Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/BasicTTIImpl.h b/linux-x64/clang/include/llvm/CodeGen/BasicTTIImpl.h
new file mode 100644
index 0000000..9096263
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/BasicTTIImpl.h
@@ -0,0 +1,1383 @@
+//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This file provides a helper that implements much of the TTI interface in
+/// terms of the target-independent code generator and TargetLowering
+/// interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
+#define LLVM_CODEGEN_BASICTTIIMPL_H
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/TargetTransformInfoImpl.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCSchedule.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <limits>
+#include <utility>
+
+namespace llvm {
+
+class Function;
+class GlobalValue;
+class LLVMContext;
+class ScalarEvolution;
+class SCEV;
+class TargetMachine;
+
+extern cl::opt<unsigned> PartialUnrollingThreshold;
+
+/// \brief Base class which can be used to help build a TTI implementation.
+///
+/// This class provides as much implementation of the TTI interface as is
+/// possible using the target independent parts of the code generator.
+///
+/// In order to subclass it, your class must implement a getST() method to
+/// return the subtarget, and a getTLI() method to return the target lowering.
+/// We need these methods implemented in the derived class so that this class
+/// doesn't have to duplicate storage for them.
+template <typename T>
+class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
+private:
+  using BaseT = TargetTransformInfoImplCRTPBase<T>;
+  using TTI = TargetTransformInfo;
+
+  /// Estimate a cost of shuffle as a sequence of extract and insert
+  /// operations.
+  unsigned getPermuteShuffleOverhead(Type *Ty) {
+    assert(Ty->isVectorTy() && "Can only shuffle vectors");
+    unsigned Cost = 0;
+    // Shuffle cost is equal to the cost of extracting element from its argument
+    // plus the cost of inserting them onto the result vector.
+
+    // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
+    // index 0 of first vector, index 1 of second vector,index 2 of first
+    // vector and finally index 3 of second vector and insert them at index
+    // <0,1,2,3> of result vector.
+    for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+      Cost += static_cast<T *>(this)
+                  ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+      Cost += static_cast<T *>(this)
+                  ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+    }
+    return Cost;
+  }
+
+  /// \brief Local query method delegates up to T which *must* implement this!
+  const TargetSubtargetInfo *getST() const {
+    return static_cast<const T *>(this)->getST();
+  }
+
+  /// \brief Local query method delegates up to T which *must* implement this!
+  const TargetLoweringBase *getTLI() const {
+    return static_cast<const T *>(this)->getTLI();
+  }
+
+  static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
+    switch (M) {
+      case TTI::MIM_Unindexed:
+        return ISD::UNINDEXED;
+      case TTI::MIM_PreInc:
+        return ISD::PRE_INC;
+      case TTI::MIM_PreDec:
+        return ISD::PRE_DEC;
+      case TTI::MIM_PostInc:
+        return ISD::POST_INC;
+      case TTI::MIM_PostDec:
+        return ISD::POST_DEC;
+    }
+    llvm_unreachable("Unexpected MemIndexedMode");
+  }
+
+protected:
+  explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
+      : BaseT(DL) {}
+
+  using TargetTransformInfoImplBase::DL;
+
+public:
+  /// \name Scalar TTI Implementations
+  /// @{
+  bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
+                                      unsigned BitWidth, unsigned AddressSpace,
+                                      unsigned Alignment, bool *Fast) const {
+    EVT E = EVT::getIntegerVT(Context, BitWidth);
+    return getTLI()->allowsMisalignedMemoryAccesses(E, AddressSpace, Alignment, Fast);
+  }
+
+  bool hasBranchDivergence() { return false; }
+
+  bool isSourceOfDivergence(const Value *V) { return false; }
+
+  bool isAlwaysUniform(const Value *V) { return false; }
+
+  unsigned getFlatAddressSpace() {
+    // Return an invalid address space.
+    return -1;
+  }
+
+  bool isLegalAddImmediate(int64_t imm) {
+    return getTLI()->isLegalAddImmediate(imm);
+  }
+
+  bool isLegalICmpImmediate(int64_t imm) {
+    return getTLI()->isLegalICmpImmediate(imm);
+  }
+
+  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+                             bool HasBaseReg, int64_t Scale,
+                             unsigned AddrSpace, Instruction *I = nullptr) {
+    TargetLoweringBase::AddrMode AM;
+    AM.BaseGV = BaseGV;
+    AM.BaseOffs = BaseOffset;
+    AM.HasBaseReg = HasBaseReg;
+    AM.Scale = Scale;
+    return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
+  }
+
+  bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
+                          const DataLayout &DL) const {
+    EVT VT = getTLI()->getValueType(DL, Ty);
+    return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
+  }
+
+  bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
+                           const DataLayout &DL) const {
+    EVT VT = getTLI()->getValueType(DL, Ty);
+    return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
+  }
+
+  bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
+    return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
+  }
+
+  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+                           bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
+    TargetLoweringBase::AddrMode AM;
+    AM.BaseGV = BaseGV;
+    AM.BaseOffs = BaseOffset;
+    AM.HasBaseReg = HasBaseReg;
+    AM.Scale = Scale;
+    return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
+  }
+
+  bool isTruncateFree(Type *Ty1, Type *Ty2) {
+    return getTLI()->isTruncateFree(Ty1, Ty2);
+  }
+
+  bool isProfitableToHoist(Instruction *I) {
+    return getTLI()->isProfitableToHoist(I);
+  }
+
+  bool useAA() const { return getST()->useAA(); }
+
+  bool isTypeLegal(Type *Ty) {
+    EVT VT = getTLI()->getValueType(DL, Ty);
+    return getTLI()->isTypeLegal(VT);
+  }
+
+  int getGEPCost(Type *PointeeType, const Value *Ptr,
+                 ArrayRef<const Value *> Operands) {
+    return BaseT::getGEPCost(PointeeType, Ptr, Operands);
+  }
+
+  int getExtCost(const Instruction *I, const Value *Src) {
+    if (getTLI()->isExtFree(I))
+      return TargetTransformInfo::TCC_Free;
+
+    if (isa<ZExtInst>(I) || isa<SExtInst>(I))
+      if (const LoadInst *LI = dyn_cast<LoadInst>(Src))
+        if (getTLI()->isExtLoad(LI, I, DL))
+          return TargetTransformInfo::TCC_Free;
+
+    return TargetTransformInfo::TCC_Basic;
+  }
+
+  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                            ArrayRef<const Value *> Arguments) {
+    return BaseT::getIntrinsicCost(IID, RetTy, Arguments);
+  }
+
+  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                            ArrayRef<Type *> ParamTys) {
+    if (IID == Intrinsic::cttz) {
+      if (getTLI()->isCheapToSpeculateCttz())
+        return TargetTransformInfo::TCC_Basic;
+      return TargetTransformInfo::TCC_Expensive;
+    }
+
+    if (IID == Intrinsic::ctlz) {
+      if (getTLI()->isCheapToSpeculateCtlz())
+        return TargetTransformInfo::TCC_Basic;
+      return TargetTransformInfo::TCC_Expensive;
+    }
+
+    return BaseT::getIntrinsicCost(IID, RetTy, ParamTys);
+  }
+
+  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
+                                            unsigned &JumpTableSize) {
+    /// Try to find the estimated number of clusters. Note that the number of
+    /// clusters identified in this function could be different from the actural
+    /// numbers found in lowering. This function ignore switches that are
+    /// lowered with a mix of jump table / bit test / BTree. This function was
+    /// initially intended to be used when estimating the cost of switch in
+    /// inline cost heuristic, but it's a generic cost model to be used in other
+    /// places (e.g., in loop unrolling).
