v4.19.13 snapshot.
diff --git a/drivers/dma/ti/edma.c b/drivers/dma/ti/edma.c
new file mode 100644
index 0000000..ceabdea
--- /dev/null
+++ b/drivers/dma/ti/edma.c
@@ -0,0 +1,2565 @@
+/*
+ * TI EDMA DMA engine driver
+ *
+ * Copyright 2012 Texas Instruments
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation version 2.
+ *
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any
+ * kind, whether express or implied; without even the implied warranty
+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/edma.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/of.h>
+#include <linux/of_dma.h>
+#include <linux/of_irq.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/pm_runtime.h>
+
+#include <linux/platform_data/edma.h>
+
+#include "../dmaengine.h"
+#include "../virt-dma.h"
+
+/* Offsets matching "struct edmacc_param" */
+#define PARM_OPT		0x00
+#define PARM_SRC		0x04
+#define PARM_A_B_CNT		0x08
+#define PARM_DST		0x0c
+#define PARM_SRC_DST_BIDX	0x10
+#define PARM_LINK_BCNTRLD	0x14
+#define PARM_SRC_DST_CIDX	0x18
+#define PARM_CCNT		0x1c
+
+#define PARM_SIZE		0x20
+
+/* Offsets for EDMA CC global channel registers and their shadows */
+#define SH_ER			0x00	/* 64 bits */
+#define SH_ECR			0x08	/* 64 bits */
+#define SH_ESR			0x10	/* 64 bits */
+#define SH_CER			0x18	/* 64 bits */
+#define SH_EER			0x20	/* 64 bits */
+#define SH_EECR			0x28	/* 64 bits */
+#define SH_EESR			0x30	/* 64 bits */
+#define SH_SER			0x38	/* 64 bits */
+#define SH_SECR			0x40	/* 64 bits */
+#define SH_IER			0x50	/* 64 bits */
+#define SH_IECR			0x58	/* 64 bits */
+#define SH_IESR			0x60	/* 64 bits */
+#define SH_IPR			0x68	/* 64 bits */
+#define SH_ICR			0x70	/* 64 bits */
+#define SH_IEVAL		0x78
+#define SH_QER			0x80
+#define SH_QEER			0x84
+#define SH_QEECR		0x88
+#define SH_QEESR		0x8c
+#define SH_QSER			0x90
+#define SH_QSECR		0x94
+#define SH_SIZE			0x200
+
+/* Offsets for EDMA CC global registers */
+#define EDMA_REV		0x0000
+#define EDMA_CCCFG		0x0004
+#define EDMA_QCHMAP		0x0200	/* 8 registers */
+#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
+#define EDMA_QDMAQNUM		0x0260
+#define EDMA_QUETCMAP		0x0280
+#define EDMA_QUEPRI		0x0284
+#define EDMA_EMR		0x0300	/* 64 bits */
+#define EDMA_EMCR		0x0308	/* 64 bits */
+#define EDMA_QEMR		0x0310
+#define EDMA_QEMCR		0x0314
+#define EDMA_CCERR		0x0318
+#define EDMA_CCERRCLR		0x031c
+#define EDMA_EEVAL		0x0320
+#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
+#define EDMA_QRAE		0x0380	/* 4 registers */
+#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
+#define EDMA_QSTAT		0x0600	/* 2 registers */
+#define EDMA_QWMTHRA		0x0620
+#define EDMA_QWMTHRB		0x0624
+#define EDMA_CCSTAT		0x0640
+
+#define EDMA_M			0x1000	/* global channel registers */
+#define EDMA_ECR		0x1008
+#define EDMA_ECRH		0x100C
+#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
+#define EDMA_PARM		0x4000	/* PaRAM entries */
+
+#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
+
+#define EDMA_DCHMAP		0x0100  /* 64 registers */
+
+/* CCCFG register */
+#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
+#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
+#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
+#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
+#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
+#define CHMAP_EXIST		BIT(24)
+
+/* CCSTAT register */
+#define EDMA_CCSTAT_ACTV	BIT(4)
+
+/*
+ * Max of 20 segments per channel to conserve PaRAM slots
+ * Also note that MAX_NR_SG should be atleast the no.of periods
+ * that are required for ASoC, otherwise DMA prep calls will
+ * fail. Today davinci-pcm is the only user of this driver and
+ * requires atleast 17 slots, so we setup the default to 20.
+ */
+#define MAX_NR_SG		20
+#define EDMA_MAX_SLOTS		MAX_NR_SG
+#define EDMA_DESCRIPTORS	16
+
+#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
+#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
+#define EDMA_CONT_PARAMS_ANY		 1001
+#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
+#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
+
+/* PaRAM slots are laid out like this */
+struct edmacc_param {
+	u32 opt;
+	u32 src;
+	u32 a_b_cnt;
+	u32 dst;
+	u32 src_dst_bidx;
+	u32 link_bcntrld;
+	u32 src_dst_cidx;
+	u32 ccnt;
+} __packed;
+
+/* fields in edmacc_param.opt */
+#define SAM		BIT(0)
+#define DAM		BIT(1)
+#define SYNCDIM		BIT(2)
+#define STATIC		BIT(3)
+#define EDMA_FWID	(0x07 << 8)
+#define TCCMODE		BIT(11)
+#define EDMA_TCC(t)	((t) << 12)
+#define TCINTEN		BIT(20)
+#define ITCINTEN	BIT(21)
+#define TCCHEN		BIT(22)
+#define ITCCHEN		BIT(23)
+
+struct edma_pset {
+	u32				len;
+	dma_addr_t			addr;
+	struct edmacc_param		param;
+};
+
+struct edma_desc {
+	struct virt_dma_desc		vdesc;
+	struct list_head		node;
+	enum dma_transfer_direction	direction;
+	int				cyclic;
+	int				absync;
+	int				pset_nr;
+	struct edma_chan		*echan;
+	int				processed;
+
+	/*
+	 * The following 4 elements are used for residue accounting.
+	 *
+	 * - processed_stat: the number of SG elements we have traversed
+	 * so far to cover accounting. This is updated directly to processed
+	 * during edma_callback and is always <= processed, because processed
+	 * refers to the number of pending transfer (programmed to EDMA
+	 * controller), where as processed_stat tracks number of transfers
+	 * accounted for so far.
+	 *
+	 * - residue: The amount of bytes we have left to transfer for this desc
+	 *
+	 * - residue_stat: The residue in bytes of data we have covered
+	 * so far for accounting. This is updated directly to residue
+	 * during callbacks to keep it current.
+	 *
+	 * - sg_len: Tracks the length of the current intermediate transfer,
+	 * this is required to update the residue during intermediate transfer
+	 * completion callback.
+	 */
+	int				processed_stat;
+	u32				sg_len;
+	u32				residue;
+	u32				residue_stat;
+
+	struct edma_pset		pset[0];
+};
+
+struct edma_cc;
+
+struct edma_tc {
+	struct device_node		*node;
+	u16				id;
+};
+
+struct edma_chan {
+	struct virt_dma_chan		vchan;
+	struct list_head		node;
+	struct edma_desc		*edesc;
+	struct edma_cc			*ecc;
+	struct edma_tc			*tc;
+	int				ch_num;
+	bool				alloced;
+	bool				hw_triggered;
+	int				slot[EDMA_MAX_SLOTS];
+	int				missed;
+	struct dma_slave_config		cfg;
+};
+
+struct edma_cc {
+	struct device			*dev;
+	struct edma_soc_info		*info;
+	void __iomem			*base;
+	int				id;
+	bool				legacy_mode;
+
+	/* eDMA3 resource information */
+	unsigned			num_channels;
+	unsigned			num_qchannels;
+	unsigned			num_region;
+	unsigned			num_slots;
+	unsigned			num_tc;
+	bool				chmap_exist;
+	enum dma_event_q		default_queue;
+
+	unsigned int			ccint;
+	unsigned int			ccerrint;
+
+	/*
+	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
+	 * in use by Linux or if it is allocated to be used by DSP.
