blob: ee34312ccf6d1da0515d84aded62bde660ff7edd [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This pass exposes codegen information to IR-level passes. Every
10/// transformation that uses codegen information is broken into three parts:
11/// 1. The IR-level analysis pass.
12/// 2. The IR-level transformation interface which provides the needed
13/// information.
14/// 3. Codegen-level implementation which uses target-specific hooks.
15///
16/// This file defines #2, which is the interface that IR-level transformations
17/// use for querying the codegen.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020024#include "llvm/IR/InstrTypes.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010025#include "llvm/IR/Operator.h"
26#include "llvm/IR/PassManager.h"
27#include "llvm/Pass.h"
28#include "llvm/Support/AtomicOrdering.h"
29#include "llvm/Support/DataTypes.h"
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020030#include "llvm/Support/InstructionCost.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010031#include <functional>
32
33namespace llvm {
34
35namespace Intrinsic {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020036typedef unsigned ID;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010037}
38
Andrew Walbran3d2c1972020-04-07 12:24:26 +010039class AssumptionCache;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020040class BlockFrequencyInfo;
41class DominatorTree;
Andrew Walbran3d2c1972020-04-07 12:24:26 +010042class BranchInst;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020043class CallBase;
44class ExtractElementInst;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010045class Function;
46class GlobalValue;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020047class InstCombiner;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010048class IntrinsicInst;
49class LoadInst;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020050class LoopAccessInfo;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010051class Loop;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020052class LoopInfo;
53class ProfileSummaryInfo;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010054class SCEV;
55class ScalarEvolution;
56class StoreInst;
57class SwitchInst;
Andrew Walbran3d2c1972020-04-07 12:24:26 +010058class TargetLibraryInfo;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010059class Type;
60class User;
61class Value;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020062struct KnownBits;
63template <typename T> class Optional;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010064
Andrew Scullcdfcccc2018-10-05 20:58:37 +010065/// Information about a load/store intrinsic defined by the target.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010066struct MemIntrinsicInfo {
67 /// This is the pointer that the intrinsic is loading from or storing to.
68 /// If this is non-null, then analysis/optimization passes can assume that
69 /// this intrinsic is functionally equivalent to a load/store from this
70 /// pointer.
71 Value *PtrVal = nullptr;
72
73 // Ordering for atomic operations.
74 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
75
76 // Same Id is set by the target for corresponding load/store intrinsics.
77 unsigned short MatchingId = 0;
78
79 bool ReadMem = false;
80 bool WriteMem = false;
81 bool IsVolatile = false;
82
83 bool isUnordered() const {
84 return (Ordering == AtomicOrdering::NotAtomic ||
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020085 Ordering == AtomicOrdering::Unordered) &&
86 !IsVolatile;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010087 }
88};
89
Andrew Walbran3d2c1972020-04-07 12:24:26 +010090/// Attributes of a target dependent hardware loop.
91struct HardwareLoopInfo {
92 HardwareLoopInfo() = delete;
93 HardwareLoopInfo(Loop *L) : L(L) {}
94 Loop *L = nullptr;
95 BasicBlock *ExitBlock = nullptr;
96 BranchInst *ExitBranch = nullptr;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020097 const SCEV *TripCount = nullptr;
Andrew Walbran3d2c1972020-04-07 12:24:26 +010098 IntegerType *CountType = nullptr;
99 Value *LoopDecrement = nullptr; // Decrement the loop counter by this
100 // value in every iteration.
101 bool IsNestingLegal = false; // Can a hardware loop be a parent to
102 // another hardware loop?
103 bool CounterInReg = false; // Should loop counter be updated in
104 // the loop via a phi?
105 bool PerformEntryTest = false; // Generate the intrinsic which also performs
106 // icmp ne zero on the loop counter value and
107 // produces an i1 to guard the loop entry.
108 bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
109 DominatorTree &DT, bool ForceNestedLoop = false,
110 bool ForceHardwareLoopPHI = false);
111 bool canAnalyze(LoopInfo &LI);
112};
113
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200114class IntrinsicCostAttributes {
115 const IntrinsicInst *II = nullptr;
116 Type *RetTy = nullptr;
117 Intrinsic::ID IID;
118 SmallVector<Type *, 4> ParamTys;
119 SmallVector<const Value *, 4> Arguments;
120 FastMathFlags FMF;
121 ElementCount VF = ElementCount::getFixed(1);
122 // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
123 // arguments and the return value will be computed based on types.