+    unsigned N = SI.getNumCases();
+    const TargetLoweringBase *TLI = getTLI();
+    const DataLayout &DL = this->getDataLayout();
+
+    JumpTableSize = 0;
+    bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
+
+    // Early exit if both a jump table and bit test are not allowed.
+    if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
+      return N;
+
+    APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
+    APInt MinCaseVal = MaxCaseVal;
+    for (auto CI : SI.cases()) {
+      const APInt &CaseVal = CI.getCaseValue()->getValue();
+      if (CaseVal.sgt(MaxCaseVal))
+        MaxCaseVal = CaseVal;
+      if (CaseVal.slt(MinCaseVal))
+        MinCaseVal = CaseVal;
+    }
+
+    // Check if suitable for a bit test
+    if (N <= DL.getIndexSizeInBits(0u)) {
+      SmallPtrSet<const BasicBlock *, 4> Dests;
+      for (auto I : SI.cases())
+        Dests.insert(I.getCaseSuccessor());
+
+      if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
+                                     DL))
+        return 1;
+    }
+
+    // Check if suitable for a jump table.
+    if (IsJTAllowed) {
+      if (N < 2 || N < TLI->getMinimumJumpTableEntries())
+        return N;
+      uint64_t Range =
+          (MaxCaseVal - MinCaseVal)
+              .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
+      // Check whether a range of clusters is dense enough for a jump table
+      if (TLI->isSuitableForJumpTable(&SI, N, Range)) {
+        JumpTableSize = Range;
+        return 1;
+      }
+    }
+    return N;
+  }
+
+  unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); }
+
+  unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); }
+
+  bool shouldBuildLookupTables() {
+    const TargetLoweringBase *TLI = getTLI();
+    return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+           TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
+  }
+
+  bool haveFastSqrt(Type *Ty) {
+    const TargetLoweringBase *TLI = getTLI();
+    EVT VT = TLI->getValueType(DL, Ty);
+    return TLI->isTypeLegal(VT) &&
+           TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
+  }
+
+  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
+    return true;
+  }
+
+  unsigned getFPOpCost(Type *Ty) {
+    // Check whether FADD is available, as a proxy for floating-point in
+    // general.
+    const TargetLoweringBase *TLI = getTLI();
+    EVT VT = TLI->getValueType(DL, Ty);
+    if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
+      return TargetTransformInfo::TCC_Basic;
+    return TargetTransformInfo::TCC_Expensive;
+  }
+
+  unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
+    const TargetLoweringBase *TLI = getTLI();
+    switch (Opcode) {
+    default: break;
+    case Instruction::Trunc:
+      if (TLI->isTruncateFree(OpTy, Ty))
+        return TargetTransformInfo::TCC_Free;
+      return TargetTransformInfo::TCC_Basic;
+    case Instruction::ZExt:
+      if (TLI->isZExtFree(OpTy, Ty))
+        return TargetTransformInfo::TCC_Free;
+      return TargetTransformInfo::TCC_Basic;
+    }
+
+    return BaseT::getOperationCost(Opcode, Ty, OpTy);
+  }
+
+  unsigned getInliningThresholdMultiplier() { return 1; }
+
+  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+                               TTI::UnrollingPreferences &UP) {
+    // This unrolling functionality is target independent, but to provide some
+    // motivation for its intended use, for x86:
+
+    // According to the Intel 64 and IA-32 Architectures Optimization Reference
+    // Manual, Intel Core models and later have a loop stream detector (and
+    // associated uop queue) that can benefit from partial unrolling.
+    // The relevant requirements are:
+    //  - The loop must have no more than 4 (8 for Nehalem and later) branches
+    //    taken, and none of them may be calls.
+    //  - The loop can have no more than 18 (28 for Nehalem and later) uops.
+
+    // According to the Software Optimization Guide for AMD Family 15h
+    // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
+    // and loop buffer which can benefit from partial unrolling.
+    // The relevant requirements are:
+    //  - The loop must have fewer than 16 branches
+    //  - The loop must have less than 40 uops in all executed loop branches
+
+    // The number of taken branches in a loop is hard to estimate here, and
+    // benchmarking has revealed that it is better not to be conservative when
+    // estimating the branch count. As a result, we'll ignore the branch limits
+    // until someone finds a case where it matters in practice.
