blob: d80ae1d6845d5eb7975d5bd54d74ac8ddffc5ec5 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file provides helpers for the implementation of
11/// a TargetTransformInfo-conforming class.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
17
18#include "llvm/Analysis/ScalarEvolutionExpressions.h"
19#include "llvm/Analysis/TargetTransformInfo.h"
20#include "llvm/Analysis/VectorUtils.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/GetElementPtrTypeIterator.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/Type.h"
27
28namespace llvm {
29
Andrew Scullcdfcccc2018-10-05 20:58:37 +010030/// Base class for use as a mix-in that aids implementing
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010031/// a TargetTransformInfo-compatible class.
32class TargetTransformInfoImplBase {
33protected:
34 typedef TargetTransformInfo TTI;
35
36 const DataLayout &DL;
37
38 explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
39
40public:
41 // Provide value semantics. MSVC requires that we spell all of these out.
42 TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
43 : DL(Arg.DL) {}
44 TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
45
46 const DataLayout &getDataLayout() const { return DL; }
47
48 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
49 switch (Opcode) {
50 default:
51 // By default, just classify everything as 'basic'.
52 return TTI::TCC_Basic;
53
54 case Instruction::GetElementPtr:
55 llvm_unreachable("Use getGEPCost for GEP operations!");
56
57 case Instruction::BitCast:
58 assert(OpTy && "Cast instructions must provide the operand type");
59 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
60 // Identity and pointer-to-pointer casts are free.
61 return TTI::TCC_Free;
62
63 // Otherwise, the default basic cost is used.
64 return TTI::TCC_Basic;
65
66 case Instruction::FDiv:
67 case Instruction::FRem:
68 case Instruction::SDiv:
69 case Instruction::SRem:
70 case Instruction::UDiv:
71 case Instruction::URem:
72 return TTI::TCC_Expensive;
73
74 case Instruction::IntToPtr: {
75 // An inttoptr cast is free so long as the input is a legal integer type
76 // which doesn't contain values outside the range of a pointer.
77 unsigned OpSize = OpTy->getScalarSizeInBits();
78 if (DL.isLegalInteger(OpSize) &&
79 OpSize <= DL.getPointerTypeSizeInBits(Ty))
80 return TTI::TCC_Free;
81
82 // Otherwise it's not a no-op.
83 return TTI::TCC_Basic;
84 }
85 case Instruction::PtrToInt: {
86 // A ptrtoint cast is free so long as the result is large enough to store
87 // the pointer, and a legal integer type.
88 unsigned DestSize = Ty->getScalarSizeInBits();
89 if (DL.isLegalInteger(DestSize) &&
90 DestSize >= DL.getPointerTypeSizeInBits(OpTy))
91 return TTI::TCC_Free;
92
93 // Otherwise it's not a no-op.
94 return TTI::TCC_Basic;
95 }
96 case Instruction::Trunc:
97 // trunc to a native type is free (assuming the target has compare and
98 // shift-right of the same width).
99 if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
100 return TTI::TCC_Free;
101
102 return TTI::TCC_Basic;
103 }
104 }
105
106 int getGEPCost(Type *PointeeType, const Value *Ptr,
107 ArrayRef<const Value *> Operands) {
108 // In the basic model, we just assume that all-constant GEPs will be folded
109 // into their uses via addressing modes.
110 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
111 if (!isa<Constant>(Operands[Idx]))
112 return TTI::TCC_Basic;
113
114 return TTI::TCC_Free;
115 }
116
117 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
118 unsigned &JTSize) {
119 JTSize = 0;
120 return SI.getNumCases();
121 }
122
123 int getExtCost(const Instruction *I, const Value *Src) {
124 return TTI::TCC_Basic;
125 }
126
127 unsigned getCallCost(FunctionType *FTy, int NumArgs) {
128 assert(FTy && "FunctionType must be provided to this routine.");
129
130 // The target-independent implementation just measures the size of the
131 // function by approximating that each argument will take on average one
132 // instruction to prepare.
