | s_ddev->device_synchronize = edma_synchronize; |
| 1864 | |
| 1865 | s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; |
| 1866 | s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; |
| 1867 | s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); |
| 1868 | s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| 1869 | s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ |
| 1870 | |
| 1871 | s_ddev->dev = ecc->dev; |
| 1872 | INIT_LIST_HEAD(&s_ddev->channels); |
| 1873 | |
| 1874 | if (memcpy_channels) { |
| 1875 | m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); |
| 1876 | if (!m_ddev) { |
| 1877 | dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); |
| 1878 | memcpy_channels = NULL; |
| 1879 | goto ch_setup; |
| 1880 | } |
| 1881 | ecc->dma_memcpy = m_ddev; |
| 1882 | |
| 1883 | dma_cap_zero(m_ddev->cap_mask); |
| 1884 | dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); |
| 1885 | |
| 1886 | m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; |
| 1887 | m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; |
| 1888 | m_ddev->device_free_chan_resources = edma_free_chan_resources; |
| 1889 | m_ddev->device_issue_pending = edma_issue_pending; |
| 1890 | m_ddev->device_tx_status = edma_tx_status; |
| 1891 | m_ddev->device_config = edma_slave_config; |
| 1892 | m_ddev->device_pause = edma_dma_pause; |
| 1893 | m_ddev->device_resume = edma_dma_resume; |
| 1894 | m_ddev->device_terminate_all = edma_terminate_all; |
| 1895 | m_ddev->device_synchronize = edma_synchronize; |
| 1896 | |
| 1897 | m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; |
| 1898 | m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; |
| 1899 | m_ddev->directions = BIT(DMA_MEM_TO_MEM); |
| 1900 | m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| 1901 | |
| 1902 | m_ddev->dev = ecc->dev; |
| 1903 | INIT_LIST_HEAD(&m_ddev->channels); |
| 1904 | } else if (!ecc->legacy_mode) { |
| 1905 | dev_info(ecc->dev, "memcpy is disabled\n"); |
| 1906 | } |
| 1907 | |
| 1908 | ch_setup: |
| 1909 | for (i = 0; i < ecc->num_channels; i++) { |
| 1910 | struct edma_chan *echan = &ecc->slave_chans[i]; |
| 1911 | echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); |
| 1912 | echan->ecc = ecc; |
| 1913 | echan->vchan.desc_free = edma_desc_free; |
| 1914 | |
| 1915 | if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) |
| 1916 | vchan_init(&echan->vchan, m_ddev); |
| 1917 | else |
| 1918 | vchan_init(&echan->vchan, s_ddev); |
| 1919 | |
| 1920 | INIT_LIST_HEAD(&echan->node); |
| 1921 | for (j = 0; j < EDMA_MAX_SLOTS; j++) |
| 1922 | echan->slot[j] = -1; |
| 1923 | } |
| 1924 | } |
| 1925 | |
| 1926 | static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, |
| 1927 | struct edma_cc *ecc) |
| 1928 | { |
| 1929 | int i; |
| 1930 | u32 value, cccfg; |
| 1931 | s8 (*queue_priority_map)[2]; |
| 1932 | |
| 1933 | /* Decode the eDMA3 configuration from CCCFG register */ |
| 1934 | cccfg = edma_read(ecc, EDMA_CCCFG); |
| 1935 | |
| 1936 | value = GET_NUM_REGN(cccfg); |
| 1937 | ecc->num_region = BIT(value); |
| 1938 | |
| 1939 | value = GET_NUM_DMACH(cccfg); |
| 1940 | ecc->num_channels = BIT(value + 1); |
| 1941 | |
| 1942 | value = GET_NUM_QDMACH(cccfg); |
| 1943 | ecc->num_qchannels = value * 2; |
| 1944 | |
| 1945 | value = GET_NUM_PAENTRY(cccfg); |
| 1946 | ecc->num_slots = BIT(value + 4); |
| 1947 | |
| 1948 | value = GET_NUM_EVQUE(cccfg); |
| 1949 | ecc->num_tc = value + 1; |
