Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | /// \file |
| 11 | /// This file provides a helper that implements much of the TTI interface in |
| 12 | /// terms of the target-independent code generator and TargetLowering |
| 13 | /// interfaces. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef LLVM_CODEGEN_BASICTTIIMPL_H |
| 18 | #define LLVM_CODEGEN_BASICTTIIMPL_H |
| 19 | |
| 20 | #include "llvm/ADT/APInt.h" |
| 21 | #include "llvm/ADT/ArrayRef.h" |
| 22 | #include "llvm/ADT/BitVector.h" |
| 23 | #include "llvm/ADT/SmallPtrSet.h" |
| 24 | #include "llvm/ADT/SmallVector.h" |
| 25 | #include "llvm/Analysis/LoopInfo.h" |
| 26 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 27 | #include "llvm/Analysis/TargetTransformInfoImpl.h" |
| 28 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 29 | #include "llvm/CodeGen/TargetLowering.h" |
| 30 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 31 | #include "llvm/CodeGen/ValueTypes.h" |
| 32 | #include "llvm/IR/BasicBlock.h" |
| 33 | #include "llvm/IR/CallSite.h" |
| 34 | #include "llvm/IR/Constant.h" |
| 35 | #include "llvm/IR/Constants.h" |
| 36 | #include "llvm/IR/DataLayout.h" |
| 37 | #include "llvm/IR/DerivedTypes.h" |
| 38 | #include "llvm/IR/InstrTypes.h" |
| 39 | #include "llvm/IR/Instruction.h" |
| 40 | #include "llvm/IR/Instructions.h" |
| 41 | #include "llvm/IR/Intrinsics.h" |
| 42 | #include "llvm/IR/Operator.h" |
| 43 | #include "llvm/IR/Type.h" |
| 44 | #include "llvm/IR/Value.h" |
| 45 | #include "llvm/MC/MCSchedule.h" |
| 46 | #include "llvm/Support/Casting.h" |
| 47 | #include "llvm/Support/CommandLine.h" |
| 48 | #include "llvm/Support/ErrorHandling.h" |
| 49 | #include "llvm/Support/MachineValueType.h" |
| 50 | #include "llvm/Support/MathExtras.h" |
| 51 | #include <algorithm> |
| 52 | #include <cassert> |
| 53 | #include <cstdint> |
| 54 | #include <limits> |
| 55 | #include <utility> |
| 56 | |
| 57 | namespace llvm { |
| 58 | |
| 59 | class Function; |
| 60 | class GlobalValue; |
| 61 | class LLVMContext; |
| 62 | class ScalarEvolution; |
| 63 | class SCEV; |
| 64 | class TargetMachine; |
| 65 | |
| 66 | extern cl::opt<unsigned> PartialUnrollingThreshold; |
| 67 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 68 | /// Base class which can be used to help build a TTI implementation. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 69 | /// |
| 70 | /// This class provides as much implementation of the TTI interface as is |
| 71 | /// possible using the target independent parts of the code generator. |
| 72 | /// |
| 73 | /// In order to subclass it, your class must implement a getST() method to |
| 74 | /// return the subtarget, and a getTLI() method to return the target lowering. |
| 75 | /// We need these methods implemented in the derived class so that this class |
| 76 | /// doesn't have to duplicate storage for them. |
| 77 | template <typename T> |
| 78 | class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> { |
| 79 | private: |
| 80 | using BaseT = TargetTransformInfoImplCRTPBase<T>; |
| 81 | using TTI = TargetTransformInfo; |
| 82 | |
| 83 | /// Estimate a cost of shuffle as a sequence of extract and insert |
| 84 | /// operations. |
| 85 | unsigned getPermuteShuffleOverhead(Type *Ty) { |
| 86 | assert(Ty->isVectorTy() && "Can only shuffle vectors"); |
| 87 | unsigned Cost = 0; |
| 88 | // Shuffle cost is equal to the cost of extracting element from its argument |
| 89 | // plus the cost of inserting them onto the result vector. |
| 90 | |
| 91 | // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from |
| 92 | // index 0 of first vector, index 1 of second vector,index 2 of first |
| 93 | // vector and finally index 3 of second vector and insert them at index |
| 94 | // <0,1,2,3> of result vector. |
| 95 | for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { |
| 96 | Cost += static_cast<T *>(this) |
| 97 | ->getVectorInstrCost(Instruction::InsertElement, Ty, i); |
| 98 | Cost += static_cast<T *>(this) |
| 99 | ->getVectorInstrCost(Instruction::ExtractElement, Ty, i); |
| 100 | } |
| 101 | return Cost; |
| 102 | } |
| 103 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 104 | /// Local query method delegates up to T which *must* implement this! |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 105 | const TargetSubtargetInfo *getST() const { |
| 106 | return static_cast<const T *>(this)->getST(); |
| 107 | } |
| 108 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 109 | /// Local query method delegates up to T which *must* implement this! |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 110 | const TargetLoweringBase *getTLI() const { |
| 111 | return static_cast<const T *>(this)->getTLI(); |
| 112 | } |
| 113 | |
| 114 | static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) { |
| 115 | switch (M) { |
| 116 | case TTI::MIM_Unindexed: |
| 117 | return ISD::UNINDEXED; |
| 118 | case TTI::MIM_PreInc: |
| 119 | return ISD::PRE_INC; |
| 120 | case TTI::MIM_PreDec: |
| 121 | return ISD::PRE_DEC; |
| 122 | case TTI::MIM_PostInc: |
| 123 | return ISD::POST_INC; |
| 124 | case TTI::MIM_PostDec: |
| 125 | return ISD::POST_DEC; |
| 126 | } |
| 127 | llvm_unreachable("Unexpected MemIndexedMode"); |
| 128 | } |
| 129 | |
| 130 | protected: |
| 131 | explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL) |
| 132 | : BaseT(DL) {} |
| 133 | |
| 134 | using TargetTransformInfoImplBase::DL; |
| 135 | |
| 136 | public: |
| 137 | /// \name Scalar TTI Implementations |
| 138 | /// @{ |
| 139 | bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
| 140 | unsigned BitWidth, unsigned AddressSpace, |
| 141 | unsigned Alignment, bool *Fast) const { |
| 142 | EVT E = EVT::getIntegerVT(Context, BitWidth); |
| 143 | return getTLI()->allowsMisalignedMemoryAccesses(E, AddressSpace, Alignment, Fast); |
| 144 | } |
| 145 | |
| 146 | bool hasBranchDivergence() { return false; } |
| 147 | |
| 148 | bool isSourceOfDivergence(const Value *V) { return false; } |
| 149 | |
| 150 | bool isAlwaysUniform(const Value *V) { return false; } |
| 151 | |
| 152 | unsigned getFlatAddressSpace() { |
| 153 | // Return an invalid address space. |
| 154 | return -1; |
| 155 | } |
| 156 | |
| 157 | bool isLegalAddImmediate(int64_t imm) { |
| 158 | return getTLI()->isLegalAddImmediate(imm); |
| 159 | } |
| 160 | |
| 161 | bool isLegalICmpImmediate(int64_t imm) { |
| 162 | return getTLI()->isLegalICmpImmediate(imm); |
| 163 | } |
| 164 | |
| 165 | bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| 166 | bool HasBaseReg, int64_t Scale, |
| 167 | unsigned AddrSpace, Instruction *I = nullptr) { |
| 168 | TargetLoweringBase::AddrMode AM; |
| 169 | AM.BaseGV = BaseGV; |
| 170 | AM.BaseOffs = BaseOffset; |
| 171 | AM.HasBaseReg = HasBaseReg; |
| 172 | AM.Scale = Scale; |
| 173 | return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I); |
| 174 | } |
| 175 | |
| 176 | bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty, |
| 177 | const DataLayout &DL) const { |
| 178 | EVT VT = getTLI()->getValueType(DL, Ty); |
| 179 | return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT); |
| 180 | } |
| 181 | |
| 182 | bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty, |
| 183 | const DataLayout &DL) const { |
| 184 | EVT VT = getTLI()->getValueType(DL, Ty); |
| 185 | return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT); |
| 186 | } |
| 187 | |
| 188 | bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) { |
| 189 | return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); |
| 190 | } |
