blob: 9096263d9e6bdba7e72905dd667526929127352c [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// This file provides a helper that implements much of the TTI interface in
12/// terms of the target-independent code generator and TargetLowering
13/// interfaces.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
18#define LLVM_CODEGEN_BASICTTIIMPL_H
19
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/BitVector.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/TargetTransformInfo.h"
27#include "llvm/Analysis/TargetTransformInfoImpl.h"
28#include "llvm/CodeGen/ISDOpcodes.h"
29#include "llvm/CodeGen/TargetLowering.h"
30#include "llvm/CodeGen/TargetSubtargetInfo.h"
31#include "llvm/CodeGen/ValueTypes.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CallSite.h"
34#include "llvm/IR/Constant.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/InstrTypes.h"
39#include "llvm/IR/Instruction.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/Operator.h"
43#include "llvm/IR/Type.h"
44#include "llvm/IR/Value.h"
45#include "llvm/MC/MCSchedule.h"
46#include "llvm/Support/Casting.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MachineValueType.h"
50#include "llvm/Support/MathExtras.h"
51#include <algorithm>
52#include <cassert>
53#include <cstdint>
54#include <limits>
55#include <utility>
56
57namespace llvm {
58
59class Function;
60class GlobalValue;
61class LLVMContext;
62class ScalarEvolution;
63class SCEV;
64class TargetMachine;
65
66extern cl::opt<unsigned> PartialUnrollingThreshold;
67
68/// \brief Base class which can be used to help build a TTI implementation.
69///
70/// This class provides as much implementation of the TTI interface as is
71/// possible using the target independent parts of the code generator.
72///
73/// In order to subclass it, your class must implement a getST() method to
74/// return the subtarget, and a getTLI() method to return the target lowering.
75/// We need these methods implemented in the derived class so that this class
76/// doesn't have to duplicate storage for them.
77template <typename T>
78class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
79private:
80 using BaseT = TargetTransformInfoImplCRTPBase<T>;
81 using TTI = TargetTransformInfo;
82
83 /// Estimate a cost of shuffle as a sequence of extract and insert
84 /// operations.
85 unsigned getPermuteShuffleOverhead(Type *Ty) {
86 assert(Ty->isVectorTy() && "Can only shuffle vectors");
87 unsigned Cost = 0;
88 // Shuffle cost is equal to the cost of extracting element from its argument
89 // plus the cost of inserting them onto the result vector.
90
91 // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
92 // index 0 of first vector, index 1 of second vector,index 2 of first
93 // vector and finally index 3 of second vector and insert them at index
94 // <0,1,2,3> of result vector.
95 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
96 Cost += static_cast<T *>(this)
97 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
98 Cost += static_cast<T *>(this)
99 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
100 }
101 return Cost;
102 }
103
104 /// \brief Local query method delegates up to T which *must* implement this!
105 const TargetSubtargetInfo *getST() const {
106 return static_cast<const T *>(this)->getST();
107 }
108
109 /// \brief Local query method delegates up to T which *must* implement this!
110 const TargetLoweringBase *getTLI() const {
111 return static_cast<const T *>(this)->getTLI();
112 }
113
114 static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
115 switch (M) {
116 case TTI::MIM_Unindexed:
117 return ISD::UNINDEXED;
118 case TTI::MIM_PreInc:
119 return ISD::PRE_INC;
120 case TTI::MIM_PreDec:
121 return ISD::PRE_DEC;
122 case TTI::MIM_PostInc:
123 return ISD::POST_INC;
124 case TTI::MIM_PostDec:
125 return ISD::POST_DEC;
126 }
127 llvm_unreachable("Unexpected MemIndexedMode");
128 }
129
130protected:
131 explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
132 : BaseT(DL) {}
133
134 using TargetTransformInfoImplBase::DL;
135
136public:
137 /// \name Scalar TTI Implementations
138 /// @{
139 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
140 unsigned BitWidth, unsigned AddressSpace,
141 unsigned Alignment, bool *Fast) const {
142 EVT E = EVT::getIntegerVT(Context, BitWidth);
143 return getTLI()->allowsMisalignedMemoryAccesses(E, AddressSpace, Alignment, Fast);
144 }
145
146 bool hasBranchDivergence() { return false; }
147
148 bool isSourceOfDivergence(const Value *V) { return false; }
149
150 bool isAlwaysUniform(const Value *V) { return false; }
151
152 unsigned getFlatAddressSpace() {
153 // Return an invalid address space.
