v4.19.13 snapshot.
diff --git a/drivers/dma/ti/Kconfig b/drivers/dma/ti/Kconfig
new file mode 100644
index 0000000..e5e74e1
--- /dev/null
+++ b/drivers/dma/ti/Kconfig
@@ -0,0 +1,37 @@
+#
+# Texas Instruments DMA drivers
+#
+
+config TI_CPPI41
+	tristate "Texas Instruments CPPI 4.1 DMA support"
+	depends on (ARCH_OMAP || ARCH_DAVINCI_DA8XX)
+	select DMA_ENGINE
+	help
+	  The Communications Port Programming Interface (CPPI) 4.1 DMA engine
+	  is currently used by the USB driver on AM335x and DA8xx platforms.
+
+config TI_EDMA
+	tristate "Texas Instruments EDMA support"
+	depends on ARCH_DAVINCI || ARCH_OMAP || ARCH_KEYSTONE || COMPILE_TEST
+	select DMA_ENGINE
+	select DMA_VIRTUAL_CHANNELS
+	select TI_DMA_CROSSBAR if (ARCH_OMAP || COMPILE_TEST)
+	default y
+	help
+	  Enable support for the TI EDMA (Enhanced DMA) controller. This DMA
+	  engine is found on TI DaVinci, AM33xx, AM43xx, DRA7xx and Keystone 2
+	  parts.
+
+config DMA_OMAP
+	tristate "Texas Instruments sDMA (omap-dma) support"
+	depends on ARCH_OMAP || COMPILE_TEST
+	select DMA_ENGINE
+	select DMA_VIRTUAL_CHANNELS
+	select TI_DMA_CROSSBAR if (SOC_DRA7XX || COMPILE_TEST)
+	default y
+	help
+	  Enable support for the TI sDMA (System DMA or DMA4) controller. This
+	  DMA engine is found on OMAP and DRA7xx parts.
+
+config TI_DMA_CROSSBAR
+	bool
diff --git a/drivers/dma/ti/Makefile b/drivers/dma/ti/Makefile
new file mode 100644
index 0000000..113e59e
--- /dev/null
+++ b/drivers/dma/ti/Makefile
@@ -0,0 +1,5 @@
+# SPDX-License-Identifier: GPL-2.0
+obj-$(CONFIG_TI_CPPI41) += cppi41.o
+obj-$(CONFIG_TI_EDMA) += edma.o
+obj-$(CONFIG_DMA_OMAP) += omap-dma.o
+obj-$(CONFIG_TI_DMA_CROSSBAR) += dma-crossbar.o
diff --git a/drivers/dma/ti/cppi41.c b/drivers/dma/ti/cppi41.c
new file mode 100644
index 0000000..e507ec3
--- /dev/null
+++ b/drivers/dma/ti/cppi41.c
@@ -0,0 +1,1237 @@
+#include <linux/delay.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/slab.h>
+#include <linux/of_dma.h>
+#include <linux/of_irq.h>
+#include <linux/dmapool.h>
+#include <linux/interrupt.h>
+#include <linux/of_address.h>
+#include <linux/pm_runtime.h>
+#include "../dmaengine.h"
+
+#define DESC_TYPE	27
+#define DESC_TYPE_HOST	0x10
+#define DESC_TYPE_TEARD	0x13
+
+#define TD_DESC_IS_RX	(1 << 16)
+#define TD_DESC_DMA_NUM	10
+
+#define DESC_LENGTH_BITS_NUM	21
+
+#define DESC_TYPE_USB	(5 << 26)
+#define DESC_PD_COMPLETE	(1 << 31)
+
+/* DMA engine */
+#define DMA_TDFDQ	4
+#define DMA_TXGCR(x)	(0x800 + (x) * 0x20)
+#define DMA_RXGCR(x)	(0x808 + (x) * 0x20)
+#define RXHPCRA0		4
+
+#define GCR_CHAN_ENABLE		(1 << 31)
+#define GCR_TEARDOWN		(1 << 30)
+#define GCR_STARV_RETRY		(1 << 24)
+#define GCR_DESC_TYPE_HOST	(1 << 14)
+
+/* DMA scheduler */
+#define DMA_SCHED_CTRL		0
+#define DMA_SCHED_CTRL_EN	(1 << 31)
+#define DMA_SCHED_WORD(x)	((x) * 4 + 0x800)
+
+#define SCHED_ENTRY0_CHAN(x)	((x) << 0)
+#define SCHED_ENTRY0_IS_RX	(1 << 7)
+
+#define SCHED_ENTRY1_CHAN(x)	((x) << 8)
+#define SCHED_ENTRY1_IS_RX	(1 << 15)
+
+#define SCHED_ENTRY2_CHAN(x)	((x) << 16)
+#define SCHED_ENTRY2_IS_RX	(1 << 23)
+
+#define SCHED_ENTRY3_CHAN(x)	((x) << 24)
+#define SCHED_ENTRY3_IS_RX	(1 << 31)
+
+/* Queue manager */
+/* 4 KiB of memory for descriptors, 2 for each endpoint */
+#define ALLOC_DECS_NUM		128
+#define DESCS_AREAS		1
+#define TOTAL_DESCS_NUM		(ALLOC_DECS_NUM * DESCS_AREAS)
+#define QMGR_SCRATCH_SIZE	(TOTAL_DESCS_NUM * 4)
+
+#define QMGR_LRAM0_BASE		0x80
+#define QMGR_LRAM_SIZE		0x84
+#define QMGR_LRAM1_BASE		0x88
+#define QMGR_MEMBASE(x)		(0x1000 + (x) * 0x10)
+#define QMGR_MEMCTRL(x)		(0x1004 + (x) * 0x10)
+#define QMGR_MEMCTRL_IDX_SH	16
+#define QMGR_MEMCTRL_DESC_SH	8
+
+#define QMGR_PEND(x)	(0x90 + (x) * 4)
+
+#define QMGR_PENDING_SLOT_Q(x)	(x / 32)
+#define QMGR_PENDING_BIT_Q(x)	(x % 32)
+
+#define QMGR_QUEUE_A(n)	(0x2000 + (n) * 0x10)
+#define QMGR_QUEUE_B(n)	(0x2004 + (n) * 0x10)
+#define QMGR_QUEUE_C(n)	(0x2008 + (n) * 0x10)
+#define QMGR_QUEUE_D(n)	(0x200c + (n) * 0x10)
+
+/* Packet Descriptor */
+#define PD2_ZERO_LENGTH		(1 << 19)
+
+struct cppi41_channel {
+	struct dma_chan chan;
+	struct dma_async_tx_descriptor txd;
+	struct cppi41_dd *cdd;
+	struct cppi41_desc *desc;
+	dma_addr_t desc_phys;
+	void __iomem *gcr_reg;
+	int is_tx;
+	u32 residue;
+
+	unsigned int q_num;
+	unsigned int q_comp_num;
+	unsigned int port_num;
+
+	unsigned td_retry;
+	unsigned td_queued:1;
+	unsigned td_seen:1;
+	unsigned td_desc_seen:1;
+
+	struct list_head node;		/* Node for pending list */
+};
+
+struct cppi41_desc {
+	u32 pd0;
+	u32 pd1;
+	u32 pd2;
+	u32 pd3;
+	u32 pd4;
+	u32 pd5;
+	u32 pd6;
+	u32 pd7;
+} __aligned(32);
+
+struct chan_queues {
+	u16 submit;
+	u16 complete;
+};
+
+struct cppi41_dd {
+	struct dma_device ddev;
+
+	void *qmgr_scratch;
+	dma_addr_t scratch_phys;
+
+	struct cppi41_desc *cd;
+	dma_addr_t descs_phys;
+	u32 first_td_desc;
+	struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
+
+	void __iomem *ctrl_mem;
+	void __iomem *sched_mem;
+	void __iomem *qmgr_mem;
+	unsigned int irq;
+	const struct chan_queues *queues_rx;
+	const struct chan_queues *queues_tx;
+	struct chan_queues td_queue;
+	u16 first_completion_queue;
+	u16 qmgr_num_pend;
+	u32 n_chans;
+	u8 platform;
+
+	struct list_head pending;	/* Pending queued transfers */
+	spinlock_t lock;		/* Lock for pending list */
+
+	/* context for suspend/resume */
+	unsigned int dma_tdfdq;
+
+	bool is_suspended;
+};
+
+static struct chan_queues am335x_usb_queues_tx[] = {
+	/* USB0 ENDP 1 */
+	[ 0] = { .submit = 32, .complete =  93},
+	[ 1] = { .submit = 34, .complete =  94},
+	[ 2] = { .submit = 36, .complete =  95},
+	[ 3] = { .submit = 38, .complete =  96},
+	[ 4] = { .submit = 40, .complete =  97},
+	[ 5] = { .submit = 42, .complete =  98},
+	[ 6] = { .submit = 44, .complete =  99},
+	[ 7] = { .submit = 46, .complete = 100},
+	[ 8] = { .submit = 48, .complete = 101},
+	[ 9] = { .submit = 50, .complete = 102},
+	[10] = { .submit = 52, .complete = 103},
+	[11] = { .submit = 54, .complete = 104},
+	[12] = { .submit = 56, .complete = 105},
+	[13] = { .submit = 58, .complete = 106},
+	[14] = { .submit = 60, .complete = 107},
+
+	/* USB1 ENDP1 */
+	[15] = { .submit = 62, .complete = 125},
+	[16] = { .submit = 64, .complete = 126},
+	[17] = { .submit = 66, .complete = 127},
+	[18] = { .submit = 68, .complete = 128},
+	[19] = { .submit = 70, .complete = 129},
+	[20] = { .submit = 72, .complete = 130},
+	[21] = { .submit = 74, .complete = 131},
+	[22] = { .submit = 76, .complete = 132},
+	[23] = { .submit = 78, .complete = 133},
+	[24] = { .submit = 80, .complete = 134},
+	[25] = { .submit = 82, .complete = 135},
+	[26] = { .submit = 84, .complete = 136},
+	[27] = { .submit = 86, .complete = 137},
+	[28] = { .submit = 88, .complete = 138},
+	[29] = { .submit = 90, .complete = 139},
+};
+
+static const struct chan_queues am335x_usb_queues_rx[] = {
+	/* USB0 ENDP 1 */
+	[ 0] = { .submit =  1, .complete = 109},
+	[ 1] = { .submit =  2, .complete = 110},
+	[ 2] = { .submit =  3, .complete = 111},
+	[ 3] = { .submit =  4, .complete = 112},
+	[ 4] = { .submit =  5, .complete = 113},
+	[ 5] = { .submit =  6, .complete = 114},
+	[ 6] = { .submit =  7, .complete = 115},
+	[ 7] = { .submit =  8, .complete = 116},
+	[ 8] = { .submit =  9, .complete = 117},
+	[ 9] = { .submit = 10, .complete = 118},
+	[10] = { .submit = 11, .complete = 119},
+	[11] = { .submit = 12, .complete = 120},
+	[12] = { .submit = 13, .complete = 121},
+	[13] = { .submit = 14, .complete = 122},
+	[14] = { .submit = 15, .complete = 123},
+
+	/* USB1 ENDP 1 */
+	[15] = { .submit = 16, .complete = 141},
+	[16] = { .submit = 17, .complete = 142},
+	[17] = { .submit = 18, .complete = 143},
+	[18] = { .submit = 19, .complete = 144},
+	[19] = { .submit = 20, .complete = 145},
+	[20] = { .submit = 21, .complete = 146},
+	[21] = { .submit = 22, .complete = 147},
+	[22] = { .submit = 23, .complete = 148},
+	[23] = { .submit = 24, .complete = 149},
+	[24] = { .submit = 25, .complete = 150},
+	[25] = { .submit = 26, .complete = 151},
+	[26] = { .submit = 27, .complete = 152},
+	[27] = { .submit = 28, .complete = 153},
+	[28] = { .submit = 29, .complete = 154},
+	[29] = { .submit = 30, .complete = 155},
+};
+
+static const struct chan_queues da8xx_usb_queues_tx[] = {
+	[0] = { .submit =  16, .complete = 24},
+	[1] = { .submit =  18, .complete = 24},
+	[2] = { .submit =  20, .complete = 24},
+	[3] = { .submit =  22, .complete = 24},
+};
+
+static const struct chan_queues da8xx_usb_queues_rx[] = {
+	[0] = { .submit =  1, .complete = 26},
+	[1] = { .submit =  3, .complete = 26},
+	[2] = { .submit =  5, .complete = 26},
+	[3] = { .submit =  7, .complete = 26},
+};
+
+struct cppi_glue_infos {
+	const struct chan_queues *queues_rx;
+	const struct chan_queues *queues_tx;
+	struct chan_queues td_queue;
+	u16 first_completion_queue;
+	u16 qmgr_num_pend;
+};
+
+static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
+{
+	return container_of(c, struct cppi41_channel, chan);
+}
+
+static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
+{
+	struct cppi41_channel *c;
+	u32 descs_size;
+	u32 desc_num;
+
+	descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
+
+	if (!((desc >= cdd->descs_phys) &&
+			(desc < (cdd->descs_phys + descs_size)))) {
+		return NULL;
+	}
+
+	desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
+	BUG_ON(desc_num >= ALLOC_DECS_NUM);
+	c = cdd->chan_busy[desc_num];
+	cdd->chan_busy[desc_num] = NULL;
+
+	/* Usecount for chan_busy[], paired with push_desc_queue() */
+	pm_runtime_put(cdd->ddev.dev);
+
+	return c;
+}
+
+static void cppi_writel(u32 val, void *__iomem *mem)
+{
+	__raw_writel(val, mem);
+}
+
+static u32 cppi_readl(void *__iomem *mem)
+{
+	return __raw_readl(mem);
+}
+
+static u32 pd_trans_len(u32 val)
+{
+	return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
+}
+
+static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
+{
+	u32 desc;
+
+	desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
+	desc &= ~0x1f;
+	return desc;
+}
+
+static irqreturn_t cppi41_irq(int irq, void *data)
+{
+	struct cppi41_dd *cdd = data;
+	u16 first_completion_queue = cdd->first_completion_queue;
+	u16 qmgr_num_pend = cdd->qmgr_num_pend;
+	struct cppi41_channel *c;
+	int i;
+
+	for (i = QMGR_PENDING_SLOT_Q(first_completion_queue); i < qmgr_num_pend;
+			i++) {
+		u32 val;
+		u32 q_num;
+
+		val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
+		if (i == QMGR_PENDING_SLOT_Q(first_completion_queue) && val) {
+			u32 mask;
+			/* set corresponding bit for completetion Q 93 */
+			mask = 1 << QMGR_PENDING_BIT_Q(first_completion_queue);
+			/* not set all bits for queues less than Q 93 */
+			mask--;
+			/* now invert and keep only Q 93+ set */
+			val &= ~mask;
+		}
+
+		if (val)
+			__iormb();
+
+		while (val) {
+			u32 desc, len;
+
+			/*
+			 * This should never trigger, see the comments in
+			 * push_desc_queue()
+			 */
+			WARN_ON(cdd->is_suspended);
+
+			q_num = __fls(val);
+			val &= ~(1 << q_num);
+			q_num += 32 * i;
+			desc = cppi41_pop_desc(cdd, q_num);
+			c = desc_to_chan(cdd, desc);
+			if (WARN_ON(!c)) {
+				pr_err("%s() q %d desc %08x\n", __func__,
+						q_num, desc);
+				continue;
+			}
+
+			if (c->desc->pd2 & PD2_ZERO_LENGTH)
+				len = 0;
+			else
+				len = pd_trans_len(c->desc->pd0);
+
+			c->residue = pd_trans_len(c->desc->pd6) - len;
+			dma_cookie_complete(&c->txd);
+			dmaengine_desc_get_callback_invoke(&c->txd, NULL);
+		}
+	}
+	return IRQ_HANDLED;
+}
+
+static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
+{
+	dma_cookie_t cookie;
+
+	cookie = dma_cookie_assign(tx);
+
+	return cookie;
+}
+
+static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
+{
+	struct cppi41_channel *c = to_cpp41_chan(chan);
+	struct cppi41_dd *cdd = c->cdd;
+	int error;
+
+	error = pm_runtime_get_sync(cdd->ddev.dev);
+	if (error < 0) {
+		dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
+			__func__, error);
+		pm_runtime_put_noidle(cdd->ddev.dev);
+
+		return error;
+	}
+
+	dma_cookie_init(chan);
+	dma_async_tx_descriptor_init(&c->txd, chan);
+	c->txd.tx_submit = cppi41_tx_submit;
+
+	if (!c->is_tx)
+		cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
+
+	pm_runtime_mark_last_busy(cdd->ddev.dev);
+	pm_runtime_put_autosuspend(cdd->ddev.dev);
+
+	return 0;
+}
+
+static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
+{
+	struct cppi41_channel *c = to_cpp41_chan(chan);
+	struct cppi41_dd *cdd = c->cdd;
+	int error;
+
+	error = pm_runtime_get_sync(cdd->ddev.dev);
+	if (error < 0) {
+		pm_runtime_put_noidle(cdd->ddev.dev);
+
+		return;
+	}
+
+	WARN_ON(!list_empty(&cdd->pending));
+
+	pm_runtime_mark_last_busy(cdd->ddev.dev);
+	pm_runtime_put_autosuspend(cdd->ddev.dev);
+}
+
+static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
+	dma_cookie_t cookie, struct dma_tx_state *txstate)
+{
+	struct cppi41_channel *c = to_cpp41_chan(chan);
+	enum dma_status ret;
+
+	ret = dma_cookie_status(chan, cookie, txstate);
+
+	dma_set_residue(txstate, c->residue);
+
+	return ret;
+}
+
+static void push_desc_queue(struct cppi41_channel *c)
+{
+	struct cppi41_dd *cdd = c->cdd;
+	u32 desc_num;
+	u32 desc_phys;
+	u32 reg;
+
+	c->residue = 0;
+
+	reg = GCR_CHAN_ENABLE;
+	if (!c->is_tx) {
+		reg |= GCR_STARV_RETRY;
+		reg |= GCR_DESC_TYPE_HOST;
+		reg |= c->q_comp_num;
+	}
+
+	cppi_writel(reg, c->gcr_reg);
+
+	/*
+	 * We don't use writel() but __raw_writel() so we have to make sure
+	 * that the DMA descriptor in coherent memory made to the main memory
+	 * before starting the dma engine.
+	 */
+	__iowmb();
+
+	/*
+	 * DMA transfers can take at least 200ms to complete with USB mass
+	 * storage connected. To prevent autosuspend timeouts, we must use
+	 * pm_runtime_get/put() when chan_busy[] is modified. This will get
+	 * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
+	 * outcome of the transfer.
+	 */
+	pm_runtime_get(cdd->ddev.dev);
+
+	desc_phys = lower_32_bits(c->desc_phys);
+	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
+	WARN_ON(cdd->chan_busy[desc_num]);
+	cdd->chan_busy[desc_num] = c;
+
+	reg = (sizeof(struct cppi41_desc) - 24) / 4;
+	reg |= desc_phys;
+	cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
+}
+
+/*
+ * Caller must hold cdd->lock to prevent push_desc_queue()
+ * getting called out of order. We have both cppi41_dma_issue_pending()
+ * and cppi41_runtime_resume() call this function.
+ */
+static void cppi41_run_queue(struct cppi41_dd *cdd)
+{
+	struct cppi41_channel *c, *_c;
+
+	list_for_each_entry_safe(c, _c, &cdd->pending, node) {
+		push_desc_queue(c);
+		list_del(&c->node);
+	}
+}
+
+static void cppi41_dma_issue_pending(struct dma_chan *chan)
+{
+	struct cppi41_channel *c = to_cpp41_chan(chan);
+	struct cppi41_dd *cdd = c->cdd;
+	unsigned long flags;
+	int error;
+
+	error = pm_runtime_get(cdd->ddev.dev);
+	if ((error != -EINPROGRESS) && error < 0) {
+		pm_runtime_put_noidle(cdd->ddev.dev);
+		dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
+			error);
+
+		return;
+	}
+
+	spin_lock_irqsave(&cdd->lock, flags);
+	list_add_tail(&c->node, &cdd->pending);
+	if (!cdd->is_suspended)
+		cppi41_run_queue(cdd);
+	spin_unlock_irqrestore(&cdd->lock, flags);
+
+	pm_runtime_mark_last_busy(cdd->ddev.dev);
+	pm_runtime_put_autosuspend(cdd->ddev.dev);
+}
+
+static u32 get_host_pd0(u32 length)
+{
+	u32 reg;
+
+	reg = DESC_TYPE_HOST << DESC_TYPE;
+	reg |= length;
+
+	return reg;
+}
+
+static u32 get_host_pd1(struct cppi41_channel *c)
+{
+	u32 reg;
+
+	reg = 0;
+
+	return reg;
+}
+
+static u32 get_host_pd2(struct cppi41_channel *c)
+{
+	u32 reg;
+
+	reg = DESC_TYPE_USB;
+	reg |= c->q_comp_num;
+
+	return reg;
+}
+
+static u32 get_host_pd3(u32 length)
+{
+	u32 reg;
+
+	/* PD3 = packet size */
+	reg = length;
+
+	return reg;
+}
+
+static u32 get_host_pd6(u32 length)
+{
+	u32 reg;
+
+	/* PD6 buffer size */
+	reg = DESC_PD_COMPLETE;
+	reg |= length;
+
+	return reg;
+}
+
+static u32 get_host_pd4_or_7(u32 addr)
+{
+	u32 reg;
+
+	reg = addr;
+
+	return reg;
+}
+
+static u32 get_host_pd5(void)
+{
+	u32 reg;
+
+	reg = 0;
+
+	return reg;
+}
+
+static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
+	struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
+	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
+{
+	struct cppi41_channel *c = to_cpp41_chan(chan);
+	struct cppi41_desc *d;
+	struct scatterlist *sg;
+	unsigned int i;
+
+	d = c->desc;
+	for_each_sg(sgl, sg, sg_len, i) {
+		u32 addr;
+		u32 len;
+
+		/* We need to use more than one desc once musb supports sg */
+		addr = lower_32_bits(sg_dma_address(sg));
+		len = sg_dma_len(sg);
+
+		d->pd0 = get_host_pd0(len);
+		d->pd1 = get_host_pd1(c);
+		d->pd2 = get_host_pd2(c);
+		d->pd3 = get_host_pd3(len);
+		d->pd4 = get_host_pd4_or_7(addr);
+		d->pd5 = get_host_pd5();
+		d->pd6 = get_host_pd6(len);
+		d->pd7 = get_host_pd4_or_7(addr);
+
+		d++;
+	}
+
+	return &c->txd;
+}
+
+static void cppi41_compute_td_desc(struct cppi41_desc *d)
+{
+	d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
+}
+
+static int cppi41_tear_down_chan(struct cppi41_channel *c)
+{
+	struct dmaengine_result abort_result;
+	struct cppi41_dd *cdd = c->cdd;
+	struct cppi41_desc *td;
+	u32 reg;
+	u32 desc_phys;
+	u32 td_desc_phys;
+
+	td = cdd->cd;
+	td += cdd->first_td_desc;
+
+	td_desc_phys = cdd->descs_phys;
+	td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
+
+	if (!c->td_queued) {
+		cppi41_compute_td_desc(td);
+		__iowmb();
+
+		reg = (sizeof(struct cppi41_desc) - 24) / 4;
+		reg |= td_desc_phys;
+		cppi_writel(reg, cdd->qmgr_mem +
+				QMGR_QUEUE_D(cdd->td_queue.submit));
+
+		reg = GCR_CHAN_ENABLE;
+		if (!c->is_tx) {
+			reg |= GCR_STARV_RETRY;
+			reg |= GCR_DESC_TYPE_HOST;
+			reg |= cdd->td_queue.complete;
+		}
+		reg |= GCR_TEARDOWN;
+		cppi_writel(reg, c->gcr_reg);
+		c->td_queued = 1;
+		c->td_retry = 500;
+	}
+
+	if (!c->td_seen || !c->td_desc_seen) {
+
+		desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
+		if (!desc_phys && c->is_tx)
+			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
+
+		if (desc_phys == c->desc_phys) {
+			c->td_desc_seen = 1;
+
+		} else if (desc_phys == td_desc_phys) {
+			u32 pd0;
+
+			__iormb();
+			pd0 = td->pd0;
+			WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
+			WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
+			WARN_ON((pd0 & 0x1f) != c->port_num);
+			c->td_seen = 1;
+		} else if (desc_phys) {
+			WARN_ON_ONCE(1);
+		}
+	}
+	c->td_retry--;
+	/*
+	 * If the TX descriptor / channel is in use, the caller needs to poke
+	 * his TD bit multiple times. After that he hardware releases the
+	 * transfer descriptor followed by TD descriptor. Waiting seems not to
+	 * cause any difference.