| 191 | |
| 192 | int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| 193 | bool HasBaseReg, int64_t Scale, unsigned AddrSpace) { |
| 194 | TargetLoweringBase::AddrMode AM; |
| 195 | AM.BaseGV = BaseGV; |
| 196 | AM.BaseOffs = BaseOffset; |
| 197 | AM.HasBaseReg = HasBaseReg; |
| 198 | AM.Scale = Scale; |
| 199 | return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace); |
| 200 | } |
| 201 | |
| 202 | bool isTruncateFree(Type *Ty1, Type *Ty2) { |
| 203 | return getTLI()->isTruncateFree(Ty1, Ty2); |
| 204 | } |
| 205 | |
| 206 | bool isProfitableToHoist(Instruction *I) { |
| 207 | return getTLI()->isProfitableToHoist(I); |
| 208 | } |
| 209 | |
| 210 | bool useAA() const { return getST()->useAA(); } |
| 211 | |
| 212 | bool isTypeLegal(Type *Ty) { |
| 213 | EVT VT = getTLI()->getValueType(DL, Ty); |
| 214 | return getTLI()->isTypeLegal(VT); |
| 215 | } |
| 216 | |
| 217 | int getGEPCost(Type *PointeeType, const Value *Ptr, |
| 218 | ArrayRef<const Value *> Operands) { |
| 219 | return BaseT::getGEPCost(PointeeType, Ptr, Operands); |
| 220 | } |
| 221 | |
| 222 | int getExtCost(const Instruction *I, const Value *Src) { |
| 223 | if (getTLI()->isExtFree(I)) |
| 224 | return TargetTransformInfo::TCC_Free; |
| 225 | |
| 226 | if (isa<ZExtInst>(I) || isa<SExtInst>(I)) |
| 227 | if (const LoadInst *LI = dyn_cast<LoadInst>(Src)) |
| 228 | if (getTLI()->isExtLoad(LI, I, DL)) |
| 229 | return TargetTransformInfo::TCC_Free; |
| 230 | |
| 231 | return TargetTransformInfo::TCC_Basic; |
| 232 | } |
| 233 | |
| 234 | unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| 235 | ArrayRef<const Value *> Arguments) { |
| 236 | return BaseT::getIntrinsicCost(IID, RetTy, Arguments); |
| 237 | } |
| 238 | |
| 239 | unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| 240 | ArrayRef<Type *> ParamTys) { |
| 241 | if (IID == Intrinsic::cttz) { |
| 242 | if (getTLI()->isCheapToSpeculateCttz()) |
| 243 | return TargetTransformInfo::TCC_Basic; |
| 244 | return TargetTransformInfo::TCC_Expensive; |
| 245 | } |
| 246 | |
| 247 | if (IID == Intrinsic::ctlz) { |
| 248 | if (getTLI()->isCheapToSpeculateCtlz()) |
| 249 | return TargetTransformInfo::TCC_Basic; |
| 250 | return TargetTransformInfo::TCC_Expensive; |
| 251 | } |
| 252 | |
| 253 | return BaseT::getIntrinsicCost(IID, RetTy, ParamTys); |
| 254 | } |
| 255 | |
| 256 | unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
| 257 | unsigned &JumpTableSize) { |
| 258 | /// Try to find the estimated number of clusters. Note that the number of |
| 259 | /// clusters identified in this function could be different from the actural |
| 260 | /// numbers found in lowering. This function ignore switches that are |
| 261 | /// lowered with a mix of jump table / bit test / BTree. This function was |
| 262 | /// initially intended to be used when estimating the cost of switch in |
| 263 | /// inline cost heuristic, but it's a generic cost model to be used in other |
| 264 | /// places (e.g., in loop unrolling). |
| 265 | unsigned N = SI.getNumCases(); |
| 266 | const TargetLoweringBase *TLI = getTLI(); |
| 267 | const DataLayout &DL = this->getDataLayout(); |
| 268 | |
| 269 | JumpTableSize = 0; |
| 270 | bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent()); |
| 271 | |
| 272 | // Early exit if both a jump table and bit test are not allowed. |
| 273 | if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N)) |
| 274 | return N; |
| 275 | |
| 276 | APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue(); |
| 277 | APInt MinCaseVal = MaxCaseVal; |
| 278 | for (auto CI : SI.cases()) { |
| 279 | const APInt &CaseVal = CI.getCaseValue()->getValue(); |
| 280 | if (CaseVal.sgt(MaxCaseVal)) |
| 281 | MaxCaseVal = CaseVal; |
| 282 | if (CaseVal.slt(MinCaseVal)) |
| 283 | MinCaseVal = CaseVal; |
| 284 | } |
| 285 | |
| 286 | // Check if suitable for a bit test |
| 287 | if (N <= DL.getIndexSizeInBits(0u)) { |
| 288 | SmallPtrSet<const BasicBlock *, 4> Dests; |
| 289 | for (auto I : SI.cases()) |
| 290 | Dests.insert(I.getCaseSuccessor()); |
| 291 | |
| 292 | if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal, |
| 293 | DL)) |
| 294 | return 1; |
| 295 | } |
| 296 | |
| 297 | // Check if suitable for a jump table. |
| 298 | if (IsJTAllowed) { |
| 299 | if (N < 2 || N < TLI->getMinimumJumpTableEntries()) |
| 300 | return N; |
| 301 | uint64_t Range = |
| 302 | (MaxCaseVal - MinCaseVal) |
| 303 | .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1; |
| 304 | // Check whether a range of clusters is dense enough for a jump table |
| 305 | if (TLI->isSuitableForJumpTable(&SI, N, Range)) { |
| 306 | JumpTableSize = Range; |
| 307 | return 1; |
| 308 | } |
| 309 | } |
| 310 | return N; |
| 311 | } |
| 312 | |
| 313 | unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); } |
| 314 | |
| 315 | unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); } |
| 316 | |
| 317 | bool shouldBuildLookupTables() { |
| 318 | const TargetLoweringBase *TLI = getTLI(); |
| 319 | return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || |
| 320 | TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other); |
| 321 | } |
| 322 | |
| 323 | bool haveFastSqrt(Type *Ty) { |
| 324 | const TargetLoweringBase *TLI = getTLI(); |
| 325 | EVT VT = TLI->getValueType(DL, Ty); |
| 326 | return TLI->isTypeLegal(VT) && |
| 327 | TLI->isOperationLegalOrCustom(ISD::FSQRT, VT); |
| 328 | } |
| 329 | |
| 330 | bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { |
| 331 | return true; |
| 332 | } |
| 333 | |
| 334 | unsigned getFPOpCost(Type *Ty) { |
| 335 | // Check whether FADD is available, as a proxy for floating-point in |
| 336 | // general. |
| 337 | const TargetLoweringBase *TLI = getTLI(); |
| 338 | EVT VT = TLI->getValueType(DL, Ty); |
| 339 | if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT)) |
| 340 | return TargetTransformInfo::TCC_Basic; |
| 341 | return TargetTransformInfo::TCC_Expensive; |
| 342 | } |
| 343 | |
| 344 | unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) { |
| 345 | const TargetLoweringBase *TLI = getTLI(); |
| 346 | switch (Opcode) { |
| 347 | default: break; |
| 348 | case Instruction::Trunc: |
| 349 | if (TLI->isTruncateFree(OpTy, Ty)) |
| 350 | return TargetTransformInfo::TCC_Free; |
| 351 | return TargetTransformInfo::TCC_Basic; |
| 352 | case Instruction::ZExt: |
| 353 | if (TLI->isZExtFree(OpTy, Ty)) |
| 354 | return TargetTransformInfo::TCC_Free; |
| 355 | return TargetTransformInfo::TCC_Basic; |
| 356 | } |
| 357 | |
| 358 | return BaseT::getOperationCost(Opcode, Ty, OpTy); |
| 359 | } |
| 360 | |
| 361 | unsigned getInliningThresholdMultiplier() { return 1; } |
| 362 | |
| 363 | void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| 364 | TTI::UnrollingPreferences &UP) { |
| 365 | // This unrolling functionality is target independent, but to provide some |
| 366 | // motivation for its intended use, for x86: |
| 367 | |
| 368 | // According to the Intel 64 and IA-32 Architectures Optimization Reference |
| 369 | // Manual, Intel Core models and later have a loop stream detector (and |
| 370 | // associated uop queue) that can benefit from partial unrolling. |
| 371 | // The relevant requirements are: |
| 372 | // - The loop must have no more than 4 (8 for Nehalem and later) branches |
| 373 | // taken, and none of them may be calls. |
| 374 | // - The loop can have no more than 18 (28 for Nehalem and later) uops. |
| 375 | |
| 376 | // According to the Software Optimization Guide for AMD Family 15h |