+	 */
+	unsigned long *slot_inuse;
+
+	struct dma_device		dma_slave;
+	struct dma_device		*dma_memcpy;
+	struct edma_chan		*slave_chans;
+	struct edma_tc			*tc_list;
+	int				dummy_slot;
+};
+
+/* dummy param set used to (re)initialize parameter RAM slots */
+static const struct edmacc_param dummy_paramset = {
+	.link_bcntrld = 0xffff,
+	.ccnt = 1,
+};
+
+#define EDMA_BINDING_LEGACY	0
+#define EDMA_BINDING_TPCC	1
+static const u32 edma_binding_type[] = {
+	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
+	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
+};
+
+static const struct of_device_id edma_of_ids[] = {
+	{
+		.compatible = "ti,edma3",
+		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
+	},
+	{
+		.compatible = "ti,edma3-tpcc",
+		.data = &edma_binding_type[EDMA_BINDING_TPCC],
+	},
+	{}
+};
+MODULE_DEVICE_TABLE(of, edma_of_ids);
+
+static const struct of_device_id edma_tptc_of_ids[] = {
+	{ .compatible = "ti,edma3-tptc", },
+	{}
+};
+MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
+
+static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
+{
+	return (unsigned int)__raw_readl(ecc->base + offset);
+}
+
+static inline void edma_write(struct edma_cc *ecc, int offset, int val)
+{
+	__raw_writel(val, ecc->base + offset);
+}
+
+static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
+			       unsigned or)
+{
+	unsigned val = edma_read(ecc, offset);
+
+	val &= and;
+	val |= or;
+	edma_write(ecc, offset, val);
+}
+
+static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
+{
+	unsigned val = edma_read(ecc, offset);
+
+	val &= and;
+	edma_write(ecc, offset, val);
+}
+
+static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
+{
+	unsigned val = edma_read(ecc, offset);
+
+	val |= or;
+	edma_write(ecc, offset, val);
+}
+
+static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
+					   int i)
+{
+	return edma_read(ecc, offset + (i << 2));
+}
+
+static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
+				    unsigned val)
+{
+	edma_write(ecc, offset + (i << 2), val);
+}
+
+static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
+				     unsigned and, unsigned or)
+{
+	edma_modify(ecc, offset + (i << 2), and, or);
+}
+
+static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
+				 unsigned or)
+{
+	edma_or(ecc, offset + (i << 2), or);
+}
+
+static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
+				  unsigned or)
+{
+	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
+}
+
+static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
+				     int j, unsigned val)
+{
+	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
+}
+
+static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
+{
+	return edma_read(ecc, EDMA_SHADOW0 + offset);
+}
+
+static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
+						   int offset, int i)
+{
+	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
+}
+
+static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
+				      unsigned val)
+{
+	edma_write(ecc, EDMA_SHADOW0 + offset, val);
+}
+
+static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
+					    int i, unsigned val)
+{
+	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
+}
+
+static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
+					   int param_no)
+{
+	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
+}
+
+static inline void edma_param_write(struct edma_cc *ecc, int offset,
+				    int param_no, unsigned val)
+{
+	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
+}
+
+static inline void edma_param_modify(struct edma_cc *ecc, int offset,
+				     int param_no, unsigned and, unsigned or)
+{
+	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
+}
+
+static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
+				  unsigned and)
+{
+	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
+}
+
+static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
+				 unsigned or)
+{
+	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
+}
+
+static inline void edma_set_bits(int offset, int len, unsigned long *p)
+{
+	for (; len > 0; len--)
+		set_bit(offset + (len - 1), p);
+}
+
+static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
+					  int priority)
+{
+	int bit = queue_no * 4;
+
+	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
+}
+
+static void edma_set_chmap(struct edma_chan *echan, int slot)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+
+	if (ecc->chmap_exist) {
+		slot = EDMA_CHAN_SLOT(slot);
+		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
+	}
+}
+
+static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+
+	if (enable) {
+		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
+					 BIT(channel & 0x1f));
+		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
+					 BIT(channel & 0x1f));
+	} else {
+		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
+					 BIT(channel & 0x1f));
+	}
+}
+
+/*
+ * paRAM slot management functions
+ */
+static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
+			    const struct edmacc_param *param)
+{
+	slot = EDMA_CHAN_SLOT(slot);
+	if (slot >= ecc->num_slots)
+		return;
+	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
+}
+
+static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
+			   struct edmacc_param *param)
+{
+	slot = EDMA_CHAN_SLOT(slot);
+	if (slot >= ecc->num_slots)
+		return -EINVAL;
+	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
+
+	return 0;
+}
+
+/**
+ * edma_alloc_slot - allocate DMA parameter RAM
+ * @ecc: pointer to edma_cc struct
+ * @slot: specific slot to allocate; negative for "any unused slot"
+ *
+ * This allocates a parameter RAM slot, initializing it to hold a
+ * dummy transfer.  Slots allocated using this routine have not been
+ * mapped to a hardware DMA channel, and will normally be used by
+ * linking to them from a slot associated with a DMA channel.
+ *
+ * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
+ * slots may be allocated on behalf of DSP firmware.
+ *
+ * Returns the number of the slot, else negative errno.
+ */
+static int edma_alloc_slot(struct edma_cc *ecc, int slot)
+{
+	if (slot >= 0) {
+		slot = EDMA_CHAN_SLOT(slot);
+		/* Requesting entry paRAM slot for a HW triggered channel. */
+		if (ecc->chmap_exist && slot < ecc->num_channels)
+			slot = EDMA_SLOT_ANY;
+	}
+
+	if (slot < 0) {
+		if (ecc->chmap_exist)
+			slot = 0;
+		else
+			slot = ecc->num_channels;
+		for (;;) {
+			slot = find_next_zero_bit(ecc->slot_inuse,
+						  ecc->num_slots,
+						  slot);
+			if (slot == ecc->num_slots)
+				return -ENOMEM;
+			if (!test_and_set_bit(slot, ecc->slot_inuse))
+				break;
+		}
+	} else if (slot >= ecc->num_slots) {
+		return -EINVAL;
+	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
+		return -EBUSY;
+	}
+
+	edma_write_slot(ecc, slot, &dummy_paramset);
+
+	return EDMA_CTLR_CHAN(ecc->id, slot);
+}
+
+static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
+{
+	slot = EDMA_CHAN_SLOT(slot);
+	if (slot >= ecc->num_slots)
+		return;
+
+	edma_write_slot(ecc, slot, &dummy_paramset);
+	clear_bit(slot, ecc->slot_inuse);
+}
+
+/**
+ * edma_link - link one parameter RAM slot to another
+ * @ecc: pointer to edma_cc struct
+ * @from: parameter RAM slot originating the link
+ * @to: parameter RAM slot which is the link target
+ *
+ * The originating slot should not be part of any active DMA transfer.
+ */
+static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
+{
+	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
+		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
+
+	from = EDMA_CHAN_SLOT(from);
+	to = EDMA_CHAN_SLOT(to);
+	if (from >= ecc->num_slots || to >= ecc->num_slots)
+		return;
+
+	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
+			  PARM_OFFSET(to));
+}
+
+/**
+ * edma_get_position - returns the current transfer point
+ * @ecc: pointer to edma_cc struct
+ * @slot: parameter RAM slot being examined
+ * @dst:  true selects the dest position, false the source
+ *
+ * Returns the position of the current active slot
+ */
+static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
+				    bool dst)
+{
+	u32 offs;
+
+	slot = EDMA_CHAN_SLOT(slot);
+	offs = PARM_OFFSET(slot);
+	offs += dst ? PARM_DST : PARM_SRC;
+
+	return edma_read(ecc, offs);
+}
+
+/*
+ * Channels with event associations will be triggered by their hardware
+ * events, and channels without such associations will be triggered by
+ * software.  (At this writing there is no interface for using software
+ * triggers except with channels that don't support hardware triggers.)
+ */
+static void edma_start(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	int j = (channel >> 5);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	if (!echan->hw_triggered) {
+		/* EDMA channels without event association */
+		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
+			edma_shadow0_read_array(ecc, SH_ESR, j));
+		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
+	} else {
+		/* EDMA channel with event association */
+		dev_dbg(ecc->dev, "ER%d %08x\n", j,
+			edma_shadow0_read_array(ecc, SH_ER, j));
+		/* Clear any pending event or error */
+		edma_write_array(ecc, EDMA_ECR, j, mask);
+		edma_write_array(ecc, EDMA_EMCR, j, mask);
+		/* Clear any SER */
+		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
+		dev_dbg(ecc->dev, "EER%d %08x\n", j,
+			edma_shadow0_read_array(ecc, SH_EER, j));
+	}
+}
+
+static void edma_stop(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	int j = (channel >> 5);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
+	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
+	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+	edma_write_array(ecc, EDMA_EMCR, j, mask);
+
+	/* clear possibly pending completion interrupt */
+	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
+
+	dev_dbg(ecc->dev, "EER%d %08x\n", j,
+		edma_shadow0_read_array(ecc, SH_EER, j));
+
+	/* REVISIT:  consider guarding against inappropriate event
+	 * chaining by overwriting with dummy_paramset.