124 unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
125
126public:
127 IntrinsicCostAttributes(const IntrinsicInst &I);
128
129 IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI);
130
131 IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI,
132 ElementCount Factor);
133
134 IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI,
135 ElementCount Factor, unsigned ScalarCost);
136
137 IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
138 ArrayRef<Type *> Tys, FastMathFlags Flags);
139
140 IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
141 ArrayRef<Type *> Tys, FastMathFlags Flags,
142 unsigned ScalarCost);
143
144 IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
145 ArrayRef<Type *> Tys, FastMathFlags Flags,
146 unsigned ScalarCost,
147 const IntrinsicInst *I);
148
149 IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
150 ArrayRef<Type *> Tys);
151
152 IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
153 ArrayRef<const Value *> Args);
154
155 Intrinsic::ID getID() const { return IID; }
156 const IntrinsicInst *getInst() const { return II; }
157 Type *getReturnType() const { return RetTy; }
158 ElementCount getVectorFactor() const { return VF; }
159 FastMathFlags getFlags() const { return FMF; }
160 unsigned getScalarizationCost() const { return ScalarizationCost; }
161 const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
162 const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
163
164 bool isTypeBasedOnly() const {
165 return Arguments.empty();
166 }
167
168 bool skipScalarizationCost() const {
169 return ScalarizationCost != std::numeric_limits<unsigned>::max();
170 }
171};
172
173class TargetTransformInfo;
174typedef TargetTransformInfo TTI;
175
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100176/// This pass provides access to the codegen interfaces that are needed
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100177/// for IR-level transformations.
178class TargetTransformInfo {
179public:
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100180 /// Construct a TTI object using a type implementing the \c Concept
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100181 /// API below.
182 ///
183 /// This is used by targets to construct a TTI wrapping their target-specific
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100184 /// implementation that encodes appropriate costs for their target.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100185 template <typename T> TargetTransformInfo(T Impl);
186
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100187 /// Construct a baseline TTI object using a minimal implementation of
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100188 /// the \c Concept API below.
189 ///
190 /// The TTI implementation will reflect the information in the DataLayout
191 /// provided if non-null.
192 explicit TargetTransformInfo(const DataLayout &DL);
193
194 // Provide move semantics.
195 TargetTransformInfo(TargetTransformInfo &&Arg);
196 TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
197
198 // We need to define the destructor out-of-line to define our sub-classes
199 // out-of-line.
200 ~TargetTransformInfo();
201
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100202 /// Handle the invalidation of this information.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100203 ///
204 /// When used as a result of \c TargetIRAnalysis this method will be called
205 /// when the function this was computed for changes. When it returns false,
206 /// the information is preserved across those changes.
207 bool invalidate(Function &, const PreservedAnalyses &,
208 FunctionAnalysisManager::Invalidator &) {
209 // FIXME: We should probably in some way ensure that the subtarget
210 // information for a function hasn't changed.
211 return false;
212 }
213
214 /// \name Generic Target Information
215 /// @{
216
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100217 /// The kind of cost model.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100218 ///
219 /// There are several different cost models that can be customized by the
220 /// target. The normalization of each cost model may be target specific.
221 enum TargetCostKind {
222 TCK_RecipThroughput, ///< Reciprocal throughput.
223 TCK_Latency, ///< The latency of instruction.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200224 TCK_CodeSize, ///< Instruction code size.
225 TCK_SizeAndLatency ///< The weighted sum of size and latency.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100226 };
227
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100228 /// Query the cost of a specified instruction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100229 ///
230 /// Clients should use this interface to query the cost of an existing
231 /// instruction. The instruction must have a valid parent (basic block).
232 ///
233 /// Note, this method does not cache the cost calculation and it
234 /// can be expensive in some cases.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200235 InstructionCost getInstructionCost(const Instruction *I,
236 enum TargetCostKind kind) const {
237 InstructionCost Cost;
238 switch (kind) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100239 case TCK_RecipThroughput:
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200240 Cost = getInstructionThroughput(I);
241 break;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100242 case TCK_Latency:
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200243 Cost = getInstructionLatency(I);
244 break;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100245 case TCK_CodeSize:
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200246 case TCK_SizeAndLatency:
247 Cost = getUserCost(I, kind);
248 break;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100249 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200250 if (Cost == -1)
251 Cost.setInvalid();
252 return Cost;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100253 }
254
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100255 /// Underlying constants for 'cost' values in this interface.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100256 ///
257 /// Many APIs in this interface return a cost. This enum defines the
258 /// fundamental values that should be used to interpret (and produce) those
259 /// costs. The costs are returned as an int rather than a member of this
260 /// enumeration because it is expected that the cost of one IR instruction
261 /// may have a multiplicative factor to it or otherwise won't fit directly
262 /// into the enum. Moreover, it is common to sum or average costs which works
263 /// better as simple integral values. Thus this enum only provides constants.