| 1950 | |
| 1951 | ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; |
| 1952 | |
| 1953 | dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); |
| 1954 | dev_dbg(dev, "num_region: %u\n", ecc->num_region); |
| 1955 | dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); |
| 1956 | dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); |
| 1957 | dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); |
| 1958 | dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); |
| 1959 | dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); |
| 1960 | |
| 1961 | /* Nothing need to be done if queue priority is provided */ |
| 1962 | if (pdata->queue_priority_mapping) |
| 1963 | return 0; |
| 1964 | |
| 1965 | /* |
| 1966 | * Configure TC/queue priority as follows: |
| 1967 | * Q0 - priority 0 |
| 1968 | * Q1 - priority 1 |
| 1969 | * Q2 - priority 2 |
| 1970 | * ... |
| 1971 | * The meaning of priority numbers: 0 highest priority, 7 lowest |
| 1972 | * priority. So Q0 is the highest priority queue and the last queue has |
| 1973 | * the lowest priority. |
| 1974 | */ |
| 1975 | queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), |
| 1976 | GFP_KERNEL); |
| 1977 | if (!queue_priority_map) |
| 1978 | return -ENOMEM; |
| 1979 | |
| 1980 | for (i = 0; i < ecc->num_tc; i++) { |
| 1981 | queue_priority_map[i][0] = i; |
| 1982 | queue_priority_map[i][1] = i; |
| 1983 | } |
| 1984 | queue_priority_map[i][0] = -1; |
| 1985 | queue_priority_map[i][1] = -1; |
| 1986 | |
| 1987 | pdata->queue_priority_mapping = queue_priority_map; |
| 1988 | /* Default queue has the lowest priority */ |
| 1989 | pdata->default_queue = i - 1; |
| 1990 | |
| 1991 | return 0; |
| 1992 | } |
| 1993 | |
| 1994 | #if IS_ENABLED(CONFIG_OF) |
| 1995 | static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, |
| 1996 | size_t sz) |
| 1997 | { |
| 1998 | const char pname[] = "ti,edma-xbar-event-map"; |
| 1999 | struct resource res; |
| 2000 | void __iomem *xbar; |
| 2001 | s16 (*xbar_chans)[2]; |
| 2002 | size_t nelm = sz / sizeof(s16); |
| 2003 | u32 shift, offset, mux; |
| 2004 | int ret, i; |
| 2005 | |
| 2006 | xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); |
| 2007 | if (!xbar_chans) |
| 2008 | return -ENOMEM; |
| 2009 | |
| 2010 | ret = of_address_to_resource(dev->of_node, 1, &res); |
| 2011 | if (ret) |
| 2012 | return -ENOMEM; |
| 2013 | |
| 2014 | xbar = devm_ioremap(dev, res.start, resource_size(&res)); |
| 2015 | if (!xbar) |
| 2016 | return -ENOMEM; |
| 2017 | |
| 2018 | ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, |
| 2019 | nelm); |
| 2020 | if (ret) |
| 2021 | return -EIO; |
| 2022 | |
| 2023 | /* Invalidate last entry for the other user of this mess */ |
| 2024 | nelm >>= 1; |
| 2025 | xbar_chans[nelm][0] = -1; |
| 2026 | xbar_chans[nelm][1] = -1; |
| 2027 | |
| 2028 | for (i = 0; i < nelm; i++) { |
| 2029 | shift = (xbar_chans[i][1] & 0x03) << 3; |
| 2030 | offset = xbar_chans[i][1] & 0xfffffffc; |
| 2031 | mux = readl(xbar + offset); |
| 2032 | mux &= ~(0xff << shift); |
| 2033 | mux |= xbar_chans[i][0] << shift; |
| 2034 | writel(mux, (xbar + offset)); |
| 2035 | } |
| 2036 | |
| 2037 | pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; |
| 2038 | return 0; |
| 2039 | } |
| 2040 | |
| 2041 | static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
| 2042 | bool legacy_mode) |
| 2043 | { |
| 2044 | struct edma_soc_info *info; |
| 2045 | struct property *prop; |