+
+    unsigned MaxOps;
+    const TargetSubtargetInfo *ST = getST();
+    if (PartialUnrollingThreshold.getNumOccurrences() > 0)
+      MaxOps = PartialUnrollingThreshold;
+    else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
+      MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
+    else
+      return;
+
+    // Scan the loop: don't unroll loops with calls.
+    for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
+         ++I) {
+      BasicBlock *BB = *I;
+
+      for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
+        if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
+          ImmutableCallSite CS(&*J);
+          if (const Function *F = CS.getCalledFunction()) {
+            if (!static_cast<T *>(this)->isLoweredToCall(F))
+              continue;
+          }
+
+          return;
+        }
+    }
+
+    // Enable runtime and partial unrolling up to the specified size.
+    // Enable using trip count upper bound to unroll loops.
+    UP.Partial = UP.Runtime = UP.UpperBound = true;
+    UP.PartialThreshold = MaxOps;
+
+    // Avoid unrolling when optimizing for size.
+    UP.OptSizeThreshold = 0;
+    UP.PartialOptSizeThreshold = 0;
+
+    // Set number of instructions optimized when "back edge"
+    // becomes "fall through" to default value of 2.
+    UP.BEInsns = 2;
+  }
+
+  int getInstructionLatency(const Instruction *I) {
+    if (isa<LoadInst>(I))
+      return getST()->getSchedModel().DefaultLoadLatency;
+
+    return BaseT::getInstructionLatency(I);
+  }
+
+  /// @}
+
+  /// \name Vector TTI Implementations
+  /// @{
+
+  unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; }
+
+  unsigned getRegisterBitWidth(bool Vector) const { return 32; }
+
+  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
+  /// are set if the result needs to be inserted and/or extracted from vectors.
+  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
+    assert(Ty->isVectorTy() && "Can only scalarize vectors");
+    unsigned Cost = 0;
+
+    for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+      if (Insert)
+        Cost += static_cast<T *>(this)
+                    ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+      if (Extract)
+        Cost += static_cast<T *>(this)
+                    ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+    }
+
+    return Cost;
+  }
+
+  /// Estimate the overhead of scalarizing an instructions unique
+  /// non-constant operands. The types of the arguments are ordinarily
+  /// scalar, in which case the costs are multiplied with VF.
+  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
+                                            unsigned VF) {
+    unsigned Cost = 0;
+    SmallPtrSet<const Value*, 4> UniqueOperands;
+    for (const Value *A : Args) {
+      if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
+        Type *VecTy = nullptr;
+        if (A->getType()->isVectorTy()) {
+          VecTy = A->getType();
+          // If A is a vector operand, VF should be 1 or correspond to A.
+          assert((VF == 1 || VF == VecTy->getVectorNumElements()) &&
+                 "Vector argument does not match VF");
+        }
+        else
+          VecTy = VectorType::get(A->getType(), VF);
+
+        Cost += getScalarizationOverhead(VecTy, false, true);
+      }
+    }
+
+    return Cost;
+  }
+
+  unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) {
+    assert(VecTy->isVectorTy());
+
+    unsigned Cost = 0;
+
+    Cost += getScalarizationOverhead(VecTy, true, false);
+    if (!Args.empty())
+      Cost += getOperandsScalarizationOverhead(Args,
+                                               VecTy->getVectorNumElements());
+    else
+      // When no information on arguments is provided, we add the cost
+      // associated with one argument as a heuristic.
+      Cost += getScalarizationOverhead(VecTy, false, true);
+
+    return Cost;
+  }
+
+  unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
+
+  unsigned getArithmeticInstrCost(
+      unsigned Opcode, Type *Ty,
+      TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
+      TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
+      TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
+      TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
+      ArrayRef<const Value *> Args = ArrayRef<const Value *>()) {
+    // Check if any of the operands are vector operands.
+    const TargetLoweringBase *TLI = getTLI();
+    int ISD = TLI->InstructionOpcodeToISD(Opcode);
+    assert(ISD && "Invalid opcode");
+
+    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+
+    bool IsFloat = Ty->isFPOrFPVectorTy();
+    // Assume that floating point arithmetic operations cost twice as much as
+    // integer operations.
+    unsigned OpCost = (IsFloat ? 2 : 1);
+
+    if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
+      // The operation is legal. Assume it costs 1.
+      // TODO: Once we have extract/insert subvector cost we need to use them.
+      return LT.first * OpCost;
+    }
+
+    if (!TLI->isOperationExpand(ISD, LT.second)) {
+      // If the operation is custom lowered, then assume that the code is twice
+      // as expensive.
+      return LT.first * 2 * OpCost;
+    }
+
+    // Else, assume that we need to scalarize this op.
+    // TODO: If one of the types get legalized by splitting, handle this
+    // similarly to what getCastInstrCost() does.
+    if (Ty->isVectorTy()) {
+      unsigned Num = Ty->getVectorNumElements();
+      unsigned Cost = static_cast<T *>(this)
+                          ->getArithmeticInstrCost(Opcode, Ty->getScalarType());
+      // Return the cost of multiple scalar invocation plus the cost of
+      // inserting and extracting the values.
+      return getScalarizationOverhead(Ty, Args) + Num * Cost;
+    }
+
+    // We don't know anything about this scalar instruction.
+    return OpCost;
+  }
+
+  unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+                          Type *SubTp) {
+    if (Kind == TTI::SK_Alternate || Kind == TTI::SK_PermuteTwoSrc ||
+        Kind == TTI::SK_PermuteSingleSrc) {
+      return getPermuteShuffleOverhead(Tp);
+    }
+    return 1;
+  }
+
+  unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+                            const Instruction *I = nullptr) {
+    const TargetLoweringBase *TLI = getTLI();
+    int ISD = TLI->InstructionOpcodeToISD(Opcode);
+    assert(ISD && "Invalid opcode");
+    std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
+    std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
+
+    // Check for NOOP conversions.
+    if (SrcLT.first == DstLT.first &&
+        SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
+
+      // Bitcast between types that are legalized to the same type are free.