154 return -1;
155 }
156
157 bool isLegalAddImmediate(int64_t imm) {
158 return getTLI()->isLegalAddImmediate(imm);
159 }
160
161 bool isLegalICmpImmediate(int64_t imm) {
162 return getTLI()->isLegalICmpImmediate(imm);
163 }
164
165 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
166 bool HasBaseReg, int64_t Scale,
167 unsigned AddrSpace, Instruction *I = nullptr) {
168 TargetLoweringBase::AddrMode AM;
169 AM.BaseGV = BaseGV;
170 AM.BaseOffs = BaseOffset;
171 AM.HasBaseReg = HasBaseReg;
172 AM.Scale = Scale;
173 return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
174 }
175
176 bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
177 const DataLayout &DL) const {
178 EVT VT = getTLI()->getValueType(DL, Ty);
179 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
180 }
181
182 bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
183 const DataLayout &DL) const {
184 EVT VT = getTLI()->getValueType(DL, Ty);
185 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
186 }
187
188 bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
189 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
190 }
191
192 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
193 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
194 TargetLoweringBase::AddrMode AM;
195 AM.BaseGV = BaseGV;
196 AM.BaseOffs = BaseOffset;
197 AM.HasBaseReg = HasBaseReg;
198 AM.Scale = Scale;
199 return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
200 }
201
202 bool isTruncateFree(Type *Ty1, Type *Ty2) {
203 return getTLI()->isTruncateFree(Ty1, Ty2);
204 }
205
206 bool isProfitableToHoist(Instruction *I) {
207 return getTLI()->isProfitableToHoist(I);
208 }
209
210 bool useAA() const { return getST()->useAA(); }
211
212 bool isTypeLegal(Type *Ty) {
213 EVT VT = getTLI()->getValueType(DL, Ty);
214 return getTLI()->isTypeLegal(VT);
215 }
216
217 int getGEPCost(Type *PointeeType, const Value *Ptr,
218 ArrayRef<const Value *> Operands) {
219 return BaseT::getGEPCost(PointeeType, Ptr, Operands);
220 }
221
222 int getExtCost(const Instruction *I, const Value *Src) {
223 if (getTLI()->isExtFree(I))
224 return TargetTransformInfo::TCC_Free;
225
226 if (isa<ZExtInst>(I) || isa<SExtInst>(I))
227 if (const LoadInst *LI = dyn_cast<LoadInst>(Src))
228 if (getTLI()->isExtLoad(LI, I, DL))
229 return TargetTransformInfo::TCC_Free;
230
231 return TargetTransformInfo::TCC_Basic;
232 }
233
234 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
235 ArrayRef<const Value *> Arguments) {
236 return BaseT::getIntrinsicCost(IID, RetTy, Arguments);
237 }
238
239 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
240 ArrayRef<Type *> ParamTys) {
241 if (IID == Intrinsic::cttz) {
242 if (getTLI()->isCheapToSpeculateCttz())
243 return TargetTransformInfo::TCC_Basic;
244 return TargetTransformInfo::TCC_Expensive;
245 }
246
247 if (IID == Intrinsic::ctlz) {
248 if (getTLI()->isCheapToSpeculateCtlz())
249 return TargetTransformInfo::TCC_Basic;
250 return TargetTransformInfo::TCC_Expensive;
251 }
252
253 return BaseT::getIntrinsicCost(IID, RetTy, ParamTys);
254 }
255
256 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
257 unsigned &JumpTableSize) {
258 /// Try to find the estimated number of clusters. Note that the number of
259 /// clusters identified in this function could be different from the actural
260 /// numbers found in lowering. This function ignore switches that are
261 /// lowered with a mix of jump table / bit test / BTree. This function was
262 /// initially intended to be used when estimating the cost of switch in
263 /// inline cost heuristic, but it's a generic cost model to be used in other
264 /// places (e.g., in loop unrolling).
265 unsigned N = SI.getNumCases();
266 const TargetLoweringBase *TLI = getTLI();
267 const DataLayout &DL = this->getDataLayout();
268
269 JumpTableSize = 0;
270 bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
271
272 // Early exit if both a jump table and bit test are not allowed.
273 if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
274 return N;
275
276 APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
277 APInt MinCaseVal = MaxCaseVal;
278 for (auto CI : SI.cases()) {
279 const APInt &CaseVal = CI.getCaseValue()->getValue();
280 if (CaseVal.sgt(MaxCaseVal))
281 MaxCaseVal = CaseVal;
282 if (CaseVal.slt(MinCaseVal))
283 MinCaseVal = CaseVal;
284 }
285
286 // Check if suitable for a bit test
287 if (N <= DL.getIndexSizeInBits(0u)) {
288 SmallPtrSet<const BasicBlock *, 4> Dests;
289 for (auto I : SI.cases())
290 Dests.insert(I.getCaseSuccessor());
291
292 if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
293 DL))
294 return 1;
295 }
296
297 // Check if suitable for a jump table.
298 if (IsJTAllowed) {
299 if (N < 2 || N < TLI->getMinimumJumpTableEntries())
300 return N;
301 uint64_t Range =
302 (MaxCaseVal - MinCaseVal)
303 .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
304 // Check whether a range of clusters is dense enough for a jump table
305 if (TLI->isSuitableForJumpTable(&SI, N, Range)) {
306 JumpTableSize = Range;
307 return 1;
308 }
309 }
310 return N;
311 }
312
313 unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); }
314
315 unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); }
316
317 bool shouldBuildLookupTables() {
318 const TargetLoweringBase *TLI = getTLI();
319 return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
320 TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
321 }
322
323 bool haveFastSqrt(Type *Ty) {
324 const TargetLoweringBase *TLI = getTLI();
325 EVT VT = TLI->getValueType(DL, Ty);
326 return TLI->isTypeLegal(VT) &&
327 TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
328 }
329
330 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
331 return true;
332 }
333
334 unsigned getFPOpCost(Type *Ty) {
335 // Check whether FADD is available, as a proxy for floating-point in
336 // general.
337 const TargetLoweringBase *TLI = getTLI();
338 EVT VT = TLI->getValueType(DL, Ty);
339 if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
340 return TargetTransformInfo::TCC_Basic;
341 return TargetTransformInfo::TCC_Expensive;
342 }
343
344 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
345 const TargetLoweringBase *TLI = getTLI();
346 switch (Opcode) {
347 default: break;
348 case Instruction::Trunc:
349 if (TLI->isTruncateFree(OpTy, Ty))
350 return TargetTransformInfo::TCC_Free;
351 return TargetTransformInfo::TCC_Basic;
352 case Instruction::ZExt:
353 if (TLI->isZExtFree(OpTy, Ty))
354 return TargetTransformInfo::TCC_Free;
355 return TargetTransformInfo::TCC_Basic;
356 }
357
358 return BaseT::getOperationCost(Opcode, Ty, OpTy);
359 }
360
361 unsigned getInliningThresholdMultiplier() { return 1; }
362
363 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
364 TTI::UnrollingPreferences &UP) {
365 // This unrolling functionality is target independent, but to provide some
366 // motivation for its intended use, for x86:
367
368 // According to the Intel 64 and IA-32 Architectures Optimization Reference
369 // Manual, Intel Core models and later have a loop stream detector (and
370 // associated uop queue) that can benefit from partial unrolling.
371 // The relevant requirements are:
372 // - The loop must have no more than 4 (8 for Nehalem and later) branches
373 // taken, and none of them may be calls.
374 // - The loop can have no more than 18 (28 for Nehalem and later) uops.
375
376 // According to the Software Optimization Guide for AMD Family 15h
377 // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
378 // and loop buffer which can benefit from partial unrolling.
379 // The relevant requirements are:
380 // - The loop must have fewer than 16 branches
381 // - The loop must have less than 40 uops in all executed loop branches
382
383 // The number of taken branches in a loop is hard to estimate here, and
384 // benchmarking has revealed that it is better not to be conservative when
385 // estimating the branch count. As a result, we'll ignore the branch limits
386 // until someone finds a case where it matters in practice.