264 /// Also note that the returned costs are signed integers to make it natural
265 /// to add, subtract, and test with zero (a common boundary condition). It is
266 /// not expected that 2^32 is a realistic cost to be modeling at any point.
267 ///
268 /// Note that these costs should usually reflect the intersection of code-size
269 /// cost and execution cost. A free instruction is typically one that folds
270 /// into another instruction. For example, reg-to-reg moves can often be
271 /// skipped by renaming the registers in the CPU, but they still are encoded
272 /// and thus wouldn't be considered 'free' here.
273 enum TargetCostConstants {
274 TCC_Free = 0, ///< Expected to fold away in lowering.
275 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
276 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
277 };
278
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100279 /// Estimate the cost of a GEP operation when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100280 int getGEPCost(Type *PointeeType, const Value *Ptr,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200281 ArrayRef<const Value *> Operands,
282 TargetCostKind CostKind = TCK_SizeAndLatency) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100283
284 /// \returns A value by which our inlining threshold should be multiplied.
285 /// This is primarily used to bump up the inlining threshold wholesale on
286 /// targets where calls are unusually expensive.
287 ///
288 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
289 /// individual classes of instructions would be better.
290 unsigned getInliningThresholdMultiplier() const;
291
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200292 /// \returns Vector bonus in percent.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100293 ///
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200294 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
295 /// and apply this bonus based on the percentage of vector instructions. A
296 /// bonus is applied if the vector instructions exceed 50% and half that
297 /// amount is applied if it exceeds 10%. Note that these bonuses are some what
298 /// arbitrary and evolved over time by accident as much as because they are
299 /// principled bonuses.
300 /// FIXME: It would be nice to base the bonus values on something more
301 /// scientific. A target may has no bonus on vector instructions.
302 int getInlinerVectorBonusPercent() const;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100303
304 /// \return the expected cost of a memcpy, which could e.g. depend on the
305 /// source/destination type and alignment and the number of bytes copied.
306 int getMemcpyCost(const Instruction *I) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100307
308 /// \return The estimated number of case clusters when lowering \p 'SI'.
309 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
310 /// table.
311 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200312 unsigned &JTSize,
313 ProfileSummaryInfo *PSI,
314 BlockFrequencyInfo *BFI) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100315
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100316 /// Estimate the cost of a given IR user when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100317 ///
318 /// This can estimate the cost of either a ConstantExpr or Instruction when
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200319 /// lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100320 ///
321 /// \p Operands is a list of operands which can be a result of transformations
322 /// of the current operands. The number of the operands on the list must equal
323 /// to the number of the current operands the IR user has. Their order on the
324 /// list must be the same as the order of the current operands the IR user
325 /// has.
326 ///
327 /// The returned cost is defined in terms of \c TargetCostConstants, see its
328 /// comments for a detailed explanation of the cost values.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200329 int getUserCost(const User *U, ArrayRef<const Value *> Operands,
330 TargetCostKind CostKind) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100331
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100332 /// This is a helper function which calls the two-argument getUserCost
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100333 /// with \p Operands which are the current operands U has.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200334 int getUserCost(const User *U, TargetCostKind CostKind) const {
335 SmallVector<const Value *, 4> Operands(U->operand_values());
336 return getUserCost(U, Operands, CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100337 }
338
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100339 /// Return true if branch divergence exists.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100340 ///
341 /// Branch divergence has a significantly negative impact on GPU performance
342 /// when threads in the same wavefront take different paths due to conditional
343 /// branches.
344 bool hasBranchDivergence() const;
345
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200346 /// Return true if the target prefers to use GPU divergence analysis to
347 /// replace the legacy version.
348 bool useGPUDivergenceAnalysis() const;
349
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100350 /// Returns whether V is a source of divergence.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100351 ///
352 /// This function provides the target-dependent information for
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200353 /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis
354 /// first builds the dependency graph, and then runs the reachability
355 /// algorithm starting with the sources of divergence.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100356 bool isSourceOfDivergence(const Value *V) const;
357
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100358 // Returns true for the target specific
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100359 // set of operations which produce uniform result
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100360 // even taking non-uniform arguments
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100361 bool isAlwaysUniform(const Value *V) const;
362
363 /// Returns the address space ID for a target's 'flat' address space. Note
364 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
365 /// refers to as the generic address space. The flat address space is a
366 /// generic address space that can be used access multiple segments of memory
367 /// with different address spaces. Access of a memory location through a
368 /// pointer with this address space is expected to be legal but slower
369 /// compared to the same memory location accessed through a pointer with a
370 /// different address space.
371 //
372 /// This is for targets with different pointer representations which can
373 /// be converted with the addrspacecast instruction. If a pointer is converted
374 /// to this address space, optimizations should attempt to replace the access
375 /// with the source address space.