133
134 if (NumArgs < 0)
135 // Set the argument number to the number of explicit arguments in the
136 // function.
137 NumArgs = FTy->getNumParams();
138
139 return TTI::TCC_Basic * (NumArgs + 1);
140 }
141
142 unsigned getInliningThresholdMultiplier() { return 1; }
143
144 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
145 ArrayRef<Type *> ParamTys) {
146 switch (IID) {
147 default:
148 // Intrinsics rarely (if ever) have normal argument setup constraints.
149 // Model them as having a basic instruction cost.
150 // FIXME: This is wrong for libc intrinsics.
151 return TTI::TCC_Basic;
152
153 case Intrinsic::annotation:
154 case Intrinsic::assume:
155 case Intrinsic::sideeffect:
156 case Intrinsic::dbg_declare:
157 case Intrinsic::dbg_value:
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100158 case Intrinsic::dbg_label:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100159 case Intrinsic::invariant_start:
160 case Intrinsic::invariant_end:
161 case Intrinsic::lifetime_start:
162 case Intrinsic::lifetime_end:
163 case Intrinsic::objectsize:
164 case Intrinsic::ptr_annotation:
165 case Intrinsic::var_annotation:
166 case Intrinsic::experimental_gc_result:
167 case Intrinsic::experimental_gc_relocate:
168 case Intrinsic::coro_alloc:
169 case Intrinsic::coro_begin:
170 case Intrinsic::coro_free:
171 case Intrinsic::coro_end:
172 case Intrinsic::coro_frame:
173 case Intrinsic::coro_size:
174 case Intrinsic::coro_suspend:
175 case Intrinsic::coro_param:
176 case Intrinsic::coro_subfn_addr:
177 // These intrinsics don't actually represent code after lowering.
178 return TTI::TCC_Free;
179 }
180 }
181
182 bool hasBranchDivergence() { return false; }
183
184 bool isSourceOfDivergence(const Value *V) { return false; }
185
186 bool isAlwaysUniform(const Value *V) { return false; }
187
188 unsigned getFlatAddressSpace () {
189 return -1;
190 }
191
192 bool isLoweredToCall(const Function *F) {
193 assert(F && "A concrete function must be provided to this routine.");
194
195 // FIXME: These should almost certainly not be handled here, and instead
196 // handled with the help of TLI or the target itself. This was largely
197 // ported from existing analysis heuristics here so that such refactorings
198 // can take place in the future.
199
200 if (F->isIntrinsic())
201 return false;
202
203 if (F->hasLocalLinkage() || !F->hasName())
204 return true;
205
206 StringRef Name = F->getName();
207
208 // These will all likely lower to a single selection DAG node.
209 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
210 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
211 Name == "fmin" || Name == "fminf" || Name == "fminl" ||
212 Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
213 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
214 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
215 return false;
216
217 // These are all likely to be optimized into something smaller.
218 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
219 Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
220 Name == "floorf" || Name == "ceil" || Name == "round" ||
221 Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
222 Name == "llabs")
223 return false;
224
225 return true;
226 }
227
228 void getUnrollingPreferences(Loop *, ScalarEvolution &,
229 TTI::UnrollingPreferences &) {}
230
231 bool isLegalAddImmediate(int64_t Imm) { return false; }
232
233 bool isLegalICmpImmediate(int64_t Imm) { return false; }
234
235 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
236 bool HasBaseReg, int64_t Scale,
237 unsigned AddrSpace, Instruction *I = nullptr) {
238 // Guess that only reg and reg+reg addressing is allowed. This heuristic is
239 // taken from the implementation of LSR.
240 return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
241 }
242
243 bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
244 return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
245 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
246 std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
247 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
248 }
249
250 bool canMacroFuseCmp() { return false; }
251
252 bool shouldFavorPostInc() const { return false; }
253
254 bool isLegalMaskedStore(Type *DataType) { return false; }
255
256 bool isLegalMaskedLoad(Type *DataType) { return false; }
257
258 bool isLegalMaskedScatter(Type *DataType) { return false; }
259
260 bool isLegalMaskedGather(Type *DataType) { return false; }
261
262 bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
263
264 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }
265
266 bool prefersVectorizedAddressing() { return true; }
267
268 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
269 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
270 // Guess that all legal addressing mode are free.
