Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/Analysis/TargetTransformInfoImpl.h b/linux-x64/clang/include/llvm/Analysis/TargetTransformInfoImpl.h
new file mode 100644
index 0000000..df4f853
--- /dev/null
+++ b/linux-x64/clang/include/llvm/Analysis/TargetTransformInfoImpl.h
@@ -0,0 +1,850 @@
+//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file provides helpers for the implementation of
+/// a TargetTransformInfo-conforming class.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
+#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
+
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+
+namespace llvm {
+
+/// \brief Base class for use as a mix-in that aids implementing
+/// a TargetTransformInfo-compatible class.
+class TargetTransformInfoImplBase {
+protected:
+  typedef TargetTransformInfo TTI;
+
+  const DataLayout &DL;
+
+  explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
+
+public:
+  // Provide value semantics. MSVC requires that we spell all of these out.
+  TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
+      : DL(Arg.DL) {}
+  TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
+
+  const DataLayout &getDataLayout() const { return DL; }
+
+  unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
+    switch (Opcode) {
+    default:
+      // By default, just classify everything as 'basic'.
+      return TTI::TCC_Basic;
+
+    case Instruction::GetElementPtr:
+      llvm_unreachable("Use getGEPCost for GEP operations!");
+
+    case Instruction::BitCast:
+      assert(OpTy && "Cast instructions must provide the operand type");
+      if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
+        // Identity and pointer-to-pointer casts are free.
+        return TTI::TCC_Free;
+
+      // Otherwise, the default basic cost is used.
+      return TTI::TCC_Basic;
+
+    case Instruction::FDiv:
+    case Instruction::FRem:
+    case Instruction::SDiv:
+    case Instruction::SRem:
+    case Instruction::UDiv:
+    case Instruction::URem:
+      return TTI::TCC_Expensive;
+
+    case Instruction::IntToPtr: {
+      // An inttoptr cast is free so long as the input is a legal integer type
+      // which doesn't contain values outside the range of a pointer.
+      unsigned OpSize = OpTy->getScalarSizeInBits();
+      if (DL.isLegalInteger(OpSize) &&
+          OpSize <= DL.getPointerTypeSizeInBits(Ty))
+        return TTI::TCC_Free;
+
+      // Otherwise it's not a no-op.
+      return TTI::TCC_Basic;
+    }
+    case Instruction::PtrToInt: {
+      // A ptrtoint cast is free so long as the result is large enough to store
+      // the pointer, and a legal integer type.
+      unsigned DestSize = Ty->getScalarSizeInBits();
+      if (DL.isLegalInteger(DestSize) &&
+          DestSize >= DL.getPointerTypeSizeInBits(OpTy))
+        return TTI::TCC_Free;
+
+      // Otherwise it's not a no-op.
+      return TTI::TCC_Basic;
+    }
+    case Instruction::Trunc:
+      // trunc to a native type is free (assuming the target has compare and
+      // shift-right of the same width).
+      if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
+        return TTI::TCC_Free;
+
+      return TTI::TCC_Basic;
+    }
+  }
+
+  int getGEPCost(Type *PointeeType, const Value *Ptr,
+                 ArrayRef<const Value *> Operands) {
+    // In the basic model, we just assume that all-constant GEPs will be folded
+    // into their uses via addressing modes.
+    for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
+      if (!isa<Constant>(Operands[Idx]))
+        return TTI::TCC_Basic;
+
+    return TTI::TCC_Free;
+  }
+
+  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
+                                            unsigned &JTSize) {
+    JTSize = 0;
+    return SI.getNumCases();
+  }
+
+  int getExtCost(const Instruction *I, const Value *Src) {
+    return TTI::TCC_Basic;
+  }
+
+  unsigned getCallCost(FunctionType *FTy, int NumArgs) {
+    assert(FTy && "FunctionType must be provided to this routine.");
+
+    // The target-independent implementation just measures the size of the
+    // function by approximating that each argument will take on average one
+    // instruction to prepare.
+
+    if (NumArgs < 0)
+      // Set the argument number to the number of explicit arguments in the
+      // function.
