blob: df4f853acf9da235ef1f8c1e8275e0c598655db6 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file provides helpers for the implementation of
11/// a TargetTransformInfo-conforming class.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
16#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
17
18#include "llvm/Analysis/ScalarEvolutionExpressions.h"
19#include "llvm/Analysis/TargetTransformInfo.h"
20#include "llvm/Analysis/VectorUtils.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/GetElementPtrTypeIterator.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/IR/Type.h"
27
28namespace llvm {
29
30/// \brief Base class for use as a mix-in that aids implementing
31/// a TargetTransformInfo-compatible class.
32class TargetTransformInfoImplBase {
33protected:
34 typedef TargetTransformInfo TTI;
35
36 const DataLayout &DL;
37
38 explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
39
40public:
41 // Provide value semantics. MSVC requires that we spell all of these out.
42 TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg)
43 : DL(Arg.DL) {}
44 TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
45
46 const DataLayout &getDataLayout() const { return DL; }
47
48 unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) {
49 switch (Opcode) {
50 default:
51 // By default, just classify everything as 'basic'.
52 return TTI::TCC_Basic;
53
54 case Instruction::GetElementPtr:
55 llvm_unreachable("Use getGEPCost for GEP operations!");
56
57 case Instruction::BitCast:
58 assert(OpTy && "Cast instructions must provide the operand type");
59 if (Ty == OpTy || (Ty->isPointerTy() && OpTy->isPointerTy()))
60 // Identity and pointer-to-pointer casts are free.
61 return TTI::TCC_Free;
62
63 // Otherwise, the default basic cost is used.
64 return TTI::TCC_Basic;
65
66 case Instruction::FDiv:
67 case Instruction::FRem:
68 case Instruction::SDiv:
69 case Instruction::SRem:
70 case Instruction::UDiv:
71 case Instruction::URem:
72 return TTI::TCC_Expensive;
73
74 case Instruction::IntToPtr: {
75 // An inttoptr cast is free so long as the input is a legal integer type
76 // which doesn't contain values outside the range of a pointer.
77 unsigned OpSize = OpTy->getScalarSizeInBits();
78 if (DL.isLegalInteger(OpSize) &&
79 OpSize <= DL.getPointerTypeSizeInBits(Ty))
80 return TTI::TCC_Free;
81
82 // Otherwise it's not a no-op.
83 return TTI::TCC_Basic;
84 }
85 case Instruction::PtrToInt: {
86 // A ptrtoint cast is free so long as the result is large enough to store
87 // the pointer, and a legal integer type.
88 unsigned DestSize = Ty->getScalarSizeInBits();
89 if (DL.isLegalInteger(DestSize) &&
90 DestSize >= DL.getPointerTypeSizeInBits(OpTy))
91 return TTI::TCC_Free;
92
93 // Otherwise it's not a no-op.
94 return TTI::TCC_Basic;
95 }
96 case Instruction::Trunc:
97 // trunc to a native type is free (assuming the target has compare and
98 // shift-right of the same width).
99 if (DL.isLegalInteger(DL.getTypeSizeInBits(Ty)))
100 return TTI::TCC_Free;
101
102 return TTI::TCC_Basic;
103 }
104 }
105
106 int getGEPCost(Type *PointeeType, const Value *Ptr,
107 ArrayRef<const Value *> Operands) {
108 // In the basic model, we just assume that all-constant GEPs will be folded
109 // into their uses via addressing modes.
110 for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx)
111 if (!isa<Constant>(Operands[Idx]))
112 return TTI::TCC_Basic;
113
114 return TTI::TCC_Free;
115 }
116
117 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
118 unsigned &JTSize) {
119 JTSize = 0;
120 return SI.getNumCases();
121 }
122
123 int getExtCost(const Instruction *I, const Value *Src) {
124 return TTI::TCC_Basic;
125 }
126
127 unsigned getCallCost(FunctionType *FTy, int NumArgs) {
128 assert(FTy && "FunctionType must be provided to this routine.");
129
130 // The target-independent implementation just measures the size of the
131 // function by approximating that each argument will take on average one
132 // instruction to prepare.
133
134 if (NumArgs < 0)
135 // Set the argument number to the number of explicit arguments in the
136 // function.