376 ///
377 /// \returns ~0u if the target does not have such a flat address space to
378 /// optimize away.
379 unsigned getFlatAddressSpace() const;
380
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200381 /// Return any intrinsic address operand indexes which may be rewritten if
382 /// they use a flat address space pointer.
383 ///
384 /// \returns true if the intrinsic was handled.
385 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
386 Intrinsic::ID IID) const;
387
388 bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
389
390 unsigned getAssumedAddrSpace(const Value *V) const;
391
392 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
393 /// NewV, which has a different address space. This should happen for every
394 /// operand index that collectFlatAddressOperands returned for the intrinsic.
395 /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
396 /// new value (which may be the original \p II with modified operands).
397 Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
398 Value *NewV) const;
399
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100400 /// Test whether calls to a function lower to actual program function
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100401 /// calls.
402 ///
403 /// The idea is to test whether the program is likely to require a 'call'
404 /// instruction or equivalent in order to call the given function.
405 ///
406 /// FIXME: It's not clear that this is a good or useful query API. Client's
407 /// should probably move to simpler cost metrics using the above.
408 /// Alternatively, we could split the cost interface into distinct code-size
409 /// and execution-speed costs. This would allow modelling the core of this
410 /// query more accurately as a call is a single small instruction, but
411 /// incurs significant execution cost.
412 bool isLoweredToCall(const Function *F) const;
413
414 struct LSRCost {
415 /// TODO: Some of these could be merged. Also, a lexical ordering
416 /// isn't always optimal.
417 unsigned Insns;
418 unsigned NumRegs;
419 unsigned AddRecCost;
420 unsigned NumIVMuls;
421 unsigned NumBaseAdds;
422 unsigned ImmCost;
423 unsigned SetupCost;
424 unsigned ScaleCost;
425 };
426
427 /// Parameters that control the generic loop unrolling transformation.
428 struct UnrollingPreferences {
429 /// The cost threshold for the unrolled loop. Should be relative to the
430 /// getUserCost values returned by this API, and the expectation is that
431 /// the unrolled loop's instructions when run through that interface should
432 /// not exceed this cost. However, this is only an estimate. Also, specific
433 /// loops may be unrolled even with a cost above this threshold if deemed
434 /// profitable. Set this to UINT_MAX to disable the loop body cost
435 /// restriction.
436 unsigned Threshold;
437 /// If complete unrolling will reduce the cost of the loop, we will boost
438 /// the Threshold by a certain percent to allow more aggressive complete
439 /// unrolling. This value provides the maximum boost percentage that we
440 /// can apply to Threshold (The value should be no less than 100).
441 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
442 /// MaxPercentThresholdBoost / 100)
443 /// E.g. if complete unrolling reduces the loop execution time by 50%
444 /// then we boost the threshold by the factor of 2x. If unrolling is not
445 /// expected to reduce the running time, then we do not increase the
446 /// threshold.
447 unsigned MaxPercentThresholdBoost;
448 /// The cost threshold for the unrolled loop when optimizing for size (set
449 /// to UINT_MAX to disable).
450 unsigned OptSizeThreshold;
451 /// The cost threshold for the unrolled loop, like Threshold, but used
452 /// for partial/runtime unrolling (set to UINT_MAX to disable).
453 unsigned PartialThreshold;
454 /// The cost threshold for the unrolled loop when optimizing for size, like
455 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
456 /// UINT_MAX to disable).
457 unsigned PartialOptSizeThreshold;
458 /// A forced unrolling factor (the number of concatenated bodies of the
459 /// original loop in the unrolled loop body). When set to 0, the unrolling
460 /// transformation will select an unrolling factor based on the current cost
461 /// threshold and other factors.
462 unsigned Count;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100463 /// Default unroll count for loops with run-time trip count.
464 unsigned DefaultUnrollRuntimeCount;
465 // Set the maximum unrolling factor. The unrolling factor may be selected
466 // using the appropriate cost threshold, but may not exceed this number
467 // (set to UINT_MAX to disable). This does not apply in cases where the
468 // loop is being fully unrolled.
469 unsigned MaxCount;
470 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
471 /// applies even if full unrolling is selected. This allows a target to fall
472 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
473 unsigned FullUnrollMaxCount;
474 // Represents number of instructions optimized when "back edge"
475 // becomes "fall through" in unrolled loop.
476 // For now we count a conditional branch on a backedge and a comparison
477 // feeding it.
478 unsigned BEInsns;
479 /// Allow partial unrolling (unrolling of loops to expand the size of the
480 /// loop body, not only to eliminate small constant-trip-count loops).
481 bool Partial;
482 /// Allow runtime unrolling (unrolling of loops to expand the size of the
483 /// loop body even when the number of loop iterations is not known at
484 /// compile time).