387
388 unsigned MaxOps;
389 const TargetSubtargetInfo *ST = getST();
390 if (PartialUnrollingThreshold.getNumOccurrences() > 0)
391 MaxOps = PartialUnrollingThreshold;
392 else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
393 MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
394 else
395 return;
396
397 // Scan the loop: don't unroll loops with calls.
398 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
399 ++I) {
400 BasicBlock *BB = *I;
401
402 for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J)
403 if (isa<CallInst>(J) || isa<InvokeInst>(J)) {
404 ImmutableCallSite CS(&*J);
405 if (const Function *F = CS.getCalledFunction()) {
406 if (!static_cast<T *>(this)->isLoweredToCall(F))
407 continue;
408 }
409
410 return;
411 }
412 }
413
414 // Enable runtime and partial unrolling up to the specified size.
415 // Enable using trip count upper bound to unroll loops.
416 UP.Partial = UP.Runtime = UP.UpperBound = true;
417 UP.PartialThreshold = MaxOps;
418
419 // Avoid unrolling when optimizing for size.
420 UP.OptSizeThreshold = 0;
421 UP.PartialOptSizeThreshold = 0;
422
423 // Set number of instructions optimized when "back edge"
424 // becomes "fall through" to default value of 2.
425 UP.BEInsns = 2;
426 }
427
428 int getInstructionLatency(const Instruction *I) {
429 if (isa<LoadInst>(I))
430 return getST()->getSchedModel().DefaultLoadLatency;
431
432 return BaseT::getInstructionLatency(I);
433 }
434
435 /// @}
436
437 /// \name Vector TTI Implementations
438 /// @{
439
440 unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; }
441
442 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
443
444 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
445 /// are set if the result needs to be inserted and/or extracted from vectors.
446 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
447 assert(Ty->isVectorTy() && "Can only scalarize vectors");
448 unsigned Cost = 0;
449
450 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
451 if (Insert)
452 Cost += static_cast<T *>(this)
453 ->getVectorInstrCost(Instruction::InsertElement, Ty, i);
454 if (Extract)
455 Cost += static_cast<T *>(this)
456 ->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
457 }
458
459 return Cost;
460 }
461
462 /// Estimate the overhead of scalarizing an instructions unique
463 /// non-constant operands. The types of the arguments are ordinarily
464 /// scalar, in which case the costs are multiplied with VF.
465 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
466 unsigned VF) {
467 unsigned Cost = 0;
468 SmallPtrSet<const Value*, 4> UniqueOperands;
469 for (const Value *A : Args) {
470 if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
471 Type *VecTy = nullptr;
472 if (A->getType()->isVectorTy()) {
473 VecTy = A->getType();
474 // If A is a vector operand, VF should be 1 or correspond to A.
475 assert((VF == 1 || VF == VecTy->getVectorNumElements()) &&
476 "Vector argument does not match VF");
477 }
478 else
479 VecTy = VectorType::get(A->getType(), VF);
480
481 Cost += getScalarizationOverhead(VecTy, false, true);
482 }
483 }
484
485 return Cost;
486 }
487
488 unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) {
489 assert(VecTy->isVectorTy());
490
491 unsigned Cost = 0;
492
493 Cost += getScalarizationOverhead(VecTy, true, false);
494 if (!Args.empty())
495 Cost += getOperandsScalarizationOverhead(Args,
496 VecTy->getVectorNumElements());
497 else
498 // When no information on arguments is provided, we add the cost
499 // associated with one argument as a heuristic.
500 Cost += getScalarizationOverhead(VecTy, false, true);
501
502 return Cost;
503 }
504
505 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
506
507 unsigned getArithmeticInstrCost(
508 unsigned Opcode, Type *Ty,
509 TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
510 TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
511 TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
512 TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
513 ArrayRef<const Value *> Args = ArrayRef<const Value *>()) {
514 // Check if any of the operands are vector operands.
515 const TargetLoweringBase *TLI = getTLI();
516 int ISD = TLI->InstructionOpcodeToISD(Opcode);
517 assert(ISD && "Invalid opcode");
518
519 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
520
521 bool IsFloat = Ty->isFPOrFPVectorTy();
522 // Assume that floating point arithmetic operations cost twice as much as
523 // integer operations.
524 unsigned OpCost = (IsFloat ? 2 : 1);
525
526 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
527 // The operation is legal. Assume it costs 1.
528 // TODO: Once we have extract/insert subvector cost we need to use them.
529 return LT.first * OpCost;
530 }
531
532 if (!TLI->isOperationExpand(ISD, LT.second)) {
533 // If the operation is custom lowered, then assume that the code is twice
534 // as expensive.
535 return LT.first * 2 * OpCost;
536 }
537
538 // Else, assume that we need to scalarize this op.
539 // TODO: If one of the types get legalized by splitting, handle this
540 // similarly to what getCastInstrCost() does.
541 if (Ty->isVectorTy()) {
542 unsigned Num = Ty->getVectorNumElements();
543 unsigned Cost = static_cast<T *>(this)
544 ->getArithmeticInstrCost(Opcode, Ty->getScalarType());
545 // Return the cost of multiple scalar invocation plus the cost of
546 // inserting and extracting the values.
547 return getScalarizationOverhead(Ty, Args) + Num * Cost;
548 }
549
550 // We don't know anything about this scalar instruction.
551 return OpCost;
552 }
553
554 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
555 Type *SubTp) {
556 if (Kind == TTI::SK_Alternate || Kind == TTI::SK_PermuteTwoSrc ||
557 Kind == TTI::SK_PermuteSingleSrc) {
558 return getPermuteShuffleOverhead(Tp);
559 }
560 return 1;
561 }
562
563 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
564 const Instruction *I = nullptr) {
565 const TargetLoweringBase *TLI = getTLI();
566 int ISD = TLI->InstructionOpcodeToISD(Opcode);
567 assert(ISD && "Invalid opcode");
568 std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
569 std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
570
571 // Check for NOOP conversions.
572 if (SrcLT.first == DstLT.first &&
573 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
574
575 // Bitcast between types that are legalized to the same type are free.