+      NumArgs = FTy->getNumParams();
+
+    return TTI::TCC_Basic * (NumArgs + 1);
+  }
+
+  unsigned getInliningThresholdMultiplier() { return 1; }
+
+  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                            ArrayRef<Type *> ParamTys) {
+    switch (IID) {
+    default:
+      // Intrinsics rarely (if ever) have normal argument setup constraints.
+      // Model them as having a basic instruction cost.
+      // FIXME: This is wrong for libc intrinsics.
+      return TTI::TCC_Basic;
+
+    case Intrinsic::annotation:
+    case Intrinsic::assume:
+    case Intrinsic::sideeffect:
+    case Intrinsic::dbg_declare:
+    case Intrinsic::dbg_value:
+    case Intrinsic::invariant_start:
+    case Intrinsic::invariant_end:
+    case Intrinsic::lifetime_start:
+    case Intrinsic::lifetime_end:
+    case Intrinsic::objectsize:
+    case Intrinsic::ptr_annotation:
+    case Intrinsic::var_annotation:
+    case Intrinsic::experimental_gc_result:
+    case Intrinsic::experimental_gc_relocate:
+    case Intrinsic::coro_alloc:
+    case Intrinsic::coro_begin:
+    case Intrinsic::coro_free:
+    case Intrinsic::coro_end:
+    case Intrinsic::coro_frame:
+    case Intrinsic::coro_size:
+    case Intrinsic::coro_suspend:
+    case Intrinsic::coro_param:
+    case Intrinsic::coro_subfn_addr:
+      // These intrinsics don't actually represent code after lowering.
+      return TTI::TCC_Free;
+    }
+  }
+
+  bool hasBranchDivergence() { return false; }
+
+  bool isSourceOfDivergence(const Value *V) { return false; }
+
+  bool isAlwaysUniform(const Value *V) { return false; }
+
+  unsigned getFlatAddressSpace () {
+    return -1;
+  }
+
+  bool isLoweredToCall(const Function *F) {
+    assert(F && "A concrete function must be provided to this routine.");
+
+    // FIXME: These should almost certainly not be handled here, and instead
+    // handled with the help of TLI or the target itself. This was largely
+    // ported from existing analysis heuristics here so that such refactorings
+    // can take place in the future.
+
+    if (F->isIntrinsic())
+      return false;
+
+    if (F->hasLocalLinkage() || !F->hasName())
+      return true;
+
+    StringRef Name = F->getName();
+
+    // These will all likely lower to a single selection DAG node.
+    if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
+        Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
+        Name == "fmin" || Name == "fminf" || Name == "fminl" ||
+        Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
+        Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
+        Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
+      return false;
+
+    // These are all likely to be optimized into something smaller.
+    if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
+        Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
+        Name == "floorf" || Name == "ceil" || Name == "round" ||
+        Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
+        Name == "llabs")
+      return false;
+
+    return true;
+  }
+
+  void getUnrollingPreferences(Loop *, ScalarEvolution &,
+                               TTI::UnrollingPreferences &) {}
+
+  bool isLegalAddImmediate(int64_t Imm) { return false; }
+
+  bool isLegalICmpImmediate(int64_t Imm) { return false; }
+
+  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+                             bool HasBaseReg, int64_t Scale,
+                             unsigned AddrSpace, Instruction *I = nullptr) {
+    // Guess that only reg and reg+reg addressing is allowed. This heuristic is
+    // taken from the implementation of LSR.
+    return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
+  }
+
+  bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
+    return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
+                    C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
+           std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
+                    C2.ScaleCost, C2.ImmCost, C2.SetupCost);
+  }
+
+  bool canMacroFuseCmp() { return false; }
+
+  bool shouldFavorPostInc() const { return false; }
+
+  bool isLegalMaskedStore(Type *DataType) { return false; }
+
+  bool isLegalMaskedLoad(Type *DataType) { return false; }
+
+  bool isLegalMaskedScatter(Type *DataType) { return false; }
+
+  bool isLegalMaskedGather(Type *DataType) { return false; }
+
+  bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
+
+  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }
+
+  bool prefersVectorizedAddressing() { return true; }
+
+  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+                           bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
+    // Guess that all legal addressing mode are free.