| 2046 | int sz, ret; |
| 2047 | |
| 2048 | info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); |
| 2049 | if (!info) |
| 2050 | return ERR_PTR(-ENOMEM); |
| 2051 | |
| 2052 | if (legacy_mode) { |
| 2053 | prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", |
| 2054 | &sz); |
| 2055 | if (prop) { |
| 2056 | ret = edma_xbar_event_map(dev, info, sz); |
| 2057 | if (ret) |
| 2058 | return ERR_PTR(ret); |
| 2059 | } |
| 2060 | return info; |
| 2061 | } |
| 2062 | |
| 2063 | /* Get the list of channels allocated to be used for memcpy */ |
| 2064 | prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); |
| 2065 | if (prop) { |
| 2066 | const char pname[] = "ti,edma-memcpy-channels"; |
| 2067 | size_t nelm = sz / sizeof(s32); |
| 2068 | s32 *memcpy_ch; |
| 2069 | |
| 2070 | memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), |
| 2071 | GFP_KERNEL); |
| 2072 | if (!memcpy_ch) |
| 2073 | return ERR_PTR(-ENOMEM); |
| 2074 | |
| 2075 | ret = of_property_read_u32_array(dev->of_node, pname, |
| 2076 | (u32 *)memcpy_ch, nelm); |
| 2077 | if (ret) |
| 2078 | return ERR_PTR(ret); |
| 2079 | |
| 2080 | memcpy_ch[nelm] = -1; |
| 2081 | info->memcpy_channels = memcpy_ch; |
| 2082 | } |
| 2083 | |
| 2084 | prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", |
| 2085 | &sz); |
| 2086 | if (prop) { |
| 2087 | const char pname[] = "ti,edma-reserved-slot-ranges"; |
| 2088 | u32 (*tmp)[2]; |
| 2089 | s16 (*rsv_slots)[2]; |
| 2090 | size_t nelm = sz / sizeof(*tmp); |
| 2091 | struct edma_rsv_info *rsv_info; |
| 2092 | int i; |
| 2093 | |
| 2094 | if (!nelm) |
| 2095 | return info; |
| 2096 | |
| 2097 | tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); |
| 2098 | if (!tmp) |
| 2099 | return ERR_PTR(-ENOMEM); |
| 2100 | |
| 2101 | rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); |
| 2102 | if (!rsv_info) { |
| 2103 | kfree(tmp); |
| 2104 | return ERR_PTR(-ENOMEM); |
| 2105 | } |
| 2106 | |
| 2107 | rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), |
| 2108 | GFP_KERNEL); |
| 2109 | if (!rsv_slots) { |
| 2110 | kfree(tmp); |
| 2111 | return ERR_PTR(-ENOMEM); |
| 2112 | } |
| 2113 | |
| 2114 | ret = of_property_read_u32_array(dev->of_node, pname, |
| 2115 | (u32 *)tmp, nelm * 2); |
| 2116 | if (ret) { |
| 2117 | kfree(tmp); |
| 2118 | return ERR_PTR(ret); |
| 2119 | } |
| 2120 | |
| 2121 | for (i = 0; i < nelm; i++) { |
| 2122 | rsv_slots[i][0] = tmp[i][0]; |
| 2123 | rsv_slots[i][1] = tmp[i][1]; |
| 2124 | } |
| 2125 | rsv_slots[nelm][0] = -1; |
| 2126 | rsv_slots[nelm][1] = -1; |
| 2127 | |
| 2128 | info->rsv = rsv_info; |
| 2129 | info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; |
| 2130 | |
| 2131 | kfree(tmp); |
| 2132 | } |
| 2133 | |
| 2134 | return info; |
| 2135 | } |
| 2136 | |
| 2137 | static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, |
| 2138 | struct of_dma *ofdma) |
| 2139 | { |
| 2140 | struct edma_cc *ecc = ofdma->of_dma_data; |
| 2141 | struct dma_chan *chan = NULL; |
| 2142 | struct edma_chan *echan; |
| 2143 | int i; |
| 2144 | |
| 2145 | if (!ecc || dma_spec->args_count < 1) |
| 2146 | return NULL; |
| 2147 | |
| 2148 | for (i = 0; i < ecc->num_channels; i++) { |
| 2149 | echan = &ecc->slave_chans[i]; |
| 2150 | if (echan->ch_num == dma_spec->args[0]) { |
| 2151 | chan = &echan->vchan.chan; |
| 2152 | break; |
| 2153 | } |
| 2154 | } |
| 2155 | |
| 2156 | if (!chan) |
| 2157 | return NULL; |
| 2158 | |