576 if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
577 return 0;
578 }
579
580 if (Opcode == Instruction::Trunc &&
581 TLI->isTruncateFree(SrcLT.second, DstLT.second))
582 return 0;
583
584 if (Opcode == Instruction::ZExt &&
585 TLI->isZExtFree(SrcLT.second, DstLT.second))
586 return 0;
587
588 if (Opcode == Instruction::AddrSpaceCast &&
589 TLI->isNoopAddrSpaceCast(Src->getPointerAddressSpace(),
590 Dst->getPointerAddressSpace()))
591 return 0;
592
593 // If this is a zext/sext of a load, return 0 if the corresponding
594 // extending load exists on target.
595 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
596 I && isa<LoadInst>(I->getOperand(0))) {
597 EVT ExtVT = EVT::getEVT(Dst);
598 EVT LoadVT = EVT::getEVT(Src);
599 unsigned LType =
600 ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
601 if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
602 return 0;
603 }
604
605 // If the cast is marked as legal (or promote) then assume low cost.
606 if (SrcLT.first == DstLT.first &&
607 TLI->isOperationLegalOrPromote(ISD, DstLT.second))
608 return 1;
609
610 // Handle scalar conversions.
611 if (!Src->isVectorTy() && !Dst->isVectorTy()) {
612 // Scalar bitcasts are usually free.
613 if (Opcode == Instruction::BitCast)
614 return 0;
615
616 // Just check the op cost. If the operation is legal then assume it costs
617 // 1.
618 if (!TLI->isOperationExpand(ISD, DstLT.second))
619 return 1;
620
621 // Assume that illegal scalar instruction are expensive.
622 return 4;
623 }
624
625 // Check vector-to-vector casts.
626 if (Dst->isVectorTy() && Src->isVectorTy()) {
627 // If the cast is between same-sized registers, then the check is simple.
628 if (SrcLT.first == DstLT.first &&
629 SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
630
631 // Assume that Zext is done using AND.
632 if (Opcode == Instruction::ZExt)
633 return 1;
634
635 // Assume that sext is done using SHL and SRA.
636 if (Opcode == Instruction::SExt)
637 return 2;
638
639 // Just check the op cost. If the operation is legal then assume it
640 // costs
641 // 1 and multiply by the type-legalization overhead.
642 if (!TLI->isOperationExpand(ISD, DstLT.second))
643 return SrcLT.first * 1;
644 }
645
646 // If we are legalizing by splitting, query the concrete TTI for the cost
647 // of casting the original vector twice. We also need to factor in the
648 // cost of the split itself. Count that as 1, to be consistent with
649 // TLI->getTypeLegalizationCost().
650 if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
651 TargetLowering::TypeSplitVector) ||
652 (TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
653 TargetLowering::TypeSplitVector)) {
654 Type *SplitDst = VectorType::get(Dst->getVectorElementType(),
655 Dst->getVectorNumElements() / 2);
656 Type *SplitSrc = VectorType::get(Src->getVectorElementType(),
657 Src->getVectorNumElements() / 2);
658 T *TTI = static_cast<T *>(this);
659 return TTI->getVectorSplitCost() +
660 (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I));
661 }
662
663 // In other cases where the source or destination are illegal, assume
664 // the operation will get scalarized.
665 unsigned Num = Dst->getVectorNumElements();
666 unsigned Cost = static_cast<T *>(this)->getCastInstrCost(
667 Opcode, Dst->getScalarType(), Src->getScalarType(), I);
668
669 // Return the cost of multiple scalar invocation plus the cost of
670 // inserting and extracting the values.
671 return getScalarizationOverhead(Dst, true, true) + Num * Cost;
672 }
673
674 // We already handled vector-to-vector and scalar-to-scalar conversions.
675 // This
676 // is where we handle bitcast between vectors and scalars. We need to assume
677 // that the conversion is scalarized in one way or another.
678 if (Opcode == Instruction::BitCast)
679 // Illegal bitcasts are done by storing and loading from a stack slot.
680 return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true)
681 : 0) +
682 (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false)
683 : 0);
684
685 llvm_unreachable("Unhandled cast");
686 }
687
688 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
689 VectorType *VecTy, unsigned Index) {
690 return static_cast<T *>(this)->getVectorInstrCost(
691 Instruction::ExtractElement, VecTy, Index) +
692 static_cast<T *>(this)->getCastInstrCost(Opcode, Dst,
693 VecTy->getElementType());
694 }
695
696 unsigned getCFInstrCost(unsigned Opcode) {
697 // Branches are assumed to be predicted.
698 return 0;
699 }
700
701 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
702 const Instruction *I) {
703 const TargetLoweringBase *TLI = getTLI();
704 int ISD = TLI->InstructionOpcodeToISD(Opcode);
705 assert(ISD && "Invalid opcode");
706
707 // Selects on vectors are actually vector selects.
708 if (ISD == ISD::SELECT) {
709 assert(CondTy && "CondTy must exist");
710 if (CondTy->isVectorTy())
711 ISD = ISD::VSELECT;
712 }
713 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
714
715 if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
716 !TLI->isOperationExpand(ISD, LT.second)) {
717 // The operation is legal. Assume it costs 1. Multiply
718 // by the type-legalization overhead.
719 return LT.first * 1;
720 }
721
722 // Otherwise, assume that the cast is scalarized.
723 // TODO: If one of the types get legalized by splitting, handle this
724 // similarly to what getCastInstrCost() does.
725 if (ValTy->isVectorTy()) {
726 unsigned Num = ValTy->getVectorNumElements();
727 if (CondTy)
728 CondTy = CondTy->getScalarType();
729 unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost(
730 Opcode, ValTy->getScalarType(), CondTy, I);
731
732 // Return the cost of multiple scalar invocation plus the cost of
733 // inserting and extracting the values.
734 return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
735 }
736
737 // Unknown scalar opcode.
738 return 1;
739 }
740
741 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
742 std::pair<unsigned, MVT> LT =
743 getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
744
745 return LT.first;
746 }
747
748 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
749 unsigned AddressSpace, const Instruction *I = nullptr) {
750 assert(!Src->isVoidTy() && "Invalid type");
751 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
752
753 // Assuming that all loads of legal types cost 1.
754 unsigned Cost = LT.first;
755
756 if (Src->isVectorTy() &&
757 Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) {
758 // This is a vector load that legalizes to a larger type than the vector
759 // itself. Unless the corresponding extending load or truncating store is
760 // legal, then this will scalarize.