+	 * RX seems to be thrown out right away. However once the TearDown
+	 * descriptor gets through we are done. If we have seens the transfer
+	 * descriptor before the TD we fetch it from enqueue, it has to be
+	 * there waiting for us.
+	 */
+	if (!c->td_seen && c->td_retry) {
+		udelay(1);
+		return -EAGAIN;
+	}
+	WARN_ON(!c->td_retry);
+
+	if (!c->td_desc_seen) {
+		desc_phys = cppi41_pop_desc(cdd, c->q_num);
+		if (!desc_phys)
+			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
+		WARN_ON(!desc_phys);
+	}
+
+	c->td_queued = 0;
+	c->td_seen = 0;
+	c->td_desc_seen = 0;
+	cppi_writel(0, c->gcr_reg);
+
+	/* Invoke the callback to do the necessary clean-up */
+	abort_result.result = DMA_TRANS_ABORTED;
+	dma_cookie_complete(&c->txd);
+	dmaengine_desc_get_callback_invoke(&c->txd, &abort_result);
+
+	return 0;
+}
+
+static int cppi41_stop_chan(struct dma_chan *chan)
+{
+	struct cppi41_channel *c = to_cpp41_chan(chan);
+	struct cppi41_dd *cdd = c->cdd;
+	u32 desc_num;
+	u32 desc_phys;
+	int ret;
+
+	desc_phys = lower_32_bits(c->desc_phys);
+	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
+	if (!cdd->chan_busy[desc_num]) {
+		struct cppi41_channel *cc, *_ct;
+
+		/*
+		 * channels might still be in the pendling list if
+		 * cppi41_dma_issue_pending() is called after
+		 * cppi41_runtime_suspend() is called
+		 */
+		list_for_each_entry_safe(cc, _ct, &cdd->pending, node) {
+			if (cc != c)
+				continue;
+			list_del(&cc->node);
+			break;
+		}
+		return 0;
+	}
+
+	ret = cppi41_tear_down_chan(c);
+	if (ret)
+		return ret;
+
+	WARN_ON(!cdd->chan_busy[desc_num]);
+	cdd->chan_busy[desc_num] = NULL;
+
+	/* Usecount for chan_busy[], paired with push_desc_queue() */
+	pm_runtime_put(cdd->ddev.dev);
+
+	return 0;
+}
+
+static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
+{
+	struct cppi41_channel *cchan, *chans;
+	int i;
+	u32 n_chans = cdd->n_chans;
+
+	/*
+	 * The channels can only be used as TX or as RX. So we add twice
+	 * that much dma channels because USB can only do RX or TX.
+	 */
+	n_chans *= 2;
+
+	chans = devm_kcalloc(dev, n_chans, sizeof(*chans), GFP_KERNEL);
+	if (!chans)
+		return -ENOMEM;
+
+	for (i = 0; i < n_chans; i++) {
+		cchan = &chans[i];
+
+		cchan->cdd = cdd;
+		if (i & 1) {
+			cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
+			cchan->is_tx = 1;
+		} else {
+			cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
+			cchan->is_tx = 0;
+		}
+		cchan->port_num = i >> 1;
+		cchan->desc = &cdd->cd[i];
+		cchan->desc_phys = cdd->descs_phys;
+		cchan->desc_phys += i * sizeof(struct cppi41_desc);
+		cchan->chan.device = &cdd->ddev;
+		list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
+	}
+	cdd->first_td_desc = n_chans;
+
+	return 0;
+}
+
+static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
+{
+	unsigned int mem_decs;
+	int i;
+
+	mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
+
+	for (i = 0; i < DESCS_AREAS; i++) {
+
+		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
+		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
+
+		dma_free_coherent(dev, mem_decs, cdd->cd,
+				cdd->descs_phys);
+	}
+}
+
+static void disable_sched(struct cppi41_dd *cdd)
+{
+	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
+}
+
+static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
+{
+	disable_sched(cdd);
+
+	purge_descs(dev, cdd);
+
+	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
+	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
+	dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
+			cdd->scratch_phys);
+}
+
+static int init_descs(struct device *dev, struct cppi41_dd *cdd)
+{
+	unsigned int desc_size;
+	unsigned int mem_decs;
+	int i;
+	u32 reg;
+	u32 idx;
+
+	BUILD_BUG_ON(sizeof(struct cppi41_desc) &
+			(sizeof(struct cppi41_desc) - 1));
+	BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
+	BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
+
+	desc_size = sizeof(struct cppi41_desc);
+	mem_decs = ALLOC_DECS_NUM * desc_size;
+
+	idx = 0;
+	for (i = 0; i < DESCS_AREAS; i++) {
+
+		reg = idx << QMGR_MEMCTRL_IDX_SH;
+		reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
+		reg |= ilog2(ALLOC_DECS_NUM) - 5;
+
+		BUILD_BUG_ON(DESCS_AREAS != 1);
+		cdd->cd = dma_alloc_coherent(dev, mem_decs,
+				&cdd->descs_phys, GFP_KERNEL);
+		if (!cdd->cd)
+			return -ENOMEM;
+
+		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
+		cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
+
+		idx += ALLOC_DECS_NUM;
+	}
+	return 0;
+}
+
+static void init_sched(struct cppi41_dd *cdd)
+{
+	unsigned ch;
+	unsigned word;
+	u32 reg;
+
+	word = 0;
+	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
+	for (ch = 0; ch < cdd->n_chans; ch += 2) {
+
+		reg = SCHED_ENTRY0_CHAN(ch);
+		reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
+
+		reg |= SCHED_ENTRY2_CHAN(ch + 1);
+		reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
+		cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
+		word++;
+	}
+	reg = cdd->n_chans * 2 - 1;
+	reg |= DMA_SCHED_CTRL_EN;
+	cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
+}
+
+static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
+{
+	int ret;
+
+	BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
+	cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
+			&cdd->scratch_phys, GFP_KERNEL);
+	if (!cdd->qmgr_scratch)
+		return -ENOMEM;
+
+	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
+	cppi_writel(TOTAL_DESCS_NUM, cdd->qmgr_mem + QMGR_LRAM_SIZE);
+	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
+
+	ret = init_descs(dev, cdd);
+	if (ret)
+		goto err_td;
+
+	cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
+	init_sched(cdd);
+
+	return 0;
+err_td:
+	deinit_cppi41(dev, cdd);
+	return ret;
+}
+
+static struct platform_driver cpp41_dma_driver;
+/*
+ * The param format is:
+ * X Y
+ * X: Port
+ * Y: 0 = RX else TX
+ */
+#define INFO_PORT	0
+#define INFO_IS_TX	1
+
+static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
+{
+	struct cppi41_channel *cchan;
+	struct cppi41_dd *cdd;
+	const struct chan_queues *queues;
+	u32 *num = param;
+
+	if (chan->device->dev->driver != &cpp41_dma_driver.driver)
+		return false;
+
+	cchan = to_cpp41_chan(chan);
+
+	if (cchan->port_num != num[INFO_PORT])
+		return false;
+
+	if (cchan->is_tx && !num[INFO_IS_TX])
+		return false;
+	cdd = cchan->cdd;
+	if (cchan->is_tx)
+		queues = cdd->queues_tx;
+	else
+		queues = cdd->queues_rx;
+
+	BUILD_BUG_ON(ARRAY_SIZE(am335x_usb_queues_rx) !=
+		     ARRAY_SIZE(am335x_usb_queues_tx));
+	if (WARN_ON(cchan->port_num >= ARRAY_SIZE(am335x_usb_queues_rx)))
+		return false;
+
+	cchan->q_num = queues[cchan->port_num].submit;
+	cchan->q_comp_num = queues[cchan->port_num].complete;
+	return true;
+}
+
+static struct of_dma_filter_info cpp41_dma_info = {
+	.filter_fn = cpp41_dma_filter_fn,
+};
+
+static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
+		struct of_dma *ofdma)
+{
+	int count = dma_spec->args_count;
+	struct of_dma_filter_info *info = ofdma->of_dma_data;
+
+	if (!info || !info->filter_fn)
+		return NULL;
+
+	if (count != 2)
+		return NULL;
+
+	return dma_request_channel(info->dma_cap, info->filter_fn,
+			&dma_spec->args[0]);
+}
+
+static const struct cppi_glue_infos am335x_usb_infos = {
+	.queues_rx = am335x_usb_queues_rx,
+	.queues_tx = am335x_usb_queues_tx,
+	.td_queue = { .submit = 31, .complete = 0 },
+	.first_completion_queue = 93,
+	.qmgr_num_pend = 5,
+};
+
+static const struct cppi_glue_infos da8xx_usb_infos = {
+	.queues_rx = da8xx_usb_queues_rx,
+	.queues_tx = da8xx_usb_queues_tx,
+	.td_queue = { .submit = 31, .complete = 0 },
+	.first_completion_queue = 24,
+	.qmgr_num_pend = 2,
+};
+
+static const struct of_device_id cppi41_dma_ids[] = {
+	{ .compatible = "ti,am3359-cppi41", .data = &am335x_usb_infos},
+	{ .compatible = "ti,da830-cppi41", .data = &da8xx_usb_infos},
+	{},
+};
+MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
+
+static const struct cppi_glue_infos *get_glue_info(struct device *dev)
+{
+	const struct of_device_id *of_id;
+
+	of_id = of_match_node(cppi41_dma_ids, dev->of_node);
+	if (!of_id)
+		return NULL;
+	return of_id->data;
+}
+
+#define CPPI41_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
+				BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
+				BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
+				BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
+
+static int cppi41_dma_probe(struct platform_device *pdev)
+{
+	struct cppi41_dd *cdd;
+	struct device *dev = &pdev->dev;
+	const struct cppi_glue_infos *glue_info;
+	struct resource *mem;
+	int index;
+	int irq;
+	int ret;
+
+	glue_info = get_glue_info(dev);
+	if (!glue_info)
+		return -EINVAL;
+
+	cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
+	if (!cdd)
+		return -ENOMEM;
+
+	dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
+	cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
+	cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
+	cdd->ddev.device_tx_status = cppi41_dma_tx_status;
+	cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
+	cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
+	cdd->ddev.device_terminate_all = cppi41_stop_chan;
+	cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
+	cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
+	cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
+	cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+	cdd->ddev.dev = dev;
+	INIT_LIST_HEAD(&cdd->ddev.channels);
+	cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
+
+	index = of_property_match_string(dev->of_node,
+					 "reg-names", "controller");
+	if (index < 0)
+		return index;
+
+	mem = platform_get_resource(pdev, IORESOURCE_MEM, index);
+	cdd->ctrl_mem = devm_ioremap_resource(dev, mem);
+	if (IS_ERR(cdd->ctrl_mem))
+		return PTR_ERR(cdd->ctrl_mem);
+
+	mem = platform_get_resource(pdev, IORESOURCE_MEM, index + 1);
+	cdd->sched_mem = devm_ioremap_resource(dev, mem);
+	if (IS_ERR(cdd->sched_mem))
+		return PTR_ERR(cdd->sched_mem);
+
+	mem = platform_get_resource(pdev, IORESOURCE_MEM, index + 2);
+	cdd->qmgr_mem = devm_ioremap_resource(dev, mem);
+	if (IS_ERR(cdd->qmgr_mem))
+		return PTR_ERR(cdd->qmgr_mem);
+
+	spin_lock_init(&cdd->lock);
+	INIT_LIST_HEAD(&cdd->pending);
+
+	platform_set_drvdata(pdev, cdd);
+
+	pm_runtime_enable(dev);
+	pm_runtime_set_autosuspend_delay(dev, 100);
+	pm_runtime_use_autosuspend(dev);
+	ret = pm_runtime_get_sync(dev);
+	if (ret < 0)
+		goto err_get_sync;
+
+	cdd->queues_rx = glue_info->queues_rx;
+	cdd->queues_tx = glue_info->queues_tx;
+	cdd->td_queue = glue_info->td_queue;
+	cdd->qmgr_num_pend = glue_info->qmgr_num_pend;
+	cdd->first_completion_queue = glue_info->first_completion_queue;
+
+	ret = of_property_read_u32(dev->of_node,
+				   "#dma-channels", &cdd->n_chans);
+	if (ret)
+		goto err_get_n_chans;
+
+	ret = init_cppi41(dev, cdd);
+	if (ret)
+		goto err_init_cppi;
+
+	ret = cppi41_add_chans(dev, cdd);
+	if (ret)
+		goto err_chans;
+
+	irq = irq_of_parse_and_map(dev->of_node, 0);
+	if (!irq) {
+		ret = -EINVAL;
+		goto err_chans;
+	}
+
+	ret = devm_request_irq(&pdev->dev, irq, cppi41_irq, IRQF_SHARED,
+			dev_name(dev), cdd);
+	if (ret)
+		goto err_chans;
+	cdd->irq = irq;
+
+	ret = dma_async_device_register(&cdd->ddev);
+	if (ret)
+		goto err_chans;
+
+	ret = of_dma_controller_register(dev->of_node,
+			cppi41_dma_xlate, &cpp41_dma_info);
+	if (ret)
+		goto err_of;
+
+	pm_runtime_mark_last_busy(dev);
+	pm_runtime_put_autosuspend(dev);
+
+	return 0;
+err_of:
+	dma_async_device_unregister(&cdd->ddev);
+err_chans:
+	deinit_cppi41(dev, cdd);
+err_init_cppi:
+	pm_runtime_dont_use_autosuspend(dev);
+err_get_n_chans:
+err_get_sync:
+	pm_runtime_put_sync(dev);
+	pm_runtime_disable(dev);
+	return ret;
+}
+
+static int cppi41_dma_remove(struct platform_device *pdev)
+{
+	struct cppi41_dd *cdd = platform_get_drvdata(pdev);
+	int error;
+
+	error = pm_runtime_get_sync(&pdev->dev);
+	if (error < 0)
+		dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
+			__func__, error);
+	of_dma_controller_free(pdev->dev.of_node);
+	dma_async_device_unregister(&cdd->ddev);
+
+	devm_free_irq(&pdev->dev, cdd->irq, cdd);
+	deinit_cppi41(&pdev->dev, cdd);
+	pm_runtime_dont_use_autosuspend(&pdev->dev);
+	pm_runtime_put_sync(&pdev->dev);
+	pm_runtime_disable(&pdev->dev);
+	return 0;
+}
+
+static int __maybe_unused cppi41_suspend(struct device *dev)
+{
+	struct cppi41_dd *cdd = dev_get_drvdata(dev);
+
+	cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
+	disable_sched(cdd);
+
+	return 0;
+}
+
+static int __maybe_unused cppi41_resume(struct device *dev)
+{
+	struct cppi41_dd *cdd = dev_get_drvdata(dev);
+	struct cppi41_channel *c;
+	int i;
+
+	for (i = 0; i < DESCS_AREAS; i++)
+		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
+
+	list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
+		if (!c->is_tx)
+			cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
+
+	init_sched(cdd);
+
+	cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
+	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
+	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
+	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
+
+	return 0;
+}
+
+static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
+{
+	struct cppi41_dd *cdd = dev_get_drvdata(dev);
+	unsigned long flags;
+
+	spin_lock_irqsave(&cdd->lock, flags);
+	cdd->is_suspended = true;
+	WARN_ON(!list_empty(&cdd->pending));
+	spin_unlock_irqrestore(&cdd->lock, flags);
+
+	return 0;
+}
+
+static int __maybe_unused cppi41_runtime_resume(struct device *dev)
+{
+	struct cppi41_dd *cdd = dev_get_drvdata(dev);
+	unsigned long flags;
+
+	spin_lock_irqsave(&cdd->lock, flags);
+	cdd->is_suspended = false;
+	cppi41_run_queue(cdd);
+	spin_unlock_irqrestore(&cdd->lock, flags);
+
+	return 0;
+}
+
+static const struct dev_pm_ops cppi41_pm_ops = {
+	SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
+	SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
+			   cppi41_runtime_resume,
+			   NULL)
+};
+
+static struct platform_driver cpp41_dma_driver = {
+	.probe  = cppi41_dma_probe,
+	.remove = cppi41_dma_remove,
+	.driver = {
+		.name = "cppi41-dma-engine",
+		.pm = &cppi41_pm_ops,
+		.of_match_table = of_match_ptr(cppi41_dma_ids),
+	},
+};
+
+module_platform_driver(cpp41_dma_driver);
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");
diff --git a/drivers/dma/ti/dma-crossbar.c b/drivers/dma/ti/dma-crossbar.c
new file mode 100644
index 0000000..9272b17
--- /dev/null
+++ b/drivers/dma/ti/dma-crossbar.c
@@ -0,0 +1,478 @@
+/*
+ *  Copyright (C) 2015 Texas Instruments Incorporated - http://www.ti.com
+ *  Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <linux/slab.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/list.h>
+#include <linux/io.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_dma.h>
+
+#define TI_XBAR_DRA7		0
+#define TI_XBAR_AM335X		1
+static const u32 ti_xbar_type[] = {
+	[TI_XBAR_DRA7] = TI_XBAR_DRA7,
+	[TI_XBAR_AM335X] = TI_XBAR_AM335X,
+};
+
+static const struct of_device_id ti_dma_xbar_match[] = {
+	{
+		.compatible = "ti,dra7-dma-crossbar",
+		.data = &ti_xbar_type[TI_XBAR_DRA7],
+	},
+	{
+		.compatible = "ti,am335x-edma-crossbar",
+		.data = &ti_xbar_type[TI_XBAR_AM335X],
+	},
+	{},
+};
+
+/* Crossbar on AM335x/AM437x family */
+#define TI_AM335X_XBAR_LINES	64
+
+struct ti_am335x_xbar_data {
+	void __iomem *iomem;
+
+	struct dma_router dmarouter;
+
+	u32 xbar_events; /* maximum number of events to select in xbar */
+	u32 dma_requests; /* number of DMA requests on eDMA */
+};
+
+struct ti_am335x_xbar_map {
+	u16 dma_line;
+	u8 mux_val;
+};
+
+static inline void ti_am335x_xbar_write(void __iomem *iomem, int event, u8 val)
+{
+	/*
+	 * TPCC_EVT_MUX_60_63 register layout is different than the
+	 * rest, in the sense, that event 63 is mapped to lowest byte
+	 * and event 60 is mapped to highest, handle it separately.
