Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/Analysis/TargetTransformInfoImpl.h b/linux-x64/clang/include/llvm/Analysis/TargetTransformInfoImpl.h
new file mode 100644
index 0000000..df4f853
--- /dev/null
+++ b/linux-x64/clang/include/llvm/Analysis/TargetTransformInfoImpl.h
@@ -0,0 +1,850 @@
+//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file provides helpers for the implementation of
+/// a TargetTransformInfo-conforming class.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
+#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
+
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+
+namespace llvm {
+
+/// \brief Base class for use as a mix-in that aids implementing
+/// a TargetTransformInfo-compatible class.
+class TargetTransformInfoImplBase {
+protected:
+ typedef TargetTransformInfo TTI;
+
+ const DataLayout &DL;
+
+ explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
+
+public:
+ // Provide value semantics. MSVC requires that we spell all of these out.
+ TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
+ : DL(Arg.DL) {}
+ TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
+
+ const DataLayout &getDataLayout() const { return DL; }
+
+ unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
+ switch (Opcode) {
+ default:
+ // By default, just classify everything as 'basic'.
+ return TTI::TCC_Basic;
+
+ case Instruction::GetElementPtr:
+ llvm_unreachable("Use getGEPCost for GEP operations!");
+
+ case Instruction::BitCast:
+ assert(OpTy && "Cast instructions must provide the operand type");
+ if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
+ // Identity and pointer-to-pointer casts are free.
+ return TTI::TCC_Free;
+
+ // Otherwise, the default basic cost is used.
+ return TTI::TCC_Basic;
+
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ case Instruction::SDiv:
+ case Instruction::SRem:
+ case Instruction::UDiv:
+ case Instruction::URem:
+ return TTI::TCC_Expensive;
+
+ case Instruction::IntToPtr: {
+ // An inttoptr cast is free so long as the input is a legal integer type
+ // which doesn't contain values outside the range of a pointer.
+ unsigned OpSize = OpTy->getScalarSizeInBits();
+ if (DL.isLegalInteger(OpSize) &&
+ OpSize <= DL.getPointerTypeSizeInBits(Ty))
+ return TTI::TCC_Free;
+
+ // Otherwise it's not a no-op.
+ return TTI::TCC_Basic;
+ }
+ case Instruction::PtrToInt: {
+ // A ptrtoint cast is free so long as the result is large enough to store
+ // the pointer, and a legal integer type.
+ unsigned DestSize = Ty->getScalarSizeInBits();
+ if (DL.isLegalInteger(DestSize) &&
+ DestSize >= DL.getPointerTypeSizeInBits(OpTy))
+ return TTI::TCC_Free;
+
+ // Otherwise it's not a no-op.
+ return TTI::TCC_Basic;
+ }
+ case Instruction::Trunc:
+ // trunc to a native type is free (assuming the target has compare and
+ // shift-right of the same width).
+ if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
+ return TTI::TCC_Free;
+
+ return TTI::TCC_Basic;
+ }
+ }
+
+ int getGEPCost(Type *PointeeType, const Value *Ptr,
+ ArrayRef<const Value *> Operands) {
+ // In the basic model, we just assume that all-constant GEPs will be folded
+ // into their uses via addressing modes.
+ for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
+ if (!isa<Constant>(Operands[Idx]))
+ return TTI::TCC_Basic;
+
+ return TTI::TCC_Free;
+ }
+
+ unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
+ unsigned &JTSize) {
+ JTSize = 0;
+ return SI.getNumCases();
+ }
+
+ int getExtCost(const Instruction *I, const Value *Src) {
+ return TTI::TCC_Basic;
+ }
+
+ unsigned getCallCost(FunctionType *FTy, int NumArgs) {
+ assert(FTy && "FunctionType must be provided to this routine.");
+
+ // The target-independent implementation just measures the size of the
+ // function by approximating that each argument will take on average one
+ // instruction to prepare.