137 NumArgs = FTy->getNumParams();
138
139 return TTI::TCC_Basic * (NumArgs + 1);
140 }
141
142 unsigned getInliningThresholdMultiplier() { return 1; }
143
144 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
145 ArrayRef<Type *> ParamTys) {
146 switch (IID) {
147 default:
148 // Intrinsics rarely (if ever) have normal argument setup constraints.
149 // Model them as having a basic instruction cost.
150 // FIXME: This is wrong for libc intrinsics.
151 return TTI::TCC_Basic;
152
153 case Intrinsic::annotation:
154 case Intrinsic::assume:
155 case Intrinsic::sideeffect:
156 case Intrinsic::dbg_declare:
157 case Intrinsic::dbg_value:
158 case Intrinsic::invariant_start:
159 case Intrinsic::invariant_end:
160 case Intrinsic::lifetime_start:
161 case Intrinsic::lifetime_end:
162 case Intrinsic::objectsize:
163 case Intrinsic::ptr_annotation:
164 case Intrinsic::var_annotation:
165 case Intrinsic::experimental_gc_result:
166 case Intrinsic::experimental_gc_relocate:
167 case Intrinsic::coro_alloc:
168 case Intrinsic::coro_begin:
169 case Intrinsic::coro_free:
170 case Intrinsic::coro_end:
171 case Intrinsic::coro_frame:
172 case Intrinsic::coro_size:
173 case Intrinsic::coro_suspend:
174 case Intrinsic::coro_param:
175 case Intrinsic::coro_subfn_addr:
176 // These intrinsics don't actually represent code after lowering.
177 return TTI::TCC_Free;
178 }
179 }
180
181 bool hasBranchDivergence() { return false; }
182
183 bool isSourceOfDivergence(const Value *V) { return false; }
184
185 bool isAlwaysUniform(const Value *V) { return false; }
186
187 unsigned getFlatAddressSpace () {
188 return -1;
189 }
190
191 bool isLoweredToCall(const Function *F) {
192 assert(F && "A concrete function must be provided to this routine.");
193
194 // FIXME: These should almost certainly not be handled here, and instead
195 // handled with the help of TLI or the target itself. This was largely
196 // ported from existing analysis heuristics here so that such refactorings
197 // can take place in the future.
198
199 if (F->isIntrinsic())
200 return false;
201
202 if (F->hasLocalLinkage() || !F->hasName())
203 return true;
204
205 StringRef Name = F->getName();
206
207 // These will all likely lower to a single selection DAG node.
208 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
209 Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
210 Name == "fmin" || Name == "fminf" || Name == "fminl" ||
211 Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
212 Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
213 Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
214 return false;
215
216 // These are all likely to be optimized into something smaller.
217 if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
218 Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
219 Name == "floorf" || Name == "ceil" || Name == "round" ||
220 Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
221 Name == "llabs")
222 return false;
223
224 return true;
225 }
226
227 void getUnrollingPreferences(Loop *, ScalarEvolution &,
228 TTI::UnrollingPreferences &) {}
229
230 bool isLegalAddImmediate(int64_t Imm) { return false; }
231
232 bool isLegalICmpImmediate(int64_t Imm) { return false; }
233
234 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
235 bool HasBaseReg, int64_t Scale,
236 unsigned AddrSpace, Instruction *I = nullptr) {
237 // Guess that only reg and reg+reg addressing is allowed. This heuristic is
238 // taken from the implementation of LSR.
239 return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
240 }
241
242 bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) {
243 return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
244 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
245 std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
246 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
247 }
248
249 bool canMacroFuseCmp() { return false; }
250
251 bool shouldFavorPostInc() const { return false; }
252
253 bool isLegalMaskedStore(Type *DataType) { return false; }
254
255 bool isLegalMaskedLoad(Type *DataType) { return false; }
256
257 bool isLegalMaskedScatter(Type *DataType) { return false; }
258
259 bool isLegalMaskedGather(Type *DataType) { return false; }
260
261 bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; }
262
263 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; }
264
265 bool prefersVectorizedAddressing() { return true; }
266
267 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
268 bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
269 // Guess that all legal addressing mode are free.