271 if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
272 Scale, AddrSpace))
273 return 0;
274 return -1;
275 }
276
277 bool LSRWithInstrQueries() { return false; }
278
279 bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
280
281 bool isProfitableToHoist(Instruction *I) { return true; }
282
283 bool useAA() { return false; }
284
285 bool isTypeLegal(Type *Ty) { return false; }
286
287 unsigned getJumpBufAlignment() { return 0; }
288
289 unsigned getJumpBufSize() { return 0; }
290
291 bool shouldBuildLookupTables() { return true; }
292 bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }
293
294 bool useColdCCForColdCall(Function &F) { return false; }
295
296 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
297 return 0;
298 }
299
300 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
301 unsigned VF) { return 0; }
302
303 bool supportsEfficientVectorElementLoadStore() { return false; }
304
305 bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
306
307 const TTI::MemCmpExpansionOptions *enableMemCmpExpansion(
308 bool IsZeroCmp) const {
309 return nullptr;
310 }
311
312 bool enableInterleavedAccessVectorization() { return false; }
313
314 bool isFPVectorizationPotentiallyUnsafe() { return false; }
315
316 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
317 unsigned BitWidth,
318 unsigned AddressSpace,
319 unsigned Alignment,
320 bool *Fast) { return false; }
321
322 TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
323 return TTI::PSK_Software;
324 }
325
326 bool haveFastSqrt(Type *Ty) { return false; }
327
328 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100329
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100330 unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
331
332 int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
333 Type *Ty) {
334 return 0;
335 }
336
337 unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
338
339 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
340 Type *Ty) {
341 return TTI::TCC_Free;
342 }
343
344 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
345 Type *Ty) {
346 return TTI::TCC_Free;
347 }
348
349 unsigned getNumberOfRegisters(bool Vector) { return 8; }
350
351 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
352
353 unsigned getMinVectorRegisterBitWidth() { return 128; }
354
355 bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }
356
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100357 unsigned getMinimumVF(unsigned ElemWidth) const { return 0; }
358
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100359 bool
360 shouldConsiderAddressTypePromotion(const Instruction &I,
361 bool &AllowPromotionWithoutCommonHeader) {
362 AllowPromotionWithoutCommonHeader = false;
363 return false;
364 }
365
366 unsigned getCacheLineSize() { return 0; }
367
368 llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) {
369 switch (Level) {
370 case TargetTransformInfo::CacheLevel::L1D:
371 LLVM_FALLTHROUGH;
372 case TargetTransformInfo::CacheLevel::L2D:
373 return llvm::Optional<unsigned>();
374 }
375
376 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
377 }
378
379 llvm::Optional<unsigned> getCacheAssociativity(
380 TargetTransformInfo::CacheLevel Level) {
381 switch (Level) {
382 case TargetTransformInfo::CacheLevel::L1D:
383 LLVM_FALLTHROUGH;
384 case TargetTransformInfo::CacheLevel::L2D:
385 return llvm::Optional<unsigned>();
386 }
387
388 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
389 }
390
391 unsigned getPrefetchDistance() { return 0; }
392
393 unsigned getMinPrefetchStride() { return 1; }
394
395 unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
396
397 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
398
399 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
400 TTI::OperandValueKind Opd1Info,
401 TTI::OperandValueKind Opd2Info,
402 TTI::OperandValueProperties Opd1PropInfo,
403 TTI::OperandValueProperties Opd2PropInfo,
404 ArrayRef<const Value *> Args) {
405 return 1;
406 }
407
408 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
409 Type *SubTp) {
410 return 1;
411 }
412
413 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
414 const Instruction *I) { return 1; }
415
416 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
417 VectorType *VecTy, unsigned Index) {
418 return 1;
419 }
420
421 unsigned getCFInstrCost(unsigned Opcode) { return 1; }
422
423 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
424 const Instruction *I) {
425 return 1;
426 }
427
428 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
429 return 1;
430 }
431
432 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
433 unsigned AddressSpace, const Instruction *I) {
434 return 1;
435 }
436