+      if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
+        return 0;
+    }
+
+    if (Opcode == Instruction::Trunc &&
+        TLI->isTruncateFree(SrcLT.second, DstLT.second))
+      return 0;
+
+    if (Opcode == Instruction::ZExt &&
+        TLI->isZExtFree(SrcLT.second, DstLT.second))
+      return 0;
+
+    if (Opcode == Instruction::AddrSpaceCast &&
+        TLI->isNoopAddrSpaceCast(Src->getPointerAddressSpace(),
+                                 Dst->getPointerAddressSpace()))
+      return 0;
+
+    // If this is a zext/sext of a load, return 0 if the corresponding
+    // extending load exists on target.
+    if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
+        I && isa<LoadInst>(I->getOperand(0))) {
+        EVT ExtVT = EVT::getEVT(Dst);
+        EVT LoadVT = EVT::getEVT(Src);
+        unsigned LType =
+          ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
+        if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
+          return 0;
+    }
+
+    // If the cast is marked as legal (or promote) then assume low cost.
+    if (SrcLT.first == DstLT.first &&
+        TLI->isOperationLegalOrPromote(ISD, DstLT.second))
+      return 1;
+
+    // Handle scalar conversions.
+    if (!Src->isVectorTy() && !Dst->isVectorTy()) {
+      // Scalar bitcasts are usually free.
+      if (Opcode == Instruction::BitCast)
+        return 0;
+
+      // Just check the op cost. If the operation is legal then assume it costs
+      // 1.
+      if (!TLI->isOperationExpand(ISD, DstLT.second))
+        return 1;
+
+      // Assume that illegal scalar instruction are expensive.
+      return 4;
+    }
+
+    // Check vector-to-vector casts.
+    if (Dst->isVectorTy() && Src->isVectorTy()) {
+      // If the cast is between same-sized registers, then the check is simple.
+      if (SrcLT.first == DstLT.first &&
+          SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
+
+        // Assume that Zext is done using AND.
+        if (Opcode == Instruction::ZExt)
+          return 1;
+
+        // Assume that sext is done using SHL and SRA.
+        if (Opcode == Instruction::SExt)
+          return 2;
+
+        // Just check the op cost. If the operation is legal then assume it
+        // costs
+        // 1 and multiply by the type-legalization overhead.
+        if (!TLI->isOperationExpand(ISD, DstLT.second))
+          return SrcLT.first * 1;
+      }
+
+      // If we are legalizing by splitting, query the concrete TTI for the cost
+      // of casting the original vector twice. We also need to factor in the
+      // cost of the split itself. Count that as 1, to be consistent with
+      // TLI->getTypeLegalizationCost().
+      if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
+           TargetLowering::TypeSplitVector) ||
+          (TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
+           TargetLowering::TypeSplitVector)) {
+        Type *SplitDst = VectorType::get(Dst->getVectorElementType(),
+                                         Dst->getVectorNumElements() / 2);
+        Type *SplitSrc = VectorType::get(Src->getVectorElementType(),
+                                         Src->getVectorNumElements() / 2);
+        T *TTI = static_cast<T *>(this);
+        return TTI->getVectorSplitCost() +
+               (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I));
+      }
+
+      // In other cases where the source or destination are illegal, assume
+      // the operation will get scalarized.
+      unsigned Num = Dst->getVectorNumElements();
+      unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
+          Opcode, Dst->getScalarType(), Src->getScalarType(), I);
+
+      // Return the cost of multiple scalar invocation plus the cost of
+      // inserting and extracting the values.
+      return getScalarizationOverhead(Dst, true, true) + Num * Cost;
+    }
+
+    // We already handled vector-to-vector and scalar-to-scalar conversions.
+    // This
+    // is where we handle bitcast between vectors and scalars. We need to assume
+    //  that the conversion is scalarized in one way or another.
+    if (Opcode == Instruction::BitCast)
+      // Illegal bitcasts are done by storing and loading from a stack slot.
+      return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
+                                : 0) +
+             (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
+                                : 0);
+
+    llvm_unreachable("Unhandled cast");
+  }
+
+  unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
+                                    VectorType *VecTy, unsigned Index) {
+    return static_cast<T *>(this)->getVectorInstrCost(
+               Instruction::ExtractElement, VecTy, Index) +
+           static_cast<T *>(this)->getCastInstrCost(Opcode, Dst,
+                                                    VecTy->getElementType());
+  }
+
+  unsigned getCFInstrCost(unsigned Opcode) {
+    // Branches are assumed to be predicted.
+    return 0;
+  }
+
+  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
+                              const Instruction *I) {
+    const TargetLoweringBase *TLI = getTLI();
+    int ISD = TLI->InstructionOpcodeToISD(Opcode);
+    assert(ISD && "Invalid opcode");
+
+    // Selects on vectors are actually vector selects.
+    if (ISD == ISD::SELECT) {
+      assert(CondTy && "CondTy must exist");
+      if (CondTy->isVectorTy())
+        ISD = ISD::VSELECT;
+    }
+    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+
+    if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
+        !TLI->isOperationExpand(ISD, LT.second)) {
+      // The operation is legal. Assume it costs 1. Multiply
+      // by the type-legalization overhead.
+      return LT.first * 1;
+    }
+
+    // Otherwise, assume that the cast is scalarized.
+    // TODO: If one of the types get legalized by splitting, handle this
+    // similarly to what getCastInstrCost() does.
+    if (ValTy->isVectorTy()) {
+      unsigned Num = ValTy->getVectorNumElements();
+      if (CondTy)
+        CondTy = CondTy->getScalarType();
+      unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
+          Opcode, ValTy->getScalarType(), CondTy, I);
+
+      // Return the cost of multiple scalar invocation plus the cost of
+      // inserting and extracting the values.
+      return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
+    }
+
+    // Unknown scalar opcode.
+    return 1;
+  }
+
+  unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
+    std::pair<unsigned, MVT> LT =
+        getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
+
+    return LT.first;
+  }
+
+  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+                       unsigned AddressSpace, const Instruction *I = nullptr) {
+    assert(!Src->isVoidTy() && "Invalid type");
+    std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
+
+    // Assuming that all loads of legal types cost 1.