| 377 | // Processors, models 30h-4fh (Steamroller and later) have a loop predictor |
| 378 | // and loop buffer which can benefit from partial unrolling. |
| 379 | // The relevant requirements are: |
| 380 | // - The loop must have fewer than 16 branches |
| 381 | // - The loop must have less than 40 uops in all executed loop branches |
| 382 | |
| 383 | // The number of taken branches in a loop is hard to estimate here, and |
| 384 | // benchmarking has revealed that it is better not to be conservative when |
| 385 | // estimating the branch count. As a result, we'll ignore the branch limits |
| 386 | // until someone finds a case where it matters in practice. |
| 387 | |
| 388 | unsigned MaxOps; |
| 389 | const TargetSubtargetInfo *ST = getST(); |
| 390 | if (PartialUnrollingThreshold.getNumOccurrences() > 0) |
| 391 | MaxOps = PartialUnrollingThreshold; |
| 392 | else if (ST->getSchedModel().LoopMicroOpBufferSize > 0) |
| 393 | MaxOps = ST->getSchedModel().LoopMicroOpBufferSize; |
| 394 | else |
| 395 | return; |
| 396 | |
| 397 | // Scan the loop: don't unroll loops with calls. |
| 398 | for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; |
| 399 | ++I) { |
| 400 | BasicBlock *BB = *I; |
| 401 | |
| 402 | for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J) |
| 403 | if (isa<CallInst>(J) || isa<InvokeInst>(J)) { |
| 404 | ImmutableCallSite CS(&*J); |
| 405 | if (const Function *F = CS.getCalledFunction()) { |
| 406 | if (!static_cast<T *>(this)->isLoweredToCall(F)) |
| 407 | continue; |
| 408 | } |
| 409 | |
| 410 | return; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | // Enable runtime and partial unrolling up to the specified size. |
| 415 | // Enable using trip count upper bound to unroll loops. |
| 416 | UP.Partial = UP.Runtime = UP.UpperBound = true; |
| 417 | UP.PartialThreshold = MaxOps; |
| 418 | |
| 419 | // Avoid unrolling when optimizing for size. |
| 420 | UP.OptSizeThreshold = 0; |
| 421 | UP.PartialOptSizeThreshold = 0; |
| 422 | |
| 423 | // Set number of instructions optimized when "back edge" |
| 424 | // becomes "fall through" to default value of 2. |
| 425 | UP.BEInsns = 2; |
| 426 | } |
| 427 | |
| 428 | int getInstructionLatency(const Instruction *I) { |
| 429 | if (isa<LoadInst>(I)) |
| 430 | return getST()->getSchedModel().DefaultLoadLatency; |
| 431 | |
| 432 | return BaseT::getInstructionLatency(I); |
| 433 | } |
| 434 | |
| 435 | /// @} |
| 436 | |
| 437 | /// \name Vector TTI Implementations |
| 438 | /// @{ |
| 439 | |
| 440 | unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; } |
| 441 | |
| 442 | unsigned getRegisterBitWidth(bool Vector) const { return 32; } |
| 443 | |
| 444 | /// Estimate the overhead of scalarizing an instruction. Insert and Extract |
| 445 | /// are set if the result needs to be inserted and/or extracted from vectors. |
| 446 | unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) { |
| 447 | assert(Ty->isVectorTy() && "Can only scalarize vectors"); |
| 448 | unsigned Cost = 0; |
| 449 | |
| 450 | for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { |
| 451 | if (Insert) |
| 452 | Cost += static_cast<T *>(this) |
| 453 | ->getVectorInstrCost(Instruction::InsertElement, Ty, i); |
| 454 | if (Extract) |
| 455 | Cost += static_cast<T *>(this) |
| 456 | ->getVectorInstrCost(Instruction::ExtractElement, Ty, i); |
| 457 | } |
| 458 | |
| 459 | return Cost; |
| 460 | } |
| 461 | |
| 462 | /// Estimate the overhead of scalarizing an instructions unique |
| 463 | /// non-constant operands. The types of the arguments are ordinarily |
| 464 | /// scalar, in which case the costs are multiplied with VF. |
| 465 | unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
| 466 | unsigned VF) { |
| 467 | unsigned Cost = 0; |
| 468 | SmallPtrSet<const Value*, 4> UniqueOperands; |
| 469 | for (const Value *A : Args) { |
| 470 | if (!isa<Constant>(A) && UniqueOperands.insert(A).second) { |
| 471 | Type *VecTy = nullptr; |
| 472 | if (A->getType()->isVectorTy()) { |
| 473 | VecTy = A->getType(); |
| 474 | // If A is a vector operand, VF should be 1 or correspond to A. |
| 475 | assert((VF == 1 || VF == VecTy->getVectorNumElements()) && |
| 476 | "Vector argument does not match VF"); |
| 477 | } |
| 478 | else |
| 479 | VecTy = VectorType::get(A->getType(), VF); |
| 480 | |
| 481 | Cost += getScalarizationOverhead(VecTy, false, true); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | return Cost; |
| 486 | } |
| 487 | |
| 488 | unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) { |
| 489 | assert(VecTy->isVectorTy()); |
| 490 | |
| 491 | unsigned Cost = 0; |
| 492 | |
| 493 | Cost += getScalarizationOverhead(VecTy, true, false); |
| 494 | if (!Args.empty()) |
| 495 | Cost += getOperandsScalarizationOverhead(Args, |
| 496 | VecTy->getVectorNumElements()); |
| 497 | else |
| 498 | // When no information on arguments is provided, we add the cost |
| 499 | // associated with one argument as a heuristic. |
| 500 | Cost += getScalarizationOverhead(VecTy, false, true); |
| 501 | |
| 502 | return Cost; |
| 503 | } |
| 504 | |
| 505 | unsigned getMaxInterleaveFactor(unsigned VF) { return 1; } |
| 506 | |
| 507 | unsigned getArithmeticInstrCost( |
| 508 | unsigned Opcode, Type *Ty, |
| 509 | TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue, |
| 510 | TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue, |
| 511 | TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None, |
| 512 | TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None, |
| 513 | ArrayRef<const Value *> Args = ArrayRef<const Value *>()) { |
| 514 | // Check if any of the operands are vector operands. |
| 515 | const TargetLoweringBase *TLI = getTLI(); |
| 516 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 517 | assert(ISD && "Invalid opcode"); |
| 518 | |
| 519 | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); |
| 520 | |
| 521 | bool IsFloat = Ty->isFPOrFPVectorTy(); |
| 522 | // Assume that floating point arithmetic operations cost twice as much as |
| 523 | // integer operations. |
| 524 | unsigned OpCost = (IsFloat ? 2 : 1); |
| 525 | |
| 526 | if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { |
| 527 | // The operation is legal. Assume it costs 1. |
| 528 | // TODO: Once we have extract/insert subvector cost we need to use them. |
| 529 | return LT.first * OpCost; |
| 530 | } |
| 531 | |
| 532 | if (!TLI->isOperationExpand(ISD, LT.second)) { |
| 533 | // If the operation is custom lowered, then assume that the code is twice |
| 534 | // as expensive. |
| 535 | return LT.first * 2 * OpCost; |
| 536 | } |
| 537 | |
| 538 | // Else, assume that we need to scalarize this op. |
| 539 | // TODO: If one of the types get legalized by splitting, handle this |
| 540 | // similarly to what getCastInstrCost() does. |
| 541 | if (Ty->isVectorTy()) { |
| 542 | unsigned Num = Ty->getVectorNumElements(); |
| 543 | unsigned Cost = static_cast<T *>(this) |
| 544 | ->getArithmeticInstrCost(Opcode, Ty->getScalarType()); |
| 545 | // Return the cost of multiple scalar invocation plus the cost of |
| 546 | // inserting and extracting the values. |
| 547 | return getScalarizationOverhead(Ty, Args) + Num * Cost; |
| 548 | } |
| 549 | |
| 550 | // We don't know anything about this scalar instruction. |
| 551 | return OpCost; |
| 552 | } |
| 553 | |
| 554 | unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, |
| 555 | Type *SubTp) { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 556 | switch (Kind) { |
| 557 | case TTI::SK_Select: |
| 558 | case TTI::SK_Transpose: |
| 559 | case TTI::SK_PermuteSingleSrc: |