+	 */
+	if (event >= 60 && event <= 63)
+		writeb_relaxed(val, iomem + (63 - event % 4));
+	else
+		writeb_relaxed(val, iomem + event);
+}
+
+static void ti_am335x_xbar_free(struct device *dev, void *route_data)
+{
+	struct ti_am335x_xbar_data *xbar = dev_get_drvdata(dev);
+	struct ti_am335x_xbar_map *map = route_data;
+
+	dev_dbg(dev, "Unmapping XBAR event %u on channel %u\n",
+		map->mux_val, map->dma_line);
+
+	ti_am335x_xbar_write(xbar->iomem, map->dma_line, 0);
+	kfree(map);
+}
+
+static void *ti_am335x_xbar_route_allocate(struct of_phandle_args *dma_spec,
+					   struct of_dma *ofdma)
+{
+	struct platform_device *pdev = of_find_device_by_node(ofdma->of_node);
+	struct ti_am335x_xbar_data *xbar = platform_get_drvdata(pdev);
+	struct ti_am335x_xbar_map *map;
+
+	if (dma_spec->args_count != 3)
+		return ERR_PTR(-EINVAL);
+
+	if (dma_spec->args[2] >= xbar->xbar_events) {
+		dev_err(&pdev->dev, "Invalid XBAR event number: %d\n",
+			dma_spec->args[2]);
+		return ERR_PTR(-EINVAL);
+	}
+
+	if (dma_spec->args[0] >= xbar->dma_requests) {
+		dev_err(&pdev->dev, "Invalid DMA request line number: %d\n",
+			dma_spec->args[0]);
+		return ERR_PTR(-EINVAL);
+	}
+
+	/* The of_node_put() will be done in the core for the node */
+	dma_spec->np = of_parse_phandle(ofdma->of_node, "dma-masters", 0);
+	if (!dma_spec->np) {
+		dev_err(&pdev->dev, "Can't get DMA master\n");
+		return ERR_PTR(-EINVAL);
+	}
+
+	map = kzalloc(sizeof(*map), GFP_KERNEL);
+	if (!map) {
+		of_node_put(dma_spec->np);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	map->dma_line = (u16)dma_spec->args[0];
+	map->mux_val = (u8)dma_spec->args[2];
+
+	dma_spec->args[2] = 0;
+	dma_spec->args_count = 2;
+
+	dev_dbg(&pdev->dev, "Mapping XBAR event%u to DMA%u\n",
+		map->mux_val, map->dma_line);
+
+	ti_am335x_xbar_write(xbar->iomem, map->dma_line, map->mux_val);
+
+	return map;
+}
+
+static const struct of_device_id ti_am335x_master_match[] = {
+	{ .compatible = "ti,edma3-tpcc", },
+	{},
+};
+
+static int ti_am335x_xbar_probe(struct platform_device *pdev)
+{
+	struct device_node *node = pdev->dev.of_node;
+	const struct of_device_id *match;
+	struct device_node *dma_node;
+	struct ti_am335x_xbar_data *xbar;
+	struct resource *res;
+	void __iomem *iomem;
+	int i, ret;
+
+	if (!node)
+		return -ENODEV;
+
+	xbar = devm_kzalloc(&pdev->dev, sizeof(*xbar), GFP_KERNEL);
+	if (!xbar)
+		return -ENOMEM;
+
+	dma_node = of_parse_phandle(node, "dma-masters", 0);
+	if (!dma_node) {
+		dev_err(&pdev->dev, "Can't get DMA master node\n");
+		return -ENODEV;
+	}
+
+	match = of_match_node(ti_am335x_master_match, dma_node);
+	if (!match) {
+		dev_err(&pdev->dev, "DMA master is not supported\n");
+		of_node_put(dma_node);
+		return -EINVAL;
+	}
+
+	if (of_property_read_u32(dma_node, "dma-requests",
+				 &xbar->dma_requests)) {
+		dev_info(&pdev->dev,
+			 "Missing XBAR output information, using %u.\n",
+			 TI_AM335X_XBAR_LINES);
+		xbar->dma_requests = TI_AM335X_XBAR_LINES;
+	}
+	of_node_put(dma_node);
+
+	if (of_property_read_u32(node, "dma-requests", &xbar->xbar_events)) {
+		dev_info(&pdev->dev,
+			 "Missing XBAR input information, using %u.\n",
+			 TI_AM335X_XBAR_LINES);
+		xbar->xbar_events = TI_AM335X_XBAR_LINES;
+	}
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	iomem = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(iomem))
+		return PTR_ERR(iomem);
+
+	xbar->iomem = iomem;
+
+	xbar->dmarouter.dev = &pdev->dev;
+	xbar->dmarouter.route_free = ti_am335x_xbar_free;
+
+	platform_set_drvdata(pdev, xbar);
+
+	/* Reset the crossbar */
+	for (i = 0; i < xbar->dma_requests; i++)
+		ti_am335x_xbar_write(xbar->iomem, i, 0);
+
+	ret = of_dma_router_register(node, ti_am335x_xbar_route_allocate,
+				     &xbar->dmarouter);
+
+	return ret;
+}
+
+/* Crossbar on DRA7xx family */
+#define TI_DRA7_XBAR_OUTPUTS	127
+#define TI_DRA7_XBAR_INPUTS	256
+
+struct ti_dra7_xbar_data {
+	void __iomem *iomem;
+
+	struct dma_router dmarouter;
+	struct mutex mutex;
+	unsigned long *dma_inuse;
+
+	u16 safe_val; /* Value to rest the crossbar lines */
+	u32 xbar_requests; /* number of DMA requests connected to XBAR */
+	u32 dma_requests; /* number of DMA requests forwarded to DMA */
+	u32 dma_offset;
+};
+
+struct ti_dra7_xbar_map {
+	u16 xbar_in;
+	int xbar_out;
+};
+
+static inline void ti_dra7_xbar_write(void __iomem *iomem, int xbar, u16 val)
+{
+	writew_relaxed(val, iomem + (xbar * 2));
+}
+
+static void ti_dra7_xbar_free(struct device *dev, void *route_data)
+{
+	struct ti_dra7_xbar_data *xbar = dev_get_drvdata(dev);
+	struct ti_dra7_xbar_map *map = route_data;
+
+	dev_dbg(dev, "Unmapping XBAR%u (was routed to %d)\n",
+		map->xbar_in, map->xbar_out);
+
+	ti_dra7_xbar_write(xbar->iomem, map->xbar_out, xbar->safe_val);
+	mutex_lock(&xbar->mutex);
+	clear_bit(map->xbar_out, xbar->dma_inuse);
+	mutex_unlock(&xbar->mutex);
+	kfree(map);
+}
+
+static void *ti_dra7_xbar_route_allocate(struct of_phandle_args *dma_spec,
+					 struct of_dma *ofdma)
+{
+	struct platform_device *pdev = of_find_device_by_node(ofdma->of_node);
+	struct ti_dra7_xbar_data *xbar = platform_get_drvdata(pdev);
+	struct ti_dra7_xbar_map *map;
+
+	if (dma_spec->args[0] >= xbar->xbar_requests) {
+		dev_err(&pdev->dev, "Invalid XBAR request number: %d\n",
+			dma_spec->args[0]);
+		return ERR_PTR(-EINVAL);
+	}
+
+	/* The of_node_put() will be done in the core for the node */
+	dma_spec->np = of_parse_phandle(ofdma->of_node, "dma-masters", 0);
+	if (!dma_spec->np) {
+		dev_err(&pdev->dev, "Can't get DMA master\n");
+		return ERR_PTR(-EINVAL);
+	}
+
+	map = kzalloc(sizeof(*map), GFP_KERNEL);
+	if (!map) {
+		of_node_put(dma_spec->np);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	mutex_lock(&xbar->mutex);
+	map->xbar_out = find_first_zero_bit(xbar->dma_inuse,
+					    xbar->dma_requests);
+	if (map->xbar_out == xbar->dma_requests) {
+		mutex_unlock(&xbar->mutex);
+		dev_err(&pdev->dev, "Run out of free DMA requests\n");
+		kfree(map);
+		return ERR_PTR(-ENOMEM);
+	}
+	set_bit(map->xbar_out, xbar->dma_inuse);
+	mutex_unlock(&xbar->mutex);
+
+	map->xbar_in = (u16)dma_spec->args[0];
+
+	dma_spec->args[0] = map->xbar_out + xbar->dma_offset;
+
+	dev_dbg(&pdev->dev, "Mapping XBAR%u to DMA%d\n",
+		map->xbar_in, map->xbar_out);
+
+	ti_dra7_xbar_write(xbar->iomem, map->xbar_out, map->xbar_in);
+
+	return map;
+}
+
+#define TI_XBAR_EDMA_OFFSET	0
+#define TI_XBAR_SDMA_OFFSET	1
+static const u32 ti_dma_offset[] = {
+	[TI_XBAR_EDMA_OFFSET] = 0,
+	[TI_XBAR_SDMA_OFFSET] = 1,
+};
+
+static const struct of_device_id ti_dra7_master_match[] = {
+	{
+		.compatible = "ti,omap4430-sdma",
+		.data = &ti_dma_offset[TI_XBAR_SDMA_OFFSET],
+	},
+	{
+		.compatible = "ti,edma3",
+		.data = &ti_dma_offset[TI_XBAR_EDMA_OFFSET],
+	},
+	{
+		.compatible = "ti,edma3-tpcc",
+		.data = &ti_dma_offset[TI_XBAR_EDMA_OFFSET],
+	},
+	{},
+};
+
+static inline void ti_dra7_xbar_reserve(int offset, int len, unsigned long *p)
+{
+	for (; len > 0; len--)
+		set_bit(offset + (len - 1), p);
+}
+
+static int ti_dra7_xbar_probe(struct platform_device *pdev)
+{
+	struct device_node *node = pdev->dev.of_node;
+	const struct of_device_id *match;
+	struct device_node *dma_node;
+	struct ti_dra7_xbar_data *xbar;
+	struct property *prop;
+	struct resource *res;
+	u32 safe_val;
+	int sz;
+	void __iomem *iomem;
+	int i, ret;
+
+	if (!node)
+		return -ENODEV;
+
+	xbar = devm_kzalloc(&pdev->dev, sizeof(*xbar), GFP_KERNEL);
+	if (!xbar)
+		return -ENOMEM;
+
+	dma_node = of_parse_phandle(node, "dma-masters", 0);
+	if (!dma_node) {
+		dev_err(&pdev->dev, "Can't get DMA master node\n");
+		return -ENODEV;
+	}
+
+	match = of_match_node(ti_dra7_master_match, dma_node);
+	if (!match) {
+		dev_err(&pdev->dev, "DMA master is not supported\n");
+		of_node_put(dma_node);
+		return -EINVAL;
+	}
+
+	if (of_property_read_u32(dma_node, "dma-requests",
+				 &xbar->dma_requests)) {
+		dev_info(&pdev->dev,
+			 "Missing XBAR output information, using %u.\n",
+			 TI_DRA7_XBAR_OUTPUTS);
+		xbar->dma_requests = TI_DRA7_XBAR_OUTPUTS;
+	}
+	of_node_put(dma_node);
+
+	xbar->dma_inuse = devm_kcalloc(&pdev->dev,
+				       BITS_TO_LONGS(xbar->dma_requests),
+				       sizeof(unsigned long), GFP_KERNEL);
+	if (!xbar->dma_inuse)
+		return -ENOMEM;
+
+	if (of_property_read_u32(node, "dma-requests", &xbar->xbar_requests)) {
+		dev_info(&pdev->dev,
+			 "Missing XBAR input information, using %u.\n",
+			 TI_DRA7_XBAR_INPUTS);
+		xbar->xbar_requests = TI_DRA7_XBAR_INPUTS;
+	}
+
+	if (!of_property_read_u32(node, "ti,dma-safe-map", &safe_val))
+		xbar->safe_val = (u16)safe_val;
+
+
+	prop = of_find_property(node, "ti,reserved-dma-request-ranges", &sz);
+	if (prop) {
+		const char pname[] = "ti,reserved-dma-request-ranges";
+		u32 (*rsv_events)[2];
+		size_t nelm = sz / sizeof(*rsv_events);
+		int i;
+
+		if (!nelm)
+			return -EINVAL;
+
+		rsv_events = kcalloc(nelm, sizeof(*rsv_events), GFP_KERNEL);
+		if (!rsv_events)
+			return -ENOMEM;
+
+		ret = of_property_read_u32_array(node, pname, (u32 *)rsv_events,
+						 nelm * 2);
+		if (ret)
+			return ret;
+
+		for (i = 0; i < nelm; i++) {
+			ti_dra7_xbar_reserve(rsv_events[i][0], rsv_events[i][1],
+					     xbar->dma_inuse);
+		}
+		kfree(rsv_events);
+	}
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	iomem = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(iomem))
+		return PTR_ERR(iomem);
+
+	xbar->iomem = iomem;
+
+	xbar->dmarouter.dev = &pdev->dev;
+	xbar->dmarouter.route_free = ti_dra7_xbar_free;
+	xbar->dma_offset = *(u32 *)match->data;
+
+	mutex_init(&xbar->mutex);
+	platform_set_drvdata(pdev, xbar);
+
+	/* Reset the crossbar */
+	for (i = 0; i < xbar->dma_requests; i++) {
+		if (!test_bit(i, xbar->dma_inuse))
+			ti_dra7_xbar_write(xbar->iomem, i, xbar->safe_val);
+	}
+
+	ret = of_dma_router_register(node, ti_dra7_xbar_route_allocate,
+				     &xbar->dmarouter);
+	if (ret) {
+		/* Restore the defaults for the crossbar */
+		for (i = 0; i < xbar->dma_requests; i++) {
+			if (!test_bit(i, xbar->dma_inuse))
+				ti_dra7_xbar_write(xbar->iomem, i, i);
+		}
+	}
+
+	return ret;
+}
+
+static int ti_dma_xbar_probe(struct platform_device *pdev)
+{
+	const struct of_device_id *match;
+	int ret;
+
+	match = of_match_node(ti_dma_xbar_match, pdev->dev.of_node);
+	if (unlikely(!match))
+		return -EINVAL;
+
+	switch (*(u32 *)match->data) {
+	case TI_XBAR_DRA7:
+		ret = ti_dra7_xbar_probe(pdev);
+		break;
+	case TI_XBAR_AM335X:
+		ret = ti_am335x_xbar_probe(pdev);
+		break;
+	default:
+		dev_err(&pdev->dev, "Unsupported crossbar\n");
+		ret = -ENODEV;
+		break;
+	}
+
+	return ret;
+}
+
+static struct platform_driver ti_dma_xbar_driver = {
+	.driver = {
+		.name = "ti-dma-crossbar",
+		.of_match_table = of_match_ptr(ti_dma_xbar_match),
+	},
+	.probe	= ti_dma_xbar_probe,
+};
+
+static int omap_dmaxbar_init(void)
+{
+	return platform_driver_register(&ti_dma_xbar_driver);
+}
+arch_initcall(omap_dmaxbar_init);
diff --git a/drivers/dma/ti/edma.c b/drivers/dma/ti/edma.c
new file mode 100644
index 0000000..ceabdea
--- /dev/null
+++ b/drivers/dma/ti/edma.c
@@ -0,0 +1,2565 @@
+/*
+ * TI EDMA DMA engine driver
+ *
+ * Copyright 2012 Texas Instruments
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation version 2.
+ *
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any
+ * kind, whether express or implied; without even the implied warranty
+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/edma.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/of.h>
+#include <linux/of_dma.h>
+#include <linux/of_irq.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/pm_runtime.h>
+
+#include <linux/platform_data/edma.h>
+
+#include "../dmaengine.h"
+#include "../virt-dma.h"
+
+/* Offsets matching "struct edmacc_param" */
+#define PARM_OPT		0x00
+#define PARM_SRC		0x04
+#define PARM_A_B_CNT		0x08
+#define PARM_DST		0x0c
+#define PARM_SRC_DST_BIDX	0x10
+#define PARM_LINK_BCNTRLD	0x14
+#define PARM_SRC_DST_CIDX	0x18
+#define PARM_CCNT		0x1c
+
+#define PARM_SIZE		0x20
+
+/* Offsets for EDMA CC global channel registers and their shadows */
+#define SH_ER			0x00	/* 64 bits */
+#define SH_ECR			0x08	/* 64 bits */
+#define SH_ESR			0x10	/* 64 bits */
+#define SH_CER			0x18	/* 64 bits */
+#define SH_EER			0x20	/* 64 bits */
+#define SH_EECR			0x28	/* 64 bits */
+#define SH_EESR			0x30	/* 64 bits */
+#define SH_SER			0x38	/* 64 bits */
+#define SH_SECR			0x40	/* 64 bits */
+#define SH_IER			0x50	/* 64 bits */
+#define SH_IECR			0x58	/* 64 bits */
+#define SH_IESR			0x60	/* 64 bits */
+#define SH_IPR			0x68	/* 64 bits */
+#define SH_ICR			0x70	/* 64 bits */
+#define SH_IEVAL		0x78
+#define SH_QER			0x80
+#define SH_QEER			0x84
+#define SH_QEECR		0x88
+#define SH_QEESR		0x8c
+#define SH_QSER			0x90
+#define SH_QSECR		0x94
+#define SH_SIZE			0x200
+
+/* Offsets for EDMA CC global registers */
+#define EDMA_REV		0x0000
+#define EDMA_CCCFG		0x0004
+#define EDMA_QCHMAP		0x0200	/* 8 registers */
+#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
+#define EDMA_QDMAQNUM		0x0260
+#define EDMA_QUETCMAP		0x0280
+#define EDMA_QUEPRI		0x0284
+#define EDMA_EMR		0x0300	/* 64 bits */
+#define EDMA_EMCR		0x0308	/* 64 bits */
+#define EDMA_QEMR		0x0310
+#define EDMA_QEMCR		0x0314
+#define EDMA_CCERR		0x0318
+#define EDMA_CCERRCLR		0x031c
+#define EDMA_EEVAL		0x0320
+#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
+#define EDMA_QRAE		0x0380	/* 4 registers */
+#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
+#define EDMA_QSTAT		0x0600	/* 2 registers */
+#define EDMA_QWMTHRA		0x0620
+#define EDMA_QWMTHRB		0x0624
+#define EDMA_CCSTAT		0x0640
+
+#define EDMA_M			0x1000	/* global channel registers */
+#define EDMA_ECR		0x1008
+#define EDMA_ECRH		0x100C
+#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
+#define EDMA_PARM		0x4000	/* PaRAM entries */
+
+#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
+
+#define EDMA_DCHMAP		0x0100  /* 64 registers */
+
+/* CCCFG register */
+#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
+#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
+#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
+#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
+#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
+#define CHMAP_EXIST		BIT(24)
+
+/* CCSTAT register */
+#define EDMA_CCSTAT_ACTV	BIT(4)
+
+/*
+ * Max of 20 segments per channel to conserve PaRAM slots
+ * Also note that MAX_NR_SG should be atleast the no.of periods
+ * that are required for ASoC, otherwise DMA prep calls will
+ * fail. Today davinci-pcm is the only user of this driver and
+ * requires atleast 17 slots, so we setup the default to 20.
+ */
+#define MAX_NR_SG		20
+#define EDMA_MAX_SLOTS		MAX_NR_SG
+#define EDMA_DESCRIPTORS	16
+
+#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
+#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
+#define EDMA_CONT_PARAMS_ANY		 1001
+#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
+#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
+
+/* PaRAM slots are laid out like this */
+struct edmacc_param {
+	u32 opt;
+	u32 src;
+	u32 a_b_cnt;
+	u32 dst;
+	u32 src_dst_bidx;
+	u32 link_bcntrld;
+	u32 src_dst_cidx;
+	u32 ccnt;
+} __packed;
+
+/* fields in edmacc_param.opt */
+#define SAM		BIT(0)
+#define DAM		BIT(1)
+#define SYNCDIM		BIT(2)
+#define STATIC		BIT(3)
+#define EDMA_FWID	(0x07 << 8)
+#define TCCMODE		BIT(11)
+#define EDMA_TCC(t)	((t) << 12)
+#define TCINTEN		BIT(20)
+#define ITCINTEN	BIT(21)
+#define TCCHEN		BIT(22)
+#define ITCCHEN		BIT(23)
+
+struct edma_pset {
+	u32				len;
+	dma_addr_t			addr;
+	struct edmacc_param		param;
+};
+
+struct edma_desc {
+	struct virt_dma_desc		vdesc;
+	struct list_head		node;
+	enum dma_transfer_direction	direction;
+	int				cyclic;
+	int				absync;
+	int				pset_nr;
+	struct edma_chan		*echan;
+	int				processed;
+
+	/*
+	 * The following 4 elements are used for residue accounting.
+	 *
+	 * - processed_stat: the number of SG elements we have traversed
+	 * so far to cover accounting. This is updated directly to processed
+	 * during edma_callback and is always <= processed, because processed
+	 * refers to the number of pending transfer (programmed to EDMA
+	 * controller), where as processed_stat tracks number of transfers
+	 * accounted for so far.
+	 *
+	 * - residue: The amount of bytes we have left to transfer for this desc
+	 *
+	 * - residue_stat: The residue in bytes of data we have covered
+	 * so far for accounting. This is updated directly to residue
+	 * during callbacks to keep it current.
+	 *
+	 * - sg_len: Tracks the length of the current intermediate transfer,
+	 * this is required to update the residue during intermediate transfer
+	 * completion callback.
+	 */
+	int				processed_stat;
+	u32				sg_len;
+	u32				residue;
+	u32				residue_stat;
+
+	struct edma_pset		pset[0];
+};
+
+struct edma_cc;
+
+struct edma_tc {
+	struct device_node		*node;
+	u16				id;
+};
+
+struct edma_chan {
+	struct virt_dma_chan		vchan;
+	struct list_head		node;
+	struct edma_desc		*edesc;
+	struct edma_cc			*ecc;
+	struct edma_tc			*tc;
+	int				ch_num;
+	bool				alloced;
+	bool				hw_triggered;
+	int				slot[EDMA_MAX_SLOTS];
+	int				missed;
+	struct dma_slave_config		cfg;
+};
+
+struct edma_cc {
+	struct device			*dev;
+	struct edma_soc_info		*info;
+	void __iomem			*base;
+	int				id;
+	bool				legacy_mode;
+
+	/* eDMA3 resource information */
+	unsigned			num_channels;
+	unsigned			num_qchannels;
+	unsigned			num_region;
+	unsigned			num_slots;
+	unsigned			num_tc;
+	bool				chmap_exist;
+	enum dma_event_q		default_queue;
+
+	unsigned int			ccint;
+	unsigned int			ccerrint;
+
+	/*
+	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
+	 * in use by Linux or if it is allocated to be used by DSP.