+
+ if (NumArgs < 0)
+ // Set the argument number to the number of explicit arguments in the
+ // function.
+ NumArgs = FTy->getNumParams();
+
+ return TTI::TCC_Basic * (NumArgs + 1);
+ }
+
+ unsigned getInliningThresholdMultiplier() { return 1; }
+
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<Type *> ParamTys) {
+ switch (IID) {
+ default:
+ // Intrinsics rarely (if ever) have normal argument setup constraints.
+ // Model them as having a basic instruction cost.
+ // FIXME: This is wrong for libc intrinsics.
+ return TTI::TCC_Basic;
+
+ case Intrinsic::annotation:
+ case Intrinsic::assume:
+ case Intrinsic::sideeffect:
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::objectsize:
+ case Intrinsic::ptr_annotation:
+ case Intrinsic::var_annotation:
+ case Intrinsic::experimental_gc_result:
+ case Intrinsic::experimental_gc_relocate:
+ case Intrinsic::coro_alloc:
+ case Intrinsic::coro_begin:
+ case Intrinsic::coro_free:
+ case Intrinsic::coro_end:
+ case Intrinsic::coro_frame:
+ case Intrinsic::coro_size:
+ case Intrinsic::coro_suspend:
+ case Intrinsic::coro_param:
+ case Intrinsic::coro_subfn_addr:
+ // These intrinsics don't actually represent code after lowering.
+ return TTI::TCC_Free;
+ }
+ }
+
+ bool hasBranchDivergence() { return false; }
+
+ bool isSourceOfDivergence(const Value *V) { return false; }
+
+ bool isAlwaysUniform(const Value *V) { return false; }
+
+ unsigned getFlatAddressSpace () {
+ return -1;
+ }
+
+ bool isLoweredToCall(const Function *F) {
+ assert(F && "A concrete function must be provided to this routine.");
+
+ // FIXME: These should almost certainly not be handled here, and instead
+ // handled with the help of TLI or the target itself. This was largely
+ // ported from existing analysis heuristics here so that such refactorings
+ // can take place in the future.
+
+ if (F->isIntrinsic())
+ return false;
+
+ if (F->hasLocalLinkage() || !F->hasName())
+ return true;
+
+ StringRef Name = F->getName();
+
+ // These will all likely lower to a single selection DAG node.
+ if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
+ Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
+ Name == "fmin" || Name == "fminf" || Name == "fminl" ||
+ Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
+ Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
+ Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
+ return false;
+
+ // These are all likely to be optimized into something smaller.
+ if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
+ Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
+ Name == "floorf" || Name == "ceil" || Name == "round" ||
+ Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
+ Name == "llabs")
+ return false;
+
+ return true;
+ }
+
+ void getUnrollingPreferences(Loop *, ScalarEvolution &,
+ TTI::UnrollingPreferences &) {}
+
+ bool isLegalAddImmediate(int64_t Imm) { return false; }
+
+ bool isLegalICmpImmediate(int64_t Imm) { return false; }
+
+ bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale,
+ unsigned AddrSpace, Instruction *I = nullptr) {
+ // Guess that only reg and reg+reg addressing is allowed. This heuristic is
+ // taken from the implementation of LSR.
+ return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
+ }
+
+ bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
+ return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
+ C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
+ std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
+ C2.ScaleCost, C2.ImmCost, C2.SetupCost);
+ }
+
+ bool canMacroFuseCmp() { return false; }
+
+ bool shouldFavorPostInc() const { return false; }
+
+ bool isLegalMaskedStore(Type *DataType) { return false; }
+
+ bool isLegalMaskedLoad(Type *DataType) { return false; }
+
+ bool isLegalMaskedScatter(Type *DataType) { return false; }
+
+ bool isLegalMaskedGather(Type *DataType) { return false; }
+
+ bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
+
+ bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }
+
+ bool prefersVectorizedAddressing() { return true; }
+
+ int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
+ // Guess that all legal addressing mode are free.