| 560 | case TTI::SK_PermuteTwoSrc: |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 561 | return getPermuteShuffleOverhead(Tp); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 562 | default: |
| 563 | return 1; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 564 | } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 565 | } |
| 566 | |
| 567 | unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| 568 | const Instruction *I = nullptr) { |
| 569 | const TargetLoweringBase *TLI = getTLI(); |
| 570 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 571 | assert(ISD && "Invalid opcode"); |
| 572 | std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src); |
| 573 | std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst); |
| 574 | |
| 575 | // Check for NOOP conversions. |
| 576 | if (SrcLT.first == DstLT.first && |
| 577 | SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { |
| 578 | |
| 579 | // Bitcast between types that are legalized to the same type are free. |
| 580 | if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) |
| 581 | return 0; |
| 582 | } |
| 583 | |
| 584 | if (Opcode == Instruction::Trunc && |
| 585 | TLI->isTruncateFree(SrcLT.second, DstLT.second)) |
| 586 | return 0; |
| 587 | |
| 588 | if (Opcode == Instruction::ZExt && |
| 589 | TLI->isZExtFree(SrcLT.second, DstLT.second)) |
| 590 | return 0; |
| 591 | |
| 592 | if (Opcode == Instruction::AddrSpaceCast && |
| 593 | TLI->isNoopAddrSpaceCast(Src->getPointerAddressSpace(), |
| 594 | Dst->getPointerAddressSpace())) |
| 595 | return 0; |
| 596 | |
| 597 | // If this is a zext/sext of a load, return 0 if the corresponding |
| 598 | // extending load exists on target. |
| 599 | if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && |
| 600 | I && isa<LoadInst>(I->getOperand(0))) { |
| 601 | EVT ExtVT = EVT::getEVT(Dst); |
| 602 | EVT LoadVT = EVT::getEVT(Src); |
| 603 | unsigned LType = |
| 604 | ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD); |
| 605 | if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT)) |
| 606 | return 0; |
| 607 | } |
| 608 | |
| 609 | // If the cast is marked as legal (or promote) then assume low cost. |
| 610 | if (SrcLT.first == DstLT.first && |
| 611 | TLI->isOperationLegalOrPromote(ISD, DstLT.second)) |
| 612 | return 1; |
| 613 | |
| 614 | // Handle scalar conversions. |
| 615 | if (!Src->isVectorTy() && !Dst->isVectorTy()) { |
| 616 | // Scalar bitcasts are usually free. |
| 617 | if (Opcode == Instruction::BitCast) |
| 618 | return 0; |
| 619 | |
| 620 | // Just check the op cost. If the operation is legal then assume it costs |
| 621 | // 1. |
| 622 | if (!TLI->isOperationExpand(ISD, DstLT.second)) |
| 623 | return 1; |
| 624 | |
| 625 | // Assume that illegal scalar instruction are expensive. |
| 626 | return 4; |
| 627 | } |
| 628 | |
| 629 | // Check vector-to-vector casts. |
| 630 | if (Dst->isVectorTy() && Src->isVectorTy()) { |
| 631 | // If the cast is between same-sized registers, then the check is simple. |
| 632 | if (SrcLT.first == DstLT.first && |
| 633 | SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { |
| 634 | |
| 635 | // Assume that Zext is done using AND. |
| 636 | if (Opcode == Instruction::ZExt) |
| 637 | return 1; |
| 638 | |
| 639 | // Assume that sext is done using SHL and SRA. |
| 640 | if (Opcode == Instruction::SExt) |
| 641 | return 2; |
| 642 | |
| 643 | // Just check the op cost. If the operation is legal then assume it |
| 644 | // costs |
| 645 | // 1 and multiply by the type-legalization overhead. |
| 646 | if (!TLI->isOperationExpand(ISD, DstLT.second)) |
| 647 | return SrcLT.first * 1; |
| 648 | } |
| 649 | |
| 650 | // If we are legalizing by splitting, query the concrete TTI for the cost |
| 651 | // of casting the original vector twice. We also need to factor in the |
| 652 | // cost of the split itself. Count that as 1, to be consistent with |
| 653 | // TLI->getTypeLegalizationCost(). |
| 654 | if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) == |
| 655 | TargetLowering::TypeSplitVector) || |
| 656 | (TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) == |
| 657 | TargetLowering::TypeSplitVector)) { |
| 658 | Type *SplitDst = VectorType::get(Dst->getVectorElementType(), |
| 659 | Dst->getVectorNumElements() / 2); |
| 660 | Type *SplitSrc = VectorType::get(Src->getVectorElementType(), |
| 661 | Src->getVectorNumElements() / 2); |
| 662 | T *TTI = static_cast<T *>(this); |
| 663 | return TTI->getVectorSplitCost() + |
| 664 | (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I)); |
| 665 | } |
| 666 | |
| 667 | // In other cases where the source or destination are illegal, assume |
| 668 | // the operation will get scalarized. |
| 669 | unsigned Num = Dst->getVectorNumElements(); |
| 670 | unsigned Cost = static_cast<T *>(this)->getCastInstrCost( |
| 671 | Opcode, Dst->getScalarType(), Src->getScalarType(), I); |
| 672 | |
| 673 | // Return the cost of multiple scalar invocation plus the cost of |
| 674 | // inserting and extracting the values. |
| 675 | return getScalarizationOverhead(Dst, true, true) + Num * Cost; |
| 676 | } |
| 677 | |
| 678 | // We already handled vector-to-vector and scalar-to-scalar conversions. |
| 679 | // This |
| 680 | // is where we handle bitcast between vectors and scalars. We need to assume |
| 681 | // that the conversion is scalarized in one way or another. |
| 682 | if (Opcode == Instruction::BitCast) |
| 683 | // Illegal bitcasts are done by storing and loading from a stack slot. |
| 684 | return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true) |
| 685 | : 0) + |
| 686 | (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false) |
| 687 | : 0); |
| 688 | |
| 689 | llvm_unreachable("Unhandled cast"); |
| 690 | } |
| 691 | |
| 692 | unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
| 693 | VectorType *VecTy, unsigned Index) { |
| 694 | return static_cast<T *>(this)->getVectorInstrCost( |
| 695 | Instruction::ExtractElement, VecTy, Index) + |
| 696 | static_cast<T *>(this)->getCastInstrCost(Opcode, Dst, |
| 697 | VecTy->getElementType()); |
| 698 | } |
| 699 | |
| 700 | unsigned getCFInstrCost(unsigned Opcode) { |
| 701 | // Branches are assumed to be predicted. |
| 702 | return 0; |
| 703 | } |
| 704 | |
| 705 | unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
| 706 | const Instruction *I) { |
| 707 | const TargetLoweringBase *TLI = getTLI(); |
| 708 | int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| 709 | assert(ISD && "Invalid opcode"); |
| 710 | |
| 711 | // Selects on vectors are actually vector selects. |
| 712 | if (ISD == ISD::SELECT) { |
| 713 | assert(CondTy && "CondTy must exist"); |
| 714 | if (CondTy->isVectorTy()) |
| 715 | ISD = ISD::VSELECT; |
| 716 | } |
| 717 | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); |
| 718 | |
| 719 | if (!(ValTy->isVectorTy() && !LT.second.isVector()) && |
| 720 | !TLI->isOperationExpand(ISD, LT.second)) { |
| 721 | // The operation is legal. Assume it costs 1. Multiply |
| 722 | // by the type-legalization overhead. |
| 723 | return LT.first * 1; |
| 724 | } |
| 725 | |
| 726 | // Otherwise, assume that the cast is scalarized. |
| 727 | // TODO: If one of the types get legalized by splitting, handle this |
| 728 | // similarly to what getCastInstrCost() does. |
| 729 | if (ValTy->isVectorTy()) { |
| 730 | unsigned Num = ValTy->getVectorNumElements(); |
| 731 | if (CondTy) |
| 732 | CondTy = CondTy->getScalarType(); |
| 733 | unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost( |