+	 */
+	unsigned long *slot_inuse;
+
+	struct dma_device		dma_slave;
+	struct dma_device		*dma_memcpy;
+	struct edma_chan		*slave_chans;
+	struct edma_tc			*tc_list;
+	int				dummy_slot;
+};
+
+/* dummy param set used to (re)initialize parameter RAM slots */
+static const struct edmacc_param dummy_paramset = {
+	.link_bcntrld = 0xffff,
+	.ccnt = 1,
+};
+
+#define EDMA_BINDING_LEGACY	0
+#define EDMA_BINDING_TPCC	1
+static const u32 edma_binding_type[] = {
+	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
+	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
+};
+
+static const struct of_device_id edma_of_ids[] = {
+	{
+		.compatible = "ti,edma3",
+		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
+	},
+	{
+		.compatible = "ti,edma3-tpcc",
+		.data = &edma_binding_type[EDMA_BINDING_TPCC],
+	},
+	{}
+};
+MODULE_DEVICE_TABLE(of, edma_of_ids);
+
+static const struct of_device_id edma_tptc_of_ids[] = {
+	{ .compatible = "ti,edma3-tptc", },
+	{}
+};
+MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
+
+static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
+{
+	return (unsigned int)__raw_readl(ecc->base + offset);
+}
+
+static inline void edma_write(struct edma_cc *ecc, int offset, int val)
+{
+	__raw_writel(val, ecc->base + offset);
+}
+
+static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
+			       unsigned or)
+{
+	unsigned val = edma_read(ecc, offset);
+
+	val &= and;
+	val |= or;
+	edma_write(ecc, offset, val);
+}
+
+static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
+{
+	unsigned val = edma_read(ecc, offset);
+
+	val &= and;
+	edma_write(ecc, offset, val);
+}
+
+static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
+{
+	unsigned val = edma_read(ecc, offset);
+
+	val |= or;
+	edma_write(ecc, offset, val);
+}
+
+static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
+					   int i)
+{
+	return edma_read(ecc, offset + (i << 2));
+}
+
+static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
+				    unsigned val)
+{
+	edma_write(ecc, offset + (i << 2), val);
+}
+
+static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
+				     unsigned and, unsigned or)
+{
+	edma_modify(ecc, offset + (i << 2), and, or);
+}
+
+static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
+				 unsigned or)
+{
+	edma_or(ecc, offset + (i << 2), or);
+}
+
+static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
+				  unsigned or)
+{
+	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
+}
+
+static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
+				     int j, unsigned val)
+{
+	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
+}
+
+static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
+{
+	return edma_read(ecc, EDMA_SHADOW0 + offset);
+}
+
+static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
+						   int offset, int i)
+{
+	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
+}
+
+static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
+				      unsigned val)
+{
+	edma_write(ecc, EDMA_SHADOW0 + offset, val);
+}
+
+static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
+					    int i, unsigned val)
+{
+	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
+}
+
+static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
+					   int param_no)
+{
+	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
+}
+
+static inline void edma_param_write(struct edma_cc *ecc, int offset,
+				    int param_no, unsigned val)
+{
+	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
+}
+
+static inline void edma_param_modify(struct edma_cc *ecc, int offset,
+				     int param_no, unsigned and, unsigned or)
+{
+	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
+}
+
+static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
+				  unsigned and)
+{
+	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
+}
+
+static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
+				 unsigned or)
+{
+	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
+}
+
+static inline void edma_set_bits(int offset, int len, unsigned long *p)
+{
+	for (; len > 0; len--)
+		set_bit(offset + (len - 1), p);
+}
+
+static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
+					  int priority)
+{
+	int bit = queue_no * 4;
+
+	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
+}
+
+static void edma_set_chmap(struct edma_chan *echan, int slot)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+
+	if (ecc->chmap_exist) {
+		slot = EDMA_CHAN_SLOT(slot);
+		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
+	}
+}
+
+static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+
+	if (enable) {
+		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
+					 BIT(channel & 0x1f));
+		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
+					 BIT(channel & 0x1f));
+	} else {
+		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
+					 BIT(channel & 0x1f));
+	}
+}
+
+/*
+ * paRAM slot management functions
+ */
+static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
+			    const struct edmacc_param *param)
+{
+	slot = EDMA_CHAN_SLOT(slot);
+	if (slot >= ecc->num_slots)
+		return;
+	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
+}
+
+static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
+			   struct edmacc_param *param)
+{
+	slot = EDMA_CHAN_SLOT(slot);
+	if (slot >= ecc->num_slots)
+		return -EINVAL;
+	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
+
+	return 0;
+}
+
+/**
+ * edma_alloc_slot - allocate DMA parameter RAM
+ * @ecc: pointer to edma_cc struct
+ * @slot: specific slot to allocate; negative for "any unused slot"
+ *
+ * This allocates a parameter RAM slot, initializing it to hold a
+ * dummy transfer.  Slots allocated using this routine have not been
+ * mapped to a hardware DMA channel, and will normally be used by
+ * linking to them from a slot associated with a DMA channel.
+ *
+ * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
+ * slots may be allocated on behalf of DSP firmware.
+ *
+ * Returns the number of the slot, else negative errno.
+ */
+static int edma_alloc_slot(struct edma_cc *ecc, int slot)
+{
+	if (slot >= 0) {
+		slot = EDMA_CHAN_SLOT(slot);
+		/* Requesting entry paRAM slot for a HW triggered channel. */
+		if (ecc->chmap_exist && slot < ecc->num_channels)
+			slot = EDMA_SLOT_ANY;
+	}
+
+	if (slot < 0) {
+		if (ecc->chmap_exist)
+			slot = 0;
+		else
+			slot = ecc->num_channels;
+		for (;;) {
+			slot = find_next_zero_bit(ecc->slot_inuse,
+						  ecc->num_slots,
+						  slot);
+			if (slot == ecc->num_slots)
+				return -ENOMEM;
+			if (!test_and_set_bit(slot, ecc->slot_inuse))
+				break;
+		}
+	} else if (slot >= ecc->num_slots) {
+		return -EINVAL;
+	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
+		return -EBUSY;
+	}
+
+	edma_write_slot(ecc, slot, &dummy_paramset);
+
+	return EDMA_CTLR_CHAN(ecc->id, slot);
+}
+
+static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
+{
+	slot = EDMA_CHAN_SLOT(slot);
+	if (slot >= ecc->num_slots)
+		return;
+
+	edma_write_slot(ecc, slot, &dummy_paramset);
+	clear_bit(slot, ecc->slot_inuse);
+}
+
+/**
+ * edma_link - link one parameter RAM slot to another
+ * @ecc: pointer to edma_cc struct
+ * @from: parameter RAM slot originating the link
+ * @to: parameter RAM slot which is the link target
+ *
+ * The originating slot should not be part of any active DMA transfer.
+ */
+static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
+{
+	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
+		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
+
+	from = EDMA_CHAN_SLOT(from);
+	to = EDMA_CHAN_SLOT(to);
+	if (from >= ecc->num_slots || to >= ecc->num_slots)
+		return;
+
+	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
+			  PARM_OFFSET(to));
+}
+
+/**
+ * edma_get_position - returns the current transfer point
+ * @ecc: pointer to edma_cc struct
+ * @slot: parameter RAM slot being examined
+ * @dst:  true selects the dest position, false the source
+ *
+ * Returns the position of the current active slot
+ */
+static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
+				    bool dst)
+{
+	u32 offs;
+
+	slot = EDMA_CHAN_SLOT(slot);
+	offs = PARM_OFFSET(slot);
+	offs += dst ? PARM_DST : PARM_SRC;
+
+	return edma_read(ecc, offs);
+}
+
+/*
+ * Channels with event associations will be triggered by their hardware
+ * events, and channels without such associations will be triggered by
+ * software.  (At this writing there is no interface for using software
+ * triggers except with channels that don't support hardware triggers.)
+ */
+static void edma_start(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	int j = (channel >> 5);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	if (!echan->hw_triggered) {
+		/* EDMA channels without event association */
+		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
+			edma_shadow0_read_array(ecc, SH_ESR, j));
+		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
+	} else {
+		/* EDMA channel with event association */
+		dev_dbg(ecc->dev, "ER%d %08x\n", j,
+			edma_shadow0_read_array(ecc, SH_ER, j));
+		/* Clear any pending event or error */
+		edma_write_array(ecc, EDMA_ECR, j, mask);
+		edma_write_array(ecc, EDMA_EMCR, j, mask);
+		/* Clear any SER */
+		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
+		dev_dbg(ecc->dev, "EER%d %08x\n", j,
+			edma_shadow0_read_array(ecc, SH_EER, j));
+	}
+}
+
+static void edma_stop(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	int j = (channel >> 5);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
+	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
+	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+	edma_write_array(ecc, EDMA_EMCR, j, mask);
+
+	/* clear possibly pending completion interrupt */
+	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
+
+	dev_dbg(ecc->dev, "EER%d %08x\n", j,
+		edma_shadow0_read_array(ecc, SH_EER, j));
+
+	/* REVISIT:  consider guarding against inappropriate event
+	 * chaining by overwriting with dummy_paramset.
+	 */
+}
+
+/*
+ * Temporarily disable EDMA hardware events on the specified channel,
+ * preventing them from triggering new transfers
+ */
+static void edma_pause(struct edma_chan *echan)
+{
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
+}
+
+/* Re-enable EDMA hardware events on the specified channel.  */
+static void edma_resume(struct edma_chan *echan)
+{
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
+}
+
+static void edma_trigger_channel(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
+
+	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
+		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
+}
+
+static void edma_clean_channel(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	int j = (channel >> 5);
+	unsigned int mask = BIT(channel & 0x1f);
+
+	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
+	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
+	/* Clear the corresponding EMR bits */
+	edma_write_array(ecc, EDMA_EMCR, j, mask);
+	/* Clear any SER */
+	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
+}
+
+/* Move channel to a specific event queue */
+static void edma_assign_channel_eventq(struct edma_chan *echan,
+				       enum dma_event_q eventq_no)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+	int bit = (channel & 0x7) * 4;
+
+	/* default to low priority queue */
+	if (eventq_no == EVENTQ_DEFAULT)
+		eventq_no = ecc->default_queue;
+	if (eventq_no >= ecc->num_tc)
+		return;
+
+	eventq_no &= 7;
+	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
+			  eventq_no << bit);
+}
+
+static int edma_alloc_channel(struct edma_chan *echan,
+			      enum dma_event_q eventq_no)
+{
+	struct edma_cc *ecc = echan->ecc;
+	int channel = EDMA_CHAN_SLOT(echan->ch_num);
+
+	/* ensure access through shadow region 0 */
+	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
+
+	/* ensure no events are pending */
+	edma_stop(echan);
+
+	edma_setup_interrupt(echan, true);
+
+	edma_assign_channel_eventq(echan, eventq_no);
+
+	return 0;
+}
+
+static void edma_free_channel(struct edma_chan *echan)
+{
+	/* ensure no events are pending */
+	edma_stop(echan);
+	/* REVISIT should probably take out of shadow region 0 */
+	edma_setup_interrupt(echan, false);
+}
+
+static inline struct edma_cc *to_edma_cc(struct dma_device *d)
+{
+	return container_of(d, struct edma_cc, dma_slave);
+}
+
+static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
+{
+	return container_of(c, struct edma_chan, vchan.chan);
+}
+
+static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
+{
+	return container_of(tx, struct edma_desc, vdesc.tx);
+}
+
+static void edma_desc_free(struct virt_dma_desc *vdesc)
+{
+	kfree(container_of(vdesc, struct edma_desc, vdesc));
+}
+
+/* Dispatch a queued descriptor to the controller (caller holds lock) */
+static void edma_execute(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	struct virt_dma_desc *vdesc;
+	struct edma_desc *edesc;
+	struct device *dev = echan->vchan.chan.device->dev;
+	int i, j, left, nslots;
+
+	if (!echan->edesc) {
+		/* Setup is needed for the first transfer */
+		vdesc = vchan_next_desc(&echan->vchan);
+		if (!vdesc)
+			return;
+		list_del(&vdesc->node);
+		echan->edesc = to_edma_desc(&vdesc->tx);
+	}
+
+	edesc = echan->edesc;
+
+	/* Find out how many left */
+	left = edesc->pset_nr - edesc->processed;
+	nslots = min(MAX_NR_SG, left);
+	edesc->sg_len = 0;
+
+	/* Write descriptor PaRAM set(s) */
+	for (i = 0; i < nslots; i++) {
+		j = i + edesc->processed;
+		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
+		edesc->sg_len += edesc->pset[j].len;
+		dev_vdbg(dev,
+			 "\n pset[%d]:\n"
+			 "  chnum\t%d\n"
+			 "  slot\t%d\n"
+			 "  opt\t%08x\n"
+			 "  src\t%08x\n"
+			 "  dst\t%08x\n"
+			 "  abcnt\t%08x\n"
+			 "  ccnt\t%08x\n"
+			 "  bidx\t%08x\n"
+			 "  cidx\t%08x\n"
+			 "  lkrld\t%08x\n",
+			 j, echan->ch_num, echan->slot[i],
+			 edesc->pset[j].param.opt,
+			 edesc->pset[j].param.src,
+			 edesc->pset[j].param.dst,
+			 edesc->pset[j].param.a_b_cnt,
+			 edesc->pset[j].param.ccnt,
+			 edesc->pset[j].param.src_dst_bidx,
+			 edesc->pset[j].param.src_dst_cidx,
+			 edesc->pset[j].param.link_bcntrld);
+		/* Link to the previous slot if not the last set */
+		if (i != (nslots - 1))
+			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
+	}
+
+	edesc->processed += nslots;
+
+	/*
+	 * If this is either the last set in a set of SG-list transactions
+	 * then setup a link to the dummy slot, this results in all future
+	 * events being absorbed and that's OK because we're done
+	 */
+	if (edesc->processed == edesc->pset_nr) {
+		if (edesc->cyclic)
+			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
+		else
+			edma_link(ecc, echan->slot[nslots - 1],
+				  echan->ecc->dummy_slot);
+	}
+
+	if (echan->missed) {
+		/*
+		 * This happens due to setup times between intermediate
+		 * transfers in long SG lists which have to be broken up into
+		 * transfers of MAX_NR_SG
+		 */
+		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
+		edma_clean_channel(echan);
+		edma_stop(echan);
+		edma_start(echan);
+		edma_trigger_channel(echan);
+		echan->missed = 0;
+	} else if (edesc->processed <= MAX_NR_SG) {
+		dev_dbg(dev, "first transfer starting on channel %d\n",
+			echan->ch_num);
+		edma_start(echan);
+	} else {
+		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
+			echan->ch_num, edesc->processed);
+		edma_resume(echan);
+	}
+}
+
+static int edma_terminate_all(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	unsigned long flags;
+	LIST_HEAD(head);
+
+	spin_lock_irqsave(&echan->vchan.lock, flags);
+
+	/*
+	 * Stop DMA activity: we assume the callback will not be called
+	 * after edma_dma() returns (even if it does, it will see
+	 * echan->edesc is NULL and exit.)
+	 */
+	if (echan->edesc) {
+		edma_stop(echan);
+		/* Move the cyclic channel back to default queue */
+		if (!echan->tc && echan->edesc->cyclic)
+			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
+
+		vchan_terminate_vdesc(&echan->edesc->vdesc);
+		echan->edesc = NULL;
+	}
+
+	vchan_get_all_descriptors(&echan->vchan, &head);
+	spin_unlock_irqrestore(&echan->vchan.lock, flags);
+	vchan_dma_desc_free_list(&echan->vchan, &head);
+
+	return 0;
+}
+
+static void edma_synchronize(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+
+	vchan_synchronize(&echan->vchan);
+}
+
+static int edma_slave_config(struct dma_chan *chan,
+	struct dma_slave_config *cfg)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+
+	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
+	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
+		return -EINVAL;
+
+	if (cfg->src_maxburst > chan->device->max_burst ||
+	    cfg->dst_maxburst > chan->device->max_burst)
+		return -EINVAL;
+
+	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
+
+	return 0;
+}
+
+static int edma_dma_pause(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+
+	if (!echan->edesc)
+		return -EINVAL;
+
+	edma_pause(echan);
+	return 0;
+}
+
+static int edma_dma_resume(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+
+	edma_resume(echan);
+	return 0;
+}
+
+/*
+ * A PaRAM set configuration abstraction used by other modes
+ * @chan: Channel who's PaRAM set we're configuring
+ * @pset: PaRAM set to initialize and setup.
+ * @src_addr: Source address of the DMA
+ * @dst_addr: Destination address of the DMA
+ * @burst: In units of dev_width, how much to send
+ * @dev_width: How much is the dev_width
+ * @dma_length: Total length of the DMA transfer
+ * @direction: Direction of the transfer
+ */
+static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
+			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
+			    unsigned int acnt, unsigned int dma_length,
+			    enum dma_transfer_direction direction)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct device *dev = chan->device->dev;
+	struct edmacc_param *param = &epset->param;
+	int bcnt, ccnt, cidx;
+	int src_bidx, dst_bidx, src_cidx, dst_cidx;
+	int absync;
+
+	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
+	if (!burst)
+		burst = 1;
+	/*
+	 * If the maxburst is equal to the fifo width, use
+	 * A-synced transfers. This allows for large contiguous
+	 * buffer transfers using only one PaRAM set.
+	 */
+	if (burst == 1) {
+		/*
+		 * For the A-sync case, bcnt and ccnt are the remainder
+		 * and quotient respectively of the division of:
+		 * (dma_length / acnt) by (SZ_64K -1). This is so
+		 * that in case bcnt over flows, we have ccnt to use.
+		 * Note: In A-sync tranfer only, bcntrld is used, but it
+		 * only applies for sg_dma_len(sg) >= SZ_64K.
+		 * In this case, the best way adopted is- bccnt for the
+		 * first frame will be the remainder below. Then for
+		 * every successive frame, bcnt will be SZ_64K-1. This
+		 * is assured as bcntrld = 0xffff in end of function.
+		 */
+		absync = false;
+		ccnt = dma_length / acnt / (SZ_64K - 1);
+		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
+		/*
+		 * If bcnt is non-zero, we have a remainder and hence an
+		 * extra frame to transfer, so increment ccnt.
+		 */
+		if (bcnt)
+			ccnt++;
+		else
+			bcnt = SZ_64K - 1;
+		cidx = acnt;
+	} else {
+		/*
+		 * If maxburst is greater than the fifo address_width,
+		 * use AB-synced transfers where A count is the fifo
+		 * address_width and B count is the maxburst. In this
+		 * case, we are limited to transfers of C count frames
+		 * of (address_width * maxburst) where C count is limited
+		 * to SZ_64K-1. This places an upper bound on the length
+		 * of an SG segment that can be handled.
+		 */
+		absync = true;
+		bcnt = burst;
+		ccnt = dma_length / (acnt * bcnt);
+		if (ccnt > (SZ_64K - 1)) {
+			dev_err(dev, "Exceeded max SG segment size\n");
+			return -EINVAL;
+		}
+		cidx = acnt * bcnt;
+	}
+
+	epset->len = dma_length;
+
+	if (direction == DMA_MEM_TO_DEV) {
+		src_bidx = acnt;
+		src_cidx = cidx;
+		dst_bidx = 0;
+		dst_cidx = 0;
+		epset->addr = src_addr;
+	} else if (direction == DMA_DEV_TO_MEM)  {
+		src_bidx = 0;
+		src_cidx = 0;
+		dst_bidx = acnt;
+		dst_cidx = cidx;
+		epset->addr = dst_addr;
+	} else if (direction == DMA_MEM_TO_MEM)  {
+		src_bidx = acnt;
+		src_cidx = cidx;
+		dst_bidx = acnt;
+		dst_cidx = cidx;
+	} else {
+		dev_err(dev, "%s: direction not implemented yet\n", __func__);
+		return -EINVAL;
+	}
+
+	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
+	/* Configure A or AB synchronized transfers */
+	if (absync)
+		param->opt |= SYNCDIM;
+
+	param->src = src_addr;
+	param->dst = dst_addr;
+
+	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
+	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
+
+	param->a_b_cnt = bcnt << 16 | acnt;
+	param->ccnt = ccnt;
+	/*
+	 * Only time when (bcntrld) auto reload is required is for
+	 * A-sync case, and in this case, a requirement of reload value
+	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
+	 * and then later will be populated by edma_execute.
+	 */
+	param->link_bcntrld = 0xffffffff;
+	return absync;
+}
+
+static struct dma_async_tx_descriptor *edma_prep_slave_sg(
+	struct dma_chan *chan, struct scatterlist *sgl,
+	unsigned int sg_len, enum dma_transfer_direction direction,
+	unsigned long tx_flags, void *context)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct device *dev = chan->device->dev;
+	struct edma_desc *edesc;
+	dma_addr_t src_addr = 0, dst_addr = 0;
+	enum dma_slave_buswidth dev_width;
+	u32 burst;
+	struct scatterlist *sg;
+	int i, nslots, ret;
+
+	if (unlikely(!echan || !sgl || !sg_len))
+		return NULL;
+
+	if (direction == DMA_DEV_TO_MEM) {
+		src_addr = echan->cfg.src_addr;
+		dev_width = echan->cfg.src_addr_width;
+		burst = echan->cfg.src_maxburst;
+	} else if (direction == DMA_MEM_TO_DEV) {
+		dst_addr = echan->cfg.dst_addr;
+		dev_width = echan->cfg.dst_addr_width;
+		burst = echan->cfg.dst_maxburst;
+	} else {
+		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
+		return NULL;
+	}
+
+	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
+		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
+		return NULL;
+	}
+
+	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
+	if (!edesc)
+		return NULL;
+
+	edesc->pset_nr = sg_len;
+	edesc->residue = 0;
+	edesc->direction = direction;
+	edesc->echan = echan;
+
+	/* Allocate a PaRAM slot, if needed */
+	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
+
+	for (i = 0; i < nslots; i++) {
+		if (echan->slot[i] < 0) {
+			echan->slot[i] =
+				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
+			if (echan->slot[i] < 0) {
+				kfree(edesc);
+				dev_err(dev, "%s: Failed to allocate slot\n",
+					__func__);
+				return NULL;
+			}
+		}
+	}
+
+	/* Configure PaRAM sets for each SG */
+	for_each_sg(sgl, sg, sg_len, i) {
+		/* Get address for each SG */
+		if (direction == DMA_DEV_TO_MEM)
+			dst_addr = sg_dma_address(sg);
+		else
+			src_addr = sg_dma_address(sg);
+
+		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
+				       dst_addr, burst, dev_width,
+				       sg_dma_len(sg), direction);
+		if (ret < 0) {
+			kfree(edesc);
+			return NULL;
+		}
+
+		edesc->absync = ret;
+		edesc->residue += sg_dma_len(sg);
+
+		if (i == sg_len - 1)
+			/* Enable completion interrupt */
+			edesc->pset[i].param.opt |= TCINTEN;
+		else if (!((i+1) % MAX_NR_SG))
+			/*
+			 * Enable early completion interrupt for the
+			 * intermediateset. In this case the driver will be
+			 * notified when the paRAM set is submitted to TC. This
+			 * will allow more time to set up the next set of slots.
+			 */
+			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
+	}
+	edesc->residue_stat = edesc->residue;
+
+	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+}
+
+static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
+	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
+	size_t len, unsigned long tx_flags)
+{
+	int ret, nslots;
+	struct edma_desc *edesc;
+	struct device *dev = chan->device->dev;
+	struct edma_chan *echan = to_edma_chan(chan);
+	unsigned int width, pset_len, array_size;
+
+	if (unlikely(!echan || !len))
+		return NULL;
+
+	/* Align the array size (acnt block) with the transfer properties */
+	switch (__ffs((src | dest | len))) {
+	case 0:
+		array_size = SZ_32K - 1;
+		break;
+	case 1:
+		array_size = SZ_32K - 2;
+		break;
+	default:
+		array_size = SZ_32K - 4;
+		break;
+	}
+
+	if (len < SZ_64K) {
+		/*
+		 * Transfer size less than 64K can be handled with one paRAM
+		 * slot and with one burst.
+		 * ACNT = length
+		 */
+		width = len;
+		pset_len = len;
+		nslots = 1;
+	} else {
+		/*
+		 * Transfer size bigger than 64K will be handled with maximum of
+		 * two paRAM slots.
+		 * slot1: (full_length / 32767) times 32767 bytes bursts.
+		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
+		 * slot2: the remaining amount of data after slot1.
+		 *	  ACNT = full_length - length1, length2 = ACNT
+		 *
+		 * When the full_length is multibple of 32767 one slot can be
+		 * used to complete the transfer.