761 TargetLowering::LegalizeAction LA = TargetLowering::Expand;
762 EVT MemVT = getTLI()->getValueType(DL, Src);
763 if (Opcode == Instruction::Store)
764 LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
765 else
766 LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
767
768 if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
769 // This is a vector load/store for some illegal type that is scalarized.
770 // We must account for the cost of building or decomposing the vector.
771 Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store,
772 Opcode == Instruction::Store);
773 }
774 }
775
776 return Cost;
777 }
778
779 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
780 unsigned Factor,
781 ArrayRef<unsigned> Indices,
782 unsigned Alignment,
783 unsigned AddressSpace) {
784 VectorType *VT = dyn_cast<VectorType>(VecTy);
785 assert(VT && "Expect a vector type for interleaved memory op");
786
787 unsigned NumElts = VT->getNumElements();
788 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
789
790 unsigned NumSubElts = NumElts / Factor;
791 VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts);
792
793 // Firstly, the cost of load/store operation.
794 unsigned Cost = static_cast<T *>(this)->getMemoryOpCost(
795 Opcode, VecTy, Alignment, AddressSpace);
796
797 // Legalize the vector type, and get the legalized and unlegalized type
798 // sizes.
799 MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
800 unsigned VecTySize =
801 static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy);
802 unsigned VecTyLTSize = VecTyLT.getStoreSize();
803
804 // Return the ceiling of dividing A by B.
805 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
806
807 // Scale the cost of the memory operation by the fraction of legalized
808 // instructions that will actually be used. We shouldn't account for the
809 // cost of dead instructions since they will be removed.
810 //
811 // E.g., An interleaved load of factor 8:
812 // %vec = load <16 x i64>, <16 x i64>* %ptr
813 // %v0 = shufflevector %vec, undef, <0, 8>
814 //
815 // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
816 // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
817 // type). The other loads are unused.
818 //
819 // We only scale the cost of loads since interleaved store groups aren't
820 // allowed to have gaps.
821 if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
822 // The number of loads of a legal type it will take to represent a load
823 // of the unlegalized vector type.
824 unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
825
826 // The number of elements of the unlegalized type that correspond to a
827 // single legal instruction.
828 unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
829
830 // Determine which legal instructions will be used.
831 BitVector UsedInsts(NumLegalInsts, false);
832 for (unsigned Index : Indices)
833 for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
834 UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
835
836 // Scale the cost of the load by the fraction of legal instructions that
837 // will be used.
838 Cost *= UsedInsts.count() / NumLegalInsts;
839 }
840
841 // Then plus the cost of interleave operation.
842 if (Opcode == Instruction::Load) {
843 // The interleave cost is similar to extract sub vectors' elements
844 // from the wide vector, and insert them into sub vectors.
845 //
846 // E.g. An interleaved load of factor 2 (with one member of index 0):
847 // %vec = load <8 x i32>, <8 x i32>* %ptr
848 // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
849 // The cost is estimated as extract elements at 0, 2, 4, 6 from the
850 // <8 x i32> vector and insert them into a <4 x i32> vector.
851
852 assert(Indices.size() <= Factor &&
853 "Interleaved memory op has too many members");
854
855 for (unsigned Index : Indices) {
856 assert(Index < Factor && "Invalid index for interleaved memory op");
857
858 // Extract elements from loaded vector for each sub vector.
859 for (unsigned i = 0; i < NumSubElts; i++)
860 Cost += static_cast<T *>(this)->getVectorInstrCost(
861 Instruction::ExtractElement, VT, Index + i * Factor);
862 }
863
864 unsigned InsSubCost = 0;
865 for (unsigned i = 0; i < NumSubElts; i++)
866 InsSubCost += static_cast<T *>(this)->getVectorInstrCost(
867 Instruction::InsertElement, SubVT, i);
868
869 Cost += Indices.size() * InsSubCost;
870 } else {
871 // The interleave cost is extract all elements from sub vectors, and
872 // insert them into the wide vector.
873 //
874 // E.g. An interleaved store of factor 2:
875 // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
876 // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
877 // The cost is estimated as extract all elements from both <4 x i32>
878 // vectors and insert into the <8 x i32> vector.
879
880 unsigned ExtSubCost = 0;
881 for (unsigned i = 0; i < NumSubElts; i++)
882 ExtSubCost += static_cast<T *>(this)->getVectorInstrCost(
883 Instruction::ExtractElement, SubVT, i);
884 Cost += ExtSubCost * Factor;
885
886 for (unsigned i = 0; i < NumElts; i++)
887 Cost += static_cast<T *>(this)
888 ->getVectorInstrCost(Instruction::InsertElement, VT, i);
889 }
890
891 return Cost;
892 }
893
894 /// Get intrinsic cost based on arguments.
895 unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
896 ArrayRef<Value *> Args, FastMathFlags FMF,
897 unsigned VF = 1) {
898 unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1);
899 assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type");
900
901 switch (IID) {
902 default: {
903 // Assume that we need to scalarize this intrinsic.
904 SmallVector<Type *, 4> Types;
905 for (Value *Op : Args) {
906 Type *OpTy = Op->getType();
907 assert(VF == 1 || !OpTy->isVectorTy());
908 Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF));
909 }
910
911 if (VF > 1 && !RetTy->isVoidTy())
912 RetTy = VectorType::get(RetTy, VF);
913
914 // Compute the scalarization overhead based on Args for a vector
915 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
916 // CostModel will pass a vector RetTy and VF is 1.