+    if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
+                              Scale, AddrSpace))
+      return 0;
+    return -1;
+  }
+
+  bool LSRWithInstrQueries() { return false; }
+
+  bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
+
+  bool isProfitableToHoist(Instruction *I) { return true; }
+
+  bool useAA() { return false; }
+
+  bool isTypeLegal(Type *Ty) { return false; }
+
+  unsigned getJumpBufAlignment() { return 0; }
+
+  unsigned getJumpBufSize() { return 0; }
+
+  bool shouldBuildLookupTables() { return true; }
+  bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }
+
+  bool useColdCCForColdCall(Function &F) { return false; }
+
+  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
+    return 0;
+  }
+
+  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
+                                            unsigned VF) { return 0; }
+
+  bool supportsEfficientVectorElementLoadStore() { return false; }
+
+  bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
+
+  const TTI::MemCmpExpansionOptions *enableMemCmpExpansion(
+      bool IsZeroCmp) const {
+    return nullptr;
+  }
+
+  bool enableInterleavedAccessVectorization() { return false; }
+
+  bool isFPVectorizationPotentiallyUnsafe() { return false; }
+
+  bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
+                                      unsigned BitWidth,
+                                      unsigned AddressSpace,
+                                      unsigned Alignment,
+                                      bool *Fast) { return false; }
+
+  TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
+    return TTI::PSK_Software;
+  }
+
+  bool haveFastSqrt(Type *Ty) { return false; }
+
+  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }
+  
+  unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
+
+  int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+                            Type *Ty) {
+    return 0;
+  }
+
+  unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
+
+  unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
+                         Type *Ty) {
+    return TTI::TCC_Free;
+  }
+
+  unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+                         Type *Ty) {
+    return TTI::TCC_Free;
+  }
+
+  unsigned getNumberOfRegisters(bool Vector) { return 8; }
+
+  unsigned getRegisterBitWidth(bool Vector) const { return 32; }
+
+  unsigned getMinVectorRegisterBitWidth() { return 128; }
+
+  bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }
+
+  bool
+  shouldConsiderAddressTypePromotion(const Instruction &I,
+                                     bool &AllowPromotionWithoutCommonHeader) {
+    AllowPromotionWithoutCommonHeader = false;
+    return false;
+  }
+
+  unsigned getCacheLineSize() { return 0; }
+
+  llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) {
+    switch (Level) {
+    case TargetTransformInfo::CacheLevel::L1D:
+      LLVM_FALLTHROUGH;
+    case TargetTransformInfo::CacheLevel::L2D:
+      return llvm::Optional<unsigned>();
+    }
+
+    llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
+  }
+
+  llvm::Optional<unsigned> getCacheAssociativity(
+    TargetTransformInfo::CacheLevel Level) {
+    switch (Level) {
+    case TargetTransformInfo::CacheLevel::L1D:
+      LLVM_FALLTHROUGH;
+    case TargetTransformInfo::CacheLevel::L2D:
+      return llvm::Optional<unsigned>();
+    }
+
+    llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
+  }
+
+  unsigned getPrefetchDistance() { return 0; }
+
+  unsigned getMinPrefetchStride() { return 1; }
+
+  unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
+
+  unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
+
+  unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
+                                  TTI::OperandValueKind Opd1Info,
+                                  TTI::OperandValueKind Opd2Info,
+                                  TTI::OperandValueProperties Opd1PropInfo,
+                                  TTI::OperandValueProperties Opd2PropInfo,
+                                  ArrayRef<const Value *> Args) {
+    return 1;
+  }
+
+  unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
+                          Type *SubTp) {
+    return 1;
+  }
+
+  unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+                            const Instruction *I) { return 1; }
+
+  unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
+                                    VectorType *VecTy, unsigned Index) {
+    return 1;
+  }
+
+  unsigned getCFInstrCost(unsigned Opcode) { return 1; }
+
+  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
+                              const Instruction *I) {
+    return 1;
+  }
+
+  unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
+    return 1;
+  }
+
+  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+                           unsigned AddressSpace, const Instruction *I) {
+    return 1;
+  }
+
+  unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+                                 unsigned AddressSpace) {
+    return 1;
+  }
+
+  unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
+                                  bool VariableMask,
+                                  unsigned Alignment) {
+    return 1;