+		 */
+		width = array_size;
+		pset_len = rounddown(len, width);
+		/* One slot is enough for lengths multiple of (SZ_32K -1) */
+		if (unlikely(pset_len == len))
+			nslots = 1;
+		else
+			nslots = 2;
+	}
+
+	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
+	if (!edesc)
+		return NULL;
+
+	edesc->pset_nr = nslots;
+	edesc->residue = edesc->residue_stat = len;
+	edesc->direction = DMA_MEM_TO_MEM;
+	edesc->echan = echan;
+
+	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
+			       width, pset_len, DMA_MEM_TO_MEM);
+	if (ret < 0) {
+		kfree(edesc);
+		return NULL;
+	}
+
+	edesc->absync = ret;
+
+	edesc->pset[0].param.opt |= ITCCHEN;
+	if (nslots == 1) {
+		/* Enable transfer complete interrupt */
+		edesc->pset[0].param.opt |= TCINTEN;
+	} else {
+		/* Enable transfer complete chaining for the first slot */
+		edesc->pset[0].param.opt |= TCCHEN;
+
+		if (echan->slot[1] < 0) {
+			echan->slot[1] = edma_alloc_slot(echan->ecc,
+							 EDMA_SLOT_ANY);
+			if (echan->slot[1] < 0) {
+				kfree(edesc);
+				dev_err(dev, "%s: Failed to allocate slot\n",
+					__func__);
+				return NULL;
+			}
+		}
+		dest += pset_len;
+		src += pset_len;
+		pset_len = width = len % array_size;
+
+		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
+				       width, pset_len, DMA_MEM_TO_MEM);
+		if (ret < 0) {
+			kfree(edesc);
+			return NULL;
+		}
+
+		edesc->pset[1].param.opt |= ITCCHEN;
+		edesc->pset[1].param.opt |= TCINTEN;
+	}
+
+	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+}
+
+static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
+	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
+	size_t period_len, enum dma_transfer_direction direction,
+	unsigned long tx_flags)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct device *dev = chan->device->dev;
+	struct edma_desc *edesc;
+	dma_addr_t src_addr, dst_addr;
+	enum dma_slave_buswidth dev_width;
+	bool use_intermediate = false;
+	u32 burst;
+	int i, ret, nslots;
+
+	if (unlikely(!echan || !buf_len || !period_len))
+		return NULL;
+
+	if (direction == DMA_DEV_TO_MEM) {
+		src_addr = echan->cfg.src_addr;
+		dst_addr = buf_addr;
+		dev_width = echan->cfg.src_addr_width;
+		burst = echan->cfg.src_maxburst;
+	} else if (direction == DMA_MEM_TO_DEV) {
+		src_addr = buf_addr;
+		dst_addr = echan->cfg.dst_addr;
+		dev_width = echan->cfg.dst_addr_width;
+		burst = echan->cfg.dst_maxburst;
+	} else {
+		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
+		return NULL;
+	}
+
+	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
+		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
+		return NULL;
+	}
+
+	if (unlikely(buf_len % period_len)) {
+		dev_err(dev, "Period should be multiple of Buffer length\n");
+		return NULL;
+	}
+
+	nslots = (buf_len / period_len) + 1;
+
+	/*
+	 * Cyclic DMA users such as audio cannot tolerate delays introduced
+	 * by cases where the number of periods is more than the maximum
+	 * number of SGs the EDMA driver can handle at a time. For DMA types
+	 * such as Slave SGs, such delays are tolerable and synchronized,
+	 * but the synchronization is difficult to achieve with Cyclic and
+	 * cannot be guaranteed, so we error out early.
+	 */
+	if (nslots > MAX_NR_SG) {
+		/*
+		 * If the burst and period sizes are the same, we can put
+		 * the full buffer into a single period and activate
+		 * intermediate interrupts. This will produce interrupts
+		 * after each burst, which is also after each desired period.
+		 */
+		if (burst == period_len) {
+			period_len = buf_len;
+			nslots = 2;
+			use_intermediate = true;
+		} else {
+			return NULL;
+		}
+	}
+
+	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
+	if (!edesc)
+		return NULL;
+
+	edesc->cyclic = 1;
+	edesc->pset_nr = nslots;
+	edesc->residue = edesc->residue_stat = buf_len;
+	edesc->direction = direction;
+	edesc->echan = echan;
+
+	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
+		__func__, echan->ch_num, nslots, period_len, buf_len);
+
+	for (i = 0; i < nslots; i++) {
+		/* Allocate a PaRAM slot, if needed */
+		if (echan->slot[i] < 0) {
+			echan->slot[i] =
+				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
+			if (echan->slot[i] < 0) {
+				kfree(edesc);
+				dev_err(dev, "%s: Failed to allocate slot\n",
+					__func__);
+				return NULL;
+			}
+		}
+
+		if (i == nslots - 1) {
+			memcpy(&edesc->pset[i], &edesc->pset[0],
+			       sizeof(edesc->pset[0]));
+			break;
+		}
+
+		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
+				       dst_addr, burst, dev_width, period_len,
+				       direction);
+		if (ret < 0) {
+			kfree(edesc);
+			return NULL;
+		}
+
+		if (direction == DMA_DEV_TO_MEM)
+			dst_addr += period_len;
+		else
+			src_addr += period_len;
+
+		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
+		dev_vdbg(dev,
+			"\n pset[%d]:\n"
+			"  chnum\t%d\n"
+			"  slot\t%d\n"
+			"  opt\t%08x\n"
+			"  src\t%08x\n"
+			"  dst\t%08x\n"
+			"  abcnt\t%08x\n"
+			"  ccnt\t%08x\n"
+			"  bidx\t%08x\n"
+			"  cidx\t%08x\n"
+			"  lkrld\t%08x\n",
+			i, echan->ch_num, echan->slot[i],
+			edesc->pset[i].param.opt,
+			edesc->pset[i].param.src,
+			edesc->pset[i].param.dst,
+			edesc->pset[i].param.a_b_cnt,
+			edesc->pset[i].param.ccnt,
+			edesc->pset[i].param.src_dst_bidx,
+			edesc->pset[i].param.src_dst_cidx,
+			edesc->pset[i].param.link_bcntrld);
+
+		edesc->absync = ret;
+
+		/*
+		 * Enable period interrupt only if it is requested
+		 */
+		if (tx_flags & DMA_PREP_INTERRUPT) {
+			edesc->pset[i].param.opt |= TCINTEN;
+
+			/* Also enable intermediate interrupts if necessary */
+			if (use_intermediate)
+				edesc->pset[i].param.opt |= ITCINTEN;
+		}
+	}
+
+	/* Place the cyclic channel to highest priority queue */
+	if (!echan->tc)
+		edma_assign_channel_eventq(echan, EVENTQ_0);
+
+	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+}
+
+static void edma_completion_handler(struct edma_chan *echan)
+{
+	struct device *dev = echan->vchan.chan.device->dev;
+	struct edma_desc *edesc;
+
+	spin_lock(&echan->vchan.lock);
+	edesc = echan->edesc;
+	if (edesc) {
+		if (edesc->cyclic) {
+			vchan_cyclic_callback(&edesc->vdesc);
+			spin_unlock(&echan->vchan.lock);
+			return;
+		} else if (edesc->processed == edesc->pset_nr) {
+			edesc->residue = 0;
+			edma_stop(echan);
+			vchan_cookie_complete(&edesc->vdesc);
+			echan->edesc = NULL;
+
+			dev_dbg(dev, "Transfer completed on channel %d\n",
+				echan->ch_num);
+		} else {
+			dev_dbg(dev, "Sub transfer completed on channel %d\n",
+				echan->ch_num);
+
+			edma_pause(echan);
+
+			/* Update statistics for tx_status */
+			edesc->residue -= edesc->sg_len;
+			edesc->residue_stat = edesc->residue;
+			edesc->processed_stat = edesc->processed;
+		}
+		edma_execute(echan);
+	}
+
+	spin_unlock(&echan->vchan.lock);
+}
+
+/* eDMA interrupt handler */
+static irqreturn_t dma_irq_handler(int irq, void *data)
+{
+	struct edma_cc *ecc = data;
+	int ctlr;
+	u32 sh_ier;
+	u32 sh_ipr;
+	u32 bank;
+
+	ctlr = ecc->id;
+	if (ctlr < 0)
+		return IRQ_NONE;
+
+	dev_vdbg(ecc->dev, "dma_irq_handler\n");
+
+	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
+	if (!sh_ipr) {
+		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
+		if (!sh_ipr)
+			return IRQ_NONE;
+		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
+		bank = 1;
+	} else {
+		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
+		bank = 0;
+	}
+
+	do {
+		u32 slot;
+		u32 channel;
+
+		slot = __ffs(sh_ipr);
+		sh_ipr &= ~(BIT(slot));
+
+		if (sh_ier & BIT(slot)) {
+			channel = (bank << 5) | slot;
+			/* Clear the corresponding IPR bits */
+			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
+			edma_completion_handler(&ecc->slave_chans[channel]);
+		}
+	} while (sh_ipr);
+
+	edma_shadow0_write(ecc, SH_IEVAL, 1);
+	return IRQ_HANDLED;
+}
+
+static void edma_error_handler(struct edma_chan *echan)
+{
+	struct edma_cc *ecc = echan->ecc;
+	struct device *dev = echan->vchan.chan.device->dev;
+	struct edmacc_param p;
+	int err;
+
+	if (!echan->edesc)
+		return;
+
+	spin_lock(&echan->vchan.lock);
+
+	err = edma_read_slot(ecc, echan->slot[0], &p);
+
+	/*
+	 * Issue later based on missed flag which will be sure
+	 * to happen as:
+	 * (1) we finished transmitting an intermediate slot and
+	 *     edma_execute is coming up.
+	 * (2) or we finished current transfer and issue will
+	 *     call edma_execute.
+	 *
+	 * Important note: issuing can be dangerous here and
+	 * lead to some nasty recursion when we are in a NULL
+	 * slot. So we avoid doing so and set the missed flag.
+	 */
+	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
+		dev_dbg(dev, "Error on null slot, setting miss\n");
+		echan->missed = 1;
+	} else {
+		/*
+		 * The slot is already programmed but the event got
+		 * missed, so its safe to issue it here.
+		 */
+		dev_dbg(dev, "Missed event, TRIGGERING\n");
+		edma_clean_channel(echan);
+		edma_stop(echan);
+		edma_start(echan);
+		edma_trigger_channel(echan);
+	}
+	spin_unlock(&echan->vchan.lock);
+}
+
+static inline bool edma_error_pending(struct edma_cc *ecc)
+{
+	if (edma_read_array(ecc, EDMA_EMR, 0) ||
+	    edma_read_array(ecc, EDMA_EMR, 1) ||
+	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
+		return true;
+
+	return false;
+}
+
+/* eDMA error interrupt handler */
+static irqreturn_t dma_ccerr_handler(int irq, void *data)
+{
+	struct edma_cc *ecc = data;
+	int i, j;
+	int ctlr;
+	unsigned int cnt = 0;
+	unsigned int val;
+
+	ctlr = ecc->id;
+	if (ctlr < 0)
+		return IRQ_NONE;
+
+	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
+
+	if (!edma_error_pending(ecc)) {
+		/*
+		 * The registers indicate no pending error event but the irq
+		 * handler has been called.
+		 * Ask eDMA to re-evaluate the error registers.
+		 */
+		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
+			__func__);
+		edma_write(ecc, EDMA_EEVAL, 1);
+		return IRQ_NONE;
+	}
+
+	while (1) {
+		/* Event missed register(s) */
+		for (j = 0; j < 2; j++) {
+			unsigned long emr;
+
+			val = edma_read_array(ecc, EDMA_EMR, j);
+			if (!val)
+				continue;
+
+			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
+			emr = val;
+			for (i = find_next_bit(&emr, 32, 0); i < 32;
+			     i = find_next_bit(&emr, 32, i + 1)) {
+				int k = (j << 5) + i;
+
+				/* Clear the corresponding EMR bits */
+				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
+				/* Clear any SER */
+				edma_shadow0_write_array(ecc, SH_SECR, j,
+							 BIT(i));
+				edma_error_handler(&ecc->slave_chans[k]);
+			}
+		}
+
+		val = edma_read(ecc, EDMA_QEMR);
+		if (val) {
+			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
+			/* Not reported, just clear the interrupt reason. */
+			edma_write(ecc, EDMA_QEMCR, val);
+			edma_shadow0_write(ecc, SH_QSECR, val);
+		}
+
+		val = edma_read(ecc, EDMA_CCERR);
+		if (val) {
+			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
+			/* Not reported, just clear the interrupt reason. */
+			edma_write(ecc, EDMA_CCERRCLR, val);
+		}
+
+		if (!edma_error_pending(ecc))
+			break;
+		cnt++;
+		if (cnt > 10)
+			break;
+	}
+	edma_write(ecc, EDMA_EEVAL, 1);
+	return IRQ_HANDLED;
+}
+
+/* Alloc channel resources */
+static int edma_alloc_chan_resources(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct edma_cc *ecc = echan->ecc;
+	struct device *dev = ecc->dev;
+	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
+	int ret;
+
+	if (echan->tc) {
+		eventq_no = echan->tc->id;
+	} else if (ecc->tc_list) {
+		/* memcpy channel */
+		echan->tc = &ecc->tc_list[ecc->info->default_queue];
+		eventq_no = echan->tc->id;
+	}
+
+	ret = edma_alloc_channel(echan, eventq_no);
+	if (ret)
+		return ret;
+
+	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
+	if (echan->slot[0] < 0) {
+		dev_err(dev, "Entry slot allocation failed for channel %u\n",
+			EDMA_CHAN_SLOT(echan->ch_num));
+		ret = echan->slot[0];
+		goto err_slot;
+	}
+
+	/* Set up channel -> slot mapping for the entry slot */
+	edma_set_chmap(echan, echan->slot[0]);
+	echan->alloced = true;
+
+	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
+		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
+		echan->hw_triggered ? "HW" : "SW");
+
+	return 0;
+
+err_slot:
+	edma_free_channel(echan);
+	return ret;
+}
+
+/* Free channel resources */
+static void edma_free_chan_resources(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct device *dev = echan->ecc->dev;
+	int i;
+
+	/* Terminate transfers */
+	edma_stop(echan);
+
+	vchan_free_chan_resources(&echan->vchan);
+
+	/* Free EDMA PaRAM slots */
+	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
+		if (echan->slot[i] >= 0) {
+			edma_free_slot(echan->ecc, echan->slot[i]);
+			echan->slot[i] = -1;
+		}
+	}
+
+	/* Set entry slot to the dummy slot */
+	edma_set_chmap(echan, echan->ecc->dummy_slot);
+
+	/* Free EDMA channel */
+	if (echan->alloced) {
+		edma_free_channel(echan);
+		echan->alloced = false;
+	}
+
+	echan->tc = NULL;
+	echan->hw_triggered = false;
+
+	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
+		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
+}
+
+/* Send pending descriptor to hardware */
+static void edma_issue_pending(struct dma_chan *chan)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	unsigned long flags;
+
+	spin_lock_irqsave(&echan->vchan.lock, flags);
+	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
+		edma_execute(echan);
+	spin_unlock_irqrestore(&echan->vchan.lock, flags);
+}
+
+/*
+ * This limit exists to avoid a possible infinite loop when waiting for proof
+ * that a particular transfer is completed. This limit can be hit if there
+ * are large bursts to/from slow devices or the CPU is never able to catch
+ * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
+ * RX-FIFO, as many as 55 loops have been seen.
+ */
+#define EDMA_MAX_TR_WAIT_LOOPS 1000
+
+static u32 edma_residue(struct edma_desc *edesc)
+{
+	bool dst = edesc->direction == DMA_DEV_TO_MEM;
+	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
+	struct edma_chan *echan = edesc->echan;
+	struct edma_pset *pset = edesc->pset;
+	dma_addr_t done, pos;
+	int i;
+
+	/*
+	 * We always read the dst/src position from the first RamPar
+	 * pset. That's the one which is active now.
+	 */
+	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
+
+	/*
+	 * "pos" may represent a transfer request that is still being
+	 * processed by the EDMACC or EDMATC. We will busy wait until
+	 * any one of the situations occurs:
+	 *   1. the DMA hardware is idle
+	 *   2. a new transfer request is setup
+	 *   3. we hit the loop limit
+	 */
+	while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
+		/* check if a new transfer request is setup */
+		if (edma_get_position(echan->ecc,
+				      echan->slot[0], dst) != pos) {
+			break;
+		}
+
+		if (!--loop_count) {
+			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
+				"%s: timeout waiting for PaRAM update\n",
+				__func__);
+			break;
+		}
+
+		cpu_relax();
+	}
+
+	/*
+	 * Cyclic is simple. Just subtract pset[0].addr from pos.
+	 *
+	 * We never update edesc->residue in the cyclic case, so we
+	 * can tell the remaining room to the end of the circular
+	 * buffer.
+	 */
+	if (edesc->cyclic) {
+		done = pos - pset->addr;
+		edesc->residue_stat = edesc->residue - done;
+		return edesc->residue_stat;
+	}
+
+	/*
+	 * For SG operation we catch up with the last processed
+	 * status.
+	 */
+	pset += edesc->processed_stat;
+
+	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
+		/*
+		 * If we are inside this pset address range, we know
+		 * this is the active one. Get the current delta and
+		 * stop walking the psets.
+		 */
+		if (pos >= pset->addr && pos < pset->addr + pset->len)
+			return edesc->residue_stat - (pos - pset->addr);
+
+		/* Otherwise mark it done and update residue_stat. */
+		edesc->processed_stat++;
+		edesc->residue_stat -= pset->len;
+	}
+	return edesc->residue_stat;
+}
+
+/* Check request completion status */
+static enum dma_status edma_tx_status(struct dma_chan *chan,
+				      dma_cookie_t cookie,
+				      struct dma_tx_state *txstate)
+{
+	struct edma_chan *echan = to_edma_chan(chan);
+	struct virt_dma_desc *vdesc;
+	enum dma_status ret;
+	unsigned long flags;
+
+	ret = dma_cookie_status(chan, cookie, txstate);
+	if (ret == DMA_COMPLETE || !txstate)
+		return ret;
+
+	spin_lock_irqsave(&echan->vchan.lock, flags);
+	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
+		txstate->residue = edma_residue(echan->edesc);
+	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
+		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
+	spin_unlock_irqrestore(&echan->vchan.lock, flags);
+
+	return ret;
+}
+
+static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
+{
+	if (!memcpy_channels)
+		return false;
+	while (*memcpy_channels != -1) {
+		if (*memcpy_channels == ch_num)
+			return true;
+		memcpy_channels++;
+	}
+	return false;
+}
+
+#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
+				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
+				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
+				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
+
+static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
+{
+	struct dma_device *s_ddev = &ecc->dma_slave;
+	struct dma_device *m_ddev = NULL;
+	s32 *memcpy_channels = ecc->info->memcpy_channels;
+	int i, j;
+
+	dma_cap_zero(s_ddev->cap_mask);
+	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
+	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
+	if (ecc->legacy_mode && !memcpy_channels) {
+		dev_warn(ecc->dev,
+			 "Legacy memcpy is enabled, things might not work\n");
+
+		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
+		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
+		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
+	}
+
+	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
+	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
+	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
+	s_ddev->device_free_chan_resources = edma_free_chan_resources;
+	s_ddev->device_issue_pending = edma_issue_pending;
+	s_ddev->device_tx_status = edma_tx_status;
+	s_ddev->device_config = edma_slave_config;
+	s_ddev->device_pause = edma_dma_pause;
+	s_ddev->device_resume = edma_dma_resume;
+	s_ddev->device_terminate_all = edma_terminate_all;
+	s_ddev->device_synchronize = edma_synchronize;
+
+	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
+	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
+	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
+	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
+
+	s_ddev->dev = ecc->dev;
+	INIT_LIST_HEAD(&s_ddev->channels);
+
+	if (memcpy_channels) {
+		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
+		if (!m_ddev) {
+			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
+			memcpy_channels = NULL;
+			goto ch_setup;
+		}
+		ecc->dma_memcpy = m_ddev;
+
+		dma_cap_zero(m_ddev->cap_mask);
+		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
+
+		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
+		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
+		m_ddev->device_free_chan_resources = edma_free_chan_resources;
+		m_ddev->device_issue_pending = edma_issue_pending;
+		m_ddev->device_tx_status = edma_tx_status;
+		m_ddev->device_config = edma_slave_config;
+		m_ddev->device_pause = edma_dma_pause;
+		m_ddev->device_resume = edma_dma_resume;
+		m_ddev->device_terminate_all = edma_terminate_all;
+		m_ddev->device_synchronize = edma_synchronize;
+
+		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
+		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
+		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
+		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+
+		m_ddev->dev = ecc->dev;
+		INIT_LIST_HEAD(&m_ddev->channels);
+	} else if (!ecc->legacy_mode) {
+		dev_info(ecc->dev, "memcpy is disabled\n");
+	}
+
+ch_setup:
+	for (i = 0; i < ecc->num_channels; i++) {
+		struct edma_chan *echan = &ecc->slave_chans[i];
+		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
+		echan->ecc = ecc;
+		echan->vchan.desc_free = edma_desc_free;
+
+		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
+			vchan_init(&echan->vchan, m_ddev);
+		else
+			vchan_init(&echan->vchan, s_ddev);
+
+		INIT_LIST_HEAD(&echan->node);
+		for (j = 0; j < EDMA_MAX_SLOTS; j++)
+			echan->slot[j] = -1;
+	}
+}
+
+static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
+			      struct edma_cc *ecc)
+{
+	int i;
+	u32 value, cccfg;
+	s8 (*queue_priority_map)[2];
+
+	/* Decode the eDMA3 configuration from CCCFG register */
+	cccfg = edma_read(ecc, EDMA_CCCFG);
+
+	value = GET_NUM_REGN(cccfg);
+	ecc->num_region = BIT(value);
+
+	value = GET_NUM_DMACH(cccfg);
+	ecc->num_channels = BIT(value + 1);
+
+	value = GET_NUM_QDMACH(cccfg);
+	ecc->num_qchannels = value * 2;
+
+	value = GET_NUM_PAENTRY(cccfg);
+	ecc->num_slots = BIT(value + 4);
+
+	value = GET_NUM_EVQUE(cccfg);
+	ecc->num_tc = value + 1;
+
+	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
+
+	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
+	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
+	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
+	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
+	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
+	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
+	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
+
+	/* Nothing need to be done if queue priority is provided */
+	if (pdata->queue_priority_mapping)
+		return 0;
+
+	/*
+	 * Configure TC/queue priority as follows:
+	 * Q0 - priority 0
+	 * Q1 - priority 1
+	 * Q2 - priority 2
+	 * ...