+ if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
+ Scale, AddrSpace))
+ return 0;
+ return -1;
+ }
+
+ bool LSRWithInstrQueries() { return false; }
+
+ bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
+
+ bool isProfitableToHoist(Instruction *I) { return true; }
+
+ bool useAA() { return false; }
+
+ bool isTypeLegal(Type *Ty) { return false; }
+
+ unsigned getJumpBufAlignment() { return 0; }
+
+ unsigned getJumpBufSize() { return 0; }
+
+ bool shouldBuildLookupTables() { return true; }
+ bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }
+
+ bool useColdCCForColdCall(Function &F) { return false; }
+
+ unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
+ return 0;
+ }
+
+ unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
+ unsigned VF) { return 0; }
+
+ bool supportsEfficientVectorElementLoadStore() { return false; }
+
+ bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
+
+ const TTI::MemCmpExpansionOptions *enableMemCmpExpansion(
+ bool IsZeroCmp) const {
+ return nullptr;
+ }
+
+ bool enableInterleavedAccessVectorization() { return false; }
+
+ bool isFPVectorizationPotentiallyUnsafe() { return false; }
+
+ bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
+ unsigned BitWidth,
+ unsigned AddressSpace,
+ unsigned Alignment,
+ bool *Fast) { return false; }
+
+ TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
+ return TTI::PSK_Software;
+ }
+
+ bool haveFastSqrt(Type *Ty) { return false; }
+
+ bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }
+
+ unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
+
+ int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) {
+ return 0;
+ }
+
+ unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
+
+ unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+ Type *Ty) {
+ return TTI::TCC_Free;
+ }
+
+ unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+ Type *Ty) {
+ return TTI::TCC_Free;
+ }
+
+ unsigned getNumberOfRegisters(bool Vector) { return 8; }
+
+ unsigned getRegisterBitWidth(bool Vector) const { return 32; }
+
+ unsigned getMinVectorRegisterBitWidth() { return 128; }
+
+ bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }
+
+ bool
+ shouldConsiderAddressTypePromotion(const Instruction &I,
+ bool &AllowPromotionWithoutCommonHeader) {
+ AllowPromotionWithoutCommonHeader = false;
+ return false;
+ }
+
+ unsigned getCacheLineSize() { return 0; }
+
+ llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) {
+ switch (Level) {
+ case TargetTransformInfo::CacheLevel::L1D:
+ LLVM_FALLTHROUGH;
+ case TargetTransformInfo::CacheLevel::L2D:
+ return llvm::Optional<unsigned>();
+ }
+
+ llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
+ }
+
+ llvm::Optional<unsigned> getCacheAssociativity(
+ TargetTransformInfo::CacheLevel Level) {
+ switch (Level) {
+ case TargetTransformInfo::CacheLevel::L1D:
+ LLVM_FALLTHROUGH;
+ case TargetTransformInfo::CacheLevel::L2D:
+ return llvm::Optional<unsigned>();
+ }
+
+ llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
+ }
+
+ unsigned getPrefetchDistance() { return 0; }
+
+ unsigned getMinPrefetchStride() { return 1; }
+
+ unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
+
+ unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
+
+ unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+ TTI::OperandValueKind Opd1Info,
+ TTI::OperandValueKind Opd2Info,
+ TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo,
+ ArrayRef<const Value *> Args) {
+ return 1;
+ }
+
+ unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
+ Type *SubTp) {
+ return 1;
+ }
+
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+ const Instruction *I) { return 1; }
+
+ unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
+ VectorType *VecTy, unsigned Index) {
+ return 1;
+ }
+
+ unsigned getCFInstrCost(unsigned Opcode) { return 1; }
+
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
+ const Instruction *I) {
+ return 1;
+ }
+
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
+ return 1;
+ }
+
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace, const Instruction *I) {
+ return 1;
+ }
+
+ unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) {
+ return 1;
+ }
+
+ unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
+ bool VariableMask,
+ unsigned Alignment) {
+ return 1;
+ }
+
+ unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
+ unsigned Factor,
+ ArrayRef<unsigned> Indices,
+ unsigned Alignment,
+ unsigned AddressSpace) {
+ return 1;
+ }
+
+ unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Type *> Tys, FastMathFlags FMF,
+ unsigned ScalarizationCostPassed) {
+ return 1;
+ }
+ unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+ ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
+ return 1;
+ }
+
+ unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
+ return 1;
+ }
+
+ unsigned getNumberOfParts(Type *Tp) { return 0; }
+
+ unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
+ const SCEV *) {
+ return 0;
+ }
+
+ unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
+
+ unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
+
+ unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
+
+ bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
+ return false;
+ }
+
+ unsigned getAtomicMemIntrinsicMaxElementSize() const {
+ // Note for overrides: You must ensure for all element unordered-atomic
+ // memory intrinsics that all power-of-2 element sizes up to, and
+ // including, the return value of this method have a corresponding
+ // runtime lib call. These runtime lib call definitions can be found
+ // in RuntimeLibcalls.h
+ return 0;
+ }
+
+ Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+ Type *ExpectedType) {
+ return nullptr;
+ }
+
+ Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
+ unsigned SrcAlign, unsigned DestAlign) const {
+ return Type::getInt8Ty(Context);
+ }
+
+ void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
+ LLVMContext &Context,
+ unsigned RemainingBytes,
+ unsigned SrcAlign,
+ unsigned DestAlign) const {
+ for (unsigned i = 0; i != RemainingBytes; ++i)
+ OpsOut.push_back(Type::getInt8Ty(Context));
+ }
+
+ bool areInlineCompatible(const Function *Caller,
+ const Function *Callee) const {
+ return (Caller->getFnAttribute("target-cpu") ==
+ Callee->getFnAttribute("target-cpu")) &&
+ (Caller->getFnAttribute("target-features") ==
+ Callee->getFnAttribute("target-features"));
+ }
+
+ bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
+ const DataLayout &DL) const {
+ return false;
+ }
+
+ bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
+ const DataLayout &DL) const {
+ return false;
+ }
+
+ unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
+
+ bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
+
+ bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
+
+ bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
+ unsigned Alignment,
+ unsigned AddrSpace) const {
+ return true;
+ }
+
+ bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
+ unsigned Alignment,
+ unsigned AddrSpace) const {
+ return true;
+ }
+
+ unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
+ unsigned ChainSizeInBytes,
+ VectorType *VecTy) const {
+ return VF;
+ }
+
+ unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
+ unsigned ChainSizeInBytes,
+ VectorType *VecTy) const {
+ return VF;
+ }
+
+ bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
+ TTI::ReductionFlags Flags) const {
+ return false;
+ }
+
+ bool shouldExpandReduction(const IntrinsicInst *II) const {
+ return true;
+ }
+
+protected:
+ // Obtain the minimum required size to hold the value (without the sign)
+ // In case of a vector it returns the min required size for one element.
+ unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
+ if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
+ const auto* VectorValue = cast<Constant>(Val);
+
+ // In case of a vector need to pick the max between the min
+ // required size for each element
+ auto *VT = cast<VectorType>(Val->getType());
+
+ // Assume unsigned elements
+ isSigned = false;
+
+ // The max required size is the total vector width divided by num
+ // of elements in the vector
+ unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
+
+ unsigned MinRequiredSize = 0;
+ for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
+ if (auto* IntElement =
+ dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
+ bool signedElement = IntElement->getValue().isNegative();
+ // Get the element min required size.
+ unsigned ElementMinRequiredSize =
+ IntElement->getValue().getMinSignedBits() - 1;
+ // In case one element is signed then all the vector is signed.