+	 */
+}
+
+/*
+ * Temporarily disable EDMA hardware events on the specified channel,
+ * preventing them from triggering new transfers
+ */
+static void edma_pause(struct edma_chan *echan)
+{
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
+}
+
+/* Re-enable EDMA hardware events on the specified channel.  */
+static void edma_resume(struct edma_chan *echan)
+{
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
+}
+
+static void edma_trigger_channel(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
+
+	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
+		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
+}
+
+static void edma_clean_channel(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	int j = (channel >> 5);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
+	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
+	/* Clear the corresponding EMR bits */
+	edma_write_array(ecc, EDMA_EMCR, j, mask);
+	/* Clear any SER */
+	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
+}
+
+/* Move channel to a specific event queue */
+static void edma_assign_channel_eventq(struct edma_chan *echan,
+				       enum dma_event_q eventq_no)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	int bit = (channel & 0x7) * 4;
+
+	/* default to low priority queue */
+	if (eventq_no == EVENTQ_DEFAULT)
+		eventq_no = ecc->default_queue;
+	if (eventq_no >= ecc->num_tc)
+		return;
+
+	eventq_no &= 7;
+	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
+			  eventq_no << bit);
+}
+
+static int edma_alloc_channel(struct edma_chan *echan,
+			      enum dma_event_q eventq_no)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+
+	/* ensure access through shadow region 0 */
+	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
+
+	/* ensure no events are pending */
+	edma_stop(echan);
+
+	edma_setup_interrupt(echan, true);
+
+	edma_assign_channel_eventq(echan, eventq_no);
+
+	return 0;
+}
+
+static void edma_free_channel(struct edma_chan *echan)
+{
+	/* ensure no events are pending */
+	edma_stop(echan);
+	/* REVISIT should probably take out of shadow region 0 */
+	edma_setup_interrupt(echan, false);
+}
+
+static inline struct edma_cc *to_edma_cc(struct dma_device *d)
+{
+	return container_of(d, struct edma_cc, dma_slave);
+}
+
+static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
+{
+	return container_of(c, struct edma_chan, vchan.chan);
+}
+
+static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
+{
+	return container_of(tx, struct edma_desc, vdesc.tx);
+}
+
+static void edma_desc_free(struct virt_dma_desc *vdesc)
+{
+	kfree(container_of(vdesc, struct edma_desc, vdesc));
+}
+
+/* Dispatch a queued descriptor to the controller (caller holds lock) */
+static void edma_execute(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	struct virt_dma_desc *vdesc;
+	struct edma_desc *edesc;
+	struct device *dev = echan->vchan.chan.device->dev;
+	int i, j, left, nslots;
+
+	if (!echan->edesc) {
+		/* Setup is needed for the first transfer */
+		vdesc = vchan_next_desc(&echan->vchan);
+		if (!vdesc)
+			return;
+		list_del(&vdesc->node);
+		echan->edesc = to_edma_desc(&vdesc->tx);
+	}
+
+	edesc = echan->edesc;
+
+	/* Find out how many left */
+	left = edesc->pset_nr - edesc->processed;
+	nslots = min(MAX_NR_SG, left);
+	edesc->sg_len = 0;
+
+	/* Write descriptor PaRAM set(s) */
+	for (i = 0; i < nslots; i++) {
+		j = i + edesc->processed;
+		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
+		edesc->sg_len += edesc->pset[j].len;
+		dev_vdbg(dev,
+			 "\n pset[%d]:\n"
+			 "  chnum\t%d\n"
+			 "  slot\t%d\n"
+			 "  opt\t%08x\n"
+			 "  src\t%08x\n"
+			 "  dst\t%08x\n"
+			 "  abcnt\t%08x\n"
+			 "  ccnt\t%08x\n"
+			 "  bidx\t%08x\n"
+			 "  cidx\t%08x\n"
+			 "  lkrld\t%08x\n",
+			 j, echan->ch_num, echan->slot[i],
+			 edesc->pset[j].param.opt,
+			 edesc->pset[j].param.src,
+			 edesc->pset[j].param.dst,
+			 edesc->pset[j].param.a_b_cnt,
+			 edesc->pset[j].param.ccnt,
+			 edesc->pset[j].param.src_dst_bidx,
+			 edesc->pset[j].param.src_dst_cidx,
+			 edesc->pset[j].param.link_bcntrld);
+		/* Link to the previous slot if not the last set */
+		if (i != (nslots - 1))
+			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
+	}
+
+	edesc->processed += nslots;
+
+	/*
+	 * If this is either the last set in a set of SG-list transactions
+	 * then setup a link to the dummy slot, this results in all future
+	 * events being absorbed and that's OK because we're done
+	 */
+	if (edesc->processed == edesc->pset_nr) {
+		if (edesc->cyclic)
+			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
+		else
+			edma_link(ecc, echan->slot[nslots - 1],
+				  echan->ecc->dummy_slot);
+	}
+
+	if (echan->missed) {
+		/*
+		 * This happens due to setup times between intermediate
+		 * transfers in long SG lists which have to be broken up into
+		 * transfers of MAX_NR_SG
+		 */
+		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
+		edma_clean_channel(echan);
+		edma_stop(echan);
+		edma_start(echan);
+		edma_trigger_channel(echan);
+		echan->missed = 0;
+	} else if (edesc->processed <= MAX_NR_SG) {
+		dev_dbg(dev, "first transfer starting on channel %d\n",
+			echan->ch_num);
+		edma_start(echan);
+	} else {
+		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
+			echan->ch_num, edesc->processed);
+		edma_resume(echan);
+	}
+}
+
+static int edma_terminate_all(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	unsigned long flags;
+	LIST_HEAD(head);
+
+	spin_lock_irqsave(&echan->vchan.lock, flags);
+
+	/*
+	 * Stop DMA activity: we assume the callback will not be called
+	 * after edma_dma() returns (even if it does, it will see
+	 * echan->edesc is NULL and exit.)
+	 */
+	if (echan->edesc) {
+		edma_stop(echan);
+		/* Move the cyclic channel back to default queue */
+		if (!echan->tc && echan->edesc->cyclic)
+			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
+
+		vchan_terminate_vdesc(&echan->edesc->vdesc);
+		echan->edesc = NULL;
+	}
+
+	vchan_get_all_descriptors(&echan->vchan, &head);
+	spin_unlock_irqrestore(&echan->vchan.lock, flags);
+	vchan_dma_desc_free_list(&echan->vchan, &head);
+
+	return 0;
+}
+
+static void edma_synchronize(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+
+	vchan_synchronize(&echan->vchan);
+}
+
+static int edma_slave_config(struct dma_chan *chan,
+	struct dma_slave_config *cfg)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+
+	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
+	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
+		return -EINVAL;
+
+	if (cfg->src_maxburst > chan->device->max_burst ||
+	    cfg->dst_maxburst > chan->device->max_burst)
+		return -EINVAL;
+
+	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
+
+	return 0;
+}
+
+static int edma_dma_pause(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+
+	if (!echan->edesc)
+		return -EINVAL;
+
+	edma_pause(echan);
+	return 0;
+}
+
+static int edma_dma_resume(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+
+	edma_resume(echan);
+	return 0;
+}
+
+/*
+ * A PaRAM set configuration abstraction used by other modes
+ * @chan: Channel who's PaRAM set we're configuring
+ * @pset: PaRAM set to initialize and setup.
+ * @src_addr: Source address of the DMA
+ * @dst_addr: Destination address of the DMA
+ * @burst: In units of dev_width, how much to send
+ * @dev_width: How much is the dev_width
+ * @dma_length: Total length of the DMA transfer
+ * @direction: Direction of the transfer
+ */
+static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
+			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
+			    unsigned int acnt, unsigned int dma_length,
+			    enum dma_transfer_direction direction)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct device *dev = chan->device->dev;
+	struct edmacc_param *param = &epset->param;
+	int bcnt, ccnt, cidx;
+	int src_bidx, dst_bidx, src_cidx, dst_cidx;
+	int absync;
+
+	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
+	if (!burst)
+		burst = 1;
+	/*
+	 * If the maxburst is equal to the fifo width, use
+	 * A-synced transfers. This allows for large contiguous
+	 * buffer transfers using only one PaRAM set.
+	 */
+	if (burst == 1) {
+		/*
+		 * For the A-sync case, bcnt and ccnt are the remainder
+		 * and quotient respectively of the division of:
+		 * (dma_length / acnt) by (SZ_64K -1). This is so
+		 * that in case bcnt over flows, we have ccnt to use.
+		 * Note: In A-sync tranfer only, bcntrld is used, but it
+		 * only applies for sg_dma_len(sg) >= SZ_64K.
+		 * In this case, the best way adopted is- bccnt for the
+		 * first frame will be the remainder below. Then for
+		 * every successive frame, bcnt will be SZ_64K-1. This
+		 * is assured as bcntrld = 0xffff in end of function.
+		 */
+		absync = false;
+		ccnt = dma_length / acnt / (SZ_64K - 1);
+		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
+		/*
+		 * If bcnt is non-zero, we have a remainder and hence an
+		 * extra frame to transfer, so increment ccnt.
+		 */
+		if (bcnt)
+			ccnt++;
+		else
+			bcnt = SZ_64K - 1;
+		cidx = acnt;
+	} else {
+		/*
+		 * If maxburst is greater than the fifo address_width,
+		 * use AB-synced transfers where A count is the fifo
+		 * address_width and B count is the maxburst. In this
+		 * case, we are limited to transfers of C count frames
+		 * of (address_width * maxburst) where C count is limited
+		 * to SZ_64K-1. This places an upper bound on the length
+		 * of an SG segment that can be handled.