| 734 | Opcode, ValTy->getScalarType(), CondTy, I); |
| 735 | |
| 736 | // Return the cost of multiple scalar invocation plus the cost of |
| 737 | // inserting and extracting the values. |
| 738 | return getScalarizationOverhead(ValTy, true, false) + Num * Cost; |
| 739 | } |
| 740 | |
| 741 | // Unknown scalar opcode. |
| 742 | return 1; |
| 743 | } |
| 744 | |
| 745 | unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { |
| 746 | std::pair<unsigned, MVT> LT = |
| 747 | getTLI()->getTypeLegalizationCost(DL, Val->getScalarType()); |
| 748 | |
| 749 | return LT.first; |
| 750 | } |
| 751 | |
| 752 | unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| 753 | unsigned AddressSpace, const Instruction *I = nullptr) { |
| 754 | assert(!Src->isVoidTy() && "Invalid type"); |
| 755 | std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src); |
| 756 | |
| 757 | // Assuming that all loads of legal types cost 1. |
| 758 | unsigned Cost = LT.first; |
| 759 | |
| 760 | if (Src->isVectorTy() && |
| 761 | Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) { |
| 762 | // This is a vector load that legalizes to a larger type than the vector |
| 763 | // itself. Unless the corresponding extending load or truncating store is |
| 764 | // legal, then this will scalarize. |
| 765 | TargetLowering::LegalizeAction LA = TargetLowering::Expand; |
| 766 | EVT MemVT = getTLI()->getValueType(DL, Src); |
| 767 | if (Opcode == Instruction::Store) |
| 768 | LA = getTLI()->getTruncStoreAction(LT.second, MemVT); |
| 769 | else |
| 770 | LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT); |
| 771 | |
| 772 | if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) { |
| 773 | // This is a vector load/store for some illegal type that is scalarized. |
| 774 | // We must account for the cost of building or decomposing the vector. |
| 775 | Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store, |
| 776 | Opcode == Instruction::Store); |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | return Cost; |
| 781 | } |
| 782 | |
| 783 | unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, |
| 784 | unsigned Factor, |
| 785 | ArrayRef<unsigned> Indices, |
| 786 | unsigned Alignment, |
| 787 | unsigned AddressSpace) { |
| 788 | VectorType *VT = dyn_cast<VectorType>(VecTy); |
| 789 | assert(VT && "Expect a vector type for interleaved memory op"); |
| 790 | |
| 791 | unsigned NumElts = VT->getNumElements(); |
| 792 | assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); |
| 793 | |
| 794 | unsigned NumSubElts = NumElts / Factor; |
| 795 | VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts); |
| 796 | |
| 797 | // Firstly, the cost of load/store operation. |
| 798 | unsigned Cost = static_cast<T *>(this)->getMemoryOpCost( |
| 799 | Opcode, VecTy, Alignment, AddressSpace); |
| 800 | |
| 801 | // Legalize the vector type, and get the legalized and unlegalized type |
| 802 | // sizes. |
| 803 | MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; |
| 804 | unsigned VecTySize = |
| 805 | static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy); |
| 806 | unsigned VecTyLTSize = VecTyLT.getStoreSize(); |
| 807 | |
| 808 | // Return the ceiling of dividing A by B. |
| 809 | auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; |
| 810 | |
| 811 | // Scale the cost of the memory operation by the fraction of legalized |
| 812 | // instructions that will actually be used. We shouldn't account for the |
| 813 | // cost of dead instructions since they will be removed. |
| 814 | // |
| 815 | // E.g., An interleaved load of factor 8: |
| 816 | // %vec = load <16 x i64>, <16 x i64>* %ptr |
| 817 | // %v0 = shufflevector %vec, undef, <0, 8> |
| 818 | // |
| 819 | // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be |
| 820 | // used (those corresponding to elements [0:1] and [8:9] of the unlegalized |
| 821 | // type). The other loads are unused. |
| 822 | // |
| 823 | // We only scale the cost of loads since interleaved store groups aren't |
| 824 | // allowed to have gaps. |
| 825 | if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) { |
| 826 | // The number of loads of a legal type it will take to represent a load |
| 827 | // of the unlegalized vector type. |
| 828 | unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize); |
| 829 | |
| 830 | // The number of elements of the unlegalized type that correspond to a |
| 831 | // single legal instruction. |
| 832 | unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts); |
| 833 | |
| 834 | // Determine which legal instructions will be used. |
| 835 | BitVector UsedInsts(NumLegalInsts, false); |
| 836 | for (unsigned Index : Indices) |
| 837 | for (unsigned Elt = 0; Elt < NumSubElts; ++Elt) |
| 838 | UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst); |
| 839 | |
| 840 | // Scale the cost of the load by the fraction of legal instructions that |
| 841 | // will be used. |
| 842 | Cost *= UsedInsts.count() / NumLegalInsts; |
| 843 | } |
| 844 | |
| 845 | // Then plus the cost of interleave operation. |
| 846 | if (Opcode == Instruction::Load) { |
| 847 | // The interleave cost is similar to extract sub vectors' elements |
| 848 | // from the wide vector, and insert them into sub vectors. |
| 849 | // |
| 850 | // E.g. An interleaved load of factor 2 (with one member of index 0): |
| 851 | // %vec = load <8 x i32>, <8 x i32>* %ptr |
| 852 | // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0 |
| 853 | // The cost is estimated as extract elements at 0, 2, 4, 6 from the |
| 854 | // <8 x i32> vector and insert them into a <4 x i32> vector. |
| 855 | |
| 856 | assert(Indices.size() <= Factor && |
| 857 | "Interleaved memory op has too many members"); |
| 858 | |
| 859 | for (unsigned Index : Indices) { |
| 860 | assert(Index < Factor && "Invalid index for interleaved memory op"); |
| 861 | |
| 862 | // Extract elements from loaded vector for each sub vector. |
| 863 | for (unsigned i = 0; i < NumSubElts; i++) |
| 864 | Cost += static_cast<T *>(this)->getVectorInstrCost( |
| 865 | Instruction::ExtractElement, VT, Index + i * Factor); |
| 866 | } |
| 867 | |
| 868 | unsigned InsSubCost = 0; |
| 869 | for (unsigned i = 0; i < NumSubElts; i++) |
| 870 | InsSubCost += static_cast<T *>(this)->getVectorInstrCost( |
| 871 | Instruction::InsertElement, SubVT, i); |
| 872 | |
| 873 | Cost += Indices.size() * InsSubCost; |
| 874 | } else { |
| 875 | // The interleave cost is extract all elements from sub vectors, and |
| 876 | // insert them into the wide vector. |
| 877 | // |
| 878 | // E.g. An interleaved store of factor 2: |
| 879 | // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7> |
| 880 | // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr |
| 881 | // The cost is estimated as extract all elements from both <4 x i32> |
| 882 | // vectors and insert into the <8 x i32> vector. |
| 883 | |
| 884 | unsigned ExtSubCost = 0; |
| 885 | for (unsigned i = 0; i < NumSubElts; i++) |
| 886 | ExtSubCost += static_cast<T *>(this)->getVectorInstrCost( |
| 887 | Instruction::ExtractElement, SubVT, i); |
| 888 | Cost += ExtSubCost * Factor; |
| 889 | |
| 890 | for (unsigned i = 0; i < NumElts; i++) |
| 891 | Cost += static_cast<T *>(this) |
| 892 | ->getVectorInstrCost(Instruction::InsertElement, VT, i); |
| 893 | } |
| 894 | |
| 895 | return Cost; |
| 896 | } |
| 897 | |
| 898 | /// Get intrinsic cost based on arguments. |
| 899 | unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, |
| 900 | ArrayRef<Value *> Args, FastMathFlags FMF, |