+    unsigned Cost = LT.first;
+
+    if (Src->isVectorTy() &&
+        Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
+      // This is a vector load that legalizes to a larger type than the vector
+      // itself. Unless the corresponding extending load or truncating store is
+      // legal, then this will scalarize.
+      TargetLowering::LegalizeAction LA = TargetLowering::Expand;
+      EVT MemVT = getTLI()->getValueType(DL, Src);
+      if (Opcode == Instruction::Store)
+        LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
+      else
+        LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
+
+      if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
+        // This is a vector load/store for some illegal type that is scalarized.
+        // We must account for the cost of building or decomposing the vector.
+        Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
+                                         Opcode == Instruction::Store);
+      }
+    }
+
+    return Cost;
+  }
+
+  unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
+                                      unsigned Factor,
+                                      ArrayRef<unsigned> Indices,
+                                      unsigned Alignment,
+                                      unsigned AddressSpace) {
+    VectorType *VT = dyn_cast<VectorType>(VecTy);
+    assert(VT && "Expect a vector type for interleaved memory op");
+
+    unsigned NumElts = VT->getNumElements();
+    assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
+
+    unsigned NumSubElts = NumElts / Factor;
+    VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
+
+    // Firstly, the cost of load/store operation.
+    unsigned Cost = static_cast<T *>(this)->getMemoryOpCost(
+        Opcode, VecTy, Alignment, AddressSpace);
+
+    // Legalize the vector type, and get the legalized and unlegalized type
+    // sizes.
+    MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
+    unsigned VecTySize =
+        static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy);
+    unsigned VecTyLTSize = VecTyLT.getStoreSize();
+
+    // Return the ceiling of dividing A by B.
+    auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
+
+    // Scale the cost of the memory operation by the fraction of legalized
+    // instructions that will actually be used. We shouldn't account for the
+    // cost of dead instructions since they will be removed.
+    //
+    // E.g., An interleaved load of factor 8:
+    //       %vec = load <16 x i64>, <16 x i64>* %ptr
+    //       %v0 = shufflevector %vec, undef, <0, 8>
+    //
+    // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
+    // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
+    // type). The other loads are unused.
+    //
+    // We only scale the cost of loads since interleaved store groups aren't
+    // allowed to have gaps.
+    if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
+      // The number of loads of a legal type it will take to represent a load
+      // of the unlegalized vector type.
+      unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
+
+      // The number of elements of the unlegalized type that correspond to a
+      // single legal instruction.
+      unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
+
+      // Determine which legal instructions will be used.
+      BitVector UsedInsts(NumLegalInsts, false);
+      for (unsigned Index : Indices)
+        for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
+          UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
+
+      // Scale the cost of the load by the fraction of legal instructions that
+      // will be used.
+      Cost *= UsedInsts.count() / NumLegalInsts;
+    }
+
+    // Then plus the cost of interleave operation.
+    if (Opcode == Instruction::Load) {
+      // The interleave cost is similar to extract sub vectors' elements
+      // from the wide vector, and insert them into sub vectors.
+      //
+      // E.g. An interleaved load of factor 2 (with one member of index 0):
+      //      %vec = load <8 x i32>, <8 x i32>* %ptr
+      //      %v0 = shuffle %vec, undef, <0, 2, 4, 6>         ; Index 0
+      // The cost is estimated as extract elements at 0, 2, 4, 6 from the
+      // <8 x i32> vector and insert them into a <4 x i32> vector.
+
+      assert(Indices.size() <= Factor &&
+             "Interleaved memory op has too many members");
+
+      for (unsigned Index : Indices) {
+        assert(Index < Factor && "Invalid index for interleaved memory op");
+
+        // Extract elements from loaded vector for each sub vector.
+        for (unsigned i = 0; i < NumSubElts; i++)
+          Cost += static_cast<T *>(this)->getVectorInstrCost(
+              Instruction::ExtractElement, VT, Index + i * Factor);
+      }
+
+      unsigned InsSubCost = 0;
+      for (unsigned i = 0; i < NumSubElts; i++)
+        InsSubCost += static_cast<T *>(this)->getVectorInstrCost(
+            Instruction::InsertElement, SubVT, i);
+
+      Cost += Indices.size() * InsSubCost;
+    } else {
+      // The interleave cost is extract all elements from sub vectors, and
+      // insert them into the wide vector.
+      //
+      // E.g. An interleaved store of factor 2:
+      //      %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
+      //      store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
+      // The cost is estimated as extract all elements from both <4 x i32>
+      // vectors and insert into the <8 x i32> vector.
+
+      unsigned ExtSubCost = 0;
+      for (unsigned i = 0; i < NumSubElts; i++)
+        ExtSubCost += static_cast<T *>(this)->getVectorInstrCost(
+            Instruction::ExtractElement, SubVT, i);
+      Cost += ExtSubCost * Factor;
+
+      for (unsigned i = 0; i < NumElts; i++)
+        Cost += static_cast<T *>(this)
+                    ->getVectorInstrCost(Instruction::InsertElement, VT, i);
+    }
+
+    return Cost;
+  }
+
+  /// Get intrinsic cost based on arguments.
+  unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
+                                 ArrayRef<Value *> Args, FastMathFlags FMF,
+                                 unsigned VF = 1) {
+    unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
+    assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type");
+
+    switch (IID) {
+    default: {
+      // Assume that we need to scalarize this intrinsic.
+      SmallVector<Type *, 4> Types;
+      for (Value *Op : Args) {
+        Type *OpTy = Op->getType();
+        assert(VF == 1 || !OpTy->isVectorTy());
+        Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF));
+      }
+
+      if (VF > 1 && !RetTy->isVoidTy())
+        RetTy = VectorType::get(RetTy, VF);
+
+      // Compute the scalarization overhead based on Args for a vector
+      // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
+      // CostModel will pass a vector RetTy and VF is 1.