+		 */
+		absync = true;
+		bcnt = burst;
+		ccnt = dma_length / (acnt * bcnt);
+		if (ccnt > (SZ_64K - 1)) {
+			dev_err(dev, "Exceeded max SG segment size\n");
+			return -EINVAL;
+		}
+		cidx = acnt * bcnt;
+	}
+
+	epset->len = dma_length;
+
+	if (direction == DMA_MEM_TO_DEV) {
+		src_bidx = acnt;
+		src_cidx = cidx;
+		dst_bidx = 0;
+		dst_cidx = 0;
+		epset->addr = src_addr;
+	} else if (direction == DMA_DEV_TO_MEM)  {
+		src_bidx = 0;
+		src_cidx = 0;
+		dst_bidx = acnt;
+		dst_cidx = cidx;
+		epset->addr = dst_addr;
+	} else if (direction == DMA_MEM_TO_MEM)  {
+		src_bidx = acnt;
+		src_cidx = cidx;
+		dst_bidx = acnt;
+		dst_cidx = cidx;
+	} else {
+		dev_err(dev, "%s: direction not implemented yet\n", __func__);
+		return -EINVAL;
+	}
+
+	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
+	/* Configure A or AB synchronized transfers */
+	if (absync)
+		param->opt |= SYNCDIM;
+
+	param->src = src_addr;
+	param->dst = dst_addr;
+
+	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
+	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
+
+	param->a_b_cnt = bcnt << 16 | acnt;
+	param->ccnt = ccnt;
+	/*
+	 * Only time when (bcntrld) auto reload is required is for
+	 * A-sync case, and in this case, a requirement of reload value
+	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
+	 * and then later will be populated by edma_execute.
+	 */
+	param->link_bcntrld = 0xffffffff;
+	return absync;
+}
+
+static struct dma_async_tx_descriptor *edma_prep_slave_sg(
+	struct dma_chan *chan, struct scatterlist *sgl,
+	unsigned int sg_len, enum dma_transfer_direction direction,
+	unsigned long tx_flags, void *context)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct device *dev = chan->device->dev;
+	struct edma_desc *edesc;
+	dma_addr_t src_addr = 0, dst_addr = 0;
+	enum dma_slave_buswidth dev_width;
+	u32 burst;
+	struct scatterlist *sg;
+	int i, nslots, ret;
+
+	if (unlikely(!echan || !sgl || !sg_len))
+		return NULL;
+
+	if (direction == DMA_DEV_TO_MEM) {
+		src_addr = echan->cfg.src_addr;
+		dev_width = echan->cfg.src_addr_width;
+		burst = echan->cfg.src_maxburst;
+	} else if (direction == DMA_MEM_TO_DEV) {
+		dst_addr = echan->cfg.dst_addr;
+		dev_width = echan->cfg.dst_addr_width;
+		burst = echan->cfg.dst_maxburst;
+	} else {
+		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
+		return NULL;
+	}
+
+	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
+		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
+		return NULL;
+	}
+
+	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
+	if (!edesc)
+		return NULL;
+
+	edesc->pset_nr = sg_len;
+	edesc->residue = 0;
+	edesc->direction = direction;
+	edesc->echan = echan;
+
+	/* Allocate a PaRAM slot, if needed */
+	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
+
+	for (i = 0; i < nslots; i++) {
+		if (echan->slot[i] < 0) {
+			echan->slot[i] =
+				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
+			if (echan->slot[i] < 0) {
+				kfree(edesc);
+				dev_err(dev, "%s: Failed to allocate slot\n",
+					__func__);
+				return NULL;
+			}
+		}
+	}
+
+	/* Configure PaRAM sets for each SG */
+	for_each_sg(sgl, sg, sg_len, i) {
+		/* Get address for each SG */
+		if (direction == DMA_DEV_TO_MEM)
+			dst_addr = sg_dma_address(sg);
+		else
+			src_addr = sg_dma_address(sg);
+
+		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
+				       dst_addr, burst, dev_width,
+				       sg_dma_len(sg), direction);
+		if (ret < 0) {
+			kfree(edesc);
+			return NULL;
+		}
+
+		edesc->absync = ret;
+		edesc->residue += sg_dma_len(sg);
+
+		if (i == sg_len - 1)
+			/* Enable completion interrupt */
+			edesc->pset[i].param.opt |= TCINTEN;
+		else if (!((i+1) % MAX_NR_SG))
+			/*
+			 * Enable early completion interrupt for the
+			 * intermediateset. In this case the driver will be
+			 * notified when the paRAM set is submitted to TC. This
+			 * will allow more time to set up the next set of slots.
+			 */
+			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
+	}
+	edesc->residue_stat = edesc->residue;
+
+	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+}
+
+static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
+	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
+	size_t len, unsigned long tx_flags)
+{
+	int ret, nslots;
+	struct edma_desc *edesc;
+	struct device *dev = chan->device->dev;
+	struct edma_chan *echan = to_edma_chan(chan);
+	unsigned int width, pset_len, array_size;
+
+	if (unlikely(!echan || !len))
+		return NULL;
+
+	/* Align the array size (acnt block) with the transfer properties */
+	switch (__ffs((src | dest | len))) {
+	case 0:
+		array_size = SZ_32K - 1;
+		break;
+	case 1:
+		array_size = SZ_32K - 2;
+		break;
+	default:
+		array_size = SZ_32K - 4;
+		break;
+	}
+
+	if (len < SZ_64K) {
+		/*
+		 * Transfer size less than 64K can be handled with one paRAM
+		 * slot and with one burst.
+		 * ACNT = length
+		 */
+		width = len;
+		pset_len = len;
+		nslots = 1;
+	} else {
+		/*
+		 * Transfer size bigger than 64K will be handled with maximum of
+		 * two paRAM slots.
+		 * slot1: (full_length / 32767) times 32767 bytes bursts.
+		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
+		 * slot2: the remaining amount of data after slot1.
+		 *	  ACNT = full_length - length1, length2 = ACNT
+		 *
+		 * When the full_length is multibple of 32767 one slot can be
+		 * used to complete the transfer.
+		 */
+		width = array_size;
+		pset_len = rounddown(len, width);
+		/* One slot is enough for lengths multiple of (SZ_32K -1) */
+		if (unlikely(pset_len == len))
+			nslots = 1;
+		else
+			nslots = 2;
+	}
+
+	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
+	if (!edesc)
+		return NULL;
+
+	edesc->pset_nr = nslots;
+	edesc->residue = edesc->residue_stat = len;
+	edesc->direction = DMA_MEM_TO_MEM;
+	edesc->echan = echan;
+
+	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
+			       width, pset_len, DMA_MEM_TO_MEM);
+	if (ret < 0) {
+		kfree(edesc);
+		return NULL;
+	}
+
+	edesc->absync = ret;
+
+	edesc->pset[0].param.opt |= ITCCHEN;
+	if (nslots == 1) {
+		/* Enable transfer complete interrupt */
+		edesc->pset[0].param.opt |= TCINTEN;
+	} else {
+		/* Enable transfer complete chaining for the first slot */
+		edesc->pset[0].param.opt |= TCCHEN;
+
+		if (echan->slot[1] < 0) {
+			echan->slot[1] = edma_alloc_slot(echan->ecc,
+							 EDMA_SLOT_ANY);
+			if (echan->slot[1] < 0) {
+				kfree(edesc);
+				dev_err(dev, "%s: Failed to allocate slot\n",
+					__func__);
+				return NULL;
+			}
+		}
+		dest += pset_len;
+		src += pset_len;
+		pset_len = width = len % array_size;
+
+		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
+				       width, pset_len, DMA_MEM_TO_MEM);
+		if (ret < 0) {
+			kfree(edesc);
+			return NULL;
+		}
+
+		edesc->pset[1].param.opt |= ITCCHEN;
+		edesc->pset[1].param.opt |= TCINTEN;
+	}
+
+	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+}
+
+static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
+	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
+	size_t period_len, enum dma_transfer_direction direction,
+	unsigned long tx_flags)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct device *dev = chan->device->dev;
+	struct edma_desc *edesc;
+	dma_addr_t src_addr, dst_addr;
+	enum dma_slave_buswidth dev_width;
+	bool use_intermediate = false;
+	u32 burst;
+	int i, ret, nslots;
+
+	if (unlikely(!echan || !buf_len || !period_len))
+		return NULL;
+
+	if (direction == DMA_DEV_TO_MEM) {
+		src_addr = echan->cfg.src_addr;
+		dst_addr = buf_addr;
+		dev_width = echan->cfg.src_addr_width;
+		burst = echan->cfg.src_maxburst;
+	} else if (direction == DMA_MEM_TO_DEV) {
+		src_addr = buf_addr;
+		dst_addr = echan->cfg.dst_addr;
+		dev_width = echan->cfg.dst_addr_width;
+		burst = echan->cfg.dst_maxburst;
+	} else {
+		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
+		return NULL;
+	}
+
+	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
+		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
+		return NULL;
+	}
+
+	if (unlikely(buf_len % period_len)) {
+		dev_err(dev, "Period should be multiple of Buffer length\n");
+		return NULL;
+	}
+
+	nslots = (buf_len / period_len) + 1;
+
+	/*
+	 * Cyclic DMA users such as audio cannot tolerate delays introduced
+	 * by cases where the number of periods is more than the maximum
+	 * number of SGs the EDMA driver can handle at a time. For DMA types
+	 * such as Slave SGs, such delays are tolerable and synchronized,
+	 * but the synchronization is difficult to achieve with Cyclic and
+	 * cannot be guaranteed, so we error out early.