| 901 | unsigned VF = 1) { |
| 902 | unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1); |
| 903 | assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type"); |
| 904 | |
| 905 | switch (IID) { |
| 906 | default: { |
| 907 | // Assume that we need to scalarize this intrinsic. |
| 908 | SmallVector<Type *, 4> Types; |
| 909 | for (Value *Op : Args) { |
| 910 | Type *OpTy = Op->getType(); |
| 911 | assert(VF == 1 || !OpTy->isVectorTy()); |
| 912 | Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF)); |
| 913 | } |
| 914 | |
| 915 | if (VF > 1 && !RetTy->isVoidTy()) |
| 916 | RetTy = VectorType::get(RetTy, VF); |
| 917 | |
| 918 | // Compute the scalarization overhead based on Args for a vector |
| 919 | // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while |
| 920 | // CostModel will pass a vector RetTy and VF is 1. |
| 921 | unsigned ScalarizationCost = std::numeric_limits<unsigned>::max(); |
| 922 | if (RetVF > 1 || VF > 1) { |
| 923 | ScalarizationCost = 0; |
| 924 | if (!RetTy->isVoidTy()) |
| 925 | ScalarizationCost += getScalarizationOverhead(RetTy, true, false); |
| 926 | ScalarizationCost += getOperandsScalarizationOverhead(Args, VF); |
| 927 | } |
| 928 | |
| 929 | return static_cast<T *>(this)-> |
| 930 | getIntrinsicInstrCost(IID, RetTy, Types, FMF, ScalarizationCost); |
| 931 | } |
| 932 | case Intrinsic::masked_scatter: { |
| 933 | assert(VF == 1 && "Can't vectorize types here."); |
| 934 | Value *Mask = Args[3]; |
| 935 | bool VarMask = !isa<Constant>(Mask); |
| 936 | unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue(); |
| 937 | return |
| 938 | static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Store, |
| 939 | Args[0]->getType(), |
| 940 | Args[1], VarMask, |
| 941 | Alignment); |
| 942 | } |
| 943 | case Intrinsic::masked_gather: { |
| 944 | assert(VF == 1 && "Can't vectorize types here."); |
| 945 | Value *Mask = Args[2]; |
| 946 | bool VarMask = !isa<Constant>(Mask); |
| 947 | unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue(); |
| 948 | return |
| 949 | static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Load, |
| 950 | RetTy, Args[0], VarMask, |
| 951 | Alignment); |
| 952 | } |
| 953 | case Intrinsic::experimental_vector_reduce_add: |
| 954 | case Intrinsic::experimental_vector_reduce_mul: |
| 955 | case Intrinsic::experimental_vector_reduce_and: |
| 956 | case Intrinsic::experimental_vector_reduce_or: |
| 957 | case Intrinsic::experimental_vector_reduce_xor: |
| 958 | case Intrinsic::experimental_vector_reduce_fadd: |
| 959 | case Intrinsic::experimental_vector_reduce_fmul: |
| 960 | case Intrinsic::experimental_vector_reduce_smax: |
| 961 | case Intrinsic::experimental_vector_reduce_smin: |
| 962 | case Intrinsic::experimental_vector_reduce_fmax: |
| 963 | case Intrinsic::experimental_vector_reduce_fmin: |
| 964 | case Intrinsic::experimental_vector_reduce_umax: |
| 965 | case Intrinsic::experimental_vector_reduce_umin: |
| 966 | return getIntrinsicInstrCost(IID, RetTy, Args[0]->getType(), FMF); |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | /// Get intrinsic cost based on argument types. |
| 971 | /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the |
| 972 | /// cost of scalarizing the arguments and the return value will be computed |
| 973 | /// based on types. |
| 974 | unsigned getIntrinsicInstrCost( |
| 975 | Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF, |
| 976 | unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) { |
| 977 | SmallVector<unsigned, 2> ISDs; |
| 978 | unsigned SingleCallCost = 10; // Library call cost. Make it expensive. |
| 979 | switch (IID) { |
| 980 | default: { |
| 981 | // Assume that we need to scalarize this intrinsic. |
| 982 | unsigned ScalarizationCost = ScalarizationCostPassed; |
| 983 | unsigned ScalarCalls = 1; |
| 984 | Type *ScalarRetTy = RetTy; |
| 985 | if (RetTy->isVectorTy()) { |
| 986 | if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max()) |
| 987 | ScalarizationCost = getScalarizationOverhead(RetTy, true, false); |
| 988 | ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); |
| 989 | ScalarRetTy = RetTy->getScalarType(); |
| 990 | } |
| 991 | SmallVector<Type *, 4> ScalarTys; |
| 992 | for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
| 993 | Type *Ty = Tys[i]; |
| 994 | if (Ty->isVectorTy()) { |
| 995 | if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max()) |
| 996 | ScalarizationCost += getScalarizationOverhead(Ty, false, true); |
| 997 | ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements()); |
| 998 | Ty = Ty->getScalarType(); |
| 999 | } |
| 1000 | ScalarTys.push_back(Ty); |
| 1001 | } |
| 1002 | if (ScalarCalls == 1) |
| 1003 | return 1; // Return cost of a scalar intrinsic. Assume it to be cheap. |
| 1004 | |
| 1005 | unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost( |
| 1006 | IID, ScalarRetTy, ScalarTys, FMF); |
| 1007 | |
| 1008 | return ScalarCalls * ScalarCost + ScalarizationCost; |
| 1009 | } |
| 1010 | // Look for intrinsics that can be lowered directly or turned into a scalar |
| 1011 | // intrinsic call. |
| 1012 | case Intrinsic::sqrt: |
| 1013 | ISDs.push_back(ISD::FSQRT); |
| 1014 | break; |
| 1015 | case Intrinsic::sin: |
| 1016 | ISDs.push_back(ISD::FSIN); |
| 1017 | break; |
| 1018 | case Intrinsic::cos: |
| 1019 | ISDs.push_back(ISD::FCOS); |
| 1020 | break; |
| 1021 | case Intrinsic::exp: |
| 1022 | ISDs.push_back(ISD::FEXP); |
| 1023 | break; |
| 1024 | case Intrinsic::exp2: |
| 1025 | ISDs.push_back(ISD::FEXP2); |
| 1026 | break; |
| 1027 | case Intrinsic::log: |
| 1028 | ISDs.push_back(ISD::FLOG); |
| 1029 | break; |
| 1030 | case Intrinsic::log10: |
| 1031 | ISDs.push_back(ISD::FLOG10); |
| 1032 | break; |
| 1033 | case Intrinsic::log2: |
| 1034 | ISDs.push_back(ISD::FLOG2); |
| 1035 | break; |
| 1036 | case Intrinsic::fabs: |
| 1037 | ISDs.push_back(ISD::FABS); |
| 1038 | break; |
| 1039 | case Intrinsic::minnum: |
| 1040 | ISDs.push_back(ISD::FMINNUM); |
| 1041 | if (FMF.noNaNs()) |
| 1042 | ISDs.push_back(ISD::FMINNAN); |
| 1043 | break; |
| 1044 | case Intrinsic::maxnum: |
| 1045 | ISDs.push_back(ISD::FMAXNUM); |
| 1046 | if (FMF.noNaNs()) |
| 1047 | ISDs.push_back(ISD::FMAXNAN); |
| 1048 | break; |
| 1049 | case Intrinsic::copysign: |
| 1050 | ISDs.push_back(ISD::FCOPYSIGN); |
| 1051 | break; |
| 1052 | case Intrinsic::floor: |
| 1053 | ISDs.push_back(ISD::FFLOOR); |
| 1054 | break; |
| 1055 | case Intrinsic::ceil: |
| 1056 | ISDs.push_back(ISD::FCEIL); |
| 1057 | break; |
| 1058 | case Intrinsic::trunc: |
| 1059 | ISDs.push_back(ISD::FTRUNC); |
| 1060 | break; |
| 1061 | case Intrinsic::nearbyint: |
| 1062 | ISDs.push_back(ISD::FNEARBYINT); |
| 1063 | break; |
| 1064 | case Intrinsic::rint: |
| 1065 | ISDs.push_back(ISD::FRINT); |
| 1066 | break; |
| 1067 | case Intrinsic::round: |
| 1068 | ISDs.push_back(ISD::FROUND); |
| 1069 | break; |
| 1070 | case Intrinsic::pow: |
| 1071 | ISDs.push_back(ISD::FPOW); |
| 1072 | break; |
| 1073 | case Intrinsic::fma: |
| 1074 | ISDs.push_back(ISD::FMA); |
| 1075 | break; |
| 1076 | case Intrinsic::fmuladd: |
| 1077 | ISDs.push_back(ISD::FMA); |
| 1078 | break; |
| 1079 | // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free. |
| 1080 | case Intrinsic::lifetime_start: |
| 1081 | case Intrinsic::lifetime_end: |
| 1082 | case Intrinsic::sideeffect: |
| 1083 | return 0; |
| 1084 | case Intrinsic::masked_store: |
| 1085 | return static_cast<T *>(this) |
| 1086 | ->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0); |
| 1087 | case Intrinsic::masked_load: |