437 unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
438 unsigned AddressSpace) {
439 return 1;
440 }
441
442 unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
443 bool VariableMask,
444 unsigned Alignment) {
445 return 1;
446 }
447
448 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
449 unsigned Factor,
450 ArrayRef<unsigned> Indices,
451 unsigned Alignment,
452 unsigned AddressSpace) {
453 return 1;
454 }
455
456 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
457 ArrayRef<Type *> Tys, FastMathFlags FMF,
458 unsigned ScalarizationCostPassed) {
459 return 1;
460 }
461 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
462 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
463 return 1;
464 }
465
466 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
467 return 1;
468 }
469
470 unsigned getNumberOfParts(Type *Tp) { return 0; }
471
472 unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
473 const SCEV *) {
474 return 0;
475 }
476
477 unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
478
479 unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
480
481 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
482
483 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
484 return false;
485 }
486
487 unsigned getAtomicMemIntrinsicMaxElementSize() const {
488 // Note for overrides: You must ensure for all element unordered-atomic
489 // memory intrinsics that all power-of-2 element sizes up to, and
490 // including, the return value of this method have a corresponding
491 // runtime lib call. These runtime lib call definitions can be found
492 // in RuntimeLibcalls.h
493 return 0;
494 }
495
496 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
497 Type *ExpectedType) {
498 return nullptr;
499 }
500
501 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
502 unsigned SrcAlign, unsigned DestAlign) const {
503 return Type::getInt8Ty(Context);
504 }
505
506 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
507 LLVMContext &Context,
508 unsigned RemainingBytes,
509 unsigned SrcAlign,
510 unsigned DestAlign) const {
511 for (unsigned i = 0; i != RemainingBytes; ++i)
512 OpsOut.push_back(Type::getInt8Ty(Context));
513 }
514
515 bool areInlineCompatible(const Function *Caller,
516 const Function *Callee) const {
517 return (Caller->getFnAttribute("target-cpu") ==
518 Callee->getFnAttribute("target-cpu")) &&
519 (Caller->getFnAttribute("target-features") ==
520 Callee->getFnAttribute("target-features"));
521 }
522
523 bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
524 const DataLayout &DL) const {
525 return false;
526 }
527
528 bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
529 const DataLayout &DL) const {
530 return false;
531 }
532
533 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
534
535 bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
536
537 bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
538
539 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
540 unsigned Alignment,
541 unsigned AddrSpace) const {
542 return true;
543 }
544
545 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
546 unsigned Alignment,
547 unsigned AddrSpace) const {
548 return true;
549 }
550
551 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
552 unsigned ChainSizeInBytes,
553 VectorType *VecTy) const {
554 return VF;
555 }
556
557 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
558 unsigned ChainSizeInBytes,
559 VectorType *VecTy) const {
560 return VF;
561 }
562
563 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
564 TTI::ReductionFlags Flags) const {
565 return false;
566 }
567
568 bool shouldExpandReduction(const IntrinsicInst *II) const {
569 return true;
570 }
571
572protected:
573 // Obtain the minimum required size to hold the value (without the sign)
574 // In case of a vector it returns the min required size for one element.
575 unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
576 if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
577 const auto* VectorValue = cast<Constant>(Val);
578
579 // In case of a vector need to pick the max between the min
580 // required size for each element
581 auto *VT = cast<VectorType>(Val->getType());
582
583 // Assume unsigned elements
584 isSigned = false;
585
586 // The max required size is the total vector width divided by num
587 // of elements in the vector
588 unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
589
590 unsigned MinRequiredSize = 0;
591 for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
592 if (auto* IntElement =
593 dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
594 bool signedElement = IntElement->getValue().isNegative();
595 // Get the element min required size.