+ isSigned |= signedElement;
+ // Save the max required bit size between all the elements.
+ MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
+ }
+ else {
+ // not an int constant element
+ return MaxRequiredSize;
+ }
+ }
+ return MinRequiredSize;
+ }
+
+ if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
+ isSigned = CI->getValue().isNegative();
+ return CI->getValue().getMinSignedBits() - 1;
+ }
+
+ if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
+ isSigned = true;
+ return Cast->getSrcTy()->getScalarSizeInBits() - 1;
+ }
+
+ if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
+ isSigned = false;
+ return Cast->getSrcTy()->getScalarSizeInBits();
+ }
+
+ isSigned = false;
+ return Val->getType()->getScalarSizeInBits();
+ }
+
+ bool isStridedAccess(const SCEV *Ptr) {
+ return Ptr && isa<SCEVAddRecExpr>(Ptr);
+ }
+
+ const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
+ const SCEV *Ptr) {
+ if (!isStridedAccess(Ptr))
+ return nullptr;
+ const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
+ return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
+ }
+
+ bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
+ int64_t MergeDistance) {
+ const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
+ if (!Step)
+ return false;
+ APInt StrideVal = Step->getAPInt();
+ if (StrideVal.getBitWidth() > 64)
+ return false;
+ // FIXME: Need to take absolute value for negative stride case.
+ return StrideVal.getSExtValue() < MergeDistance;
+ }
+};
+
+/// \brief CRTP base class for use as a mix-in that aids implementing
+/// a TargetTransformInfo-compatible class.
+template <typename T>
+class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
+private:
+ typedef TargetTransformInfoImplBase BaseT;
+
+protected:
+ explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
+
+public:
+ using BaseT::getCallCost;
+
+ unsigned getCallCost(const Function *F, int NumArgs) {
+ assert(F && "A concrete function must be provided to this routine.");
+
+ if (NumArgs < 0)
+ // Set the argument number to the number of explicit arguments in the
+ // function.
+ NumArgs = F->arg_size();
+
+ if (Intrinsic::ID IID = F->getIntrinsicID()) {
+ FunctionType *FTy = F->getFunctionType();
+ SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
+ return static_cast<T *>(this)
+ ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
+ }
+
+ if (!static_cast<T *>(this)->isLoweredToCall(F))
+ return TTI::TCC_Basic; // Give a basic cost if it will be lowered
+ // directly.
+
+ return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
+ }
+
+ unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
+ // Simply delegate to generic handling of the call.
+ // FIXME: We should use instsimplify or something else to catch calls which
+ // will constant fold with these arguments.
+ return static_cast<T *>(this)->getCallCost(F, Arguments.size());
+ }
+
+ using BaseT::getGEPCost;
+
+ int getGEPCost(Type *PointeeType, const Value *Ptr,
+ ArrayRef<const Value *> Operands) {
+ const GlobalValue *BaseGV = nullptr;
+ if (Ptr != nullptr) {
+ // TODO: will remove this when pointers have an opaque type.
+ assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
+ PointeeType &&
+ "explicit pointee type doesn't match operand's pointee type");
+ BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
+ }
+ bool HasBaseReg = (BaseGV == nullptr);
+
+ auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
+ APInt BaseOffset(PtrSizeBits, 0);
+ int64_t Scale = 0;
+
+ auto GTI = gep_type_begin(PointeeType, Operands);
+ Type *TargetType = nullptr;
+
+ // Handle the case where the GEP instruction has a single operand,
+ // the basis, therefore TargetType is a nullptr.
+ if (Operands.empty())
+ return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
+
+ for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
+ TargetType = GTI.getIndexedType();
+ // We assume that the cost of Scalar GEP with constant index and the
+ // cost of Vector GEP with splat constant index are the same.