| 2159 | if (echan->ecc->legacy_mode && dma_spec->args_count == 1) |
| 2160 | goto out; |
| 2161 | |
| 2162 | if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && |
| 2163 | dma_spec->args[1] < echan->ecc->num_tc) { |
| 2164 | echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; |
| 2165 | goto out; |
| 2166 | } |
| 2167 | |
| 2168 | return NULL; |
| 2169 | out: |
| 2170 | /* The channel is going to be used as HW synchronized */ |
| 2171 | echan->hw_triggered = true; |
| 2172 | return dma_get_slave_channel(chan); |
| 2173 | } |
| 2174 | #else |
| 2175 | static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, |
| 2176 | bool legacy_mode) |
| 2177 | { |
| 2178 | return ERR_PTR(-EINVAL); |
| 2179 | } |
| 2180 | |
| 2181 | static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, |
| 2182 | struct of_dma *ofdma) |
| 2183 | { |
| 2184 | return NULL; |
| 2185 | } |
| 2186 | #endif |
| 2187 | |
| 2188 | static int edma_probe(struct platform_device *pdev) |
| 2189 | { |
| 2190 | struct edma_soc_info *info = pdev->dev.platform_data; |
| 2191 | s8 (*queue_priority_mapping)[2]; |
| 2192 | int i, off, ln; |
| 2193 | const s16 (*rsv_slots)[2]; |
| 2194 | const s16 (*xbar_chans)[2]; |
| 2195 | int irq; |
| 2196 | char *irq_name; |
| 2197 | struct resource *mem; |
| 2198 | struct device_node *node = pdev->dev.of_node; |
| 2199 | struct device *dev = &pdev->dev; |
| 2200 | struct edma_cc *ecc; |
| 2201 | bool legacy_mode = true; |
| 2202 | int ret; |
| 2203 | |
| 2204 | if (node) { |
| 2205 | const struct of_device_id *match; |
| 2206 | |
| 2207 | match = of_match_node(edma_of_ids, node); |
| 2208 | if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) |
| 2209 | legacy_mode = false; |
| 2210 | |
| 2211 | info = edma_setup_info_from_dt(dev, legacy_mode); |
| 2212 | if (IS_ERR(info)) { |
| 2213 | dev_err(dev, "failed to get DT data\n"); |
| 2214 | return PTR_ERR(info); |
| 2215 | } |
| 2216 | } |
| 2217 | |
| 2218 | if (!info) |
| 2219 | return -ENODEV; |
| 2220 | |
| 2221 | pm_runtime_enable(dev); |
| 2222 | ret = pm_runtime_get_sync(dev); |
| 2223 | if (ret < 0) { |
| 2224 | dev_err(dev, "pm_runtime_get_sync() failed\n"); |
| 2225 | return ret; |
| 2226 | } |
| 2227 | |
| 2228 | ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); |
| 2229 | if (ret) |
| 2230 | return ret; |
| 2231 | |
| 2232 | ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); |
| 2233 | if (!ecc) |
| 2234 | return -ENOMEM; |
| 2235 | |
| 2236 | ecc->dev = dev; |
| 2237 | ecc->id = pdev->id; |
| 2238 | ecc->legacy_mode = legacy_mode; |
| 2239 | /* When booting with DT the pdev->id is -1 */ |
| 2240 | if (ecc->id < 0) |
| 2241 | ecc->id = 0; |
| 2242 | |
| 2243 | mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); |
| 2244 | if (!mem) { |
| 2245 | dev_dbg(dev, "mem resource not found, using index 0\n"); |
| 2246 | mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 2247 | if (!mem) { |
| 2248 | dev_err(dev, "no mem resource?\n"); |
| 2249 | return -ENODEV; |
| 2250 | } |
| 2251 | } |
| 2252 | ecc->base = devm_ioremap_resource(dev, mem); |
| 2253 | if (IS_ERR(ecc->base)) |
| 2254 | return PTR_ERR(ecc->base); |
| 2255 | |
| 2256 | platform_set_drvdata(pdev, ecc); |
| 2257 | |
| 2258 | /* Get eDMA3 configuration from IP */ |
| 2259 | ret = edma_setup_from_hw(dev, info, ecc); |
| 2260 | if (ret) |
| 2261 | return ret; |
| 2262 | |
| 2263 | /* Allocate memory based on the information we got from the IP */ |