+	 */
+	if (nslots > MAX_NR_SG) {
+		/*
+		 * If the burst and period sizes are the same, we can put
+		 * the full buffer into a single period and activate
+		 * intermediate interrupts. This will produce interrupts
+		 * after each burst, which is also after each desired period.
+		 */
+		if (burst == period_len) {
+			period_len = buf_len;
+			nslots = 2;
+			use_intermediate = true;
+		} else {
+			return NULL;
+		}
+	}
+
+	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
+	if (!edesc)
+		return NULL;
+
+	edesc->cyclic = 1;
+	edesc->pset_nr = nslots;
+	edesc->residue = edesc->residue_stat = buf_len;
+	edesc->direction = direction;
+	edesc->echan = echan;
+
+	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
+		__func__, echan->ch_num, nslots, period_len, buf_len);
+
+	for (i = 0; i < nslots; i++) {
+		/* Allocate a PaRAM slot, if needed */
+		if (echan->slot[i] < 0) {
+			echan->slot[i] =
+				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
+			if (echan->slot[i] < 0) {
+				kfree(edesc);
+				dev_err(dev, "%s: Failed to allocate slot\n",
+					__func__);
+				return NULL;
+			}
+		}
+
+		if (i == nslots - 1) {
+			memcpy(&edesc->pset[i], &edesc->pset[0],
+			       sizeof(edesc->pset[0]));
+			break;
+		}
+
+		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
+				       dst_addr, burst, dev_width, period_len,
+				       direction);
+		if (ret < 0) {
+			kfree(edesc);
+			return NULL;
+		}
+
+		if (direction == DMA_DEV_TO_MEM)
+			dst_addr += period_len;
+		else
+			src_addr += period_len;
+
+		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
+		dev_vdbg(dev,
+			"\n pset[%d]:\n"
+			"  chnum\t%d\n"
+			"  slot\t%d\n"
+			"  opt\t%08x\n"
+			"  src\t%08x\n"
+			"  dst\t%08x\n"
+			"  abcnt\t%08x\n"
+			"  ccnt\t%08x\n"
+			"  bidx\t%08x\n"
+			"  cidx\t%08x\n"
+			"  lkrld\t%08x\n",
+			i, echan->ch_num, echan->slot[i],
+			edesc->pset[i].param.opt,
+			edesc->pset[i].param.src,
+			edesc->pset[i].param.dst,
+			edesc->pset[i].param.a_b_cnt,
+			edesc->pset[i].param.ccnt,
+			edesc->pset[i].param.src_dst_bidx,
+			edesc->pset[i].param.src_dst_cidx,
+			edesc->pset[i].param.link_bcntrld);
+
+		edesc->absync = ret;
+
+		/*
+		 * Enable period interrupt only if it is requested
+		 */
+		if (tx_flags & DMA_PREP_INTERRUPT) {
+			edesc->pset[i].param.opt |= TCINTEN;
+
+			/* Also enable intermediate interrupts if necessary */
+			if (use_intermediate)
+				edesc->pset[i].param.opt |= ITCINTEN;
+		}
+	}
+
+	/* Place the cyclic channel to highest priority queue */
+	if (!echan->tc)
+		edma_assign_channel_eventq(echan, EVENTQ_0);
+
+	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+}
+
+static void edma_completion_handler(struct edma_chan *echan)
+{
+	struct device *dev = echan->vchan.chan.device->dev;
+	struct edma_desc *edesc;
+
+	spin_lock(&echan->vchan.lock);
+	edesc = echan->edesc;
+	if (edesc) {
+		if (edesc->cyclic) {
+			vchan_cyclic_callback(&edesc->vdesc);
+			spin_unlock(&echan->vchan.lock);
+			return;
+		} else if (edesc->processed == edesc->pset_nr) {
+			edesc->residue = 0;
+			edma_stop(echan);
+			vchan_cookie_complete(&edesc->vdesc);
+			echan->edesc = NULL;
+
+			dev_dbg(dev, "Transfer completed on channel %d\n",
+				echan->ch_num);
+		} else {
+			dev_dbg(dev, "Sub transfer completed on channel %d\n",
+				echan->ch_num);
+
+			edma_pause(echan);
+
+			/* Update statistics for tx_status */
+			edesc->residue -= edesc->sg_len;
+			edesc->residue_stat = edesc->residue;
+			edesc->processed_stat = edesc->processed;
+		}
+		edma_execute(echan);
+	}
+
+	spin_unlock(&echan->vchan.lock);
+}
+
+/* eDMA interrupt handler */
+static irqreturn_t dma_irq_handler(int irq, void *data)
+{
+	struct edma_cc *ecc = data;
+	int ctlr;
+	u32 sh_ier;
+	u32 sh_ipr;
+	u32 bank;
+
+	ctlr = ecc->id;
+	if (ctlr < 0)
+		return IRQ_NONE;
+
+	dev_vdbg(ecc->dev, "dma_irq_handler\n");
+
+	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
+	if (!sh_ipr) {
+		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
+		if (!sh_ipr)
+			return IRQ_NONE;
+		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
+		bank = 1;
+	} else {
+		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
+		bank = 0;
+	}
+
+	do {
+		u32 slot;
+		u32 channel;
+
+		slot = __ffs(sh_ipr);
+		sh_ipr &= ~(BIT(slot));
+
+		if (sh_ier & BIT(slot)) {
+			channel = (bank << 5) | slot;
+			/* Clear the corresponding IPR bits */
+			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
+			edma_completion_handler(&ecc->slave_chans[channel]);
+		}
+	} while (sh_ipr);
+
+	edma_shadow0_write(ecc, SH_IEVAL, 1);
+	return IRQ_HANDLED;
+}
+
+static void edma_error_handler(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	struct device *dev = echan->vchan.chan.device->dev;
+	struct edmacc_param p;
+	int err;
+
+	if (!echan->edesc)
+		return;
+
+	spin_lock(&echan->vchan.lock);
+
+	err = edma_read_slot(ecc, echan->slot[0], &p);
+
+	/*
+	 * Issue later based on missed flag which will be sure
+	 * to happen as:
+	 * (1) we finished transmitting an intermediate slot and
+	 *     edma_execute is coming up.
+	 * (2) or we finished current transfer and issue will
+	 *     call edma_execute.
+	 *
+	 * Important note: issuing can be dangerous here and
+	 * lead to some nasty recursion when we are in a NULL
+	 * slot. So we avoid doing so and set the missed flag.
+	 */
+	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
+		dev_dbg(dev, "Error on null slot, setting miss\n");
+		echan->missed = 1;
+	} else {
+		/*
+		 * The slot is already programmed but the event got
+		 * missed, so its safe to issue it here.
+		 */
+		dev_dbg(dev, "Missed event, TRIGGERING\n");
+		edma_clean_channel(echan);
+		edma_stop(echan);
+		edma_start(echan);
+		edma_trigger_channel(echan);
+	}
+	spin_unlock(&echan->vchan.lock);
+}
+
+static inline bool edma_error_pending(struct edma_cc *ecc)
+{
+	if (edma_read_array(ecc, EDMA_EMR, 0) ||
+	    edma_read_array(ecc, EDMA_EMR, 1) ||
+	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
+		return true;
+
+	return false;
+}
+
+/* eDMA error interrupt handler */
+static irqreturn_t dma_ccerr_handler(int irq, void *data)
+{
+	struct edma_cc *ecc = data;
+	int i, j;
+	int ctlr;
+	unsigned int cnt = 0;
+	unsigned int val;
+
+	ctlr = ecc->id;
+	if (ctlr < 0)
+		return IRQ_NONE;
+
+	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
+
+	if (!edma_error_pending(ecc)) {
+		/*
+		 * The registers indicate no pending error event but the irq
+		 * handler has been called.
+		 * Ask eDMA to re-evaluate the error registers.