270 if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
271 Scale, AddrSpace))
272 return 0;
273 return -1;
274 }
275
276 bool LSRWithInstrQueries() { return false; }
277
278 bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; }
279
280 bool isProfitableToHoist(Instruction *I) { return true; }
281
282 bool useAA() { return false; }
283
284 bool isTypeLegal(Type *Ty) { return false; }
285
286 unsigned getJumpBufAlignment() { return 0; }
287
288 unsigned getJumpBufSize() { return 0; }
289
290 bool shouldBuildLookupTables() { return true; }
291 bool shouldBuildLookupTablesForConstant(Constant *C) { return true; }
292
293 bool useColdCCForColdCall(Function &F) { return false; }
294
295 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
296 return 0;
297 }
298
299 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
300 unsigned VF) { return 0; }
301
302 bool supportsEfficientVectorElementLoadStore() { return false; }
303
304 bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; }
305
306 const TTI::MemCmpExpansionOptions *enableMemCmpExpansion(
307 bool IsZeroCmp) const {
308 return nullptr;
309 }
310
311 bool enableInterleavedAccessVectorization() { return false; }
312
313 bool isFPVectorizationPotentiallyUnsafe() { return false; }
314
315 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
316 unsigned BitWidth,
317 unsigned AddressSpace,
318 unsigned Alignment,
319 bool *Fast) { return false; }
320
321 TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) {
322 return TTI::PSK_Software;
323 }
324
325 bool haveFastSqrt(Type *Ty) { return false; }
326
327 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; }
328
329 unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; }
330
331 int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
332 Type *Ty) {
333 return 0;
334 }
335
336 unsigned getIntImmCost(const APInt &Imm, Type *Ty) { return TTI::TCC_Basic; }
337
338 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
339 Type *Ty) {
340 return TTI::TCC_Free;
341 }
342
343 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
344 Type *Ty) {
345 return TTI::TCC_Free;
346 }
347
348 unsigned getNumberOfRegisters(bool Vector) { return 8; }
349
350 unsigned getRegisterBitWidth(bool Vector) const { return 32; }
351
352 unsigned getMinVectorRegisterBitWidth() { return 128; }
353
354 bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; }
355
356 bool
357 shouldConsiderAddressTypePromotion(const Instruction &I,
358 bool &AllowPromotionWithoutCommonHeader) {
359 AllowPromotionWithoutCommonHeader = false;
360 return false;
361 }
362
363 unsigned getCacheLineSize() { return 0; }
364
365 llvm::Optional<unsigned> getCacheSize(TargetTransformInfo::CacheLevel Level) {
366 switch (Level) {
367 case TargetTransformInfo::CacheLevel::L1D:
368 LLVM_FALLTHROUGH;
369 case TargetTransformInfo::CacheLevel::L2D:
370 return llvm::Optional<unsigned>();
371 }
372
373 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
374 }
375
376 llvm::Optional<unsigned> getCacheAssociativity(
377 TargetTransformInfo::CacheLevel Level) {
378 switch (Level) {
379 case TargetTransformInfo::CacheLevel::L1D:
380 LLVM_FALLTHROUGH;
381 case TargetTransformInfo::CacheLevel::L2D:
382 return llvm::Optional<unsigned>();
383 }
384
385 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
386 }
387
388 unsigned getPrefetchDistance() { return 0; }
389
390 unsigned getMinPrefetchStride() { return 1; }
391
392 unsigned getMaxPrefetchIterationsAhead() { return UINT_MAX; }
393
394 unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
395
396 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
397 TTI::OperandValueKind Opd1Info,
398 TTI::OperandValueKind Opd2Info,
399 TTI::OperandValueProperties Opd1PropInfo,
400 TTI::OperandValueProperties Opd2PropInfo,
401 ArrayRef<const Value *> Args) {
402 return 1;
403 }
404
405 unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Ty, int Index,
406 Type *SubTp) {
407 return 1;
408 }
409
410 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
411 const Instruction *I) { return 1; }
412
413 unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
414 VectorType *VecTy, unsigned Index) {
415 return 1;
416 }
417
418 unsigned getCFInstrCost(unsigned Opcode) { return 1; }
419
420 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
421 const Instruction *I) {
422 return 1;
423 }
424
425 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
426 return 1;
427 }
428
429 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
430 unsigned AddressSpace, const Instruction *I) {
431 return 1;
432 }
433
434 unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
435 unsigned AddressSpace) {
436 return 1;
437 }
438
439 unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
440 bool VariableMask,
441 unsigned Alignment) {
442 return 1;
443 }
444