485 bool Runtime;
486 /// Allow generation of a loop remainder (extra iterations after unroll).
487 bool AllowRemainder;
488 /// Allow emitting expensive instructions (such as divisions) when computing
489 /// the trip count of a loop for runtime unrolling.
490 bool AllowExpensiveTripCount;
491 /// Apply loop unroll on any kind of loop
492 /// (mainly to loops that fail runtime unrolling).
493 bool Force;
494 /// Allow using trip count upper bound to unroll loops.
495 bool UpperBound;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100496 /// Allow unrolling of all the iterations of the runtime loop remainder.
497 bool UnrollRemainder;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100498 /// Allow unroll and jam. Used to enable unroll and jam for the target.
499 bool UnrollAndJam;
500 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
501 /// value above is used during unroll and jam for the outer loop size.
502 /// This value is used in the same manner to limit the size of the inner
503 /// loop.
504 unsigned UnrollAndJamInnerLoopThreshold;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200505 /// Don't allow loop unrolling to simulate more than this number of
506 /// iterations when checking full unroll profitability
507 unsigned MaxIterationsCountToAnalyze;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100508 };
509
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100510 /// Get target-customized preferences for the generic loop unrolling
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100511 /// transformation. The caller will initialize UP with the current
512 /// target-independent defaults.
513 void getUnrollingPreferences(Loop *L, ScalarEvolution &,
514 UnrollingPreferences &UP) const;
515
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100516 /// Query the target whether it would be profitable to convert the given loop
517 /// into a hardware loop.
518 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200519 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100520 HardwareLoopInfo &HWLoopInfo) const;
521
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200522 /// Query the target whether it would be prefered to create a predicated
523 /// vector loop, which can avoid the need to emit a scalar epilogue loop.
524 bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
525 AssumptionCache &AC, TargetLibraryInfo *TLI,
526 DominatorTree *DT,
527 const LoopAccessInfo *LAI) const;
528
529 /// Query the target whether lowering of the llvm.get.active.lane.mask
530 /// intrinsic is supported.
531 bool emitGetActiveLaneMask() const;
532
533 // Parameters that control the loop peeling transformation
534 struct PeelingPreferences {
535 /// A forced peeling factor (the number of bodied of the original loop
536 /// that should be peeled off before the loop body). When set to 0, the
537 /// a peeling factor based on profile information and other factors.
538 unsigned PeelCount;
539 /// Allow peeling off loop iterations.
540 bool AllowPeeling;
541 /// Allow peeling off loop iterations for loop nests.
542 bool AllowLoopNestsPeeling;
543 /// Allow peeling basing on profile. Uses to enable peeling off all
544 /// iterations basing on provided profile.
545 /// If the value is true the peeling cost model can decide to peel only
546 /// some iterations and in this case it will set this to false.
547 bool PeelProfiledIterations;
548 };
549
550 /// Get target-customized preferences for the generic loop peeling
551 /// transformation. The caller will initialize \p PP with the current
552 /// target-independent defaults with information from \p L and \p SE.
553 void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
554 PeelingPreferences &PP) const;
555
556 /// Targets can implement their own combinations for target-specific
557 /// intrinsics. This function will be called from the InstCombine pass every
558 /// time a target-specific intrinsic is encountered.
559 ///
560 /// \returns None to not do anything target specific or a value that will be
561 /// returned from the InstCombiner. It is possible to return null and stop
562 /// further processing of the intrinsic by returning nullptr.
563 Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
564 IntrinsicInst &II) const;
565 /// Can be used to implement target-specific instruction combining.
566 /// \see instCombineIntrinsic
567 Optional<Value *>
568 simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
569 APInt DemandedMask, KnownBits &Known,
570 bool &KnownBitsComputed) const;
571 /// Can be used to implement target-specific instruction combining.
572 /// \see instCombineIntrinsic
573 Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
574 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
575 APInt &UndefElts2, APInt &UndefElts3,
576 std::function<void(Instruction *, unsigned, APInt, APInt &)>
577 SimplifyAndSetOp) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100578 /// @}
579
580 /// \name Scalar Target Information
581 /// @{
582
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100583 /// Flags indicating the kind of support for population count.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100584 ///
585 /// Compared to the SW implementation, HW support is supposed to
586 /// significantly boost the performance when the population is dense, and it
587 /// may or may not degrade performance if the population is sparse. A HW
588 /// support is considered as "Fast" if it can outperform, or is on a par
589 /// with, SW implementation when the population is sparse; otherwise, it is
590 /// considered as "Slow".
591 enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
592
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100593 /// Return true if the specified immediate is legal add immediate, that
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100594 /// is the target has add instructions which can add a register with the
595 /// immediate without having to materialize the immediate into a register.