+		 */
+		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
+			__func__);
+		edma_write(ecc, EDMA_EEVAL, 1);
+		return IRQ_NONE;
+	}
+
+	while (1) {
+		/* Event missed register(s) */
+		for (j = 0; j < 2; j++) {
+			unsigned long emr;
+
+			val = edma_read_array(ecc, EDMA_EMR, j);
+			if (!val)
+				continue;
+
+			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
+			emr = val;
+			for (i = find_next_bit(&emr, 32, 0); i < 32;
+			     i = find_next_bit(&emr, 32, i + 1)) {
+				int k = (j << 5) + i;
+
+				/* Clear the corresponding EMR bits */
+				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
+				/* Clear any SER */
+				edma_shadow0_write_array(ecc, SH_SECR, j,
+							 BIT(i));
+				edma_error_handler(&ecc->slave_chans[k]);
+			}
+		}
+
+		val = edma_read(ecc, EDMA_QEMR);
+		if (val) {
+			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
+			/* Not reported, just clear the interrupt reason. */
+			edma_write(ecc, EDMA_QEMCR, val);
+			edma_shadow0_write(ecc, SH_QSECR, val);
+		}
+
+		val = edma_read(ecc, EDMA_CCERR);
+		if (val) {
+			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
+			/* Not reported, just clear the interrupt reason. */
+			edma_write(ecc, EDMA_CCERRCLR, val);
+		}
+
+		if (!edma_error_pending(ecc))
+			break;
+		cnt++;
+		if (cnt > 10)
+			break;
+	}
+	edma_write(ecc, EDMA_EEVAL, 1);
+	return IRQ_HANDLED;
+}
+
+/* Alloc channel resources */
+static int edma_alloc_chan_resources(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct edma_cc *ecc = echan->ecc;
+	struct device *dev = ecc->dev;
+	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
+	int ret;
+
+	if (echan->tc) {
+		eventq_no = echan->tc->id;
+	} else if (ecc->tc_list) {
+		/* memcpy channel */
+		echan->tc = &ecc->tc_list[ecc->info->default_queue];
+		eventq_no = echan->tc->id;
+	}
+
+	ret = edma_alloc_channel(echan, eventq_no);
+	if (ret)
+		return ret;
+
+	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
+	if (echan->slot[0] < 0) {
+		dev_err(dev, "Entry slot allocation failed for channel %u\n",
+			EDMA_CHAN_SLOT(echan->ch_num));
+		ret = echan->slot[0];
+		goto err_slot;
+	}
+
+	/* Set up channel -> slot mapping for the entry slot */
+	edma_set_chmap(echan, echan->slot[0]);
+	echan->alloced = true;
+
+	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
+		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
+		echan->hw_triggered ? "HW" : "SW");
+
+	return 0;
+
+err_slot:
+	edma_free_channel(echan);
+	return ret;
+}
+
+/* Free channel resources */
+static void edma_free_chan_resources(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct device *dev = echan->ecc->dev;
+	int i;
+
+	/* Terminate transfers */
+	edma_stop(echan);
+
+	vchan_free_chan_resources(&echan->vchan);
+
+	/* Free EDMA PaRAM slots */
+	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
+		if (echan->slot[i] >= 0) {
+			edma_free_slot(echan->ecc, echan->slot[i]);
+			echan->slot[i] = -1;
+		}
+	}
+
+	/* Set entry slot to the dummy slot */
+	edma_set_chmap(echan, echan->ecc->dummy_slot);
+
+	/* Free EDMA channel */
+	if (echan->alloced) {
+		edma_free_channel(echan);
+		echan->alloced = false;
+	}
+
+	echan->tc = NULL;
+	echan->hw_triggered = false;
+
+	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
+		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
+}
+
+/* Send pending descriptor to hardware */
+static void edma_issue_pending(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	unsigned long flags;
+
+	spin_lock_irqsave(&echan->vchan.lock, flags);
+	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
+		edma_execute(echan);
+	spin_unlock_irqrestore(&echan->vchan.lock, flags);
+}
+
+/*
+ * This limit exists to avoid a possible infinite loop when waiting for proof
+ * that a particular transfer is completed. This limit can be hit if there
+ * are large bursts to/from slow devices or the CPU is never able to catch
+ * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
+ * RX-FIFO, as many as 55 loops have been seen.
+ */
+#define EDMA_MAX_TR_WAIT_LOOPS 1000
+
+static u32 edma_residue(struct edma_desc *edesc)
+{
+	bool dst = edesc->direction == DMA_DEV_TO_MEM;
+	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
+	struct edma_chan *echan = edesc->echan;
+	struct edma_pset *pset = edesc->pset;
+	dma_addr_t done, pos;
+	int i;
+
+	/*
+	 * We always read the dst/src position from the first RamPar
+	 * pset. That's the one which is active now.
+	 */
+	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
+
+	/*
+	 * "pos" may represent a transfer request that is still being
+	 * processed by the EDMACC or EDMATC. We will busy wait until
+	 * any one of the situations occurs:
+	 *   1. the DMA hardware is idle
+	 *   2. a new transfer request is setup
+	 *   3. we hit the loop limit
+	 */
+	while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
+		/* check if a new transfer request is setup */
+		if (edma_get_position(echan->ecc,
+				      echan->slot[0], dst) != pos) {
+			break;
+		}
+
+		if (!--loop_count) {
+			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
+				"%s: timeout waiting for PaRAM update\n",
+				__func__);
+			break;
+		}
+
+		cpu_relax();
+	}
+
+	/*
+	 * Cyclic is simple. Just subtract pset[0].addr from pos.
+	 *
+	 * We never update edesc->residue in the cyclic case, so we
+	 * can tell the remaining room to the end of the circular
+	 * buffer.
+	 */
+	if (edesc->cyclic) {
+		done = pos - pset->addr;
+		edesc->residue_stat = edesc->residue - done;
+		return edesc->residue_stat;
+	}
+
+	/*
+	 * For SG operation we catch up with the last processed
+	 * status.
+	 */
+	pset += edesc->processed_stat;
+
+	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
+		/*
+		 * If we are inside this pset address range, we know
+		 * this is the active one. Get the current delta and
+		 * stop walking the psets.
+		 */
+		if (pos >= pset->addr && pos < pset->addr + pset->len)
+			return edesc->residue_stat - (pos - pset->addr);
+
+		/* Otherwise mark it done and update residue_stat. */
+		edesc->processed_stat++;
+		edesc->residue_stat -= pset->len;
+	}
+	return edesc->residue_stat;
+}
+
+/* Check request completion status */
+static enum dma_status edma_tx_status(struct dma_chan *chan,
+				      dma_cookie_t cookie,
+				      struct dma_tx_state *txstate)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct virt_dma_desc *vdesc;
+	enum dma_status ret;
+	unsigned long flags;
+
+	ret = dma_cookie_status(chan, cookie, txstate);
+	if (ret == DMA_COMPLETE || !txstate)
+		return ret;
+
+	spin_lock_irqsave(&echan->vchan.lock, flags);
+	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
+		txstate->residue = edma_residue(echan->edesc);
+	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
+		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
+	spin_unlock_irqrestore(&echan->vchan.lock, flags);
+
+	return ret;
+}
+
+static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
+{
+	if (!memcpy_channels)
+		return false;
+	while (*memcpy_channels != -1) {
+		if (*memcpy_channels == ch_num)
+			return true;
+		memcpy_channels++;
+	}
+	return false;
+}
+
+#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
+				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
+				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
+				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
+
+static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
+{
+	struct dma_device *s_ddev = &ecc->dma_slave;
+	struct dma_device *m_ddev = NULL;
+	s32 *memcpy_channels = ecc->info->memcpy_channels;
+	int i, j;
+
+	dma_cap_zero(s_ddev->cap_mask);
+	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
+	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
+	if (ecc->legacy_mode && !memcpy_channels) {
+		dev_warn(ecc->dev,
+			 "Legacy memcpy is enabled, things might not work\n");
+
+		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
+		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
+		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
+	}
+
+	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
+	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
+	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
+	s_ddev->device_free_chan_resources = edma_free_chan_resources;
+	s_ddev->device_issue_pending = edma_issue_pending;
+	s_ddev->device_tx_status = edma_tx_status;
+	s_ddev->device_config = edma_slave_config;
+	s_ddev->device_pause = edma_dma_pause;
+	s_ddev->device_resume = edma_dma_resume;
+	s_ddev->device_terminate_all = edma_terminate_all;
+	s_ddev->device_synchronize = edma_synchronize;
+
+	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
+	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
+	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
+	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
+
+	s_ddev->dev = ecc->dev;
+	INIT_LIST_HEAD(&s_ddev->channels);
+
+	if (memcpy_channels) {
+		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
+		if (!m_ddev) {
+			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
+			memcpy_channels = NULL;
+			goto ch_setup;
+		}
+		ecc->dma_memcpy = m_ddev;
+
+		dma_cap_zero(m_ddev->cap_mask);
+		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
+
+		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
+		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
+		m_ddev->device_free_chan_resources = edma_free_chan_resources;
+		m_ddev->device_issue_pending = edma_issue_pending;
+		m_ddev->device_tx_status = edma_tx_status;
+		m_ddev->device_config = edma_slave_config;
+		m_ddev->device_pause = edma_dma_pause;
+		m_ddev->device_resume = edma_dma_resume;
+		m_ddev->device_terminate_all = edma_terminate_all;
+		m_ddev->device_synchronize = edma_synchronize;
+
+		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
+		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
+		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
+		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+
+		m_ddev->dev = ecc->dev;
+		INIT_LIST_HEAD(&m_ddev->channels);
+	} else if (!ecc->legacy_mode) {
+		dev_info(ecc->dev, "memcpy is disabled\n");
+	}
+
+ch_setup:
+	for (i = 0; i < ecc->num_channels; i++) {
+		struct edma_chan *echan = &ecc->slave_chans[i];
+		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
+		echan->ecc = ecc;
+		echan->vchan.desc_free = edma_desc_free;
+
+		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
+			vchan_init(&echan->vchan, m_ddev);
+		else
+			vchan_init(&echan->vchan, s_ddev);
+
+		INIT_LIST_HEAD(&echan->node);
+		for (j = 0; j < EDMA_MAX_SLOTS; j++)
+			echan->slot[j] = -1;
+	}
+}
+
+static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
+			      struct edma_cc *ecc)
+{
+	int i;
+	u32 value, cccfg;
+	s8 (*queue_priority_map)[2];
+
+	/* Decode the eDMA3 configuration from CCCFG register */
+	cccfg = edma_read(ecc, EDMA_CCCFG);
+
+	value = GET_NUM_REGN(cccfg);
+	ecc->num_region = BIT(value);
+
+	value = GET_NUM_DMACH(cccfg);
+	ecc->num_channels = BIT(value + 1);
+
+	value = GET_NUM_QDMACH(cccfg);
+	ecc->num_qchannels = value * 2;
+
+	value = GET_NUM_PAENTRY(cccfg);
+	ecc->num_slots = BIT(value + 4);
+
+	value = GET_NUM_EVQUE(cccfg);
+	ecc->num_tc = value + 1;
+
+	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
+
+	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
+	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
+	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
+	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
+	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
+	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
+	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
+
+	/* Nothing need to be done if queue priority is provided */
+	if (pdata->queue_priority_mapping)
+		return 0;
+
+	/*
+	 * Configure TC/queue priority as follows:
+	 * Q0 - priority 0
+	 * Q1 - priority 1
+	 * Q2 - priority 2
+	 * ...