445 unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
446 unsigned Factor,
447 ArrayRef<unsigned> Indices,
448 unsigned Alignment,
449 unsigned AddressSpace) {
450 return 1;
451 }
452
453 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
454 ArrayRef<Type *> Tys, FastMathFlags FMF,
455 unsigned ScalarizationCostPassed) {
456 return 1;
457 }
458 unsigned getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
459 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
460 return 1;
461 }
462
463 unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) {
464 return 1;
465 }
466
467 unsigned getNumberOfParts(Type *Tp) { return 0; }
468
469 unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *,
470 const SCEV *) {
471 return 0;
472 }
473
474 unsigned getArithmeticReductionCost(unsigned, Type *, bool) { return 1; }
475
476 unsigned getMinMaxReductionCost(Type *, Type *, bool, bool) { return 1; }
477
478 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { return 0; }
479
480 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) {
481 return false;
482 }
483
484 unsigned getAtomicMemIntrinsicMaxElementSize() const {
485 // Note for overrides: You must ensure for all element unordered-atomic
486 // memory intrinsics that all power-of-2 element sizes up to, and
487 // including, the return value of this method have a corresponding
488 // runtime lib call. These runtime lib call definitions can be found
489 // in RuntimeLibcalls.h
490 return 0;
491 }
492
493 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
494 Type *ExpectedType) {
495 return nullptr;
496 }
497
498 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
499 unsigned SrcAlign, unsigned DestAlign) const {
500 return Type::getInt8Ty(Context);
501 }
502
503 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
504 LLVMContext &Context,
505 unsigned RemainingBytes,
506 unsigned SrcAlign,
507 unsigned DestAlign) const {
508 for (unsigned i = 0; i != RemainingBytes; ++i)
509 OpsOut.push_back(Type::getInt8Ty(Context));
510 }
511
512 bool areInlineCompatible(const Function *Caller,
513 const Function *Callee) const {
514 return (Caller->getFnAttribute("target-cpu") ==
515 Callee->getFnAttribute("target-cpu")) &&
516 (Caller->getFnAttribute("target-features") ==
517 Callee->getFnAttribute("target-features"));
518 }
519
520 bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
521 const DataLayout &DL) const {
522 return false;
523 }
524
525 bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
526 const DataLayout &DL) const {
527 return false;
528 }
529
530 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
531
532 bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
533
534 bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
535
536 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
537 unsigned Alignment,
538 unsigned AddrSpace) const {
539 return true;
540 }
541
542 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
543 unsigned Alignment,
544 unsigned AddrSpace) const {
545 return true;
546 }
547
548 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
549 unsigned ChainSizeInBytes,
550 VectorType *VecTy) const {
551 return VF;
552 }
553
554 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
555 unsigned ChainSizeInBytes,
556 VectorType *VecTy) const {
557 return VF;
558 }
559
560 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
561 TTI::ReductionFlags Flags) const {
562 return false;
563 }
564
565 bool shouldExpandReduction(const IntrinsicInst *II) const {
566 return true;
567 }
568
569protected:
570 // Obtain the minimum required size to hold the value (without the sign)
571 // In case of a vector it returns the min required size for one element.
572 unsigned minRequiredElementSize(const Value* Val, bool &isSigned) {
573 if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
574 const auto* VectorValue = cast<Constant>(Val);
575
576 // In case of a vector need to pick the max between the min
577 // required size for each element
578 auto *VT = cast<VectorType>(Val->getType());
579
580 // Assume unsigned elements
581 isSigned = false;
582
583 // The max required size is the total vector width divided by num
584 // of elements in the vector
585 unsigned MaxRequiredSize = VT->getBitWidth() / VT->getNumElements();
586
587 unsigned MinRequiredSize = 0;
588 for(unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
589 if (auto* IntElement =
590 dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
591 bool signedElement = IntElement->getValue().isNegative();
592 // Get the element min required size.
593 unsigned ElementMinRequiredSize =
594 IntElement->getValue().getMinSignedBits() - 1;
595 // In case one element is signed then all the vector is signed.
596 isSigned |= signedElement;
597 // Save the max required bit size between all the elements.