+	 * The meaning of priority numbers: 0 highest priority, 7 lowest
+	 * priority. So Q0 is the highest priority queue and the last queue has
+	 * the lowest priority.
+	 */
+	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
+					  GFP_KERNEL);
+	if (!queue_priority_map)
+		return -ENOMEM;
+
+	for (i = 0; i < ecc->num_tc; i++) {
+		queue_priority_map[i][0] = i;
+		queue_priority_map[i][1] = i;
+	}
+	queue_priority_map[i][0] = -1;
+	queue_priority_map[i][1] = -1;
+
+	pdata->queue_priority_mapping = queue_priority_map;
+	/* Default queue has the lowest priority */
+	pdata->default_queue = i - 1;
+
+	return 0;
+}
+
+#if IS_ENABLED(CONFIG_OF)
+static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
+			       size_t sz)
+{
+	const char pname[] = "ti,edma-xbar-event-map";
+	struct resource res;
+	void __iomem *xbar;
+	s16 (*xbar_chans)[2];
+	size_t nelm = sz / sizeof(s16);
+	u32 shift, offset, mux;
+	int ret, i;
+
+	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
+	if (!xbar_chans)
+		return -ENOMEM;
+
+	ret = of_address_to_resource(dev->of_node, 1, &res);
+	if (ret)
+		return -ENOMEM;
+
+	xbar = devm_ioremap(dev, res.start, resource_size(&res));
+	if (!xbar)
+		return -ENOMEM;
+
+	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
+					 nelm);
+	if (ret)
+		return -EIO;
+
+	/* Invalidate last entry for the other user of this mess */
+	nelm >>= 1;
+	xbar_chans[nelm][0] = -1;
+	xbar_chans[nelm][1] = -1;
+
+	for (i = 0; i < nelm; i++) {
+		shift = (xbar_chans[i][1] & 0x03) << 3;
+		offset = xbar_chans[i][1] & 0xfffffffc;
+		mux = readl(xbar + offset);
+		mux &= ~(0xff << shift);
+		mux |= xbar_chans[i][0] << shift;
+		writel(mux, (xbar + offset));
+	}
+
+	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
+	return 0;
+}
+
+static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
+						     bool legacy_mode)
+{
+	struct edma_soc_info *info;
+	struct property *prop;
+	int sz, ret;
+
+	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
+	if (!info)
+		return ERR_PTR(-ENOMEM);
+
+	if (legacy_mode) {
+		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
+					&sz);
+		if (prop) {
+			ret = edma_xbar_event_map(dev, info, sz);
+			if (ret)
+				return ERR_PTR(ret);
+		}
+		return info;
+	}
+
+	/* Get the list of channels allocated to be used for memcpy */
+	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
+	if (prop) {
+		const char pname[] = "ti,edma-memcpy-channels";
+		size_t nelm = sz / sizeof(s32);
+		s32 *memcpy_ch;
+
+		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
+					 GFP_KERNEL);
+		if (!memcpy_ch)
+			return ERR_PTR(-ENOMEM);
+
+		ret = of_property_read_u32_array(dev->of_node, pname,
+						 (u32 *)memcpy_ch, nelm);
+		if (ret)
+			return ERR_PTR(ret);
+
+		memcpy_ch[nelm] = -1;
+		info->memcpy_channels = memcpy_ch;
+	}
+
+	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
+				&sz);
+	if (prop) {
+		const char pname[] = "ti,edma-reserved-slot-ranges";
+		u32 (*tmp)[2];
+		s16 (*rsv_slots)[2];
+		size_t nelm = sz / sizeof(*tmp);
+		struct edma_rsv_info *rsv_info;
+		int i;
+
+		if (!nelm)
+			return info;
+
+		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
+		if (!tmp)
+			return ERR_PTR(-ENOMEM);
+
+		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
+		if (!rsv_info) {
+			kfree(tmp);
+			return ERR_PTR(-ENOMEM);
+		}
+
+		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
+					 GFP_KERNEL);
+		if (!rsv_slots) {
+			kfree(tmp);
+			return ERR_PTR(-ENOMEM);
+		}
+
+		ret = of_property_read_u32_array(dev->of_node, pname,
+						 (u32 *)tmp, nelm * 2);
+		if (ret) {
+			kfree(tmp);
+			return ERR_PTR(ret);
+		}
+
+		for (i = 0; i < nelm; i++) {
+			rsv_slots[i][0] = tmp[i][0];
+			rsv_slots[i][1] = tmp[i][1];
+		}
+		rsv_slots[nelm][0] = -1;
+		rsv_slots[nelm][1] = -1;
+
+		info->rsv = rsv_info;
+		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
+
+		kfree(tmp);
+	}
+
+	return info;
+}
+
+static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
+				      struct of_dma *ofdma)
+{
+	struct edma_cc *ecc = ofdma->of_dma_data;
+	struct dma_chan *chan = NULL;
+	struct edma_chan *echan;
+	int i;
+
+	if (!ecc || dma_spec->args_count < 1)
+		return NULL;
+
+	for (i = 0; i < ecc->num_channels; i++) {
+		echan = &ecc->slave_chans[i];
+		if (echan->ch_num == dma_spec->args[0]) {
+			chan = &echan->vchan.chan;
+			break;
+		}
+	}
+
+	if (!chan)
+		return NULL;
+
+	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
+		goto out;
+
+	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
+	    dma_spec->args[1] < echan->ecc->num_tc) {
+		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
+		goto out;
+	}
+
+	return NULL;
+out:
+	/* The channel is going to be used as HW synchronized */
+	echan->hw_triggered = true;
+	return dma_get_slave_channel(chan);
+}
+#else
+static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
+						     bool legacy_mode)
+{
+	return ERR_PTR(-EINVAL);
+}
+
+static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
+				      struct of_dma *ofdma)
+{
+	return NULL;
+}
+#endif
+
+static int edma_probe(struct platform_device *pdev)
+{
+	struct edma_soc_info	*info = pdev->dev.platform_data;
+	s8			(*queue_priority_mapping)[2];
+	int			i, off, ln;
+	const s16		(*rsv_slots)[2];
+	const s16		(*xbar_chans)[2];
+	int			irq;
+	char			*irq_name;
+	struct resource		*mem;
+	struct device_node	*node = pdev->dev.of_node;
+	struct device		*dev = &pdev->dev;
+	struct edma_cc		*ecc;
+	bool			legacy_mode = true;
+	int ret;
+
+	if (node) {
+		const struct of_device_id *match;
+
+		match = of_match_node(edma_of_ids, node);
+		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
+			legacy_mode = false;
+
+		info = edma_setup_info_from_dt(dev, legacy_mode);
+		if (IS_ERR(info)) {
+			dev_err(dev, "failed to get DT data\n");
+			return PTR_ERR(info);
+		}
+	}
+
+	if (!info)
+		return -ENODEV;
+
+	pm_runtime_enable(dev);
+	ret = pm_runtime_get_sync(dev);
+	if (ret < 0) {
+		dev_err(dev, "pm_runtime_get_sync() failed\n");
+		return ret;
+	}
+
+	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
+	if (ret)
+		return ret;
+
+	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
+	if (!ecc)
+		return -ENOMEM;
+
+	ecc->dev = dev;
+	ecc->id = pdev->id;
+	ecc->legacy_mode = legacy_mode;
+	/* When booting with DT the pdev->id is -1 */
+	if (ecc->id < 0)
+		ecc->id = 0;
+
+	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
+	if (!mem) {
+		dev_dbg(dev, "mem resource not found, using index 0\n");
+		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+		if (!mem) {
+			dev_err(dev, "no mem resource?\n");
+			return -ENODEV;
+		}
+	}
+	ecc->base = devm_ioremap_resource(dev, mem);
+	if (IS_ERR(ecc->base))
+		return PTR_ERR(ecc->base);
+
+	platform_set_drvdata(pdev, ecc);
+
+	/* Get eDMA3 configuration from IP */
+	ret = edma_setup_from_hw(dev, info, ecc);
+	if (ret)
+		return ret;
+
+	/* Allocate memory based on the information we got from the IP */
+	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
+					sizeof(*ecc->slave_chans), GFP_KERNEL);
+	if (!ecc->slave_chans)
+		return -ENOMEM;
+
+	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
+				       sizeof(unsigned long), GFP_KERNEL);
+	if (!ecc->slot_inuse)
+		return -ENOMEM;
+
+	ecc->default_queue = info->default_queue;
+
+	for (i = 0; i < ecc->num_slots; i++)
+		edma_write_slot(ecc, i, &dummy_paramset);
+
+	if (info->rsv) {
+		/* Set the reserved slots in inuse list */
+		rsv_slots = info->rsv->rsv_slots;
+		if (rsv_slots) {
+			for (i = 0; rsv_slots[i][0] != -1; i++) {
+				off = rsv_slots[i][0];
+				ln = rsv_slots[i][1];
+				edma_set_bits(off, ln, ecc->slot_inuse);
+			}
+		}
+	}
+
+	/* Clear the xbar mapped channels in unused list */
+	xbar_chans = info->xbar_chans;
+	if (xbar_chans) {
+		for (i = 0; xbar_chans[i][1] != -1; i++) {
+			off = xbar_chans[i][1];
+		}
+	}
+
+	irq = platform_get_irq_byname(pdev, "edma3_ccint");
+	if (irq < 0 && node)
+		irq = irq_of_parse_and_map(node, 0);
+
+	if (irq >= 0) {
+		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
+					  dev_name(dev));
+		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
+				       ecc);
+		if (ret) {
+			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
+			return ret;
+		}
+		ecc->ccint = irq;
+	}
+
+	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
+	if (irq < 0 && node)
+		irq = irq_of_parse_and_map(node, 2);
+
+	if (irq >= 0) {
+		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
+					  dev_name(dev));
+		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
+				       ecc);
+		if (ret) {
+			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
+			return ret;
+		}
+		ecc->ccerrint = irq;
+	}
+
+	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
+	if (ecc->dummy_slot < 0) {
+		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
+		return ecc->dummy_slot;
+	}
+
+	queue_priority_mapping = info->queue_priority_mapping;
+
+	if (!ecc->legacy_mode) {
+		int lowest_priority = 0;
+		struct of_phandle_args tc_args;
+
+		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
+					    sizeof(*ecc->tc_list), GFP_KERNEL);
+		if (!ecc->tc_list)
+			return -ENOMEM;
+
+		for (i = 0;; i++) {
+			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
+							       1, i, &tc_args);
+			if (ret || i == ecc->num_tc)
+				break;
+
+			ecc->tc_list[i].node = tc_args.np;
+			ecc->tc_list[i].id = i;
+			queue_priority_mapping[i][1] = tc_args.args[0];
+			if (queue_priority_mapping[i][1] > lowest_priority) {
+				lowest_priority = queue_priority_mapping[i][1];
+				info->default_queue = i;
+			}
+		}
+	}
+
+	/* Event queue priority mapping */
+	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
+		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
+					      queue_priority_mapping[i][1]);
+
+	for (i = 0; i < ecc->num_region; i++) {
+		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
+		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
+		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
+	}
+	ecc->info = info;
+
+	/* Init the dma device and channels */
+	edma_dma_init(ecc, legacy_mode);
+
+	for (i = 0; i < ecc->num_channels; i++) {
+		/* Assign all channels to the default queue */
+		edma_assign_channel_eventq(&ecc->slave_chans[i],
+					   info->default_queue);
+		/* Set entry slot to the dummy slot */
+		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
+	}
+
+	ecc->dma_slave.filter.map = info->slave_map;
+	ecc->dma_slave.filter.mapcnt = info->slavecnt;
+	ecc->dma_slave.filter.fn = edma_filter_fn;
+
+	ret = dma_async_device_register(&ecc->dma_slave);
+	if (ret) {
+		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
+		goto err_reg1;
+	}
+
+	if (ecc->dma_memcpy) {
+		ret = dma_async_device_register(ecc->dma_memcpy);
+		if (ret) {
+			dev_err(dev, "memcpy ddev registration failed (%d)\n",
+				ret);
+			dma_async_device_unregister(&ecc->dma_slave);
+			goto err_reg1;
+		}
+	}
+
+	if (node)
+		of_dma_controller_register(node, of_edma_xlate, ecc);
+
+	dev_info(dev, "TI EDMA DMA engine driver\n");
+
+	return 0;
+
+err_reg1:
+	edma_free_slot(ecc, ecc->dummy_slot);
+	return ret;
+}
+
+static void edma_cleanupp_vchan(struct dma_device *dmadev)
+{
+	struct edma_chan *echan, *_echan;
+
+	list_for_each_entry_safe(echan, _echan,
+			&dmadev->channels, vchan.chan.device_node) {
+		list_del(&echan->vchan.chan.device_node);
+		tasklet_kill(&echan->vchan.task);
+	}
+}
+
+static int edma_remove(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct edma_cc *ecc = dev_get_drvdata(dev);
+
+	devm_free_irq(dev, ecc->ccint, ecc);
+	devm_free_irq(dev, ecc->ccerrint, ecc);
+
+	edma_cleanupp_vchan(&ecc->dma_slave);
+
+	if (dev->of_node)
+		of_dma_controller_free(dev->of_node);
+	dma_async_device_unregister(&ecc->dma_slave);
+	if (ecc->dma_memcpy)
+		dma_async_device_unregister(ecc->dma_memcpy);
+	edma_free_slot(ecc, ecc->dummy_slot);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int edma_pm_suspend(struct device *dev)
+{
+	struct edma_cc *ecc = dev_get_drvdata(dev);
+	struct edma_chan *echan = ecc->slave_chans;
+	int i;
+
+	for (i = 0; i < ecc->num_channels; i++) {
+		if (echan[i].alloced)
+			edma_setup_interrupt(&echan[i], false);
+	}
+
+	return 0;
+}
+
+static int edma_pm_resume(struct device *dev)
+{
+	struct edma_cc *ecc = dev_get_drvdata(dev);
+	struct edma_chan *echan = ecc->slave_chans;
+	int i;
+	s8 (*queue_priority_mapping)[2];
+
+	/* re initialize dummy slot to dummy param set */
+	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
+
+	queue_priority_mapping = ecc->info->queue_priority_mapping;
+
+	/* Event queue priority mapping */
+	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
+		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
+					      queue_priority_mapping[i][1]);
+
+	for (i = 0; i < ecc->num_channels; i++) {
+		if (echan[i].alloced) {
+			/* ensure access through shadow region 0 */
+			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
+				       BIT(i & 0x1f));
+
+			edma_setup_interrupt(&echan[i], true);
+
+			/* Set up channel -> slot mapping for the entry slot */
+			edma_set_chmap(&echan[i], echan[i].slot[0]);
+		}
+	}
+
+	return 0;
+}
+#endif
+
+static const struct dev_pm_ops edma_pm_ops = {
+	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
+};
+
+static struct platform_driver edma_driver = {
+	.probe		= edma_probe,
+	.remove		= edma_remove,
+	.driver = {
+		.name	= "edma",
+		.pm	= &edma_pm_ops,
+		.of_match_table = edma_of_ids,
+	},
+};
+
+static int edma_tptc_probe(struct platform_device *pdev)
+{
+	pm_runtime_enable(&pdev->dev);
+	return pm_runtime_get_sync(&pdev->dev);
+}
+
+static struct platform_driver edma_tptc_driver = {
+	.probe		= edma_tptc_probe,
+	.driver = {
+		.name	= "edma3-tptc",
+		.of_match_table = edma_tptc_of_ids,
+	},
+};
+
+bool edma_filter_fn(struct dma_chan *chan, void *param)
+{
+	bool match = false;
+
+	if (chan->device->dev->driver == &edma_driver.driver) {
+		struct edma_chan *echan = to_edma_chan(chan);
+		unsigned ch_req = *(unsigned *)param;
+		if (ch_req == echan->ch_num) {
+			/* The channel is going to be used as HW synchronized */
+			echan->hw_triggered = true;
+			match = true;
+		}
+	}
+	return match;
+}
+EXPORT_SYMBOL(edma_filter_fn);
+
+static int edma_init(void)
+{
+	int ret;
+
+	ret = platform_driver_register(&edma_tptc_driver);
+	if (ret)
+		return ret;
+
+	return platform_driver_register(&edma_driver);
+}
+subsys_initcall(edma_init);
+
+static void __exit edma_exit(void)
+{
+	platform_driver_unregister(&edma_driver);
+	platform_driver_unregister(&edma_tptc_driver);
+}
+module_exit(edma_exit);
+
+MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
+MODULE_DESCRIPTION("TI EDMA DMA engine driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/dma/ti/omap-dma.c b/drivers/dma/ti/omap-dma.c
new file mode 100644
index 0000000..a4a931d
--- /dev/null
+++ b/drivers/dma/ti/omap-dma.c
@@ -0,0 +1,1672 @@
+/*
+ * OMAP DMAengine support
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/delay.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmapool.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/omap-dma.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/of_dma.h>
+#include <linux/of_device.h>
+
+#include "../virt-dma.h"
+
+#define OMAP_SDMA_REQUESTS	127
+#define OMAP_SDMA_CHANNELS	32
+
+struct omap_dmadev {
+	struct dma_device ddev;
+	spinlock_t lock;
+	void __iomem *base;
+	const struct omap_dma_reg *reg_map;
+	struct omap_system_dma_plat_info *plat;
+	bool legacy;
+	bool ll123_supported;
+	struct dma_pool *desc_pool;
+	unsigned dma_requests;
+	spinlock_t irq_lock;
+	uint32_t irq_enable_mask;
+	struct omap_chan **lch_map;
+};
+
+struct omap_chan {
+	struct virt_dma_chan vc;
+	void __iomem *channel_base;
+	const struct omap_dma_reg *reg_map;
+	uint32_t ccr;
+
+	struct dma_slave_config	cfg;
+	unsigned dma_sig;
+	bool cyclic;
+	bool paused;
+	bool running;
+
+	int dma_ch;
+	struct omap_desc *desc;
+	unsigned sgidx;
+};
+
+#define DESC_NXT_SV_REFRESH	(0x1 << 24)
+#define DESC_NXT_SV_REUSE	(0x2 << 24)
+#define DESC_NXT_DV_REFRESH	(0x1 << 26)
+#define DESC_NXT_DV_REUSE	(0x2 << 26)
+#define DESC_NTYPE_TYPE2	(0x2 << 29)
+
+/* Type 2 descriptor with Source or Destination address update */
+struct omap_type2_desc {
+	uint32_t next_desc;
+	uint32_t en;
+	uint32_t addr; /* src or dst */
+	uint16_t fn;
+	uint16_t cicr;
+	int16_t cdei;
+	int16_t csei;
+	int32_t cdfi;
+	int32_t csfi;
+} __packed;
+
+struct omap_sg {
+	dma_addr_t addr;
+	uint32_t en;		/* number of elements (24-bit) */
+	uint32_t fn;		/* number of frames (16-bit) */
+	int32_t fi;		/* for double indexing */
+	int16_t ei;		/* for double indexing */
+
+	/* Linked list */
+	struct omap_type2_desc *t2_desc;
+	dma_addr_t t2_desc_paddr;
+};
+
+struct omap_desc {
+	struct virt_dma_desc vd;
+	bool using_ll;
+	enum dma_transfer_direction dir;
+	dma_addr_t dev_addr;
+
+	int32_t fi;		/* for OMAP_DMA_SYNC_PACKET / double indexing */
+	int16_t ei;		/* for double indexing */
+	uint8_t es;		/* CSDP_DATA_TYPE_xxx */
+	uint32_t ccr;		/* CCR value */
+	uint16_t clnk_ctrl;	/* CLNK_CTRL value */
+	uint16_t cicr;		/* CICR value */
+	uint32_t csdp;		/* CSDP value */
+
+	unsigned sglen;
+	struct omap_sg sg[0];
+};
+
+enum {
+	CAPS_0_SUPPORT_LL123	= BIT(20),	/* Linked List type1/2/3 */
+	CAPS_0_SUPPORT_LL4	= BIT(21),	/* Linked List type4 */
+
+	CCR_FS			= BIT(5),
+	CCR_READ_PRIORITY	= BIT(6),
+	CCR_ENABLE		= BIT(7),
+	CCR_AUTO_INIT		= BIT(8),	/* OMAP1 only */
+	CCR_REPEAT		= BIT(9),	/* OMAP1 only */
+	CCR_OMAP31_DISABLE	= BIT(10),	/* OMAP1 only */
+	CCR_SUSPEND_SENSITIVE	= BIT(8),	/* OMAP2+ only */
+	CCR_RD_ACTIVE		= BIT(9),	/* OMAP2+ only */
+	CCR_WR_ACTIVE		= BIT(10),	/* OMAP2+ only */
+	CCR_SRC_AMODE_CONSTANT	= 0 << 12,
+	CCR_SRC_AMODE_POSTINC	= 1 << 12,
+	CCR_SRC_AMODE_SGLIDX	= 2 << 12,
+	CCR_SRC_AMODE_DBLIDX	= 3 << 12,
+	CCR_DST_AMODE_CONSTANT	= 0 << 14,
+	CCR_DST_AMODE_POSTINC	= 1 << 14,
+	CCR_DST_AMODE_SGLIDX	= 2 << 14,
+	CCR_DST_AMODE_DBLIDX	= 3 << 14,
+	CCR_CONSTANT_FILL	= BIT(16),
+	CCR_TRANSPARENT_COPY	= BIT(17),
+	CCR_BS			= BIT(18),
+	CCR_SUPERVISOR		= BIT(22),
+	CCR_PREFETCH		= BIT(23),
+	CCR_TRIGGER_SRC		= BIT(24),
+	CCR_BUFFERING_DISABLE	= BIT(25),
+	CCR_WRITE_PRIORITY	= BIT(26),
+	CCR_SYNC_ELEMENT	= 0,
+	CCR_SYNC_FRAME		= CCR_FS,
+	CCR_SYNC_BLOCK		= CCR_BS,
+	CCR_SYNC_PACKET		= CCR_BS | CCR_FS,
+
+	CSDP_DATA_TYPE_8	= 0,
+	CSDP_DATA_TYPE_16	= 1,
+	CSDP_DATA_TYPE_32	= 2,
+	CSDP_SRC_PORT_EMIFF	= 0 << 2, /* OMAP1 only */
+	CSDP_SRC_PORT_EMIFS	= 1 << 2, /* OMAP1 only */
+	CSDP_SRC_PORT_OCP_T1	= 2 << 2, /* OMAP1 only */
+	CSDP_SRC_PORT_TIPB	= 3 << 2, /* OMAP1 only */
+	CSDP_SRC_PORT_OCP_T2	= 4 << 2, /* OMAP1 only */
+	CSDP_SRC_PORT_MPUI	= 5 << 2, /* OMAP1 only */
+	CSDP_SRC_PACKED		= BIT(6),
+	CSDP_SRC_BURST_1	= 0 << 7,
+	CSDP_SRC_BURST_16	= 1 << 7,
+	CSDP_SRC_BURST_32	= 2 << 7,
+	CSDP_SRC_BURST_64	= 3 << 7,
+	CSDP_DST_PORT_EMIFF	= 0 << 9, /* OMAP1 only */