+	 * The meaning of priority numbers: 0 highest priority, 7 lowest
+	 * priority. So Q0 is the highest priority queue and the last queue has
+	 * the lowest priority.
+	 */
+	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
+					  GFP_KERNEL);
+	if (!queue_priority_map)
+		return -ENOMEM;
+
+	for (i = 0; i < ecc->num_tc; i++) {
+		queue_priority_map[i][0] = i;
+		queue_priority_map[i][1] = i;
+	}
+	queue_priority_map[i][0] = -1;
+	queue_priority_map[i][1] = -1;
+
+	pdata->queue_priority_mapping = queue_priority_map;
+	/* Default queue has the lowest priority */
+	pdata->default_queue = i - 1;
+
+	return 0;
+}
+
+#if IS_ENABLED(CONFIG_OF)
+static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
+			       size_t sz)
+{
+	const char pname[] = "ti,edma-xbar-event-map";
+	struct resource res;
+	void __iomem *xbar;
+	s16 (*xbar_chans)[2];
+	size_t nelm = sz / sizeof(s16);
+	u32 shift, offset, mux;
+	int ret, i;
+
+	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
+	if (!xbar_chans)
+		return -ENOMEM;
+
+	ret = of_address_to_resource(dev->of_node, 1, &res);
+	if (ret)
+		return -ENOMEM;
+
+	xbar = devm_ioremap(dev, res.start, resource_size(&res));
+	if (!xbar)
+		return -ENOMEM;
+
+	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
+					 nelm);
+	if (ret)
+		return -EIO;
+
+	/* Invalidate last entry for the other user of this mess */
+	nelm >>= 1;
+	xbar_chans[nelm][0] = -1;
+	xbar_chans[nelm][1] = -1;
+
+	for (i = 0; i < nelm; i++) {
+		shift = (xbar_chans[i][1] & 0x03) << 3;
+		offset = xbar_chans[i][1] & 0xfffffffc;
+		mux = readl(xbar + offset);
+		mux &= ~(0xff << shift);
+		mux |= xbar_chans[i][0] << shift;
+		writel(mux, (xbar + offset));
+	}
+
+	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
+	return 0;
+}
+
+static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
+						     bool legacy_mode)
+{
+	struct edma_soc_info *info;
+	struct property *prop;
+	int sz, ret;
+
+	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
+	if (!info)
+		return ERR_PTR(-ENOMEM);
+
+	if (legacy_mode) {
+		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
+					&sz);
+		if (prop) {
+			ret = edma_xbar_event_map(dev, info, sz);
+			if (ret)
+				return ERR_PTR(ret);
+		}
+		return info;
+	}
+
+	/* Get the list of channels allocated to be used for memcpy */
+	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
+	if (prop) {
+		const char pname[] = "ti,edma-memcpy-channels";
+		size_t nelm = sz / sizeof(s32);
+		s32 *memcpy_ch;
+
+		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
+					 GFP_KERNEL);
+		if (!memcpy_ch)
+			return ERR_PTR(-ENOMEM);
+
+		ret = of_property_read_u32_array(dev->of_node, pname,
+						 (u32 *)memcpy_ch, nelm);
+		if (ret)
+			return ERR_PTR(ret);
+
+		memcpy_ch[nelm] = -1;
+		info->memcpy_channels = memcpy_ch;
+	}
+
+	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
+				&sz);
+	if (prop) {
+		const char pname[] = "ti,edma-reserved-slot-ranges";
+		u32 (*tmp)[2];
+		s16 (*rsv_slots)[2];
+		size_t nelm = sz / sizeof(*tmp);
+		struct edma_rsv_info *rsv_info;
+		int i;
+
+		if (!nelm)
+			return info;
+
+		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
+		if (!tmp)
+			return ERR_PTR(-ENOMEM);
+
+		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
+		if (!rsv_info) {
+			kfree(tmp);
+			return ERR_PTR(-ENOMEM);
+		}
+
+		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
+					 GFP_KERNEL);
+		if (!rsv_slots) {
+			kfree(tmp);
+			return ERR_PTR(-ENOMEM);
+		}
+
+		ret = of_property_read_u32_array(dev->of_node, pname,
+						 (u32 *)tmp, nelm * 2);
+		if (ret) {
+			kfree(tmp);
+			return ERR_PTR(ret);
+		}
+
+		for (i = 0; i < nelm; i++) {
+			rsv_slots[i][0] = tmp[i][0];
+			rsv_slots[i][1] = tmp[i][1];
+		}
+		rsv_slots[nelm][0] = -1;
+		rsv_slots[nelm][1] = -1;
+
+		info->rsv = rsv_info;
+		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
+
+		kfree(tmp);
+	}
+
+	return info;
+}
+
+static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
+				      struct of_dma *ofdma)
+{
+	struct edma_cc *ecc = ofdma->of_dma_data;
+	struct dma_chan *chan = NULL;
+	struct edma_chan *echan;
+	int i;
+
+	if (!ecc || dma_spec->args_count < 1)
+		return NULL;
+
+	for (i = 0; i < ecc->num_channels; i++) {
+		echan = &ecc->slave_chans[i];
+		if (echan->ch_num == dma_spec->args[0]) {
+			chan = &echan->vchan.chan;
+			break;
+		}
+	}
+
+	if (!chan)
+		return NULL;
+
+	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
+		goto out;
+
+	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
+	    dma_spec->args[1] < echan->ecc->num_tc) {
+		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
+		goto out;
+	}
+
+	return NULL;
+out:
+	/* The channel is going to be used as HW synchronized */
+	echan->hw_triggered = true;
+	return dma_get_slave_channel(chan);
+}
+#else
+static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
+						     bool legacy_mode)
+{
+	return ERR_PTR(-EINVAL);
+}
+
+static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
+				      struct of_dma *ofdma)
+{
+	return NULL;
+}
+#endif
+
+static int edma_probe(struct platform_device *pdev)
+{
+	struct edma_soc_info	*info = pdev->dev.platform_data;
+	s8			(*queue_priority_mapping)[2];
+	int			i, off, ln;
+	const s16		(*rsv_slots)[2];
+	const s16		(*xbar_chans)[2];
+	int			irq;
+	char			*irq_name;
+	struct resource		*mem;
+	struct device_node	*node = pdev->dev.of_node;
+	struct device		*dev = &pdev->dev;
+	struct edma_cc		*ecc;
+	bool			legacy_mode = true;
+	int ret;
+
+	if (node) {
+		const struct of_device_id *match;
+
+		match = of_match_node(edma_of_ids, node);
+		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
+			legacy_mode = false;
+
+		info = edma_setup_info_from_dt(dev, legacy_mode);
+		if (IS_ERR(info)) {
+			dev_err(dev, "failed to get DT data\n");
+			return PTR_ERR(info);
+		}
+	}
+
+	if (!info)
+		return -ENODEV;
+
+	pm_runtime_enable(dev);
+	ret = pm_runtime_get_sync(dev);
+	if (ret < 0) {
+		dev_err(dev, "pm_runtime_get_sync() failed\n");
+		return ret;
+	}
+
+	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
+	if (ret)
+		return ret;
+
+	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
+	if (!ecc)
+		return -ENOMEM;
+
+	ecc->dev = dev;
+	ecc->id = pdev->id;
+	ecc->legacy_mode = legacy_mode;
+	/* When booting with DT the pdev->id is -1 */
+	if (ecc->id < 0)
+		ecc->id = 0;
+
+	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
+	if (!mem) {
+		dev_dbg(dev, "mem resource not found, using index 0\n");
+		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+		if (!mem) {
+			dev_err(dev, "no mem resource?\n");
+			return -ENODEV;
+		}
+	}
+	ecc->base = devm_ioremap_resource(dev, mem);
+	if (IS_ERR(ecc->base))
+		return PTR_ERR(ecc->base);
+
+	platform_set_drvdata(pdev, ecc);
+
+	/* Get eDMA3 configuration from IP */
+	ret = edma_setup_from_hw(dev, info, ecc);
+	if (ret)
+		return ret;
+
+	/* Allocate memory based on the information we got from the IP */
+	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
+					sizeof(*ecc->slave_chans), GFP_KERNEL);
+	if (!ecc->slave_chans)
+		return -ENOMEM;
+
+	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
+				       sizeof(unsigned long), GFP_KERNEL);
+	if (!ecc->slot_inuse)
+		return -ENOMEM;
+
+	ecc->default_queue = info->default_queue;
+
+	for (i = 0; i < ecc->num_slots; i++)
+		edma_write_slot(ecc, i, &dummy_paramset);