| 1088 | return static_cast<T *>(this) |
| 1089 | ->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0); |
| 1090 | case Intrinsic::experimental_vector_reduce_add: |
| 1091 | return static_cast<T *>(this)->getArithmeticReductionCost( |
| 1092 | Instruction::Add, Tys[0], /*IsPairwiseForm=*/false); |
| 1093 | case Intrinsic::experimental_vector_reduce_mul: |
| 1094 | return static_cast<T *>(this)->getArithmeticReductionCost( |
| 1095 | Instruction::Mul, Tys[0], /*IsPairwiseForm=*/false); |
| 1096 | case Intrinsic::experimental_vector_reduce_and: |
| 1097 | return static_cast<T *>(this)->getArithmeticReductionCost( |
| 1098 | Instruction::And, Tys[0], /*IsPairwiseForm=*/false); |
| 1099 | case Intrinsic::experimental_vector_reduce_or: |
| 1100 | return static_cast<T *>(this)->getArithmeticReductionCost( |
| 1101 | Instruction::Or, Tys[0], /*IsPairwiseForm=*/false); |
| 1102 | case Intrinsic::experimental_vector_reduce_xor: |
| 1103 | return static_cast<T *>(this)->getArithmeticReductionCost( |
| 1104 | Instruction::Xor, Tys[0], /*IsPairwiseForm=*/false); |
| 1105 | case Intrinsic::experimental_vector_reduce_fadd: |
| 1106 | return static_cast<T *>(this)->getArithmeticReductionCost( |
| 1107 | Instruction::FAdd, Tys[0], /*IsPairwiseForm=*/false); |
| 1108 | case Intrinsic::experimental_vector_reduce_fmul: |
| 1109 | return static_cast<T *>(this)->getArithmeticReductionCost( |
| 1110 | Instruction::FMul, Tys[0], /*IsPairwiseForm=*/false); |
| 1111 | case Intrinsic::experimental_vector_reduce_smax: |
| 1112 | case Intrinsic::experimental_vector_reduce_smin: |
| 1113 | case Intrinsic::experimental_vector_reduce_fmax: |
| 1114 | case Intrinsic::experimental_vector_reduce_fmin: |
| 1115 | return static_cast<T *>(this)->getMinMaxReductionCost( |
| 1116 | Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false, |
| 1117 | /*IsSigned=*/true); |
| 1118 | case Intrinsic::experimental_vector_reduce_umax: |
| 1119 | case Intrinsic::experimental_vector_reduce_umin: |
| 1120 | return static_cast<T *>(this)->getMinMaxReductionCost( |
| 1121 | Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false, |
| 1122 | /*IsSigned=*/false); |
| 1123 | case Intrinsic::ctpop: |
| 1124 | ISDs.push_back(ISD::CTPOP); |
| 1125 | // In case of legalization use TCC_Expensive. This is cheaper than a |
| 1126 | // library call but still not a cheap instruction. |
| 1127 | SingleCallCost = TargetTransformInfo::TCC_Expensive; |
| 1128 | break; |
| 1129 | // FIXME: ctlz, cttz, ... |
| 1130 | } |
| 1131 | |
| 1132 | const TargetLoweringBase *TLI = getTLI(); |
| 1133 | std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); |
| 1134 | |
| 1135 | SmallVector<unsigned, 2> LegalCost; |
| 1136 | SmallVector<unsigned, 2> CustomCost; |
| 1137 | for (unsigned ISD : ISDs) { |
| 1138 | if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { |
| 1139 | if (IID == Intrinsic::fabs && TLI->isFAbsFree(LT.second)) { |
| 1140 | return 0; |
| 1141 | } |
| 1142 | |
| 1143 | // The operation is legal. Assume it costs 1. |
| 1144 | // If the type is split to multiple registers, assume that there is some |
| 1145 | // overhead to this. |
| 1146 | // TODO: Once we have extract/insert subvector cost we need to use them. |
| 1147 | if (LT.first > 1) |
| 1148 | LegalCost.push_back(LT.first * 2); |
| 1149 | else |
| 1150 | LegalCost.push_back(LT.first * 1); |
| 1151 | } else if (!TLI->isOperationExpand(ISD, LT.second)) { |
| 1152 | // If the operation is custom lowered then assume |
| 1153 | // that the code is twice as expensive. |
| 1154 | CustomCost.push_back(LT.first * 2); |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end()); |
| 1159 | if (MinLegalCostI != LegalCost.end()) |
| 1160 | return *MinLegalCostI; |
| 1161 | |
| 1162 | auto MinCustomCostI = std::min_element(CustomCost.begin(), CustomCost.end()); |
| 1163 | if (MinCustomCostI != CustomCost.end()) |
| 1164 | return *MinCustomCostI; |
| 1165 | |
| 1166 | // If we can't lower fmuladd into an FMA estimate the cost as a floating |
| 1167 | // point mul followed by an add. |
| 1168 | if (IID == Intrinsic::fmuladd) |
| 1169 | return static_cast<T *>(this) |
| 1170 | ->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) + |
| 1171 | static_cast<T *>(this) |
| 1172 | ->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy); |
| 1173 | |
| 1174 | // Else, assume that we need to scalarize this intrinsic. For math builtins |
| 1175 | // this will emit a costly libcall, adding call overhead and spills. Make it |
| 1176 | // very expensive. |
| 1177 | if (RetTy->isVectorTy()) { |
| 1178 | unsigned ScalarizationCost = |
| 1179 | ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max()) |
| 1180 | ? ScalarizationCostPassed |
| 1181 | : getScalarizationOverhead(RetTy, true, false)); |
| 1182 | unsigned ScalarCalls = RetTy->getVectorNumElements(); |
| 1183 | SmallVector<Type *, 4> ScalarTys; |
| 1184 | for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
| 1185 | Type *Ty = Tys[i]; |
| 1186 | if (Ty->isVectorTy()) |
| 1187 | Ty = Ty->getScalarType(); |
| 1188 | ScalarTys.push_back(Ty); |
| 1189 | } |
| 1190 | unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost( |
| 1191 | IID, RetTy->getScalarType(), ScalarTys, FMF); |
| 1192 | for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
| 1193 | if (Tys[i]->isVectorTy()) { |
| 1194 | if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max()) |
| 1195 | ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); |
| 1196 | ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements()); |
| 1197 | } |
| 1198 | } |
| 1199 | |
| 1200 | return ScalarCalls * ScalarCost + ScalarizationCost; |
| 1201 | } |
| 1202 | |
| 1203 | // This is going to be turned into a library call, make it expensive. |
| 1204 | return SingleCallCost; |
| 1205 | } |
| 1206 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 1207 | /// Compute a cost of the given call instruction. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1208 | /// |
| 1209 | /// Compute the cost of calling function F with return type RetTy and |
| 1210 | /// argument types Tys. F might be nullptr, in this case the cost of an |
| 1211 | /// arbitrary call with the specified signature will be returned. |
| 1212 | /// This is used, for instance, when we estimate call of a vector |
| 1213 | /// counterpart of the given function. |
| 1214 | /// \param F Called function, might be nullptr. |
| 1215 | /// \param RetTy Return value types. |
| 1216 | /// \param Tys Argument types. |
| 1217 | /// \returns The cost of Call instruction. |
| 1218 | unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) { |
| 1219 | return 10; |
| 1220 | } |
| 1221 | |
| 1222 | unsigned getNumberOfParts(Type *Tp) { |
| 1223 | std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp); |
| 1224 | return LT.first; |
| 1225 | } |
| 1226 | |
| 1227 | unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *, |
| 1228 | const SCEV *) { |
| 1229 | return 0; |
| 1230 | } |
| 1231 | |
| 1232 | /// Try to calculate arithmetic and shuffle op costs for reduction operations. |
| 1233 | /// We're assuming that reduction operation are performing the following way: |
| 1234 | /// 1. Non-pairwise reduction |
| 1235 | /// %val1 = shufflevector<n x t> %val, <n x t> %undef, |
| 1236 | /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef> |
| 1237 | /// \----------------v-------------/ \----------v------------/ |
| 1238 | /// n/2 elements n/2 elements |
| 1239 | /// %red1 = op <n x t> %val, <n x t> val1 |