+  }
+
+  unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
+                                      unsigned Factor,
+                                      ArrayRef<unsigned> Indices,
+                                      unsigned Alignment,
+                                      unsigned AddressSpace) {
+    return 1;
+  }
+
+  unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+                                 ArrayRef<Type *> Tys, FastMathFlags FMF,
+                                 unsigned ScalarizationCostPassed) {
+    return 1;
+  }
+  unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+            ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
+    return 1;
+  }
+
+  unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
+    return 1;
+  }
+
+  unsigned getNumberOfParts(Type *Tp) { return 0; }
+
+  unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
+                                     const SCEV *) {
+    return 0;
+  }
+
+  unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
+
+  unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
+
+  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
+
+  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
+    return false;
+  }
+
+  unsigned getAtomicMemIntrinsicMaxElementSize() const {
+    // Note for overrides: You must ensure for all element unordered-atomic
+    // memory intrinsics that all power-of-2 element sizes up to, and
+    // including, the return value of this method have a corresponding
+    // runtime lib call. These runtime lib call definitions can be found
+    // in RuntimeLibcalls.h
+    return 0;
+  }
+
+  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+                                           Type *ExpectedType) {
+    return nullptr;
+  }
+
+  Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
+                                  unsigned SrcAlign, unsigned DestAlign) const {
+    return Type::getInt8Ty(Context);
+  }
+
+  void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
+                                         LLVMContext &Context,
+                                         unsigned RemainingBytes,
+                                         unsigned SrcAlign,
+                                         unsigned DestAlign) const {
+    for (unsigned i = 0; i != RemainingBytes; ++i)
+      OpsOut.push_back(Type::getInt8Ty(Context));
+  }
+
+  bool areInlineCompatible(const Function *Caller,
+                           const Function *Callee) const {
+    return (Caller->getFnAttribute("target-cpu") ==
+            Callee->getFnAttribute("target-cpu")) &&
+           (Caller->getFnAttribute("target-features") ==
+            Callee->getFnAttribute("target-features"));
+  }
+
+  bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
+                          const DataLayout &DL) const {
+    return false;
+  }
+
+  bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
+                           const DataLayout &DL) const {
+    return false;
+  }
+
+  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
+
+  bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
+
+  bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
+
+  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
+                                   unsigned Alignment,
+                                   unsigned AddrSpace) const {
+    return true;
+  }
+
+  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
+                                    unsigned Alignment,
+                                    unsigned AddrSpace) const {
+    return true;
+  }
+
+  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
+                               unsigned ChainSizeInBytes,
+                               VectorType *VecTy) const {
+    return VF;
+  }
+
+  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
+                                unsigned ChainSizeInBytes,
+                                VectorType *VecTy) const {
+    return VF;
+  }
+
+  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
+                             TTI::ReductionFlags Flags) const {
+    return false;
+  }
+
+  bool shouldExpandReduction(const IntrinsicInst *II) const {
+    return true;
+  }
+
+protected:
+  // Obtain the minimum required size to hold the value (without the sign)
+  // In case of a vector it returns the min required size for one element.
+  unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
+    if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
+      const auto* VectorValue = cast<Constant>(Val);
+
+      // In case of a vector need to pick the max between the min
+      // required size for each element
+      auto *VT = cast<VectorType>(Val->getType());
+
+      // Assume unsigned elements
+      isSigned = false;
+
+      // The max required size is the total vector width divided by num
+      // of elements in the vector
+      unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
+
+      unsigned MinRequiredSize = 0;
+      for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
+        if (auto* IntElement =
+              dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
+          bool signedElement = IntElement->getValue().isNegative();
+          // Get the element min required size.