+	CSDP_DST_PORT_EMIFS	= 1 << 9, /* OMAP1 only */
+	CSDP_DST_PORT_OCP_T1	= 2 << 9, /* OMAP1 only */
+	CSDP_DST_PORT_TIPB	= 3 << 9, /* OMAP1 only */
+	CSDP_DST_PORT_OCP_T2	= 4 << 9, /* OMAP1 only */
+	CSDP_DST_PORT_MPUI	= 5 << 9, /* OMAP1 only */
+	CSDP_DST_PACKED		= BIT(13),
+	CSDP_DST_BURST_1	= 0 << 14,
+	CSDP_DST_BURST_16	= 1 << 14,
+	CSDP_DST_BURST_32	= 2 << 14,
+	CSDP_DST_BURST_64	= 3 << 14,
+	CSDP_WRITE_NON_POSTED	= 0 << 16,
+	CSDP_WRITE_POSTED	= 1 << 16,
+	CSDP_WRITE_LAST_NON_POSTED = 2 << 16,
+
+	CICR_TOUT_IE		= BIT(0),	/* OMAP1 only */
+	CICR_DROP_IE		= BIT(1),
+	CICR_HALF_IE		= BIT(2),
+	CICR_FRAME_IE		= BIT(3),
+	CICR_LAST_IE		= BIT(4),
+	CICR_BLOCK_IE		= BIT(5),
+	CICR_PKT_IE		= BIT(7),	/* OMAP2+ only */
+	CICR_TRANS_ERR_IE	= BIT(8),	/* OMAP2+ only */
+	CICR_SUPERVISOR_ERR_IE	= BIT(10),	/* OMAP2+ only */
+	CICR_MISALIGNED_ERR_IE	= BIT(11),	/* OMAP2+ only */
+	CICR_DRAIN_IE		= BIT(12),	/* OMAP2+ only */
+	CICR_SUPER_BLOCK_IE	= BIT(14),	/* OMAP2+ only */
+
+	CLNK_CTRL_ENABLE_LNK	= BIT(15),
+
+	CDP_DST_VALID_INC	= 0 << 0,
+	CDP_DST_VALID_RELOAD	= 1 << 0,
+	CDP_DST_VALID_REUSE	= 2 << 0,
+	CDP_SRC_VALID_INC	= 0 << 2,
+	CDP_SRC_VALID_RELOAD	= 1 << 2,
+	CDP_SRC_VALID_REUSE	= 2 << 2,
+	CDP_NTYPE_TYPE1		= 1 << 4,
+	CDP_NTYPE_TYPE2		= 2 << 4,
+	CDP_NTYPE_TYPE3		= 3 << 4,
+	CDP_TMODE_NORMAL	= 0 << 8,
+	CDP_TMODE_LLIST		= 1 << 8,
+	CDP_FAST		= BIT(10),
+};
+
+static const unsigned es_bytes[] = {
+	[CSDP_DATA_TYPE_8] = 1,
+	[CSDP_DATA_TYPE_16] = 2,
+	[CSDP_DATA_TYPE_32] = 4,
+};
+
+static struct of_dma_filter_info omap_dma_info = {
+	.filter_fn = omap_dma_filter_fn,
+};
+
+static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
+{
+	return container_of(d, struct omap_dmadev, ddev);
+}
+
+static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
+{
+	return container_of(c, struct omap_chan, vc.chan);
+}
+
+static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
+{
+	return container_of(t, struct omap_desc, vd.tx);
+}
+
+static void omap_dma_desc_free(struct virt_dma_desc *vd)
+{
+	struct omap_desc *d = to_omap_dma_desc(&vd->tx);
+
+	if (d->using_ll) {
+		struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
+		int i;
+
+		for (i = 0; i < d->sglen; i++) {
+			if (d->sg[i].t2_desc)
+				dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
+					      d->sg[i].t2_desc_paddr);
+		}
+	}
+
+	kfree(d);
+}
+
+static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
+				     enum dma_transfer_direction dir, bool last)
+{
+	struct omap_sg *sg = &d->sg[idx];
+	struct omap_type2_desc *t2_desc = sg->t2_desc;
+
+	if (idx)
+		d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
+	if (last)
+		t2_desc->next_desc = 0xfffffffc;
+
+	t2_desc->en = sg->en;
+	t2_desc->addr = sg->addr;
+	t2_desc->fn = sg->fn & 0xffff;
+	t2_desc->cicr = d->cicr;
+	if (!last)
+		t2_desc->cicr &= ~CICR_BLOCK_IE;
+
+	switch (dir) {
+	case DMA_DEV_TO_MEM:
+		t2_desc->cdei = sg->ei;
+		t2_desc->csei = d->ei;
+		t2_desc->cdfi = sg->fi;
+		t2_desc->csfi = d->fi;
+
+		t2_desc->en |= DESC_NXT_DV_REFRESH;
+		t2_desc->en |= DESC_NXT_SV_REUSE;
+		break;
+	case DMA_MEM_TO_DEV:
+		t2_desc->cdei = d->ei;
+		t2_desc->csei = sg->ei;
+		t2_desc->cdfi = d->fi;
+		t2_desc->csfi = sg->fi;
+
+		t2_desc->en |= DESC_NXT_SV_REFRESH;
+		t2_desc->en |= DESC_NXT_DV_REUSE;
+		break;
+	default:
+		return;
+	}
+
+	t2_desc->en |= DESC_NTYPE_TYPE2;
+}
+
+static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
+{
+	switch (type) {
+	case OMAP_DMA_REG_16BIT:
+		writew_relaxed(val, addr);
+		break;
+	case OMAP_DMA_REG_2X16BIT:
+		writew_relaxed(val, addr);
+		writew_relaxed(val >> 16, addr + 2);
+		break;
+	case OMAP_DMA_REG_32BIT:
+		writel_relaxed(val, addr);
+		break;
+	default:
+		WARN_ON(1);
+	}
+}
+
+static unsigned omap_dma_read(unsigned type, void __iomem *addr)
+{
+	unsigned val;
+
+	switch (type) {
+	case OMAP_DMA_REG_16BIT:
+		val = readw_relaxed(addr);
+		break;
+	case OMAP_DMA_REG_2X16BIT:
+		val = readw_relaxed(addr);
+		val |= readw_relaxed(addr + 2) << 16;
+		break;
+	case OMAP_DMA_REG_32BIT:
+		val = readl_relaxed(addr);
+		break;
+	default:
+		WARN_ON(1);
+		val = 0;
+	}
+
+	return val;
+}
+
+static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
+{
+	const struct omap_dma_reg *r = od->reg_map + reg;
+
+	WARN_ON(r->stride);
+
+	omap_dma_write(val, r->type, od->base + r->offset);
+}
+
+static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
+{
+	const struct omap_dma_reg *r = od->reg_map + reg;
+
+	WARN_ON(r->stride);
+
+	return omap_dma_read(r->type, od->base + r->offset);
+}
+
+static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
+{
+	const struct omap_dma_reg *r = c->reg_map + reg;
+
+	omap_dma_write(val, r->type, c->channel_base + r->offset);
+}
+
+static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
+{
+	const struct omap_dma_reg *r = c->reg_map + reg;
+
+	return omap_dma_read(r->type, c->channel_base + r->offset);
+}
+
+static void omap_dma_clear_csr(struct omap_chan *c)
+{
+	if (dma_omap1())
+		omap_dma_chan_read(c, CSR);
+	else
+		omap_dma_chan_write(c, CSR, ~0);
+}
+
+static unsigned omap_dma_get_csr(struct omap_chan *c)
+{
+	unsigned val = omap_dma_chan_read(c, CSR);
+
+	if (!dma_omap1())
+		omap_dma_chan_write(c, CSR, val);
+
+	return val;
+}
+
+static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
+	unsigned lch)
+{
+	c->channel_base = od->base + od->plat->channel_stride * lch;
+
+	od->lch_map[lch] = c;
+}
+
+static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
+{
+	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+	uint16_t cicr = d->cicr;
+
+	if (__dma_omap15xx(od->plat->dma_attr))
+		omap_dma_chan_write(c, CPC, 0);
+	else
+		omap_dma_chan_write(c, CDAC, 0);
+
+	omap_dma_clear_csr(c);
+
+	if (d->using_ll) {
+		uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;
+
+		if (d->dir == DMA_DEV_TO_MEM)
+			cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
+		else
+			cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
+		omap_dma_chan_write(c, CDP, cdp);
+
+		omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
+		omap_dma_chan_write(c, CCDN, 0);
+		omap_dma_chan_write(c, CCFN, 0xffff);
+		omap_dma_chan_write(c, CCEN, 0xffffff);
+
+		cicr &= ~CICR_BLOCK_IE;
+	} else if (od->ll123_supported) {
+		omap_dma_chan_write(c, CDP, 0);
+	}
+
+	/* Enable interrupts */
+	omap_dma_chan_write(c, CICR, cicr);
+
+	/* Enable channel */
+	omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
+
+	c->running = true;
+}
+
+static void omap_dma_drain_chan(struct omap_chan *c)
+{
+	int i;
+	u32 val;
+
+	/* Wait for sDMA FIFO to drain */
+	for (i = 0; ; i++) {
+		val = omap_dma_chan_read(c, CCR);
+		if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
+			break;
+
+		if (i > 100)
+			break;
+
+		udelay(5);
+	}
+
+	if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
+		dev_err(c->vc.chan.device->dev,
+			"DMA drain did not complete on lch %d\n",
+			c->dma_ch);
+}
+
+static int omap_dma_stop(struct omap_chan *c)
+{
+	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+	uint32_t val;
+
+	/* disable irq */
+	omap_dma_chan_write(c, CICR, 0);
+
+	omap_dma_clear_csr(c);
+
+	val = omap_dma_chan_read(c, CCR);
+	if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
+		uint32_t sysconfig;
+
+		sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
+		val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
+		val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
+		omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
+
+		val = omap_dma_chan_read(c, CCR);
+		val &= ~CCR_ENABLE;
+		omap_dma_chan_write(c, CCR, val);
+
+		if (!(c->ccr & CCR_BUFFERING_DISABLE))
+			omap_dma_drain_chan(c);
+
+		omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
+	} else {
+		if (!(val & CCR_ENABLE))
+			return -EINVAL;
+
+		val &= ~CCR_ENABLE;
+		omap_dma_chan_write(c, CCR, val);
+
+		if (!(c->ccr & CCR_BUFFERING_DISABLE))
+			omap_dma_drain_chan(c);
+	}
+
+	mb();
+
+	if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
+		val = omap_dma_chan_read(c, CLNK_CTRL);
+
+		if (dma_omap1())
+			val |= 1 << 14; /* set the STOP_LNK bit */
+		else
+			val &= ~CLNK_CTRL_ENABLE_LNK;
+
+		omap_dma_chan_write(c, CLNK_CTRL, val);
+	}
+	c->running = false;
+	return 0;
+}
+
+static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
+{
+	struct omap_sg *sg = d->sg + c->sgidx;
+	unsigned cxsa, cxei, cxfi;
+
+	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
+		cxsa = CDSA;
+		cxei = CDEI;
+		cxfi = CDFI;
+	} else {
+		cxsa = CSSA;
+		cxei = CSEI;
+		cxfi = CSFI;
+	}
+
+	omap_dma_chan_write(c, cxsa, sg->addr);
+	omap_dma_chan_write(c, cxei, sg->ei);
+	omap_dma_chan_write(c, cxfi, sg->fi);
+	omap_dma_chan_write(c, CEN, sg->en);
+	omap_dma_chan_write(c, CFN, sg->fn);
+
+	omap_dma_start(c, d);
+	c->sgidx++;
+}
+
+static void omap_dma_start_desc(struct omap_chan *c)
+{
+	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
+	struct omap_desc *d;
+	unsigned cxsa, cxei, cxfi;
+
+	if (!vd) {
+		c->desc = NULL;
+		return;
+	}
+
+	list_del(&vd->node);
+
+	c->desc = d = to_omap_dma_desc(&vd->tx);
+	c->sgidx = 0;
+
+	/*
+	 * This provides the necessary barrier to ensure data held in
+	 * DMA coherent memory is visible to the DMA engine prior to
+	 * the transfer starting.
+	 */
+	mb();
+
+	omap_dma_chan_write(c, CCR, d->ccr);
+	if (dma_omap1())
+		omap_dma_chan_write(c, CCR2, d->ccr >> 16);
+
+	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
+		cxsa = CSSA;
+		cxei = CSEI;
+		cxfi = CSFI;
+	} else {
+		cxsa = CDSA;
+		cxei = CDEI;
+		cxfi = CDFI;
+	}
+
+	omap_dma_chan_write(c, cxsa, d->dev_addr);
+	omap_dma_chan_write(c, cxei, d->ei);
+	omap_dma_chan_write(c, cxfi, d->fi);
+	omap_dma_chan_write(c, CSDP, d->csdp);
+	omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
+
+	omap_dma_start_sg(c, d);
+}
+
+static void omap_dma_callback(int ch, u16 status, void *data)
+{
+	struct omap_chan *c = data;
+	struct omap_desc *d;
+	unsigned long flags;
+
+	spin_lock_irqsave(&c->vc.lock, flags);
+	d = c->desc;
+	if (d) {
+		if (c->cyclic) {
+			vchan_cyclic_callback(&d->vd);
+		} else if (d->using_ll || c->sgidx == d->sglen) {
+			omap_dma_start_desc(c);
+			vchan_cookie_complete(&d->vd);
+		} else {
+			omap_dma_start_sg(c, d);
+		}
+	}
+	spin_unlock_irqrestore(&c->vc.lock, flags);
+}
+
+static irqreturn_t omap_dma_irq(int irq, void *devid)
+{
+	struct omap_dmadev *od = devid;
+	unsigned status, channel;
+
+	spin_lock(&od->irq_lock);
+
+	status = omap_dma_glbl_read(od, IRQSTATUS_L1);
+	status &= od->irq_enable_mask;
+	if (status == 0) {
+		spin_unlock(&od->irq_lock);
+		return IRQ_NONE;
+	}
+
+	while ((channel = ffs(status)) != 0) {
+		unsigned mask, csr;
+		struct omap_chan *c;
+
+		channel -= 1;
+		mask = BIT(channel);
+		status &= ~mask;
+
+		c = od->lch_map[channel];
+		if (c == NULL) {
+			/* This should never happen */
+			dev_err(od->ddev.dev, "invalid channel %u\n", channel);
+			continue;
+		}
+
+		csr = omap_dma_get_csr(c);
+		omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
+
+		omap_dma_callback(channel, csr, c);
+	}
+
+	spin_unlock(&od->irq_lock);
+
+	return IRQ_HANDLED;
+}
+
+static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
+{
+	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	struct device *dev = od->ddev.dev;
+	int ret;
+
+	if (od->legacy) {
+		ret = omap_request_dma(c->dma_sig, "DMA engine",
+				       omap_dma_callback, c, &c->dma_ch);
+	} else {
+		ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
+				       &c->dma_ch);
+	}
+
+	dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
+
+	if (ret >= 0) {
+		omap_dma_assign(od, c, c->dma_ch);
+
+		if (!od->legacy) {
+			unsigned val;
+
+			spin_lock_irq(&od->irq_lock);
+			val = BIT(c->dma_ch);
+			omap_dma_glbl_write(od, IRQSTATUS_L1, val);
+			od->irq_enable_mask |= val;
+			omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
+
+			val = omap_dma_glbl_read(od, IRQENABLE_L0);
+			val &= ~BIT(c->dma_ch);
+			omap_dma_glbl_write(od, IRQENABLE_L0, val);
+			spin_unlock_irq(&od->irq_lock);
+		}
+	}
+
+	if (dma_omap1()) {
+		if (__dma_omap16xx(od->plat->dma_attr)) {
+			c->ccr = CCR_OMAP31_DISABLE;
+			/* Duplicate what plat-omap/dma.c does */
+			c->ccr |= c->dma_ch + 1;
+		} else {
+			c->ccr = c->dma_sig & 0x1f;
+		}
+	} else {
+		c->ccr = c->dma_sig & 0x1f;
+		c->ccr |= (c->dma_sig & ~0x1f) << 14;
+	}
+	if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
+		c->ccr |= CCR_BUFFERING_DISABLE;
+
+	return ret;
+}
+
+static void omap_dma_free_chan_resources(struct dma_chan *chan)
+{
+	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+	struct omap_chan *c = to_omap_dma_chan(chan);
+
+	if (!od->legacy) {
+		spin_lock_irq(&od->irq_lock);
+		od->irq_enable_mask &= ~BIT(c->dma_ch);
+		omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
+		spin_unlock_irq(&od->irq_lock);
+	}
+
+	c->channel_base = NULL;
+	od->lch_map[c->dma_ch] = NULL;
+	vchan_free_chan_resources(&c->vc);
+	omap_free_dma(c->dma_ch);
+
+	dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
+		c->dma_sig);
+	c->dma_sig = 0;
+}
+
+static size_t omap_dma_sg_size(struct omap_sg *sg)
+{
+	return sg->en * sg->fn;
+}
+
+static size_t omap_dma_desc_size(struct omap_desc *d)
+{
+	unsigned i;
+	size_t size;
+
+	for (size = i = 0; i < d->sglen; i++)
+		size += omap_dma_sg_size(&d->sg[i]);
+
+	return size * es_bytes[d->es];
+}
+
+static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
+{
+	unsigned i;
+	size_t size, es_size = es_bytes[d->es];
+
+	for (size = i = 0; i < d->sglen; i++) {
+		size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
+
+		if (size)
+			size += this_size;
+		else if (addr >= d->sg[i].addr &&
+			 addr < d->sg[i].addr + this_size)
+			size += d->sg[i].addr + this_size - addr;
+	}
+	return size;
+}
+
+/*
+ * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
+ * read before the DMA controller finished disabling the channel.
+ */
+static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
+{
+	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+	uint32_t val;
+
+	val = omap_dma_chan_read(c, reg);
+	if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
+		val = omap_dma_chan_read(c, reg);
+
+	return val;
+}
+
+static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
+{
+	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+	dma_addr_t addr, cdac;
+
+	if (__dma_omap15xx(od->plat->dma_attr)) {
+		addr = omap_dma_chan_read(c, CPC);
+	} else {
+		addr = omap_dma_chan_read_3_3(c, CSAC);
+		cdac = omap_dma_chan_read_3_3(c, CDAC);
+
+		/*
+		 * CDAC == 0 indicates that the DMA transfer on the channel has
+		 * not been started (no data has been transferred so far).
+		 * Return the programmed source start address in this case.
+		 */
+		if (cdac == 0)
+			addr = omap_dma_chan_read(c, CSSA);
+	}
+
+	if (dma_omap1())
+		addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
+
+	return addr;
+}
+
+static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
+{
+	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+	dma_addr_t addr;
+
+	if (__dma_omap15xx(od->plat->dma_attr)) {
+		addr = omap_dma_chan_read(c, CPC);
+	} else {
+		addr = omap_dma_chan_read_3_3(c, CDAC);
+
+		/*
+		 * CDAC == 0 indicates that the DMA transfer on the channel
+		 * has not been started (no data has been transferred so
+		 * far).  Return the programmed destination start address in
+		 * this case.
+		 */
+		if (addr == 0)
+			addr = omap_dma_chan_read(c, CDSA);
+	}
+
+	if (dma_omap1())
+		addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
+
+	return addr;
+}
+
+static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
+	dma_cookie_t cookie, struct dma_tx_state *txstate)
+{
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	struct virt_dma_desc *vd;
+	enum dma_status ret;
+	unsigned long flags;
+
+	ret = dma_cookie_status(chan, cookie, txstate);
+
+	if (!c->paused && c->running) {
+		uint32_t ccr = omap_dma_chan_read(c, CCR);
+		/*
+		 * The channel is no longer active, set the return value
+		 * accordingly
+		 */
+		if (!(ccr & CCR_ENABLE))
+			ret = DMA_COMPLETE;
+	}
+
+	if (ret == DMA_COMPLETE || !txstate)
+		return ret;
+
+	spin_lock_irqsave(&c->vc.lock, flags);
+	vd = vchan_find_desc(&c->vc, cookie);
+	if (vd) {
+		txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
+	} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
+		struct omap_desc *d = c->desc;
+		dma_addr_t pos;
+
+		if (d->dir == DMA_MEM_TO_DEV)
+			pos = omap_dma_get_src_pos(c);
+		else if (d->dir == DMA_DEV_TO_MEM  || d->dir == DMA_MEM_TO_MEM)
+			pos = omap_dma_get_dst_pos(c);
+		else
+			pos = 0;
+
+		txstate->residue = omap_dma_desc_size_pos(d, pos);
+	} else {
+		txstate->residue = 0;
+	}
+	if (ret == DMA_IN_PROGRESS && c->paused)
+		ret = DMA_PAUSED;
+	spin_unlock_irqrestore(&c->vc.lock, flags);
+
+	return ret;
+}
+
+static void omap_dma_issue_pending(struct dma_chan *chan)
+{
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	unsigned long flags;
+
+	spin_lock_irqsave(&c->vc.lock, flags);
+	if (vchan_issue_pending(&c->vc) && !c->desc)
+		omap_dma_start_desc(c);
+	spin_unlock_irqrestore(&c->vc.lock, flags);
+}
+
+static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
+	struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
+	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
+{
+	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	enum dma_slave_buswidth dev_width;
+	struct scatterlist *sgent;
+	struct omap_desc *d;
+	dma_addr_t dev_addr;
+	unsigned i, es, en, frame_bytes;
+	bool ll_failed = false;
+	u32 burst;
+	u32 port_window, port_window_bytes;
+
+	if (dir == DMA_DEV_TO_MEM) {
+		dev_addr = c->cfg.src_addr;
+		dev_width = c->cfg.src_addr_width;
+		burst = c->cfg.src_maxburst;
+		port_window = c->cfg.src_port_window_size;
+	} else if (dir == DMA_MEM_TO_DEV) {
+		dev_addr = c->cfg.dst_addr;
+		dev_width = c->cfg.dst_addr_width;
+		burst = c->cfg.dst_maxburst;
+		port_window = c->cfg.dst_port_window_size;
+	} else {
+		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
+		return NULL;
+	}
+
+	/* Bus width translates to the element size (ES) */
+	switch (dev_width) {
+	case DMA_SLAVE_BUSWIDTH_1_BYTE:
+		es = CSDP_DATA_TYPE_8;
+		break;
+	case DMA_SLAVE_BUSWIDTH_2_BYTES:
+		es = CSDP_DATA_TYPE_16;
+		break;
+	case DMA_SLAVE_BUSWIDTH_4_BYTES:
+		es = CSDP_DATA_TYPE_32;
+		break;
+	default: /* not reached */
+		return NULL;
+	}
+
+	/* Now allocate and setup the descriptor. */
+	d = kzalloc(struct_size(d, sg, sglen), GFP_ATOMIC);
+	if (!d)
+		return NULL;
+
+	d->dir = dir;
+	d->dev_addr = dev_addr;
+	d->es = es;
+
+	/* When the port_window is used, one frame must cover the window */
+	if (port_window) {
+		burst = port_window;
+		port_window_bytes = port_window * es_bytes[es];
+
+		d->ei = 1;
+		/*
+		 * One frame covers the port_window and by  configure
+		 * the source frame index to be -1 * (port_window - 1)
+		 * we instruct the sDMA that after a frame is processed
+		 * it should move back to the start of the window.