598 MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
599 }
600 else {
601 // not an int constant element
602 return MaxRequiredSize;
603 }
604 }
605 return MinRequiredSize;
606 }
607
608 if (const auto* CI = dyn_cast<ConstantInt>(Val)) {
609 isSigned = CI->getValue().isNegative();
610 return CI->getValue().getMinSignedBits() - 1;
611 }
612
613 if (const auto* Cast = dyn_cast<SExtInst>(Val)) {
614 isSigned = true;
615 return Cast->getSrcTy()->getScalarSizeInBits() - 1;
616 }
617
618 if (const auto* Cast = dyn_cast<ZExtInst>(Val)) {
619 isSigned = false;
620 return Cast->getSrcTy()->getScalarSizeInBits();
621 }
622
623 isSigned = false;
624 return Val->getType()->getScalarSizeInBits();
625 }
626
627 bool isStridedAccess(const SCEV *Ptr) {
628 return Ptr && isa<SCEVAddRecExpr>(Ptr);
629 }
630
631 const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
632 const SCEV *Ptr) {
633 if (!isStridedAccess(Ptr))
634 return nullptr;
635 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
636 return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
637 }
638
639 bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
640 int64_t MergeDistance) {
641 const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
642 if (!Step)
643 return false;
644 APInt StrideVal = Step->getAPInt();
645 if (StrideVal.getBitWidth() > 64)
646 return false;
647 // FIXME: Need to take absolute value for negative stride case.
648 return StrideVal.getSExtValue() < MergeDistance;
649 }
650};
651
652/// \brief CRTP base class for use as a mix-in that aids implementing
653/// a TargetTransformInfo-compatible class.
654template <typename T>
655class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
656private:
657 typedef TargetTransformInfoImplBase BaseT;
658
659protected:
660 explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
661
662public:
663 using BaseT::getCallCost;
664
665 unsigned getCallCost(const Function *F, int NumArgs) {
666 assert(F && "A concrete function must be provided to this routine.");
667
668 if (NumArgs < 0)
669 // Set the argument number to the number of explicit arguments in the
670 // function.
671 NumArgs = F->arg_size();
672
673 if (Intrinsic::ID IID = F->getIntrinsicID()) {
674 FunctionType *FTy = F->getFunctionType();
675 SmallVector<Type *, 8> ParamTys(FTy->param_begin(), FTy->param_end());
676 return static_cast<T *>(this)
677 ->getIntrinsicCost(IID, FTy->getReturnType(), ParamTys);
678 }
679
680 if (!static_cast<T *>(this)->isLoweredToCall(F))
681 return TTI::TCC_Basic; // Give a basic cost if it will be lowered
682 // directly.
683
684 return static_cast<T *>(this)->getCallCost(F->getFunctionType(), NumArgs);
685 }
686
687 unsigned getCallCost(const Function *F, ArrayRef<const Value *> Arguments) {
688 // Simply delegate to generic handling of the call.
689 // FIXME: We should use instsimplify or something else to catch calls which
690 // will constant fold with these arguments.
691 return static_cast<T *>(this)->getCallCost(F, Arguments.size());
692 }
693
694 using BaseT::getGEPCost;
695
696 int getGEPCost(Type *PointeeType, const Value *Ptr,
697 ArrayRef<const Value *> Operands) {
698 const GlobalValue *BaseGV = nullptr;
699 if (Ptr != nullptr) {
700 // TODO: will remove this when pointers have an opaque type.
701 assert(Ptr->getType()->getScalarType()->getPointerElementType() ==
702 PointeeType &&
703 "explicit pointee type doesn't match operand's pointee type");
704 BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
705 }
706 bool HasBaseReg = (BaseGV == nullptr);
707
708 auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
709 APInt BaseOffset(PtrSizeBits, 0);
710 int64_t Scale = 0;
711
712 auto GTI = gep_type_begin(PointeeType, Operands);
713 Type *TargetType = nullptr;
714
715 // Handle the case where the GEP instruction has a single operand,
716 // the basis, therefore TargetType is a nullptr.
717 if (Operands.empty())
718 return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
719
720 for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
721 TargetType = GTI.getIndexedType();
722 // We assume that the cost of Scalar GEP with constant index and the
723 // cost of Vector GEP with splat constant index are the same.
724 const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
725 if (!ConstIdx)
726 if (auto Splat = getSplatValue(*I))
727 ConstIdx = dyn_cast<ConstantInt>(Splat);
728 if (StructType *STy = GTI.getStructTypeOrNull()) {
729 // For structures the index is always splat or scalar constant
730 assert(ConstIdx && "Unexpected GEP index");
731 uint64_t Field = ConstIdx->getZExtValue();
732 BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
733 } else {
734 int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType());
735 if (ConstIdx) {
736 BaseOffset +=
737 ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
738 } else {
739 // Needs scale register.