+          unsigned ElementMinRequiredSize =
+            IntElement->getValue().getMinSignedBits() - 1;
+          // In case one element is signed then all the vector is signed.
+          isSigned |= signedElement;
+          // Save the max required bit size between all the elements.
+          MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
+        }
+        else {
+          // not an int constant element
+          return MaxRequiredSize;
+        }
+      }
+      return MinRequiredSize;
+    }
+
+    if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
+      isSigned = CI->getValue().isNegative();
+      return CI->getValue().getMinSignedBits() - 1;
+    }
+
+    if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
+      isSigned = true;
+      return Cast->getSrcTy()->getScalarSizeInBits() - 1;
+    }
+
+    if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
+      isSigned = false;
+      return Cast->getSrcTy()->getScalarSizeInBits();
+    }
+
+    isSigned = false;
+    return Val->getType()->getScalarSizeInBits();
+  }
+
+  bool isStridedAccess(const SCEV *Ptr) {
+    return Ptr && isa<SCEVAddRecExpr>(Ptr);
+  }
+
+  const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
+                                            const SCEV *Ptr) {
+    if (!isStridedAccess(Ptr))
+      return nullptr;
+    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
+    return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
+  }
+
+  bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
+                                       int64_t MergeDistance) {
+    const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
+    if (!Step)
+      return false;
+    APInt StrideVal = Step->getAPInt();
+    if (StrideVal.getBitWidth() > 64)
+      return false;
+    // FIXME: Need to take absolute value for negative stride case.
+    return StrideVal.getSExtValue() < MergeDistance;
+  }
+};
+
+/// \brief CRTP base class for use as a mix-in that aids implementing
+/// a TargetTransformInfo-compatible class.
+template <typename T>
+class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
+private:
+  typedef TargetTransformInfoImplBase BaseT;
+
+protected:
+  explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
+
+public:
+  using BaseT::getCallCost;
+
+  unsigned getCallCost(const Function *F, int NumArgs) {
+    assert(F && "A concrete function must be provided to this routine.");
+
+    if (NumArgs < 0)
+      // Set the argument number to the number of explicit arguments in the
+      // function.
+      NumArgs = F->arg_size();
+
+    if (Intrinsic::ID IID = F->getIntrinsicID()) {
+      FunctionType *FTy = F->getFunctionType();
+      SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
+      return static_cast<T *>(this)
+          ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
+    }
+
+    if (!static_cast<T *>(this)->isLoweredToCall(F))
+      return TTI::TCC_Basic; // Give a basic cost if it will be lowered
+                             // directly.
+
+    return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
+  }
+
+  unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
+    // Simply delegate to generic handling of the call.
+    // FIXME: We should use instsimplify or something else to catch calls which
+    // will constant fold with these arguments.
+    return static_cast<T *>(this)->getCallCost(F, Arguments.size());
+  }
+
+  using BaseT::getGEPCost;
+
+  int getGEPCost(Type *PointeeType, const Value *Ptr,
+                 ArrayRef<const Value *> Operands) {
+    const GlobalValue *BaseGV = nullptr;
+    if (Ptr != nullptr) {
+      // TODO: will remove this when pointers have an opaque type.
+      assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
+                 PointeeType &&
+             "explicit pointee type doesn't match operand's pointee type");
+      BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
+    }
+    bool HasBaseReg = (BaseGV == nullptr);
+
+    auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
+    APInt BaseOffset(PtrSizeBits, 0);
+    int64_t Scale = 0;
+
+    auto GTI = gep_type_begin(PointeeType, Operands);
+    Type *TargetType = nullptr;
+
+    // Handle the case where the GEP instruction has a single operand,
+    // the basis, therefore TargetType is a nullptr.
+    if (Operands.empty())
+      return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
+
+    for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
+      TargetType = GTI.getIndexedType();
+      // We assume that the cost of Scalar GEP with constant index and the
+      // cost of Vector GEP with splat constant index are the same.