| 2264 | ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, |
| 2265 | sizeof(*ecc->slave_chans), GFP_KERNEL); |
| 2266 | if (!ecc->slave_chans) |
| 2267 | return -ENOMEM; |
| 2268 | |
| 2269 | ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), |
| 2270 | sizeof(unsigned long), GFP_KERNEL); |
| 2271 | if (!ecc->slot_inuse) |
| 2272 | return -ENOMEM; |
| 2273 | |
| 2274 | ecc->default_queue = info->default_queue; |
| 2275 | |
| 2276 | for (i = 0; i < ecc->num_slots; i++) |
| 2277 | edma_write_slot(ecc, i, &dummy_paramset); |
| 2278 | |
| 2279 | if (info->rsv) { |
| 2280 | /* Set the reserved slots in inuse list */ |
| 2281 | rsv_slots = info->rsv->rsv_slots; |
| 2282 | if (rsv_slots) { |
| 2283 | for (i = 0; rsv_slots[i][0] != -1; i++) { |
| 2284 | off = rsv_slots[i][0]; |
| 2285 | ln = rsv_slots[i][1]; |
| 2286 | edma_set_bits(off, ln, ecc->slot_inuse); |
| 2287 | } |
| 2288 | } |
| 2289 | } |
| 2290 | |
| 2291 | /* Clear the xbar mapped channels in unused list */ |
| 2292 | xbar_chans = info->xbar_chans; |
| 2293 | if (xbar_chans) { |
| 2294 | for (i = 0; xbar_chans[i][1] != -1; i++) { |
| 2295 | off = xbar_chans[i][1]; |
| 2296 | } |
| 2297 | } |
| 2298 | |
| 2299 | irq = platform_get_irq_byname(pdev, "edma3_ccint"); |
| 2300 | if (irq < 0 && node) |
| 2301 | irq = irq_of_parse_and_map(node, 0); |
| 2302 | |
| 2303 | if (irq >= 0) { |
| 2304 | irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", |
| 2305 | dev_name(dev)); |
| 2306 | ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, |
| 2307 | ecc); |
| 2308 | if (ret) { |
| 2309 | dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); |
| 2310 | return ret; |
| 2311 | } |
| 2312 | ecc->ccint = irq; |
| 2313 | } |
| 2314 | |
| 2315 | irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); |
| 2316 | if (irq < 0 && node) |
| 2317 | irq = irq_of_parse_and_map(node, 2); |
| 2318 | |
| 2319 | if (irq >= 0) { |
| 2320 | irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", |
| 2321 | dev_name(dev)); |
| 2322 | ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, |
| 2323 | ecc); |
| 2324 | if (ret) { |
| 2325 | dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); |
| 2326 | return ret; |
| 2327 | } |
| 2328 | ecc->ccerrint = irq; |
| 2329 | } |
| 2330 | |
| 2331 | ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); |
| 2332 | if (ecc->dummy_slot < 0) { |
| 2333 | dev_err(dev, "Can't allocate PaRAM dummy slot\n"); |
| 2334 | return ecc->dummy_slot; |
| 2335 | } |
| 2336 | |
| 2337 | queue_priority_mapping = info->queue_priority_mapping; |
| 2338 | |
| 2339 | if (!ecc->legacy_mode) { |
| 2340 | int lowest_priority = 0; |
| 2341 | struct of_phandle_args tc_args; |
| 2342 | |
| 2343 | ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, |
| 2344 | sizeof(*ecc->tc_list), GFP_KERNEL); |
| 2345 | if (!ecc->tc_list) |
| 2346 | return -ENOMEM; |
| 2347 | |
| 2348 | for (i = 0;; i++) { |
| 2349 | ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", |
| 2350 | 1, i, &tc_args); |
| 2351 | if (ret || i == ecc->num_tc) |
| 2352 | break; |
| 2353 | |
| 2354 | ecc->tc_list[i].node = tc_args.np; |
| 2355 | ecc->tc_list[i].id = i; |
| 2356 | queue_priority_mapping[i][1] = tc_args.args[0]; |
| 2357 | if (queue_priority_mapping[i][1] > lowest_priority) { |
| 2358 | lowest_priority = queue_priority_mapping[i][1]; |
| 2359 | info->default_queue = i; |
| 2360 | } |
| 2361 | } |
| 2362 | } |
| 2363 | |
| 2364 | /* Event queue priority mapping */ |