740 if (Scale != 0)
741 // No addressing mode takes two scale registers.
742 return TTI::TCC_Basic;
743 Scale = ElementSize;
744 }
745 }
746 }
747
748 // Assumes the address space is 0 when Ptr is nullptr.
749 unsigned AS =
750 (Ptr == nullptr ? 0 : Ptr->getType()->getPointerAddressSpace());
751
752 if (static_cast<T *>(this)->isLegalAddressingMode(
753 TargetType, const_cast<GlobalValue *>(BaseGV),
754 BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, AS))
755 return TTI::TCC_Free;
756 return TTI::TCC_Basic;
757 }
758
759 using BaseT::getIntrinsicCost;
760
761 unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
762 ArrayRef<const Value *> Arguments) {
763 // Delegate to the generic intrinsic handling code. This mostly provides an
764 // opportunity for targets to (for example) special case the cost of
765 // certain intrinsics based on constants used as arguments.
766 SmallVector<Type *, 8> ParamTys;
767 ParamTys.reserve(Arguments.size());
768 for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
769 ParamTys.push_back(Arguments[Idx]->getType());
770 return static_cast<T *>(this)->getIntrinsicCost(IID, RetTy, ParamTys);
771 }
772
773 unsigned getUserCost(const User *U, ArrayRef<const Value *> Operands) {
774 if (isa<PHINode>(U))
775 return TTI::TCC_Free; // Model all PHI nodes as free.
776
777 // Static alloca doesn't generate target instructions.
778 if (auto *A = dyn_cast<AllocaInst>(U))
779 if (A->isStaticAlloca())
780 return TTI::TCC_Free;
781
782 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
783 return static_cast<T *>(this)->getGEPCost(GEP->getSourceElementType(),
784 GEP->getPointerOperand(),
785 Operands.drop_front());
786 }
787
788 if (auto CS = ImmutableCallSite(U)) {
789 const Function *F = CS.getCalledFunction();
790 if (!F) {
791 // Just use the called value type.
792 Type *FTy = CS.getCalledValue()->getType()->getPointerElementType();
793 return static_cast<T *>(this)
794 ->getCallCost(cast<FunctionType>(FTy), CS.arg_size());
795 }
796
797 SmallVector<const Value *, 8> Arguments(CS.arg_begin(), CS.arg_end());
798 return static_cast<T *>(this)->getCallCost(F, Arguments);
799 }
800
801 if (const CastInst *CI = dyn_cast<CastInst>(U)) {
802 // Result of a cmp instruction is often extended (to be used by other
803 // cmp instructions, logical or return instructions). These are usually
804 // nop on most sane targets.
805 if (isa<CmpInst>(CI->getOperand(0)))
806 return TTI::TCC_Free;
807 if (isa<SExtInst>(CI) || isa<ZExtInst>(CI) || isa<FPExtInst>(CI))
808 return static_cast<T *>(this)->getExtCost(CI, Operands.back());
809 }
810
811 return static_cast<T *>(this)->getOperationCost(
812 Operator::getOpcode(U), U->getType(),
813 U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr);
814 }
815
816 int getInstructionLatency(const Instruction *I) {
817 SmallVector<const Value *, 4> Operands(I->value_op_begin(),
818 I->value_op_end());
819 if (getUserCost(I, Operands) == TTI::TCC_Free)
820 return 0;
821
822 if (isa<LoadInst>(I))
823 return 4;
824
825 Type *DstTy = I->getType();
826
827 // Usually an intrinsic is a simple instruction.
828 // A real function call is much slower.
829 if (auto *CI = dyn_cast<CallInst>(I)) {
830 const Function *F = CI->getCalledFunction();
831 if (!F || static_cast<T *>(this)->isLoweredToCall(F))
832 return 40;
833 // Some intrinsics return a value and a flag, we use the value type
834 // to decide its latency.
835 if (StructType* StructTy = dyn_cast<StructType>(DstTy))
836 DstTy = StructTy->getElementType(0);
837 // Fall through to simple instructions.
838 }
839
840 if (VectorType *VectorTy = dyn_cast<VectorType>(DstTy))
841 DstTy = VectorTy->getElementType();
842 if (DstTy->isFloatingPointTy())
843 return 3;
844
845 return 1;
846 }
847};
848}
849
850#endif