596 bool isLegalAddImmediate(int64_t Imm) const;
597
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100598 /// Return true if the specified immediate is legal icmp immediate,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100599 /// that is the target has icmp instructions which can compare a register
600 /// against the immediate without having to materialize the immediate into a
601 /// register.
602 bool isLegalICmpImmediate(int64_t Imm) const;
603
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100604 /// Return true if the addressing mode represented by AM is legal for
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100605 /// this target, for a load/store of the specified type.
606 /// The type may be VoidTy, in which case only return true if the addressing
607 /// mode is legal for a load/store of any legal type.
608 /// If target returns true in LSRWithInstrQueries(), I may be valid.
609 /// TODO: Handle pre/postinc as well.
610 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
611 bool HasBaseReg, int64_t Scale,
612 unsigned AddrSpace = 0,
613 Instruction *I = nullptr) const;
614
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100615 /// Return true if LSR cost of C1 is lower than C1.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100616 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
617 TargetTransformInfo::LSRCost &C2) const;
618
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200619 /// Return true if LSR major cost is number of registers. Targets which
620 /// implement their own isLSRCostLess and unset number of registers as major
621 /// cost should return false, otherwise return true.
622 bool isNumRegsMajorCostOfLSR() const;
623
624 /// \returns true if LSR should not optimize a chain that includes \p I.
625 bool isProfitableLSRChainElement(Instruction *I) const;
626
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100627 /// Return true if the target can fuse a compare and branch.
628 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
629 /// calculation for the instructions in a loop.
630 bool canMacroFuseCmp() const;
631
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100632 /// Return true if the target can save a compare for loop count, for example
633 /// hardware loop saves a compare.
634 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
635 DominatorTree *DT, AssumptionCache *AC,
636 TargetLibraryInfo *LibInfo) const;
637
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100638 /// \return True is LSR should make efforts to create/preserve post-inc
639 /// addressing mode expressions.
640 bool shouldFavorPostInc() const;
641
Andrew Walbran16937d02019-10-22 13:54:20 +0100642 /// Return true if LSR should make efforts to generate indexed addressing
643 /// modes that operate across loop iterations.
644 bool shouldFavorBackedgeIndex(const Loop *L) const;
645
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100646 /// Return true if the target supports masked store.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200647 bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
648 /// Return true if the target supports masked load.
649 bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100650
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100651 /// Return true if the target supports nontemporal store.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200652 bool isLegalNTStore(Type *DataType, Align Alignment) const;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100653 /// Return true if the target supports nontemporal load.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200654 bool isLegalNTLoad(Type *DataType, Align Alignment) const;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100655
656 /// Return true if the target supports masked scatter.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200657 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100658 /// Return true if the target supports masked gather.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200659 bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100660
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100661 /// Return true if the target supports masked compress store.
662 bool isLegalMaskedCompressStore(Type *DataType) const;
663 /// Return true if the target supports masked expand load.
664 bool isLegalMaskedExpandLoad(Type *DataType) const;
665
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100666 /// Return true if the target has a unified operation to calculate division
667 /// and remainder. If so, the additional implicit multiplication and
668 /// subtraction required to calculate a remainder from division are free. This
669 /// can enable more aggressive transformations for division and remainder than
670 /// would typically be allowed using throughput or size cost models.
671 bool hasDivRemOp(Type *DataType, bool IsSigned) const;
672
673 /// Return true if the given instruction (assumed to be a memory access
674 /// instruction) has a volatile variant. If that's the case then we can avoid
675 /// addrspacecast to generic AS for volatile loads/stores. Default
676 /// implementation returns false, which prevents address space inference for
677 /// volatile loads/stores.
678 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
679
680 /// Return true if target doesn't mind addresses in vectors.
681 bool prefersVectorizedAddressing() const;
682
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100683 /// Return the cost of the scaling factor used in the addressing
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100684 /// mode represented by AM for this target, for a load/store
685 /// of the specified type.
686 /// If the AM is supported, the return value must be >= 0.
687 /// If the AM is not supported, it returns a negative value.
688 /// TODO: Handle pre/postinc as well.
689 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
690 bool HasBaseReg, int64_t Scale,
691 unsigned AddrSpace = 0) const;
692
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100693 /// Return true if the loop strength reduce pass should make
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100694 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
695 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
696 /// immediate offset and no index register.
697 bool LSRWithInstrQueries() const;
698
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100699 /// Return true if it's free to truncate a value of type Ty1 to type
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100700 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
701 /// by referencing its sub-register AX.
702 bool isTruncateFree(Type *Ty1, Type *Ty2) const;
703
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100704 /// Return true if it is profitable to hoist instruction in the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100705 /// then/else to before if.