| 2365 | for (i = 0; queue_priority_mapping[i][0] != -1; i++) |
| 2366 | edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], |
| 2367 | queue_priority_mapping[i][1]); |
| 2368 | |
| 2369 | for (i = 0; i < ecc->num_region; i++) { |
| 2370 | edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0); |
| 2371 | edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0); |
| 2372 | edma_write_array(ecc, EDMA_QRAE, i, 0x0); |
| 2373 | } |
| 2374 | ecc->info = info; |
| 2375 | |
| 2376 | /* Init the dma device and channels */ |
| 2377 | edma_dma_init(ecc, legacy_mode); |
| 2378 | |
| 2379 | for (i = 0; i < ecc->num_channels; i++) { |
| 2380 | /* Assign all channels to the default queue */ |
| 2381 | edma_assign_channel_eventq(&ecc->slave_chans[i], |
| 2382 | info->default_queue); |
| 2383 | /* Set entry slot to the dummy slot */ |
| 2384 | edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); |
| 2385 | } |
| 2386 | |
| 2387 | ecc->dma_slave.filter.map = info->slave_map; |
| 2388 | ecc->dma_slave.filter.mapcnt = info->slavecnt; |
| 2389 | ecc->dma_slave.filter.fn = edma_filter_fn; |
| 2390 | |
| 2391 | ret = dma_async_device_register(&ecc->dma_slave); |
| 2392 | if (ret) { |
| 2393 | dev_err(dev, "slave ddev registration failed (%d)\n", ret); |
| 2394 | goto err_reg1; |
| 2395 | } |
| 2396 | |
| 2397 | if (ecc->dma_memcpy) { |
| 2398 | ret = dma_async_device_register(ecc->dma_memcpy); |
| 2399 | if (ret) { |
| 2400 | dev_err(dev, "memcpy ddev registration failed (%d)\n", |
| 2401 | ret); |
| 2402 | dma_async_device_unregister(&ecc->dma_slave); |
| 2403 | goto err_reg1; |
| 2404 | } |
| 2405 | } |
| 2406 | |
| 2407 | if (node) |
| 2408 | of_dma_controller_register(node, of_edma_xlate, ecc); |
| 2409 | |
| 2410 | dev_info(dev, "TI EDMA DMA engine driver\n"); |
| 2411 | |
| 2412 | return 0; |
| 2413 | |
| 2414 | err_reg1: |
| 2415 | edma_free_slot(ecc, ecc->dummy_slot); |
| 2416 | return ret; |
| 2417 | } |
| 2418 | |
| 2419 | static void edma_cleanupp_vchan(struct dma_device *dmadev) |
| 2420 | { |
| 2421 | struct edma_chan *echan, *_echan; |
| 2422 | |
| 2423 | list_for_each_entry_safe(echan, _echan, |
| 2424 | &dmadev->channels, vchan.chan.device_node) { |
| 2425 | list_del(&echan->vchan.chan.device_node); |
| 2426 | tasklet_kill(&echan->vchan.task); |
| 2427 | } |
| 2428 | } |
| 2429 | |
| 2430 | static int edma_remove(struct platform_device *pdev) |
| 2431 | { |
| 2432 | struct device *dev = &pdev->dev; |
| 2433 | struct edma_cc *ecc = dev_get_drvdata(dev); |
| 2434 | |
| 2435 | devm_free_irq(dev, ecc->ccint, ecc); |
| 2436 | devm_free_irq(dev, ecc->ccerrint, ecc); |
| 2437 | |
| 2438 | edma_cleanupp_vchan(&ecc->dma_slave); |
| 2439 | |
| 2440 | if (dev->of_node) |
| 2441 | of_dma_controller_free(dev->of_node); |
| 2442 | dma_async_device_unregister(&ecc->dma_slave); |
| 2443 | if (ecc->dma_memcpy) |
| 2444 | dma_async_device_unregister(ecc->dma_memcpy); |
| 2445 | edma_free_slot(ecc, ecc->dummy_slot); |
| 2446 | |
| 2447 | return 0; |
| 2448 | } |
| 2449 | |
| 2450 | #ifdef CONFIG_PM_SLEEP |
| 2451 | static int edma_pm_suspend(struct device *dev) |
| 2452 | { |
| 2453 | struct edma_cc *ecc = dev_get_drvdata(dev); |
| 2454 | struct edma_chan *echan = ecc->slave_chans; |
| 2455 | int i; |
| 2456 | |
| 2457 | for (i = 0; i < ecc->num_channels; i++) { |
| 2458 | if (echan[i].alloced) |
| 2459 | edma_setup_interrupt(&echan[i], false); |
| 2460 | } |
| 2461 | |