+      unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
+      if (RetVF > 1 || VF > 1) {
+        ScalarizationCost = 0;
+        if (!RetTy->isVoidTy())
+          ScalarizationCost += getScalarizationOverhead(RetTy, true, false);
+        ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
+      }
+
+      return static_cast<T *>(this)->
+        getIntrinsicInstrCost(IID, RetTy, Types, FMF, ScalarizationCost);
+    }
+    case Intrinsic::masked_scatter: {
+      assert(VF == 1 && "Can't vectorize types here.");
+      Value *Mask = Args[3];
+      bool VarMask = !isa<Constant>(Mask);
+      unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue();
+      return
+        static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Store,
+                                                       Args[0]->getType(),
+                                                       Args[1], VarMask,
+                                                       Alignment);
+    }
+    case Intrinsic::masked_gather: {
+      assert(VF == 1 && "Can't vectorize types here.");
+      Value *Mask = Args[2];
+      bool VarMask = !isa<Constant>(Mask);
+      unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue();
+      return
+        static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Load,
+                                                       RetTy, Args[0], VarMask,
+                                                       Alignment);
+    }
+    case Intrinsic::experimental_vector_reduce_add:
+    case Intrinsic::experimental_vector_reduce_mul:
+    case Intrinsic::experimental_vector_reduce_and:
+    case Intrinsic::experimental_vector_reduce_or:
+    case Intrinsic::experimental_vector_reduce_xor:
+    case Intrinsic::experimental_vector_reduce_fadd:
+    case Intrinsic::experimental_vector_reduce_fmul:
+    case Intrinsic::experimental_vector_reduce_smax:
+    case Intrinsic::experimental_vector_reduce_smin:
+    case Intrinsic::experimental_vector_reduce_fmax:
+    case Intrinsic::experimental_vector_reduce_fmin:
+    case Intrinsic::experimental_vector_reduce_umax:
+    case Intrinsic::experimental_vector_reduce_umin:
+      return getIntrinsicInstrCost(IID, RetTy, Args[0]->getType(), FMF);
+    }
+  }
+
+  /// Get intrinsic cost based on argument types.
+  /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
+  /// cost of scalarizing the arguments and the return value will be computed
+  /// based on types.
+  unsigned getIntrinsicInstrCost(
+      Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF,
+      unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) {
+    SmallVector<unsigned, 2> ISDs;
+    unsigned SingleCallCost = 10; // Library call cost. Make it expensive.
+    switch (IID) {
+    default: {
+      // Assume that we need to scalarize this intrinsic.
+      unsigned ScalarizationCost = ScalarizationCostPassed;
+      unsigned ScalarCalls = 1;
+      Type *ScalarRetTy = RetTy;
+      if (RetTy->isVectorTy()) {
+        if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
+          ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
+        ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
+        ScalarRetTy = RetTy->getScalarType();
+      }
+      SmallVector<Type *, 4> ScalarTys;
+      for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
+        Type *Ty = Tys[i];
+        if (Ty->isVectorTy()) {
+          if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
+            ScalarizationCost += getScalarizationOverhead(Ty, false, true);
+          ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
+          Ty = Ty->getScalarType();
+        }
+        ScalarTys.push_back(Ty);
+      }
+      if (ScalarCalls == 1)
+        return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
+
+      unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
+          IID, ScalarRetTy, ScalarTys, FMF);
+
+      return ScalarCalls * ScalarCost + ScalarizationCost;
+    }
+    // Look for intrinsics that can be lowered directly or turned into a scalar
+    // intrinsic call.
+    case Intrinsic::sqrt:
+      ISDs.push_back(ISD::FSQRT);
+      break;
+    case Intrinsic::sin:
+      ISDs.push_back(ISD::FSIN);
+      break;
+    case Intrinsic::cos:
+      ISDs.push_back(ISD::FCOS);
+      break;
+    case Intrinsic::exp:
+      ISDs.push_back(ISD::FEXP);
+      break;
+    case Intrinsic::exp2:
+      ISDs.push_back(ISD::FEXP2);
+      break;
+    case Intrinsic::log:
+      ISDs.push_back(ISD::FLOG);
+      break;
+    case Intrinsic::log10:
+      ISDs.push_back(ISD::FLOG10);
+      break;
+    case Intrinsic::log2:
+      ISDs.push_back(ISD::FLOG2);
+      break;
+    case Intrinsic::fabs:
+      ISDs.push_back(ISD::FABS);
+      break;
+    case Intrinsic::minnum:
+      ISDs.push_back(ISD::FMINNUM);
+      if (FMF.noNaNs())
+        ISDs.push_back(ISD::FMINNAN);
+      break;
+    case Intrinsic::maxnum:
+      ISDs.push_back(ISD::FMAXNUM);
+      if (FMF.noNaNs())
+        ISDs.push_back(ISD::FMAXNAN);
+      break;
+    case Intrinsic::copysign:
+      ISDs.push_back(ISD::FCOPYSIGN);
+      break;
+    case Intrinsic::floor:
+      ISDs.push_back(ISD::FFLOOR);
+      break;
+    case Intrinsic::ceil:
+      ISDs.push_back(ISD::FCEIL);
+      break;
+    case Intrinsic::trunc:
+      ISDs.push_back(ISD::FTRUNC);
+      break;
+    case Intrinsic::nearbyint:
+      ISDs.push_back(ISD::FNEARBYINT);
+      break;
+    case Intrinsic::rint:
+      ISDs.push_back(ISD::FRINT);
+      break;
+    case Intrinsic::round:
+      ISDs.push_back(ISD::FROUND);
+      break;
+    case Intrinsic::pow:
+      ISDs.push_back(ISD::FPOW);
+      break;
+    case Intrinsic::fma:
+      ISDs.push_back(ISD::FMA);
+      break;
+    case Intrinsic::fmuladd:
+      ISDs.push_back(ISD::FMA);
+      break;
+    // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
+    case Intrinsic::lifetime_start:
+    case Intrinsic::lifetime_end:
+    case Intrinsic::sideeffect:
+      return 0;
+    case Intrinsic::masked_store:
+      return static_cast<T *>(this)
+          ->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0);
+    case Intrinsic::masked_load:
+      return static_cast<T *>(this)
+          ->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