917 unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
918 if (RetVF > 1 || VF > 1) {
919 ScalarizationCost = 0;
920 if (!RetTy->isVoidTy())
921 ScalarizationCost += getScalarizationOverhead(RetTy, true, false);
922 ScalarizationCost += getOperandsScalarizationOverhead(Args, VF);
923 }
924
925 return static_cast<T *>(this)->
926 getIntrinsicInstrCost(IID, RetTy, Types, FMF, ScalarizationCost);
927 }
928 case Intrinsic::masked_scatter: {
929 assert(VF == 1 && "Can't vectorize types here.");
930 Value *Mask = Args[3];
931 bool VarMask = !isa<Constant>(Mask);
932 unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue();
933 return
934 static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Store,
935 Args[0]->getType(),
936 Args[1], VarMask,
937 Alignment);
938 }
939 case Intrinsic::masked_gather: {
940 assert(VF == 1 && "Can't vectorize types here.");
941 Value *Mask = Args[2];
942 bool VarMask = !isa<Constant>(Mask);
943 unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue();
944 return
945 static_cast<T *>(this)->getGatherScatterOpCost(Instruction::Load,
946 RetTy, Args[0], VarMask,
947 Alignment);
948 }
949 case Intrinsic::experimental_vector_reduce_add:
950 case Intrinsic::experimental_vector_reduce_mul:
951 case Intrinsic::experimental_vector_reduce_and:
952 case Intrinsic::experimental_vector_reduce_or:
953 case Intrinsic::experimental_vector_reduce_xor:
954 case Intrinsic::experimental_vector_reduce_fadd:
955 case Intrinsic::experimental_vector_reduce_fmul:
956 case Intrinsic::experimental_vector_reduce_smax:
957 case Intrinsic::experimental_vector_reduce_smin:
958 case Intrinsic::experimental_vector_reduce_fmax:
959 case Intrinsic::experimental_vector_reduce_fmin:
960 case Intrinsic::experimental_vector_reduce_umax:
961 case Intrinsic::experimental_vector_reduce_umin:
962 return getIntrinsicInstrCost(IID, RetTy, Args[0]->getType(), FMF);
963 }
964 }
965
966 /// Get intrinsic cost based on argument types.
967 /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
968 /// cost of scalarizing the arguments and the return value will be computed
969 /// based on types.
970 unsigned getIntrinsicInstrCost(
971 Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF,
972 unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) {
973 SmallVector<unsigned, 2> ISDs;
974 unsigned SingleCallCost = 10; // Library call cost. Make it expensive.
975 switch (IID) {
976 default: {
977 // Assume that we need to scalarize this intrinsic.
978 unsigned ScalarizationCost = ScalarizationCostPassed;
979 unsigned ScalarCalls = 1;
980 Type *ScalarRetTy = RetTy;
981 if (RetTy->isVectorTy()) {
982 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
983 ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
984 ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
985 ScalarRetTy = RetTy->getScalarType();
986 }
987 SmallVector<Type *, 4> ScalarTys;
988 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
989 Type *Ty = Tys[i];
990 if (Ty->isVectorTy()) {
991 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
992 ScalarizationCost += getScalarizationOverhead(Ty, false, true);
993 ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements());
994 Ty = Ty->getScalarType();
995 }
996 ScalarTys.push_back(Ty);
997 }
998 if (ScalarCalls == 1)
999 return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
1000
1001 unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
1002 IID, ScalarRetTy, ScalarTys, FMF);
1003
1004 return ScalarCalls * ScalarCost + ScalarizationCost;
1005 }
1006 // Look for intrinsics that can be lowered directly or turned into a scalar
1007 // intrinsic call.
1008 case Intrinsic::sqrt:
1009 ISDs.push_back(ISD::FSQRT);
1010 break;
1011 case Intrinsic::sin:
1012 ISDs.push_back(ISD::FSIN);
1013 break;
1014 case Intrinsic::cos:
1015 ISDs.push_back(ISD::FCOS);
1016 break;
1017 case Intrinsic::exp:
1018 ISDs.push_back(ISD::FEXP);
1019 break;
1020 case Intrinsic::exp2:
1021 ISDs.push_back(ISD::FEXP2);
1022 break;
1023 case Intrinsic::log:
1024 ISDs.push_back(ISD::FLOG);
1025 break;
1026 case Intrinsic::log10:
1027 ISDs.push_back(ISD::FLOG10);
1028 break;
1029 case Intrinsic::log2:
1030 ISDs.push_back(ISD::FLOG2);
1031 break;
1032 case Intrinsic::fabs:
1033 ISDs.push_back(ISD::FABS);
1034 break;
1035 case Intrinsic::minnum:
1036 ISDs.push_back(ISD::FMINNUM);
1037 if (FMF.noNaNs())
1038 ISDs.push_back(ISD::FMINNAN);
1039 break;
1040 case Intrinsic::maxnum:
1041 ISDs.push_back(ISD::FMAXNUM);
1042 if (FMF.noNaNs())
1043 ISDs.push_back(ISD::FMAXNAN);
1044 break;
1045 case Intrinsic::copysign:
1046 ISDs.push_back(ISD::FCOPYSIGN);
1047 break;
1048 case Intrinsic::floor:
1049 ISDs.push_back(ISD::FFLOOR);
1050 break;
1051 case Intrinsic::ceil:
1052 ISDs.push_back(ISD::FCEIL);
1053 break;
1054 case Intrinsic::trunc:
1055 ISDs.push_back(ISD::FTRUNC);
1056 break;
1057 case Intrinsic::nearbyint:
1058 ISDs.push_back(ISD::FNEARBYINT);
1059 break;
1060 case Intrinsic::rint:
1061 ISDs.push_back(ISD::FRINT);
1062 break;
1063 case Intrinsic::round:
1064 ISDs.push_back(ISD::FROUND);
1065 break;
1066 case Intrinsic::pow:
1067 ISDs.push_back(ISD::FPOW);
1068 break;
1069 case Intrinsic::fma:
1070 ISDs.push_back(ISD::FMA);
1071 break;
1072 case Intrinsic::fmuladd:
1073 ISDs.push_back(ISD::FMA);
1074 break;
1075 // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
1076 case Intrinsic::lifetime_start:
1077 case Intrinsic::lifetime_end:
1078 case Intrinsic::sideeffect:
1079 return 0;
1080 case Intrinsic::masked_store:
1081 return static_cast<T *>(this)
1082 ->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, 0);
1083 case Intrinsic::masked_load:
1084 return static_cast<T *>(this)
1085 ->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0);
1086 case Intrinsic::experimental_vector_reduce_add:
1087 return static_cast<T *>(this)->getArithmeticReductionCost(
1088 Instruction::Add, Tys[0], /*IsPairwiseForm=*/false);