| 2462 | return 0; |
| 2463 | } |
| 2464 | |
| 2465 | static int edma_pm_resume(struct device *dev) |
| 2466 | { |
| 2467 | struct edma_cc *ecc = dev_get_drvdata(dev); |
| 2468 | struct edma_chan *echan = ecc->slave_chans; |
| 2469 | int i; |
| 2470 | s8 (*queue_priority_mapping)[2]; |
| 2471 | |
| 2472 | /* re initialize dummy slot to dummy param set */ |
| 2473 | edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); |
| 2474 | |
| 2475 | queue_priority_mapping = ecc->info->queue_priority_mapping; |
| 2476 | |
| 2477 | /* Event queue priority mapping */ |
| 2478 | for (i = 0; queue_priority_mapping[i][0] != -1; i++) |
| 2479 | edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], |
| 2480 | queue_priority_mapping[i][1]); |
| 2481 | |
| 2482 | for (i = 0; i < ecc->num_channels; i++) { |
| 2483 | if (echan[i].alloced) { |
| 2484 | /* ensure access through shadow region 0 */ |
| 2485 | edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5, |
| 2486 | BIT(i & 0x1f)); |
| 2487 | |
| 2488 | edma_setup_interrupt(&echan[i], true); |
| 2489 | |
| 2490 | /* Set up channel -> slot mapping for the entry slot */ |
| 2491 | edma_set_chmap(&echan[i], echan[i].slot[0]); |
| 2492 | } |
| 2493 | } |
| 2494 | |
| 2495 | return 0; |
| 2496 | } |
| 2497 | #endif |
| 2498 | |
| 2499 | static const struct dev_pm_ops edma_pm_ops = { |
| 2500 | SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) |
| 2501 | }; |
| 2502 | |
| 2503 | static struct platform_driver edma_driver = { |
| 2504 | .probe = edma_probe, |
| 2505 | .remove = edma_remove, |
| 2506 | .driver = { |
| 2507 | .name = "edma", |
| 2508 | .pm = &edma_pm_ops, |
| 2509 | .of_match_table = edma_of_ids, |
| 2510 | }, |
| 2511 | }; |
| 2512 | |
| 2513 | static int edma_tptc_probe(struct platform_device *pdev) |
| 2514 | { |
| 2515 | pm_runtime_enable(&pdev->dev); |
| 2516 | return pm_runtime_get_sync(&pdev->dev); |
| 2517 | } |
| 2518 | |
| 2519 | static struct platform_driver edma_tptc_driver = { |
| 2520 | .probe = edma_tptc_probe, |
| 2521 | .driver = { |
| 2522 | .name = "edma3-tptc", |
| 2523 | .of_match_table = edma_tptc_of_ids, |
| 2524 | }, |
| 2525 | }; |
| 2526 | |
| 2527 | bool edma_filter_fn(struct dma_chan *chan, void *param) |
| 2528 | { |
| 2529 | bool match = false; |
| 2530 | |
| 2531 | if (chan->device->dev->driver == &edma_driver.driver) { |
| 2532 | struct edma_chan *echan = to_edma_chan(chan); |
| 2533 | unsigned ch_req = *(unsigned *)param; |
| 2534 | if (ch_req == echan->ch_num) { |
| 2535 | /* The channel is going to be used as HW synchronized */ |
| 2536 | echan->hw_triggered = true; |
| 2537 | match = true; |
| 2538 | } |
| 2539 | } |
| 2540 | return match; |
| 2541 | } |
| 2542 | EXPORT_SYMBOL(edma_filter_fn); |
| 2543 | |
| 2544 | static int edma_init(void) |
| 2545 | { |
| 2546 | int ret; |
| 2547 | |
| 2548 | ret = platform_driver_register(&edma_tptc_driver); |
| 2549 | if (ret) |
| 2550 | return ret; |
| 2551 | |
| 2552 | return platform_driver_register(&edma_driver); |
| 2553 | } |
| 2554 | subsys_initcall(edma_init); |
| 2555 | |
| 2556 | static void __exit edma_exit(void) |
| 2557 | { |
| 2558 | platform_driver_unregister(&edma_driver); |
| 2559 | platform_driver_unregister(&edma_tptc_driver); |
| 2560 | } |
| 2561 | module_exit(edma_exit); |
| 2562 | |
| 2563 | MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); |
| 2564 | MODULE_DESCRIPTION("TI EDMA DMA engine driver"); |
| 2565 | MODULE_LICENSE("GPL v2"); |