+
+	if (info->rsv) {
+		/* Set the reserved slots in inuse list */
+		rsv_slots = info->rsv->rsv_slots;
+		if (rsv_slots) {
+			for (i = 0; rsv_slots[i][0] != -1; i++) {
+				off = rsv_slots[i][0];
+				ln = rsv_slots[i][1];
+				edma_set_bits(off, ln, ecc->slot_inuse);
+			}
+		}
+	}
+
+	/* Clear the xbar mapped channels in unused list */
+	xbar_chans = info->xbar_chans;
+	if (xbar_chans) {
+		for (i = 0; xbar_chans[i][1] != -1; i++) {
+			off = xbar_chans[i][1];
+		}
+	}
+
+	irq = platform_get_irq_byname(pdev, "edma3_ccint");
+	if (irq < 0 && node)
+		irq = irq_of_parse_and_map(node, 0);
+
+	if (irq >= 0) {
+		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
+					  dev_name(dev));
+		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
+				       ecc);
+		if (ret) {
+			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
+			return ret;
+		}
+		ecc->ccint = irq;
+	}
+
+	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
+	if (irq < 0 && node)
+		irq = irq_of_parse_and_map(node, 2);
+
+	if (irq >= 0) {
+		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
+					  dev_name(dev));
+		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
+				       ecc);
+		if (ret) {
+			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
+			return ret;
+		}
+		ecc->ccerrint = irq;
+	}
+
+	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
+	if (ecc->dummy_slot < 0) {
+		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
+		return ecc->dummy_slot;
+	}
+
+	queue_priority_mapping = info->queue_priority_mapping;
+
+	if (!ecc->legacy_mode) {
+		int lowest_priority = 0;
+		struct of_phandle_args tc_args;
+
+		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
+					    sizeof(*ecc->tc_list), GFP_KERNEL);
+		if (!ecc->tc_list)
+			return -ENOMEM;
+
+		for (i = 0;; i++) {
+			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
+							       1, i, &tc_args);
+			if (ret || i == ecc->num_tc)
+				break;
+
+			ecc->tc_list[i].node = tc_args.np;
+			ecc->tc_list[i].id = i;
+			queue_priority_mapping[i][1] = tc_args.args[0];
+			if (queue_priority_mapping[i][1] > lowest_priority) {
+				lowest_priority = queue_priority_mapping[i][1];
+				info->default_queue = i;
+			}
+		}
+	}
+
+	/* Event queue priority mapping */
+	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
+		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
+					      queue_priority_mapping[i][1]);
+
+	for (i = 0; i < ecc->num_region; i++) {
+		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
+		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
+		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
+	}
+	ecc->info = info;
+
+	/* Init the dma device and channels */
+	edma_dma_init(ecc, legacy_mode);
+
+	for (i = 0; i < ecc->num_channels; i++) {
+		/* Assign all channels to the default queue */
+		edma_assign_channel_eventq(&ecc->slave_chans[i],
+					   info->default_queue);
+		/* Set entry slot to the dummy slot */
+		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
+	}
+
+	ecc->dma_slave.filter.map = info->slave_map;
+	ecc->dma_slave.filter.mapcnt = info->slavecnt;
+	ecc->dma_slave.filter.fn = edma_filter_fn;
+
+	ret = dma_async_device_register(&ecc->dma_slave);
+	if (ret) {
+		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
+		goto err_reg1;
+	}
+
+	if (ecc->dma_memcpy) {
+		ret = dma_async_device_register(ecc->dma_memcpy);
+		if (ret) {
+			dev_err(dev, "memcpy ddev registration failed (%d)\n",
+				ret);
+			dma_async_device_unregister(&ecc->dma_slave);
+			goto err_reg1;
+		}
+	}
+
+	if (node)
+		of_dma_controller_register(node, of_edma_xlate, ecc);
+
+	dev_info(dev, "TI EDMA DMA engine driver\n");
+
+	return 0;
+
+err_reg1:
+	edma_free_slot(ecc, ecc->dummy_slot);
+	return ret;
+}
+
+static void edma_cleanupp_vchan(struct dma_device *dmadev)
+{
+	struct edma_chan *echan, *_echan;
+
+	list_for_each_entry_safe(echan, _echan,
+			&dmadev->channels, vchan.chan.device_node) {
+		list_del(&echan->vchan.chan.device_node);
+		tasklet_kill(&echan->vchan.task);
+	}
+}
+
+static int edma_remove(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct edma_cc *ecc = dev_get_drvdata(dev);
+
+	devm_free_irq(dev, ecc->ccint, ecc);
+	devm_free_irq(dev, ecc->ccerrint, ecc);
+
+	edma_cleanupp_vchan(&ecc->dma_slave);
+
+	if (dev->of_node)
+		of_dma_controller_free(dev->of_node);
+	dma_async_device_unregister(&ecc->dma_slave);
+	if (ecc->dma_memcpy)
+		dma_async_device_unregister(ecc->dma_memcpy);
+	edma_free_slot(ecc, ecc->dummy_slot);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int edma_pm_suspend(struct device *dev)
+{
+	struct edma_cc *ecc = dev_get_drvdata(dev);
+	struct edma_chan *echan = ecc->slave_chans;
+	int i;
+
+	for (i = 0; i < ecc->num_channels; i++) {
+		if (echan[i].alloced)
+			edma_setup_interrupt(&echan[i], false);
+	}
+
+	return 0;
+}
+
+static int edma_pm_resume(struct device *dev)
+{
+	struct edma_cc *ecc = dev_get_drvdata(dev);
+	struct edma_chan *echan = ecc->slave_chans;
+	int i;
+	s8 (*queue_priority_mapping)[2];
+
+	/* re initialize dummy slot to dummy param set */
+	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
+
+	queue_priority_mapping = ecc->info->queue_priority_mapping;
+
+	/* Event queue priority mapping */
+	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
+		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
+					      queue_priority_mapping[i][1]);
+
+	for (i = 0; i < ecc->num_channels; i++) {
+		if (echan[i].alloced) {
+			/* ensure access through shadow region 0 */
+			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
+				       BIT(i & 0x1f));
+
+			edma_setup_interrupt(&echan[i], true);
+
+			/* Set up channel -> slot mapping for the entry slot */
+			edma_set_chmap(&echan[i], echan[i].slot[0]);
+		}
+	}
+
+	return 0;
+}
+#endif
+
+static const struct dev_pm_ops edma_pm_ops = {
+	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
+};
+
+static struct platform_driver edma_driver = {
+	.probe		= edma_probe,
+	.remove		= edma_remove,
+	.driver = {
+		.name	= "edma",
+		.pm	= &edma_pm_ops,
+		.of_match_table = edma_of_ids,
+	},
+};
+
+static int edma_tptc_probe(struct platform_device *pdev)
+{
+	pm_runtime_enable(&pdev->dev);
+	return pm_runtime_get_sync(&pdev->dev);
+}
+
+static struct platform_driver edma_tptc_driver = {
+	.probe		= edma_tptc_probe,
+	.driver = {
+		.name	= "edma3-tptc",
+		.of_match_table = edma_tptc_of_ids,
+	},
+};
+
+bool edma_filter_fn(struct dma_chan *chan, void *param)
+{
+	bool match = false;
+
+	if (chan->device->dev->driver == &edma_driver.driver) {
+		struct edma_chan *echan = to_edma_chan(chan);
+		unsigned ch_req = *(unsigned *)param;
+		if (ch_req == echan->ch_num) {
+			/* The channel is going to be used as HW synchronized */
+			echan->hw_triggered = true;
+			match = true;
+		}
+	}
+	return match;
+}
+EXPORT_SYMBOL(edma_filter_fn);
+
+static int edma_init(void)
+{
+	int ret;
+
+	ret = platform_driver_register(&edma_tptc_driver);
+	if (ret)
+		return ret;
+
+	return platform_driver_register(&edma_driver);
+}
+subsys_initcall(edma_init);
+
+static void __exit edma_exit(void)
+{
+	platform_driver_unregister(&edma_driver);
+	platform_driver_unregister(&edma_tptc_driver);
+}
+module_exit(edma_exit);
+
+MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
+MODULE_DESCRIPTION("TI EDMA DMA engine driver");
+MODULE_LICENSE("GPL v2");