1089 case Intrinsic::experimental_vector_reduce_mul:
1090 return static_cast<T *>(this)->getArithmeticReductionCost(
1091 Instruction::Mul, Tys[0], /*IsPairwiseForm=*/false);
1092 case Intrinsic::experimental_vector_reduce_and:
1093 return static_cast<T *>(this)->getArithmeticReductionCost(
1094 Instruction::And, Tys[0], /*IsPairwiseForm=*/false);
1095 case Intrinsic::experimental_vector_reduce_or:
1096 return static_cast<T *>(this)->getArithmeticReductionCost(
1097 Instruction::Or, Tys[0], /*IsPairwiseForm=*/false);
1098 case Intrinsic::experimental_vector_reduce_xor:
1099 return static_cast<T *>(this)->getArithmeticReductionCost(
1100 Instruction::Xor, Tys[0], /*IsPairwiseForm=*/false);
1101 case Intrinsic::experimental_vector_reduce_fadd:
1102 return static_cast<T *>(this)->getArithmeticReductionCost(
1103 Instruction::FAdd, Tys[0], /*IsPairwiseForm=*/false);
1104 case Intrinsic::experimental_vector_reduce_fmul:
1105 return static_cast<T *>(this)->getArithmeticReductionCost(
1106 Instruction::FMul, Tys[0], /*IsPairwiseForm=*/false);
1107 case Intrinsic::experimental_vector_reduce_smax:
1108 case Intrinsic::experimental_vector_reduce_smin:
1109 case Intrinsic::experimental_vector_reduce_fmax:
1110 case Intrinsic::experimental_vector_reduce_fmin:
1111 return static_cast<T *>(this)->getMinMaxReductionCost(
1112 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1113 /*IsSigned=*/true);
1114 case Intrinsic::experimental_vector_reduce_umax:
1115 case Intrinsic::experimental_vector_reduce_umin:
1116 return static_cast<T *>(this)->getMinMaxReductionCost(
1117 Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false,
1118 /*IsSigned=*/false);
1119 case Intrinsic::ctpop:
1120 ISDs.push_back(ISD::CTPOP);
1121 // In case of legalization use TCC_Expensive. This is cheaper than a
1122 // library call but still not a cheap instruction.
1123 SingleCallCost = TargetTransformInfo::TCC_Expensive;
1124 break;
1125 // FIXME: ctlz, cttz, ...
1126 }
1127
1128 const TargetLoweringBase *TLI = getTLI();
1129 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1130
1131 SmallVector<unsigned, 2> LegalCost;
1132 SmallVector<unsigned, 2> CustomCost;
1133 for (unsigned ISD : ISDs) {
1134 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
1135 if (IID == Intrinsic::fabs && TLI->isFAbsFree(LT.second)) {
1136 return 0;
1137 }
1138
1139 // The operation is legal. Assume it costs 1.
1140 // If the type is split to multiple registers, assume that there is some
1141 // overhead to this.
1142 // TODO: Once we have extract/insert subvector cost we need to use them.
1143 if (LT.first > 1)
1144 LegalCost.push_back(LT.first * 2);
1145 else
1146 LegalCost.push_back(LT.first * 1);
1147 } else if (!TLI->isOperationExpand(ISD, LT.second)) {
1148 // If the operation is custom lowered then assume
1149 // that the code is twice as expensive.
1150 CustomCost.push_back(LT.first * 2);
1151 }
1152 }
1153
1154 auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
1155 if (MinLegalCostI != LegalCost.end())
1156 return *MinLegalCostI;
1157
1158 auto MinCustomCostI = std::min_element(CustomCost.begin(), CustomCost.end());
1159 if (MinCustomCostI != CustomCost.end())
1160 return *MinCustomCostI;
1161
1162 // If we can't lower fmuladd into an FMA estimate the cost as a floating
1163 // point mul followed by an add.
1164 if (IID == Intrinsic::fmuladd)
1165 return static_cast<T *>(this)
1166 ->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) +
1167 static_cast<T *>(this)
1168 ->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy);
1169
1170 // Else, assume that we need to scalarize this intrinsic. For math builtins
1171 // this will emit a costly libcall, adding call overhead and spills. Make it
1172 // very expensive.
1173 if (RetTy->isVectorTy()) {
1174 unsigned ScalarizationCost =
1175 ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max())
1176 ? ScalarizationCostPassed
1177 : getScalarizationOverhead(RetTy, true, false));
1178 unsigned ScalarCalls = RetTy->getVectorNumElements();
1179 SmallVector<Type *, 4> ScalarTys;
1180 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1181 Type *Ty = Tys[i];
1182 if (Ty->isVectorTy())
1183 Ty = Ty->getScalarType();
1184 ScalarTys.push_back(Ty);
1185 }
1186 unsigned ScalarCost = static_cast<T *>(this)->getIntrinsicInstrCost(
1187 IID, RetTy->getScalarType(), ScalarTys, FMF);
1188 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
1189 if (Tys[i]->isVectorTy()) {
1190 if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max())
1191 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
1192 ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements());
1193 }
1194 }
1195
1196 return ScalarCalls * ScalarCost + ScalarizationCost;
1197 }
1198
1199 // This is going to be turned into a library call, make it expensive.
1200 return SingleCallCost;
1201 }
1202
1203 /// \brief Compute a cost of the given call instruction.
1204 ///
1205 /// Compute the cost of calling function F with return type RetTy and
1206 /// argument types Tys. F might be nullptr, in this case the cost of an
1207 /// arbitrary call with the specified signature will be returned.
1208 /// This is used, for instance, when we estimate call of a vector
1209 /// counterpart of the given function.
1210 /// \param F Called function, might be nullptr.
1211 /// \param RetTy Return value types.
1212 /// \param Tys Argument types.
1213 /// \returns The cost of Call instruction.
1214 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
1215 return 10;
1216 }
1217
1218 unsigned getNumberOfParts(Type *Tp) {
1219 std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
1220 return LT.first;
1221 }
1222
1223 unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
1224 const SCEV *) {
1225 return 0;
1226 }
1227
1228 /// Try to calculate arithmetic and shuffle op costs for reduction operations.