+		 */
+		d->fi = -(port_window_bytes - 1);
+	}
+
+	d->ccr = c->ccr | CCR_SYNC_FRAME;
+	if (dir == DMA_DEV_TO_MEM) {
+		d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
+
+		d->ccr |= CCR_DST_AMODE_POSTINC;
+		if (port_window) {
+			d->ccr |= CCR_SRC_AMODE_DBLIDX;
+
+			if (port_window_bytes >= 64)
+				d->csdp |= CSDP_SRC_BURST_64;
+			else if (port_window_bytes >= 32)
+				d->csdp |= CSDP_SRC_BURST_32;
+			else if (port_window_bytes >= 16)
+				d->csdp |= CSDP_SRC_BURST_16;
+
+		} else {
+			d->ccr |= CCR_SRC_AMODE_CONSTANT;
+		}
+	} else {
+		d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
+
+		d->ccr |= CCR_SRC_AMODE_POSTINC;
+		if (port_window) {
+			d->ccr |= CCR_DST_AMODE_DBLIDX;
+
+			if (port_window_bytes >= 64)
+				d->csdp |= CSDP_DST_BURST_64;
+			else if (port_window_bytes >= 32)
+				d->csdp |= CSDP_DST_BURST_32;
+			else if (port_window_bytes >= 16)
+				d->csdp |= CSDP_DST_BURST_16;
+		} else {
+			d->ccr |= CCR_DST_AMODE_CONSTANT;
+		}
+	}
+
+	d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
+	d->csdp |= es;
+
+	if (dma_omap1()) {
+		d->cicr |= CICR_TOUT_IE;
+
+		if (dir == DMA_DEV_TO_MEM)
+			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
+		else
+			d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
+	} else {
+		if (dir == DMA_DEV_TO_MEM)
+			d->ccr |= CCR_TRIGGER_SRC;
+
+		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
+
+		if (port_window)
+			d->csdp |= CSDP_WRITE_LAST_NON_POSTED;
+	}
+	if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
+		d->clnk_ctrl = c->dma_ch;
+
+	/*
+	 * Build our scatterlist entries: each contains the address,
+	 * the number of elements (EN) in each frame, and the number of
+	 * frames (FN).  Number of bytes for this entry = ES * EN * FN.
+	 *
+	 * Burst size translates to number of elements with frame sync.
+	 * Note: DMA engine defines burst to be the number of dev-width
+	 * transfers.
+	 */
+	en = burst;
+	frame_bytes = es_bytes[es] * en;
+
+	if (sglen >= 2)
+		d->using_ll = od->ll123_supported;
+
+	for_each_sg(sgl, sgent, sglen, i) {
+		struct omap_sg *osg = &d->sg[i];
+
+		osg->addr = sg_dma_address(sgent);
+		osg->en = en;
+		osg->fn = sg_dma_len(sgent) / frame_bytes;
+
+		if (d->using_ll) {
+			osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
+						      &osg->t2_desc_paddr);
+			if (!osg->t2_desc) {
+				dev_err(chan->device->dev,
+					"t2_desc[%d] allocation failed\n", i);
+				ll_failed = true;
+				d->using_ll = false;
+				continue;
+			}
+
+			omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
+		}
+	}
+
+	d->sglen = sglen;
+
+	/* Release the dma_pool entries if one allocation failed */
+	if (ll_failed) {
+		for (i = 0; i < d->sglen; i++) {
+			struct omap_sg *osg = &d->sg[i];
+
+			if (osg->t2_desc) {
+				dma_pool_free(od->desc_pool, osg->t2_desc,
+					      osg->t2_desc_paddr);
+				osg->t2_desc = NULL;
+			}
+		}
+	}
+
+	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
+}
+
+static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
+	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
+	size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
+{
+	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	enum dma_slave_buswidth dev_width;
+	struct omap_desc *d;
+	dma_addr_t dev_addr;
+	unsigned es;
+	u32 burst;
+
+	if (dir == DMA_DEV_TO_MEM) {
+		dev_addr = c->cfg.src_addr;
+		dev_width = c->cfg.src_addr_width;
+		burst = c->cfg.src_maxburst;
+	} else if (dir == DMA_MEM_TO_DEV) {
+		dev_addr = c->cfg.dst_addr;
+		dev_width = c->cfg.dst_addr_width;
+		burst = c->cfg.dst_maxburst;
+	} else {
+		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
+		return NULL;
+	}
+
+	/* Bus width translates to the element size (ES) */
+	switch (dev_width) {
+	case DMA_SLAVE_BUSWIDTH_1_BYTE:
+		es = CSDP_DATA_TYPE_8;
+		break;
+	case DMA_SLAVE_BUSWIDTH_2_BYTES:
+		es = CSDP_DATA_TYPE_16;
+		break;
+	case DMA_SLAVE_BUSWIDTH_4_BYTES:
+		es = CSDP_DATA_TYPE_32;
+		break;
+	default: /* not reached */
+		return NULL;
+	}
+
+	/* Now allocate and setup the descriptor. */
+	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
+	if (!d)
+		return NULL;
+
+	d->dir = dir;
+	d->dev_addr = dev_addr;
+	d->fi = burst;
+	d->es = es;
+	d->sg[0].addr = buf_addr;
+	d->sg[0].en = period_len / es_bytes[es];
+	d->sg[0].fn = buf_len / period_len;
+	d->sglen = 1;
+
+	d->ccr = c->ccr;
+	if (dir == DMA_DEV_TO_MEM)
+		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
+	else
+		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
+
+	d->cicr = CICR_DROP_IE;
+	if (flags & DMA_PREP_INTERRUPT)
+		d->cicr |= CICR_FRAME_IE;
+
+	d->csdp = es;
+
+	if (dma_omap1()) {
+		d->cicr |= CICR_TOUT_IE;
+
+		if (dir == DMA_DEV_TO_MEM)
+			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
+		else
+			d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
+	} else {
+		if (burst)
+			d->ccr |= CCR_SYNC_PACKET;
+		else
+			d->ccr |= CCR_SYNC_ELEMENT;
+
+		if (dir == DMA_DEV_TO_MEM) {
+			d->ccr |= CCR_TRIGGER_SRC;
+			d->csdp |= CSDP_DST_PACKED;
+		} else {
+			d->csdp |= CSDP_SRC_PACKED;
+		}
+
+		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
+
+		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
+	}
+
+	if (__dma_omap15xx(od->plat->dma_attr))
+		d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
+	else
+		d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
+
+	c->cyclic = true;
+
+	return vchan_tx_prep(&c->vc, &d->vd, flags);
+}
+
+static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
+	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
+	size_t len, unsigned long tx_flags)
+{
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	struct omap_desc *d;
+	uint8_t data_type;
+
+	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
+	if (!d)
+		return NULL;
+
+	data_type = __ffs((src | dest | len));
+	if (data_type > CSDP_DATA_TYPE_32)
+		data_type = CSDP_DATA_TYPE_32;
+
+	d->dir = DMA_MEM_TO_MEM;
+	d->dev_addr = src;
+	d->fi = 0;
+	d->es = data_type;
+	d->sg[0].en = len / BIT(data_type);
+	d->sg[0].fn = 1;
+	d->sg[0].addr = dest;
+	d->sglen = 1;
+	d->ccr = c->ccr;
+	d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
+
+	d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
+
+	d->csdp = data_type;
+
+	if (dma_omap1()) {
+		d->cicr |= CICR_TOUT_IE;
+		d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
+	} else {
+		d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
+		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
+		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
+	}
+
+	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
+}
+
+static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
+	struct dma_chan *chan, struct dma_interleaved_template *xt,
+	unsigned long flags)
+{
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	struct omap_desc *d;
+	struct omap_sg *sg;
+	uint8_t data_type;
+	size_t src_icg, dst_icg;
+
+	/* Slave mode is not supported */
+	if (is_slave_direction(xt->dir))
+		return NULL;
+
+	if (xt->frame_size != 1 || xt->numf == 0)
+		return NULL;
+
+	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
+	if (!d)
+		return NULL;
+
+	data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
+	if (data_type > CSDP_DATA_TYPE_32)
+		data_type = CSDP_DATA_TYPE_32;
+
+	sg = &d->sg[0];
+	d->dir = DMA_MEM_TO_MEM;
+	d->dev_addr = xt->src_start;
+	d->es = data_type;
+	sg->en = xt->sgl[0].size / BIT(data_type);
+	sg->fn = xt->numf;
+	sg->addr = xt->dst_start;
+	d->sglen = 1;
+	d->ccr = c->ccr;
+
+	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
+	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
+	if (src_icg) {
+		d->ccr |= CCR_SRC_AMODE_DBLIDX;
+		d->ei = 1;
+		d->fi = src_icg;
+	} else if (xt->src_inc) {
+		d->ccr |= CCR_SRC_AMODE_POSTINC;
+		d->fi = 0;
+	} else {
+		dev_err(chan->device->dev,
+			"%s: SRC constant addressing is not supported\n",
+			__func__);
+		kfree(d);
+		return NULL;
+	}
+
+	if (dst_icg) {
+		d->ccr |= CCR_DST_AMODE_DBLIDX;
+		sg->ei = 1;
+		sg->fi = dst_icg;
+	} else if (xt->dst_inc) {
+		d->ccr |= CCR_DST_AMODE_POSTINC;
+		sg->fi = 0;
+	} else {
+		dev_err(chan->device->dev,
+			"%s: DST constant addressing is not supported\n",
+			__func__);
+		kfree(d);
+		return NULL;
+	}
+
+	d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
+
+	d->csdp = data_type;
+
+	if (dma_omap1()) {
+		d->cicr |= CICR_TOUT_IE;
+		d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
+	} else {
+		d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
+		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
+		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
+	}
+
+	return vchan_tx_prep(&c->vc, &d->vd, flags);
+}
+
+static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
+{
+	struct omap_chan *c = to_omap_dma_chan(chan);
+
+	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
+	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
+		return -EINVAL;
+
+	if (cfg->src_maxburst > chan->device->max_burst ||
+	    cfg->dst_maxburst > chan->device->max_burst)
+		return -EINVAL;
+
+	memcpy(&c->cfg, cfg, sizeof(c->cfg));
+
+	return 0;
+}
+
+static int omap_dma_terminate_all(struct dma_chan *chan)
+{
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	unsigned long flags;
+	LIST_HEAD(head);
+
+	spin_lock_irqsave(&c->vc.lock, flags);
+
+	/*
+	 * Stop DMA activity: we assume the callback will not be called
+	 * after omap_dma_stop() returns (even if it does, it will see
+	 * c->desc is NULL and exit.)
+	 */
+	if (c->desc) {
+		vchan_terminate_vdesc(&c->desc->vd);
+		c->desc = NULL;
+		/* Avoid stopping the dma twice */
+		if (!c->paused)
+			omap_dma_stop(c);
+	}
+
+	c->cyclic = false;
+	c->paused = false;
+
+	vchan_get_all_descriptors(&c->vc, &head);
+	spin_unlock_irqrestore(&c->vc.lock, flags);
+	vchan_dma_desc_free_list(&c->vc, &head);
+
+	return 0;
+}
+
+static void omap_dma_synchronize(struct dma_chan *chan)
+{
+	struct omap_chan *c = to_omap_dma_chan(chan);
+
+	vchan_synchronize(&c->vc);
+}
+
+static int omap_dma_pause(struct dma_chan *chan)
+{
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+	unsigned long flags;
+	int ret = -EINVAL;
+	bool can_pause = false;
+
+	spin_lock_irqsave(&od->irq_lock, flags);
+
+	if (!c->desc)
+		goto out;
+
+	if (c->cyclic)
+		can_pause = true;
+
+	/*
+	 * We do not allow DMA_MEM_TO_DEV transfers to be paused.
+	 * From the AM572x TRM, 16.1.4.18 Disabling a Channel During Transfer:
+	 * "When a channel is disabled during a transfer, the channel undergoes
+	 * an abort, unless it is hardware-source-synchronized …".
+	 * A source-synchronised channel is one where the fetching of data is
+	 * under control of the device. In other words, a device-to-memory
+	 * transfer. So, a destination-synchronised channel (which would be a
+	 * memory-to-device transfer) undergoes an abort if the the CCR_ENABLE
+	 * bit is cleared.
+	 * From 16.1.4.20.4.6.2 Abort: "If an abort trigger occurs, the channel
+	 * aborts immediately after completion of current read/write
+	 * transactions and then the FIFO is cleaned up." The term "cleaned up"
+	 * is not defined. TI recommends to check that RD_ACTIVE and WR_ACTIVE
+	 * are both clear _before_ disabling the channel, otherwise data loss
+	 * will occur.
+	 * The problem is that if the channel is active, then device activity
+	 * can result in DMA activity starting between reading those as both
+	 * clear and the write to DMA_CCR to clear the enable bit hitting the
+	 * hardware. If the DMA hardware can't drain the data in its FIFO to the
+	 * destination, then data loss "might" occur (say if we write to an UART
+	 * and the UART is not accepting any further data).
+	 */
+	else if (c->desc->dir == DMA_DEV_TO_MEM)
+		can_pause = true;
+
+	if (can_pause && !c->paused) {
+		ret = omap_dma_stop(c);
+		if (!ret)
+			c->paused = true;
+	}
+out:
+	spin_unlock_irqrestore(&od->irq_lock, flags);
+
+	return ret;
+}
+
+static int omap_dma_resume(struct dma_chan *chan)
+{
+	struct omap_chan *c = to_omap_dma_chan(chan);
+	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+	unsigned long flags;
+	int ret = -EINVAL;
+
+	spin_lock_irqsave(&od->irq_lock, flags);
+
+	if (c->paused && c->desc) {
+		mb();
+
+		/* Restore channel link register */
+		omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
+
+		omap_dma_start(c, c->desc);
+		c->paused = false;
+		ret = 0;
+	}
+	spin_unlock_irqrestore(&od->irq_lock, flags);
+
+	return ret;
+}
+
+static int omap_dma_chan_init(struct omap_dmadev *od)
+{
+	struct omap_chan *c;
+
+	c = kzalloc(sizeof(*c), GFP_KERNEL);
+	if (!c)
+		return -ENOMEM;
+
+	c->reg_map = od->reg_map;
+	c->vc.desc_free = omap_dma_desc_free;
+	vchan_init(&c->vc, &od->ddev);
+
+	return 0;
+}
+
+static void omap_dma_free(struct omap_dmadev *od)
+{
+	while (!list_empty(&od->ddev.channels)) {
+		struct omap_chan *c = list_first_entry(&od->ddev.channels,
+			struct omap_chan, vc.chan.device_node);
+
+		list_del(&c->vc.chan.device_node);
+		tasklet_kill(&c->vc.task);
+		kfree(c);
+	}
+}
+
+#define OMAP_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
+				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
+				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
+
+static int omap_dma_probe(struct platform_device *pdev)
+{
+	struct omap_dmadev *od;
+	struct resource *res;
+	int rc, i, irq;
+	u32 lch_count;
+
+	od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
+	if (!od)
+		return -ENOMEM;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	od->base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(od->base))
+		return PTR_ERR(od->base);
+
+	od->plat = omap_get_plat_info();
+	if (!od->plat)
+		return -EPROBE_DEFER;
+
+	od->reg_map = od->plat->reg_map;
+
+	dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
+	dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
+	dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
+	dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
+	od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
+	od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
+	od->ddev.device_tx_status = omap_dma_tx_status;
+	od->ddev.device_issue_pending = omap_dma_issue_pending;
+	od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
+	od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
+	od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
+	od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
+	od->ddev.device_config = omap_dma_slave_config;
+	od->ddev.device_pause = omap_dma_pause;
+	od->ddev.device_resume = omap_dma_resume;
+	od->ddev.device_terminate_all = omap_dma_terminate_all;
+	od->ddev.device_synchronize = omap_dma_synchronize;
+	od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
+	od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
+	od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
+	if (__dma_omap15xx(od->plat->dma_attr))
+		od->ddev.residue_granularity =
+				DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
+	else
+		od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+	od->ddev.max_burst = SZ_16M - 1; /* CCEN: 24bit unsigned */
+	od->ddev.dev = &pdev->dev;
+	INIT_LIST_HEAD(&od->ddev.channels);
+	spin_lock_init(&od->lock);
+	spin_lock_init(&od->irq_lock);
+
+	/* Number of DMA requests */
+	od->dma_requests = OMAP_SDMA_REQUESTS;
+	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
+						      "dma-requests",
+						      &od->dma_requests)) {
+		dev_info(&pdev->dev,
+			 "Missing dma-requests property, using %u.\n",
+			 OMAP_SDMA_REQUESTS);
+	}
+
+	/* Number of available logical channels */
+	if (!pdev->dev.of_node) {
+		lch_count = od->plat->dma_attr->lch_count;
+		if (unlikely(!lch_count))
+			lch_count = OMAP_SDMA_CHANNELS;
+	} else if (of_property_read_u32(pdev->dev.of_node, "dma-channels",
+					&lch_count)) {
+		dev_info(&pdev->dev,
+			 "Missing dma-channels property, using %u.\n",
+			 OMAP_SDMA_CHANNELS);
+		lch_count = OMAP_SDMA_CHANNELS;
+	}
+
+	od->lch_map = devm_kcalloc(&pdev->dev, lch_count, sizeof(*od->lch_map),
+				   GFP_KERNEL);
+	if (!od->lch_map)
+		return -ENOMEM;
+
+	for (i = 0; i < od->dma_requests; i++) {
+		rc = omap_dma_chan_init(od);
+		if (rc) {
+			omap_dma_free(od);
+			return rc;
+		}
+	}
+
+	irq = platform_get_irq(pdev, 1);
+	if (irq <= 0) {
+		dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
+		od->legacy = true;
+	} else {
+		/* Disable all interrupts */
+		od->irq_enable_mask = 0;
+		omap_dma_glbl_write(od, IRQENABLE_L1, 0);
+
+		rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
+				      IRQF_SHARED, "omap-dma-engine", od);
+		if (rc)
+			return rc;
+	}
+
+	if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
+		od->ll123_supported = true;
+
+	od->ddev.filter.map = od->plat->slave_map;
+	od->ddev.filter.mapcnt = od->plat->slavecnt;
+	od->ddev.filter.fn = omap_dma_filter_fn;
+
+	if (od->ll123_supported) {
+		od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
+						&pdev->dev,
+						sizeof(struct omap_type2_desc),
+						4, 0);
+		if (!od->desc_pool) {
+			dev_err(&pdev->dev,
+				"unable to allocate descriptor pool\n");
+			od->ll123_supported = false;
+		}
+	}
+
+	rc = dma_async_device_register(&od->ddev);
+	if (rc) {
+		pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
+			rc);
+		omap_dma_free(od);
+		return rc;
+	}
+
+	platform_set_drvdata(pdev, od);
+
+	if (pdev->dev.of_node) {
+		omap_dma_info.dma_cap = od->ddev.cap_mask;
+
+		/* Device-tree DMA controller registration */
+		rc = of_dma_controller_register(pdev->dev.of_node,
+				of_dma_simple_xlate, &omap_dma_info);
+		if (rc) {
+			pr_warn("OMAP-DMA: failed to register DMA controller\n");
+			dma_async_device_unregister(&od->ddev);
+			omap_dma_free(od);
+		}
+	}
+
+	dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
+		 od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
+
+	return rc;
+}
+
+static int omap_dma_remove(struct platform_device *pdev)
+{
+	struct omap_dmadev *od = platform_get_drvdata(pdev);
+	int irq;
+
+	if (pdev->dev.of_node)
+		of_dma_controller_free(pdev->dev.of_node);
+
+	irq = platform_get_irq(pdev, 1);
+	devm_free_irq(&pdev->dev, irq, od);
+
+	dma_async_device_unregister(&od->ddev);
+
+	if (!od->legacy) {
+		/* Disable all interrupts */
+		omap_dma_glbl_write(od, IRQENABLE_L0, 0);
+	}
+
+	if (od->ll123_supported)
+		dma_pool_destroy(od->desc_pool);
+
+	omap_dma_free(od);
+
+	return 0;
+}
+
+static const struct of_device_id omap_dma_match[] = {
+	{ .compatible = "ti,omap2420-sdma", },
+	{ .compatible = "ti,omap2430-sdma", },
+	{ .compatible = "ti,omap3430-sdma", },
+	{ .compatible = "ti,omap3630-sdma", },
+	{ .compatible = "ti,omap4430-sdma", },
+	{},
+};
+MODULE_DEVICE_TABLE(of, omap_dma_match);
+
+static struct platform_driver omap_dma_driver = {
+	.probe	= omap_dma_probe,
+	.remove	= omap_dma_remove,
+	.driver = {
+		.name = "omap-dma-engine",
+		.of_match_table = of_match_ptr(omap_dma_match),
+	},
+};
+
+bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
+{
+	if (chan->device->dev->driver == &omap_dma_driver.driver) {
+		struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+		struct omap_chan *c = to_omap_dma_chan(chan);
+		unsigned req = *(unsigned *)param;
+
+		if (req <= od->dma_requests) {
+			c->dma_sig = req;
+			return true;
+		}
+	}
+	return false;
+}
+EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
+
+static int omap_dma_init(void)
+{
+	return platform_driver_register(&omap_dma_driver);
+}
+subsys_initcall(omap_dma_init);
+
+static void __exit omap_dma_exit(void)
+{
+	platform_driver_unregister(&omap_dma_driver);
+}
+module_exit(omap_dma_exit);
+
+MODULE_AUTHOR("Russell King");
+MODULE_LICENSE("GPL");