+    case Intrinsic::experimental_vector_reduce_add:
+      return static_cast<T *>(this)->getArithmeticReductionCost(
+          Instruction::Add, Tys[0], /*IsPairwiseForm=*/false);
+    case Intrinsic::experimental_vector_reduce_mul:
+      return static_cast<T *>(this)->getArithmeticReductionCost(
+          Instruction::Mul, Tys[0], /*IsPairwiseForm=*/false);
+    case Intrinsic::experimental_vector_reduce_and:
+      return static_cast<T *>(this)->getArithmeticReductionCost(
+          Instruction::And, Tys[0], /*IsPairwiseForm=*/false);
+    case Intrinsic::experimental_vector_reduce_or:
+      return static_cast<T *>(this)->getArithmeticReductionCost(
+          Instruction::Or, Tys[0], /*IsPairwiseForm=*/false);
+    case Intrinsic::experimental_vector_reduce_xor:
+      return static_cast<T *>(this)->getArithmeticReductionCost(
+          Instruction::Xor, Tys[0], /*IsPairwiseForm=*/false);
+    case Intrinsic::experimental_vector_reduce_fadd:
+      return static_cast<T *>(this)->getArithmeticReductionCost(
+          Instruction::FAdd, Tys[0], /*IsPairwiseForm=*/false);
+    case Intrinsic::experimental_vector_reduce_fmul:
+      return static_cast<T *>(this)->getArithmeticReductionCost(
+          Instruction::FMul, Tys[0], /*IsPairwiseForm=*/false);
+    case Intrinsic::experimental_vector_reduce_smax:
+    case Intrinsic::experimental_vector_reduce_smin:
+    case Intrinsic::experimental_vector_reduce_fmax:
+    case Intrinsic::experimental_vector_reduce_fmin:
+      return static_cast<T *>(this)->getMinMaxReductionCost(
+          Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
+          /*IsSigned=*/true);
+    case Intrinsic::experimental_vector_reduce_umax:
+    case Intrinsic::experimental_vector_reduce_umin:
+      return static_cast<T *>(this)->getMinMaxReductionCost(
+          Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
+          /*IsSigned=*/false);
+    case Intrinsic::ctpop:
+      ISDs.push_back(ISD::CTPOP);
+      // In case of legalization use TCC_Expensive. This is cheaper than a
+      // library call but still not a cheap instruction.
+      SingleCallCost = TargetTransformInfo::TCC_Expensive;
+      break;
+    // FIXME: ctlz, cttz, ...
+    }
+
+    const TargetLoweringBase *TLI = getTLI();
+    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
+
+    SmallVector<unsigned, 2> LegalCost;
+    SmallVector<unsigned, 2> CustomCost;
+    for (unsigned ISD : ISDs) {
+      if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
+        if (IID == Intrinsic::fabs && TLI->isFAbsFree(LT.second)) {
+          return 0;
+        }
+
+        // The operation is legal. Assume it costs 1.
+        // If the type is split to multiple registers, assume that there is some
+        // overhead to this.
+        // TODO: Once we have extract/insert subvector cost we need to use them.
+        if (LT.first > 1)
+          LegalCost.push_back(LT.first * 2);
+        else
+          LegalCost.push_back(LT.first * 1);
+      } else if (!TLI->isOperationExpand(ISD, LT.second)) {
+        // If the operation is custom lowered then assume
+        // that the code is twice as expensive.
+        CustomCost.push_back(LT.first * 2);
+      }
+    }
+
+    auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
+    if (MinLegalCostI != LegalCost.end())
+      return *MinLegalCostI;
+
+    auto MinCustomCostI = std::min_element(CustomCost.begin(), CustomCost.end());
+    if (MinCustomCostI != CustomCost.end())
+      return *MinCustomCostI;
+
+    // If we can't lower fmuladd into an FMA estimate the cost as a floating
+    // point mul followed by an add.
+    if (IID == Intrinsic::fmuladd)
+      return static_cast<T *>(this)
+                 ->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
+             static_cast<T *>(this)
+                 ->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
+
+    // Else, assume that we need to scalarize this intrinsic. For math builtins
+    // this will emit a costly libcall, adding call overhead and spills. Make it
+    // very expensive.
+    if (RetTy->isVectorTy()) {
+      unsigned ScalarizationCost =
+          ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max())
+               ? ScalarizationCostPassed
+               : getScalarizationOverhead(RetTy, true, false));
+      unsigned ScalarCalls = RetTy->getVectorNumElements();
+      SmallVector<Type *, 4> ScalarTys;
+      for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
+        Type *Ty = Tys[i];
+        if (Ty->isVectorTy())
+          Ty = Ty->getScalarType();
+        ScalarTys.push_back(Ty);
+      }
+      unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
+          IID, RetTy->getScalarType(), ScalarTys, FMF);
+      for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
+        if (Tys[i]->isVectorTy()) {
+          if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
+            ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
+          ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
+        }
+      }
+
+      return ScalarCalls * ScalarCost + ScalarizationCost;
+    }
+
+    // This is going to be turned into a library call, make it expensive.
+    return SingleCallCost;
+  }
+
+  /// \brief Compute a cost of the given call instruction.
+  ///
+  /// Compute the cost of calling function F with return type RetTy and
+  /// argument types Tys. F might be nullptr, in this case the cost of an
+  /// arbitrary call with the specified signature will be returned.
+  /// This is used, for instance,  when we estimate call of a vector
+  /// counterpart of the given function.
+  /// \param F Called function, might be nullptr.
+  /// \param RetTy Return value types.
+  /// \param Tys Argument types.
+  /// \returns The cost of Call instruction.
+  unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
+    return 10;
+  }
+
+  unsigned getNumberOfParts(Type *Tp) {
+    std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
+    return LT.first;
+  }
+
+  unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
+                                     const SCEV *) {
+    return 0;
+  }
+
+  /// Try to calculate arithmetic and shuffle op costs for reduction operations.