706 bool isProfitableToHoist(Instruction *I) const;
707
708 bool useAA() const;
709
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100710 /// Return true if this type is legal.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100711 bool isTypeLegal(Type *Ty) const;
712
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200713 /// Returns the estimated number of registers required to represent \p Ty.
714 unsigned getRegUsageForType(Type *Ty) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100715
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100716 /// Return true if switches should be turned into lookup tables for the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100717 /// target.
718 bool shouldBuildLookupTables() const;
719
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100720 /// Return true if switches should be turned into lookup tables
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100721 /// containing this constant value for the target.
722 bool shouldBuildLookupTablesForConstant(Constant *C) const;
723
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100724 /// Return true if the input function which is cold at all call sites,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100725 /// should use coldcc calling convention.
726 bool useColdCCForColdCall(Function &F) const;
727
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200728 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
729 /// are set if the demanded result elements need to be inserted and/or
730 /// extracted from vectors.
731 unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
732 bool Insert, bool Extract) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100733
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200734 /// Estimate the overhead of scalarizing an instructions unique
735 /// non-constant operands. The types of the arguments are ordinarily
736 /// scalar, in which case the costs are multiplied with VF.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100737 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
738 unsigned VF) const;
739
740 /// If target has efficient vector element load/store instructions, it can
741 /// return true here so that insertion/extraction costs are not added to
742 /// the scalarization cost of a load/store.
743 bool supportsEfficientVectorElementLoadStore() const;
744
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100745 /// Don't restrict interleaved unrolling to small loops.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100746 bool enableAggressiveInterleaving(bool LoopHasReductions) const;
747
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100748 /// Returns options for expansion of memcmp. IsZeroCmp is
749 // true if this is the expansion of memcmp(p1, p2, s) == 0.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100750 struct MemCmpExpansionOptions {
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100751 // Return true if memcmp expansion is enabled.
752 operator bool() const { return MaxNumLoads > 0; }
753
754 // Maximum number of load operations.
755 unsigned MaxNumLoads = 0;
756
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100757 // The list of available load sizes (in bytes), sorted in decreasing order.
758 SmallVector<unsigned, 8> LoadSizes;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100759
760 // For memcmp expansion when the memcmp result is only compared equal or
761 // not-equal to 0, allow up to this number of load pairs per block. As an
762 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
763 // a0 = load2bytes &a[0]
764 // b0 = load2bytes &b[0]
765 // a2 = load1byte &a[2]
766 // b2 = load1byte &b[2]
767 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
768 unsigned NumLoadsPerBlock = 1;
769
Andrew Walbran16937d02019-10-22 13:54:20 +0100770 // Set to true to allow overlapping loads. For example, 7-byte compares can
771 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
772 // requires all loads in LoadSizes to be doable in an unaligned way.
773 bool AllowOverlappingLoads = false;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100774 };
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100775 MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
776 bool IsZeroCmp) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100777
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100778 /// Enable matching of interleaved access groups.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100779 bool enableInterleavedAccessVectorization() const;
780
Andrew Walbran16937d02019-10-22 13:54:20 +0100781 /// Enable matching of interleaved access groups that contain predicated
782 /// accesses or gaps and therefore vectorized using masked
783 /// vector loads/stores.
784 bool enableMaskedInterleavedAccessVectorization() const;
785
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100786 /// Indicate that it is potentially unsafe to automatically vectorize
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100787 /// floating-point operations because the semantics of vector and scalar
788 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
789 /// does not support IEEE-754 denormal numbers, while depending on the
790 /// platform, scalar floating-point math does.
791 /// This applies to floating-point math operations and calls, not memory
792 /// operations, shuffles, or casts.
793 bool isFPVectorizationPotentiallyUnsafe() const;
794
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100795 /// Determine if the target supports unaligned memory accesses.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200796 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
797 unsigned AddressSpace = 0,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100798 unsigned Alignment = 1,
799 bool *Fast = nullptr) const;
800
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100801 /// Return hardware support for population count.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100802 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
803
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100804 /// Return true if the hardware has a fast square-root instruction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100805 bool haveFastSqrt(Type *Ty) const;
806
807 /// Return true if it is faster to check if a floating-point value is NaN
808 /// (or not-NaN) versus a comparison against a constant FP zero value.
809 /// Targets should override this if materializing a 0.0 for comparison is
810 /// generally as cheap as checking for ordered/unordered.
811 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
812
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100813 /// Return the expected cost of supporting the floating point operation
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100814 /// of the specified type.