1229 /// We're assuming that reduction operation are performing the following way:
1230 /// 1. Non-pairwise reduction
1231 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1232 /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
1233 /// \----------------v-------------/ \----------v------------/
1234 /// n/2 elements n/2 elements
1235 /// %red1 = op <n x t> %val, <n x t> val1
1236 /// After this operation we have a vector %red1 where only the first n/2
1237 /// elements are meaningful, the second n/2 elements are undefined and can be
1238 /// dropped. All other operations are actually working with the vector of
1239 /// length n/2, not n, though the real vector length is still n.
1240 /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
1241 /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
1242 /// \----------------v-------------/ \----------v------------/
1243 /// n/4 elements 3*n/4 elements
1244 /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
1245 /// length n/2, the resulting vector has length n/4 etc.
1246 /// 2. Pairwise reduction:
1247 /// Everything is the same except for an additional shuffle operation which
1248 /// is used to produce operands for pairwise kind of reductions.
1249 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1250 /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
1251 /// \-------------v----------/ \----------v------------/
1252 /// n/2 elements n/2 elements
1253 /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
1254 /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
1255 /// \-------------v----------/ \----------v------------/
1256 /// n/2 elements n/2 elements
1257 /// %red1 = op <n x t> %val1, <n x t> val2
1258 /// Again, the operation is performed on <n x t> vector, but the resulting
1259 /// vector %red1 is <n/2 x t> vector.
1260 ///
1261 /// The cost model should take into account that the actual length of the
1262 /// vector is reduced on each iteration.
1263 unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1264 bool IsPairwise) {
1265 assert(Ty->isVectorTy() && "Expect a vector type");
1266 Type *ScalarTy = Ty->getVectorElementType();
1267 unsigned NumVecElts = Ty->getVectorNumElements();
1268 unsigned NumReduxLevels = Log2_32(NumVecElts);
1269 unsigned ArithCost = 0;
1270 unsigned ShuffleCost = 0;
1271 auto *ConcreteTTI = static_cast<T *>(this);
1272 std::pair<unsigned, MVT> LT =
1273 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1274 unsigned LongVectorCount = 0;
1275 unsigned MVTLen =
1276 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1277 while (NumVecElts > MVTLen) {
1278 NumVecElts /= 2;
1279 // Assume the pairwise shuffles add a cost.
1280 ShuffleCost += (IsPairwise + 1) *
1281 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1282 NumVecElts, Ty);
1283 ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
1284 Ty = VectorType::get(ScalarTy, NumVecElts);
1285 ++LongVectorCount;
1286 }
1287 // The minimal length of the vector is limited by the real length of vector
1288 // operations performed on the current platform. That's why several final
1289 // reduction operations are performed on the vectors with the same
1290 // architecture-dependent length.
1291 ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) *
1292 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1293 NumVecElts, Ty);
1294 ArithCost += (NumReduxLevels - LongVectorCount) *
1295 ConcreteTTI->getArithmeticInstrCost(Opcode, Ty);
1296 return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
1297 }
1298
1299 /// Try to calculate op costs for min/max reduction operations.
1300 /// \param CondTy Conditional type for the Select instruction.
1301 unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise,
1302 bool) {
1303 assert(Ty->isVectorTy() && "Expect a vector type");
1304 Type *ScalarTy = Ty->getVectorElementType();
1305 Type *ScalarCondTy = CondTy->getVectorElementType();
1306 unsigned NumVecElts = Ty->getVectorNumElements();
1307 unsigned NumReduxLevels = Log2_32(NumVecElts);
1308 unsigned CmpOpcode;
1309 if (Ty->isFPOrFPVectorTy()) {
1310 CmpOpcode = Instruction::FCmp;
1311 } else {
1312 assert(Ty->isIntOrIntVectorTy() &&
1313 "expecting floating point or integer type for min/max reduction");
1314 CmpOpcode = Instruction::ICmp;
1315 }
1316 unsigned MinMaxCost = 0;
1317 unsigned ShuffleCost = 0;
1318 auto *ConcreteTTI = static_cast<T *>(this);
1319 std::pair<unsigned, MVT> LT =
1320 ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty);
1321 unsigned LongVectorCount = 0;
1322 unsigned MVTLen =
1323 LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
1324 while (NumVecElts > MVTLen) {
1325 NumVecElts /= 2;
1326 // Assume the pairwise shuffles add a cost.
1327 ShuffleCost += (IsPairwise + 1) *
1328 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1329 NumVecElts, Ty);
1330 MinMaxCost +=
1331 ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
1332 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
1333 nullptr);
1334 Ty = VectorType::get(ScalarTy, NumVecElts);
1335 CondTy = VectorType::get(ScalarCondTy, NumVecElts);
1336 ++LongVectorCount;
1337 }
1338 // The minimal length of the vector is limited by the real length of vector
1339 // operations performed on the current platform. That's why several final
1340 // reduction opertions are perfomed on the vectors with the same
1341 // architecture-dependent length.
1342 ShuffleCost += (NumReduxLevels - LongVectorCount) * (IsPairwise + 1) *
1343 ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty,
1344 NumVecElts, Ty);
1345 MinMaxCost +=
1346 (NumReduxLevels - LongVectorCount) *
1347 (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) +
1348 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
1349 nullptr));
1350 // Need 3 extractelement instructions for scalarization + an additional
1351 // scalar select instruction.
1352 return ShuffleCost + MinMaxCost +
1353 3 * getScalarizationOverhead(Ty, /*Insert=*/false,
1354 /*Extract=*/true) +
1355 ConcreteTTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
1356 ScalarCondTy, nullptr);
1357 }
1358
1359 unsigned getVectorSplitCost() { return 1; }
1360
1361 /// @}
1362};
1363
1364/// \brief Concrete BasicTTIImpl that can be used if no further customization
1365/// is needed.
1366class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
1367 using BaseT = BasicTTIImplBase<BasicTTIImpl>;
1368
1369 friend class BasicTTIImplBase<BasicTTIImpl>;
1370
1371 const TargetSubtargetInfo *ST;
1372 const TargetLoweringBase *TLI;
1373
1374 const TargetSubtargetInfo *getST() const { return ST; }
1375 const TargetLoweringBase *getTLI() const { return TLI; }
1376
1377public:
1378 explicit BasicTTIImpl(const TargetMachine *ST, const Function &F);
1379};
1380
1381} // end namespace llvm
1382
1383#endif // LLVM_CODEGEN_BASICTTIIMPL_H