+  /// We're assuming that reduction operation are performing the following way:
+  /// 1. Non-pairwise reduction
+  /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
+  /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
+  ///            \----------------v-------------/  \----------v------------/
+  ///                            n/2 elements               n/2 elements
+  /// %red1 = op <n x t> %val, <n x t> val1
+  /// After this operation we have a vector %red1 where only the first n/2
+  /// elements are meaningful, the second n/2 elements are undefined and can be
+  /// dropped. All other operations are actually working with the vector of
+  /// length n/2, not n, though the real vector length is still n.
+  /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
+  /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
+  ///            \----------------v-------------/  \----------v------------/
+  ///                            n/4 elements               3*n/4 elements
+  /// %red2 = op <n x t> %red1, <n x t> val2  - working with the vector of
+  /// length n/2, the resulting vector has length n/4 etc.
+  /// 2. Pairwise reduction:
+  /// Everything is the same except for an additional shuffle operation which
+  /// is used to produce operands for pairwise kind of reductions.
+  /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
+  /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
+  ///            \-------------v----------/  \----------v------------/
+  ///                   n/2 elements               n/2 elements
+  /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
+  /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
+  ///            \-------------v----------/  \----------v------------/
+  ///                   n/2 elements               n/2 elements
+  /// %red1 = op <n x t> %val1, <n x t> val2
+  /// Again, the operation is performed on <n x t> vector, but the resulting
+  /// vector %red1 is <n/2 x t> vector.
+  ///
+  /// The cost model should take into account that the actual length of the
+  /// vector is reduced on each iteration.
+  unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty,
+                                      bool IsPairwise) {
+    assert(Ty->isVectorTy() && "Expect a vector type");
+    Type *ScalarTy = Ty->getVectorElementType();
+    unsigned NumVecElts = Ty->getVectorNumElements();
+    unsigned NumReduxLevels = Log2_32(NumVecElts);
+    unsigned ArithCost = 0;
+    unsigned ShuffleCost = 0;
+    auto *ConcreteTTI = static_cast<T *>(this);
+    std::pair<unsigned, MVT> LT =
+        ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
+    unsigned LongVectorCount = 0;
+    unsigned MVTLen =
+        LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
+    while (NumVecElts > MVTLen) {
+      NumVecElts /= 2;
+      // Assume the pairwise shuffles add a cost.
+      ShuffleCost += (IsPairwise + 1) *
+                     ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
+                                                 NumVecElts, Ty);
+      ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
+      Ty = VectorType::get(ScalarTy, NumVecElts);
+      ++LongVectorCount;
+    }
+    // The minimal length of the vector is limited by the real length of vector
+    // operations performed on the current platform. That's why several final
+    // reduction operations are performed on the vectors with the same
+    // architecture-dependent length.
+    ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) *
+                   ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
+                                               NumVecElts, Ty);
+    ArithCost += (NumReduxLevels - LongVectorCount) *
+                 ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
+    return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
+  }
+
+  /// Try to calculate op costs for min/max reduction operations.
+  /// \param CondTy Conditional type for the Select instruction.
+  unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise,
+                                  bool) {
+    assert(Ty->isVectorTy() && "Expect a vector type");
+    Type *ScalarTy = Ty->getVectorElementType();
+    Type *ScalarCondTy = CondTy->getVectorElementType();
+    unsigned NumVecElts = Ty->getVectorNumElements();
+    unsigned NumReduxLevels = Log2_32(NumVecElts);
+    unsigned CmpOpcode;
+    if (Ty->isFPOrFPVectorTy()) {
+      CmpOpcode = Instruction::FCmp;
+    } else {
+      assert(Ty->isIntOrIntVectorTy() &&
+             "expecting floating point or integer type for min/max reduction");
+      CmpOpcode = Instruction::ICmp;
+    }
+    unsigned MinMaxCost = 0;
+    unsigned ShuffleCost = 0;
+    auto *ConcreteTTI = static_cast<T *>(this);
+    std::pair<unsigned, MVT> LT =
+        ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
+    unsigned LongVectorCount = 0;
+    unsigned MVTLen =
+        LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
+    while (NumVecElts > MVTLen) {
+      NumVecElts /= 2;
+      // Assume the pairwise shuffles add a cost.
+      ShuffleCost += (IsPairwise + 1) *
+                     ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
+                                                 NumVecElts, Ty);
+      MinMaxCost +=
+          ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
+          ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
+                                          nullptr);
+      Ty = VectorType::get(ScalarTy, NumVecElts);
+      CondTy = VectorType::get(ScalarCondTy, NumVecElts);
+      ++LongVectorCount;
+    }
+    // The minimal length of the vector is limited by the real length of vector
+    // operations performed on the current platform. That's why several final
+    // reduction opertions are perfomed on the vectors with the same
+    // architecture-dependent length.
+    ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) *
+                   ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
+                                               NumVecElts, Ty);
+    MinMaxCost +=
+        (NumReduxLevels - LongVectorCount) *
+        (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
+         ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
+                                         nullptr));
+    // Need 3 extractelement instructions for scalarization + an additional
+    // scalar select instruction.
+    return ShuffleCost + MinMaxCost +
+           3 * getScalarizationOverhead(Ty, /*Insert=*/false,
+                                        /*Extract=*/true) +
+           ConcreteTTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
+                                           ScalarCondTy, nullptr);
+  }
+
+  unsigned getVectorSplitCost() { return 1; }
+
+  /// @}
+};
+
+/// \brief Concrete BasicTTIImpl that can be used if no further customization
+/// is needed.
+class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
+  using BaseT = BasicTTIImplBase<BasicTTIImpl>;
+
+  friend class BasicTTIImplBase<BasicTTIImpl>;
+
+  const TargetSubtargetInfo *ST;
+  const TargetLoweringBase *TLI;
+
+  const TargetSubtargetInfo *getST() const { return ST; }
+  const TargetLoweringBase *getTLI() const { return TLI; }
+
+public:
+  explicit BasicTTIImpl(const TargetMachine *ST, const Function &F);
+};
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_BASICTTIIMPL_H