596 unsigned ElementMinRequiredSize =
597 IntElement->getValue().getMinSignedBits() - 1;
598 // In case one element is signed then all the vector is signed.
599 isSigned |= signedElement;
600 // Save the max required bit size between all the elements.
601 MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
602 }
603 else {
604 // not an int constant element
605 return MaxRequiredSize;
606 }
607 }
608 return MinRequiredSize;
609 }
610
611 if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
612 isSigned = CI->getValue().isNegative();
613 return CI->getValue().getMinSignedBits() - 1;
614 }
615
616 if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
617 isSigned = true;
618 return Cast->getSrcTy()->getScalarSizeInBits() - 1;
619 }
620
621 if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
622 isSigned = false;
623 return Cast->getSrcTy()->getScalarSizeInBits();
624 }
625
626 isSigned = false;
627 return Val->getType()->getScalarSizeInBits();
628 }
629
630 bool isStridedAccess(const SCEV *Ptr) {
631 return Ptr && isa<SCEVAddRecExpr>(Ptr);
632 }
633
634 const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
635 const SCEV *Ptr) {
636 if (!isStridedAccess(Ptr))
637 return nullptr;
638 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
639 return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
640 }
641
642 bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
643 int64_t MergeDistance) {
644 const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
645 if (!Step)
646 return false;
647 APInt StrideVal = Step->getAPInt();
648 if (StrideVal.getBitWidth() > 64)
649 return false;
650 // FIXME: Need to take absolute value for negative stride case.
651 return StrideVal.getSExtValue() < MergeDistance;
652 }
653};
654
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100655/// CRTP base class for use as a mix-in that aids implementing
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100656/// a TargetTransformInfo-compatible class.
657template <typename T>
658class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
659private:
660 typedef TargetTransformInfoImplBase BaseT;
661
662protected:
663 explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
664
665public:
666 using BaseT::getCallCost;
667
668 unsigned getCallCost(const Function *F, int NumArgs) {
669 assert(F && "A concrete function must be provided to this routine.");
670
671 if (NumArgs < 0)
672 // Set the argument number to the number of explicit arguments in the
673 // function.
674 NumArgs = F->arg_size();
675
676 if (Intrinsic::ID IID = F->getIntrinsicID()) {
677 FunctionType *FTy = F->getFunctionType();
678 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
679 return static_cast<T *>(this)
680 ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
681 }
682
683 if (!static_cast<T *>(this)->isLoweredToCall(F))
684 return TTI::TCC_Basic; // Give a basic cost if it will be lowered
685 // directly.
686
687 return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
688 }
689
690 unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
691 // Simply delegate to generic handling of the call.
692 // FIXME: We should use instsimplify or something else to catch calls which
693 // will constant fold with these arguments.
694 return static_cast<T *>(this)->getCallCost(F, Arguments.size());
695 }
696
697 using BaseT::getGEPCost;
698
699 int getGEPCost(Type *PointeeType, const Value *Ptr,
700 ArrayRef<const Value *> Operands) {
701 const GlobalValue *BaseGV = nullptr;
702 if (Ptr != nullptr) {
703 // TODO: will remove this when pointers have an opaque type.
704 assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
705 PointeeType &&
706 "explicit pointee type doesn't match operand's pointee type");
707 BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
708 }
709 bool HasBaseReg = (BaseGV == nullptr);
710
711 auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
712 APInt BaseOffset(PtrSizeBits, 0);
713 int64_t Scale = 0;
714
715 auto GTI = gep_type_begin(PointeeType, Operands);
716 Type *TargetType = nullptr;
717
718 // Handle the case where the GEP instruction has a single operand,
719 // the basis, therefore TargetType is a nullptr.
720 if (Operands.empty())
721 return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
722
723 for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
724 TargetType = GTI.getIndexedType();
725 // We assume that the cost of Scalar GEP with constant index and the
726 // cost of Vector GEP with splat constant index are the same.