+ const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
+ if (!ConstIdx)
+ if (auto Splat = getSplatValue(*I))
+ ConstIdx = dyn_cast<ConstantInt>(Splat);
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ // For structures the index is always splat or scalar constant
+ assert(ConstIdx && "Unexpected GEP index");
+ uint64_t Field = ConstIdx->getZExtValue();
+ BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
+ } else {
+ int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
+ if (ConstIdx) {
+ BaseOffset +=
+ ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
+ } else {
+ // Needs scale register.
+ if (Scale != 0)
+ // No addressing mode takes two scale registers.
+ return TTI::TCC_Basic;
+ Scale = ElementSize;
+ }
+ }
+ }
+
+ // Assumes the address space is 0 when Ptr is nullptr.
+ unsigned AS =
+ (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
+
+ if (static_cast<T *>(this)->isLegalAddressingMode(
+ TargetType, const_cast<GlobalValue *>(BaseGV),
+ BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS))
+ return TTI::TCC_Free;
+ return TTI::TCC_Basic;
+ }
+
+ using BaseT::getIntrinsicCost;
+
+ unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+ ArrayRef<const Value *> Arguments) {
+ // Delegate to the generic intrinsic handling code. This mostly provides an
+ // opportunity for targets to (for example) special case the cost of
+ // certain intrinsics based on constants used as arguments.
+ SmallVector<Type *, 8> ParamTys;
+ ParamTys.reserve(Arguments.size());
+ for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
+ ParamTys.push_back(Arguments[Idx]->getType());
+ return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
+ }
+
+ unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
+ if (isa<PHINode>(U))
+ return TTI::TCC_Free; // Model all PHI nodes as free.
+
+ // Static alloca doesn't generate target instructions.
+ if (auto *A = dyn_cast<AllocaInst>(U))
+ if (A->isStaticAlloca())
+ return TTI::TCC_Free;
+
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
+ return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
+ GEP->getPointerOperand(),
+ Operands.drop_front());
+ }
+
+ if (auto CS = ImmutableCallSite(U)) {
+ const Function *F = CS.getCalledFunction();
+ if (!F) {
+ // Just use the called value type.
+ Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
+ return static_cast<T *>(this)
+ ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
+ }
+
+ SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
+ return static_cast<T *>(this)->getCallCost(F, Arguments);
+ }
+
+ if (const CastInst *CI = dyn_cast<CastInst>(U)) {
+ // Result of a cmp instruction is often extended (to be used by other
+ // cmp instructions, logical or return instructions). These are usually
+ // nop on most sane targets.
+ if (isa<CmpInst>(CI->getOperand(0)))
+ return TTI::TCC_Free;
+ if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI))
+ return static_cast<T *>(this)->getExtCost(CI, Operands.back());
+ }
+
+ return static_cast<T *>(this)->getOperationCost(
+ Operator::getOpcode(U), U->getType(),
+ U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
+ }
+
+ int getInstructionLatency(const Instruction *I) {
+ SmallVector<const Value *, 4> Operands(I->value_op_begin(),
+ I->value_op_end());
+ if (getUserCost(I, Operands) == TTI::TCC_Free)
+ return 0;
+
+ if (isa<LoadInst>(I))
+ return 4;
+
+ Type *DstTy = I->getType();
+
+ // Usually an intrinsic is a simple instruction.
+ // A real function call is much slower.
+ if (auto *CI = dyn_cast<CallInst>(I)) {
+ const Function *F = CI->getCalledFunction();
+ if (!F || static_cast<T *>(this)->isLoweredToCall(F))
+ return 40;
+ // Some intrinsics return a value and a flag, we use the value type
+ // to decide its latency.
+ if (StructType* StructTy = dyn_cast<StructType>(DstTy))
+ DstTy = StructTy->getElementType(0);
+ // Fall through to simple instructions.
+ }
+
+ if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
+ DstTy = VectorTy->getElementType();
+ if (DstTy->isFloatingPointTy())
+ return 3;
+
+ return 1;
+ }
+};
+}
+
+#endif