+      const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
+      if (!ConstIdx)
+        if (auto Splat = getSplatValue(*I))
+          ConstIdx = dyn_cast<ConstantInt>(Splat);
+      if (StructType *STy = GTI.getStructTypeOrNull()) {
+        // For structures the index is always splat or scalar constant
+        assert(ConstIdx && "Unexpected GEP index");
+        uint64_t Field = ConstIdx->getZExtValue();
+        BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
+      } else {
+        int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
+        if (ConstIdx) {
+          BaseOffset +=
+              ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
+        } else {
+          // Needs scale register.
+          if (Scale != 0)
+            // No addressing mode takes two scale registers.
+            return TTI::TCC_Basic;
+          Scale = ElementSize;
+        }
+      }
+    }
+
+    // Assumes the address space is 0 when Ptr is nullptr.
+    unsigned AS =
+        (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
+
+    if (static_cast<T *>(this)->isLegalAddressingMode(
+            TargetType, const_cast<GlobalValue *>(BaseGV),
+            BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS))
+      return TTI::TCC_Free;
+    return TTI::TCC_Basic;
+  }
+
+  using BaseT::getIntrinsicCost;
+
+  unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                            ArrayRef<const Value *> Arguments) {
+    // Delegate to the generic intrinsic handling code. This mostly provides an
+    // opportunity for targets to (for example) special case the cost of
+    // certain intrinsics based on constants used as arguments.
+    SmallVector<Type *, 8> ParamTys;
+    ParamTys.reserve(Arguments.size());
+    for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
+      ParamTys.push_back(Arguments[Idx]->getType());
+    return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
+  }
+
+  unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
+    if (isa<PHINode>(U))
+      return TTI::TCC_Free; // Model all PHI nodes as free.
+
+    // Static alloca doesn't generate target instructions.
+    if (auto *A = dyn_cast<AllocaInst>(U))
+      if (A->isStaticAlloca())
+        return TTI::TCC_Free;
+
+    if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
+      return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
+                                                GEP->getPointerOperand(),
+                                                Operands.drop_front());
+    }
+
+    if (auto CS = ImmutableCallSite(U)) {
+      const Function *F = CS.getCalledFunction();
+      if (!F) {
+        // Just use the called value type.
+        Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
+        return static_cast<T *>(this)
+            ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
+      }
+
+      SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
+      return static_cast<T *>(this)->getCallCost(F, Arguments);
+    }
+
+    if (const CastInst *CI = dyn_cast<CastInst>(U)) {
+      // Result of a cmp instruction is often extended (to be used by other
+      // cmp instructions, logical or return instructions). These are usually
+      // nop on most sane targets.
+      if (isa<CmpInst>(CI->getOperand(0)))
+        return TTI::TCC_Free;
+      if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI))
+        return static_cast<T *>(this)->getExtCost(CI, Operands.back());
+    }
+
+    return static_cast<T *>(this)->getOperationCost(
+        Operator::getOpcode(U), U->getType(),
+        U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
+  }
+
+  int getInstructionLatency(const Instruction *I) {
+    SmallVector<const Value *, 4> Operands(I->value_op_begin(),
+                                           I->value_op_end());
+    if (getUserCost(I, Operands) == TTI::TCC_Free)
+      return 0;
+
+    if (isa<LoadInst>(I))
+      return 4;
+
+    Type *DstTy = I->getType();
+
+    // Usually an intrinsic is a simple instruction.
+    // A real function call is much slower.
+    if (auto *CI = dyn_cast<CallInst>(I)) {
+      const Function *F = CI->getCalledFunction();
+      if (!F || static_cast<T *>(this)->isLoweredToCall(F))
+        return 40;
+      // Some intrinsics return a value and a flag, we use the value type
+      // to decide its latency.
+      if (StructType* StructTy = dyn_cast<StructType>(DstTy))
+        DstTy = StructTy->getElementType(0);
+      // Fall through to simple instructions.
+    }
+
+    if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
+      DstTy = VectorTy->getElementType();
+    if (DstTy->isFloatingPointTy())
+      return 3;
+
+    return 1;
+  }
+};
+}
+
+#endif