727 const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
728 if (!ConstIdx)
729 if (auto Splat = getSplatValue(*I))
730 ConstIdx = dyn_cast<ConstantInt>(Splat);
731 if (StructType *STy = GTI.getStructTypeOrNull()) {
732 // For structures the index is always splat or scalar constant
733 assert(ConstIdx && "Unexpected GEP index");
734 uint64_t Field = ConstIdx->getZExtValue();
735 BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
736 } else {
737 int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
738 if (ConstIdx) {
739 BaseOffset +=
740 ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
741 } else {
742 // Needs scale register.
743 if (Scale != 0)
744 // No addressing mode takes two scale registers.
745 return TTI::TCC_Basic;
746 Scale = ElementSize;
747 }
748 }
749 }
750
751 // Assumes the address space is 0 when Ptr is nullptr.
752 unsigned AS =
753 (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
754
755 if (static_cast<T *>(this)->isLegalAddressingMode(
756 TargetType, const_cast<GlobalValue *>(BaseGV),
757 BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS))
758 return TTI::TCC_Free;
759 return TTI::TCC_Basic;
760 }
761
762 using BaseT::getIntrinsicCost;
763
764 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
765 ArrayRef<const Value *> Arguments) {
766 // Delegate to the generic intrinsic handling code. This mostly provides an
767 // opportunity for targets to (for example) special case the cost of
768 // certain intrinsics based on constants used as arguments.
769 SmallVector<Type *, 8> ParamTys;
770 ParamTys.reserve(Arguments.size());
771 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
772 ParamTys.push_back(Arguments[Idx]->getType());
773 return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
774 }
775
776 unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
777 if (isa<PHINode>(U))
778 return TTI::TCC_Free; // Model all PHI nodes as free.
779
780 // Static alloca doesn't generate target instructions.
781 if (auto *A = dyn_cast<AllocaInst>(U))
782 if (A->isStaticAlloca())
783 return TTI::TCC_Free;
784
785 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
786 return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
787 GEP->getPointerOperand(),
788 Operands.drop_front());
789 }
790
791 if (auto CS = ImmutableCallSite(U)) {
792 const Function *F = CS.getCalledFunction();
793 if (!F) {
794 // Just use the called value type.
795 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
796 return static_cast<T *>(this)
797 ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
798 }
799
800 SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
801 return static_cast<T *>(this)->getCallCost(F, Arguments);
802 }
803
804 if (const CastInst *CI = dyn_cast<CastInst>(U)) {
805 // Result of a cmp instruction is often extended (to be used by other
806 // cmp instructions, logical or return instructions). These are usually
807 // nop on most sane targets.
808 if (isa<CmpInst>(CI->getOperand(0)))
809 return TTI::TCC_Free;
810 if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI))
811 return static_cast<T *>(this)->getExtCost(CI, Operands.back());
812 }
813
814 return static_cast<T *>(this)->getOperationCost(
815 Operator::getOpcode(U), U->getType(),
816 U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
817 }
818
819 int getInstructionLatency(const Instruction *I) {
820 SmallVector<const Value *, 4> Operands(I->value_op_begin(),
821 I->value_op_end());
822 if (getUserCost(I, Operands) == TTI::TCC_Free)
823 return 0;
824
825 if (isa<LoadInst>(I))
826 return 4;
827
828 Type *DstTy = I->getType();
829
830 // Usually an intrinsic is a simple instruction.
831 // A real function call is much slower.
832 if (auto *CI = dyn_cast<CallInst>(I)) {
833 const Function *F = CI->getCalledFunction();
834 if (!F || static_cast<T *>(this)->isLoweredToCall(F))
835 return 40;
836 // Some intrinsics return a value and a flag, we use the value type
837 // to decide its latency.
838 if (StructType* StructTy = dyn_cast<StructType>(DstTy))
839 DstTy = StructTy->getElementType(0);
840 // Fall through to simple instructions.
841 }
842
843 if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
844 DstTy = VectorTy->getElementType();
845 if (DstTy->isFloatingPointTy())
846 return 3;
847
848 return 1;
849 }
850};
851}
852
853#endif