| 1240 | /// After this operation we have a vector %red1 where only the first n/2 |
| 1241 | /// elements are meaningful, the second n/2 elements are undefined and can be |
| 1242 | /// dropped. All other operations are actually working with the vector of |
| 1243 | /// length n/2, not n, though the real vector length is still n. |
| 1244 | /// %val2 = shufflevector<n x t> %red1, <n x t> %undef, |
| 1245 | /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef> |
| 1246 | /// \----------------v-------------/ \----------v------------/ |
| 1247 | /// n/4 elements 3*n/4 elements |
| 1248 | /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of |
| 1249 | /// length n/2, the resulting vector has length n/4 etc. |
| 1250 | /// 2. Pairwise reduction: |
| 1251 | /// Everything is the same except for an additional shuffle operation which |
| 1252 | /// is used to produce operands for pairwise kind of reductions. |
| 1253 | /// %val1 = shufflevector<n x t> %val, <n x t> %undef, |
| 1254 | /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef> |
| 1255 | /// \-------------v----------/ \----------v------------/ |
| 1256 | /// n/2 elements n/2 elements |
| 1257 | /// %val2 = shufflevector<n x t> %val, <n x t> %undef, |
| 1258 | /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef> |
| 1259 | /// \-------------v----------/ \----------v------------/ |
| 1260 | /// n/2 elements n/2 elements |
| 1261 | /// %red1 = op <n x t> %val1, <n x t> val2 |
| 1262 | /// Again, the operation is performed on <n x t> vector, but the resulting |
| 1263 | /// vector %red1 is <n/2 x t> vector. |
| 1264 | /// |
| 1265 | /// The cost model should take into account that the actual length of the |
| 1266 | /// vector is reduced on each iteration. |
| 1267 | unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty, |
| 1268 | bool IsPairwise) { |
| 1269 | assert(Ty->isVectorTy() && "Expect a vector type"); |
| 1270 | Type *ScalarTy = Ty->getVectorElementType(); |
| 1271 | unsigned NumVecElts = Ty->getVectorNumElements(); |
| 1272 | unsigned NumReduxLevels = Log2_32(NumVecElts); |
| 1273 | unsigned ArithCost = 0; |
| 1274 | unsigned ShuffleCost = 0; |
| 1275 | auto *ConcreteTTI = static_cast<T *>(this); |
| 1276 | std::pair<unsigned, MVT> LT = |
| 1277 | ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty); |
| 1278 | unsigned LongVectorCount = 0; |
| 1279 | unsigned MVTLen = |
| 1280 | LT.second.isVector() ? LT.second.getVectorNumElements() : 1; |
| 1281 | while (NumVecElts > MVTLen) { |
| 1282 | NumVecElts /= 2; |
| 1283 | // Assume the pairwise shuffles add a cost. |
| 1284 | ShuffleCost += (IsPairwise + 1) * |
| 1285 | ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, |
| 1286 | NumVecElts, Ty); |
| 1287 | ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, Ty); |
| 1288 | Ty = VectorType::get(ScalarTy, NumVecElts); |
| 1289 | ++LongVectorCount; |
| 1290 | } |
| 1291 | // The minimal length of the vector is limited by the real length of vector |
| 1292 | // operations performed on the current platform. That's why several final |
| 1293 | // reduction operations are performed on the vectors with the same |
| 1294 | // architecture-dependent length. |
| 1295 | ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) * |
| 1296 | ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, |
| 1297 | NumVecElts, Ty); |
| 1298 | ArithCost += (NumReduxLevels - LongVectorCount) * |
| 1299 | ConcreteTTI->getArithmeticInstrCost(Opcode, Ty); |
| 1300 | return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true); |
| 1301 | } |
| 1302 | |
| 1303 | /// Try to calculate op costs for min/max reduction operations. |
| 1304 | /// \param CondTy Conditional type for the Select instruction. |
| 1305 | unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise, |
| 1306 | bool) { |
| 1307 | assert(Ty->isVectorTy() && "Expect a vector type"); |
| 1308 | Type *ScalarTy = Ty->getVectorElementType(); |
| 1309 | Type *ScalarCondTy = CondTy->getVectorElementType(); |
| 1310 | unsigned NumVecElts = Ty->getVectorNumElements(); |
| 1311 | unsigned NumReduxLevels = Log2_32(NumVecElts); |
| 1312 | unsigned CmpOpcode; |
| 1313 | if (Ty->isFPOrFPVectorTy()) { |
| 1314 | CmpOpcode = Instruction::FCmp; |
| 1315 | } else { |
| 1316 | assert(Ty->isIntOrIntVectorTy() && |
| 1317 | "expecting floating point or integer type for min/max reduction"); |
| 1318 | CmpOpcode = Instruction::ICmp; |
| 1319 | } |
| 1320 | unsigned MinMaxCost = 0; |
| 1321 | unsigned ShuffleCost = 0; |
| 1322 | auto *ConcreteTTI = static_cast<T *>(this); |
| 1323 | std::pair<unsigned, MVT> LT = |
| 1324 | ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty); |
| 1325 | unsigned LongVectorCount = 0; |
| 1326 | unsigned MVTLen = |
| 1327 | LT.second.isVector() ? LT.second.getVectorNumElements() : 1; |
| 1328 | while (NumVecElts > MVTLen) { |
| 1329 | NumVecElts /= 2; |
| 1330 | // Assume the pairwise shuffles add a cost. |
| 1331 | ShuffleCost += (IsPairwise + 1) * |
| 1332 | ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, |
| 1333 | NumVecElts, Ty); |
| 1334 | MinMaxCost += |
| 1335 | ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) + |
| 1336 | ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy, |
| 1337 | nullptr); |
| 1338 | Ty = VectorType::get(ScalarTy, NumVecElts); |
| 1339 | CondTy = VectorType::get(ScalarCondTy, NumVecElts); |
| 1340 | ++LongVectorCount; |
| 1341 | } |
| 1342 | // The minimal length of the vector is limited by the real length of vector |
| 1343 | // operations performed on the current platform. That's why several final |
| 1344 | // reduction opertions are perfomed on the vectors with the same |
| 1345 | // architecture-dependent length. |
| 1346 | ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) * |
| 1347 | ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, |
| 1348 | NumVecElts, Ty); |
| 1349 | MinMaxCost += |
| 1350 | (NumReduxLevels - LongVectorCount) * |
| 1351 | (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) + |
| 1352 | ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy, |
| 1353 | nullptr)); |
| 1354 | // Need 3 extractelement instructions for scalarization + an additional |
| 1355 | // scalar select instruction. |
| 1356 | return ShuffleCost + MinMaxCost + |
| 1357 | 3 * getScalarizationOverhead(Ty, /*Insert=*/false, |
| 1358 | /*Extract=*/true) + |
| 1359 | ConcreteTTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, |
| 1360 | ScalarCondTy, nullptr); |
| 1361 | } |
| 1362 | |
| 1363 | unsigned getVectorSplitCost() { return 1; } |
| 1364 | |
| 1365 | /// @} |
| 1366 | }; |
| 1367 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 1368 | /// Concrete BasicTTIImpl that can be used if no further customization |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1369 | /// is needed. |
| 1370 | class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> { |
| 1371 | using BaseT = BasicTTIImplBase<BasicTTIImpl>; |
| 1372 | |
| 1373 | friend class BasicTTIImplBase<BasicTTIImpl>; |
| 1374 | |
| 1375 | const TargetSubtargetInfo *ST; |
| 1376 | const TargetLoweringBase *TLI; |
| 1377 | |
| 1378 | const TargetSubtargetInfo *getST() const { return ST; } |
| 1379 | const TargetLoweringBase *getTLI() const { return TLI; } |
| 1380 | |
| 1381 | public: |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 1382 | explicit BasicTTIImpl(const TargetMachine *TM, const Function &F); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1383 | }; |
| 1384 | |
| 1385 | } // end namespace llvm |
| 1386 | |
| 1387 | #endif // LLVM_CODEGEN_BASICTTIIMPL_H |