815 int getFPOpCost(Type *Ty) const;
816
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100817 /// Return the expected cost of materializing for the given integer
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100818 /// immediate of the specified type.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200819 int getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100820
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100821 /// Return the expected cost of materialization for the given integer
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100822 /// immediate of the specified type for a given instruction. The cost can be
823 /// zero if the immediate can be folded into the specified instruction.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200824 int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty,
825 TargetCostKind CostKind,
826 Instruction *Inst = nullptr) const;
827 int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
828 Type *Ty, TargetCostKind CostKind) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100829
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100830 /// Return the expected cost for the given integer when optimising
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100831 /// for size. This is different than the other integer immediate cost
832 /// functions in that it is subtarget agnostic. This is useful when you e.g.
833 /// target one ISA such as Aarch32 but smaller encodings could be possible
834 /// with another such as Thumb. This return value is used as a penalty when
835 /// the total costs for a constant is calculated (the bigger the cost, the
836 /// more beneficial constant hoisting is).
837 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
838 Type *Ty) const;
839 /// @}
840
841 /// \name Vector Target Information
842 /// @{
843
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100844 /// The various kinds of shuffle patterns for vector queries.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100845 enum ShuffleKind {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200846 SK_Broadcast, ///< Broadcast element 0 to all other elements.
847 SK_Reverse, ///< Reverse the order of the vector.
848 SK_Select, ///< Selects elements from the corresponding lane of
849 ///< either source operand. This is equivalent to a
850 ///< vector select with a constant condition operand.
851 SK_Transpose, ///< Transpose two vectors.
852 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
853 SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
854 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
855 ///< with any shuffle mask.
856 SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
857 ///< shuffle mask.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100858 };
859
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200860 /// Kind of the reduction data.
861 enum ReductionKind {
862 RK_None, /// Not a reduction.
863 RK_Arithmetic, /// Binary reduction data.
864 RK_MinMax, /// Min/max reduction data.
865 RK_UnsignedMinMax, /// Unsigned min/max reduction data.
866 };
867
868 /// Contains opcode + LHS/RHS parts of the reduction operations.
869 struct ReductionData {
870 ReductionData() = delete;
871 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
872 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
873 assert(Kind != RK_None && "expected binary or min/max reduction only.");
874 }
875 unsigned Opcode = 0;
876 Value *LHS = nullptr;
877 Value *RHS = nullptr;
878 ReductionKind Kind = RK_None;
879 bool hasSameData(ReductionData &RD) const {
880 return Kind == RD.Kind && Opcode == RD.Opcode;
881 }
882 };
883
884 static ReductionKind matchPairwiseReduction(
885 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty);
886
887 static ReductionKind matchVectorSplittingReduction(
888 const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty);
889
890 static ReductionKind matchVectorReduction(const ExtractElementInst *ReduxRoot,
891 unsigned &Opcode, VectorType *&Ty,
892 bool &IsPairwise);
893
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100894 /// Additional information about an operand's possible values.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100895 enum OperandValueKind {
896 OK_AnyValue, // Operand can have any value.
897 OK_UniformValue, // Operand is uniform (splat of a value).
898 OK_UniformConstantValue, // Operand is uniform constant.
899 OK_NonUniformConstantValue // Operand is a non uniform constant value.
900 };
901
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100902 /// Additional properties of an operand's values.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100903 enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
904
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200905 /// \return the number of registers in the target-provided register class.
906 unsigned getNumberOfRegisters(unsigned ClassID) const;
907
908 /// \return the target-provided register class ID for the provided type,
909 /// accounting for type promotion and other type-legalization techniques that
910 /// the target might apply. However, it specifically does not account for the
911 /// scalarization or splitting of vector types. Should a vector type require
912 /// scalarization or splitting into multiple underlying vector registers, that
913 /// type should be mapped to a register class containing no registers.
914 /// Specifically, this is designed to provide a simple, high-level view of the
915 /// register allocation later performed by the backend. These register classes
916 /// don't necessarily map onto the register classes used by the backend.
917 /// FIXME: It's not currently possible to determine how many registers
918 /// are used by the provided type.
919 unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
920
921 /// \return the target-provided register class name
922 const char *getRegisterClassName(unsigned ClassID) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100923
924 /// \return The width of the largest scalar or vector register type.
925 unsigned getRegisterBitWidth(bool Vector) const;
926
927 /// \return The width of the smallest vector register type.
928 unsigned getMinVectorRegisterBitWidth() const;
929
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200930 /// \return The maximum value of vscale if the target specifies an
931 /// architectural maximum vector length, and None otherwise.
932 Optional<unsigned> getMaxVScale() const;
933
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100934 /// \return True if the vectorization factor should be chosen to
935 /// make the vector of the smallest element type match the size of a
936 /// vector register. For wider element types, this could result in
937 /// creating vectors that span multiple vector registers.
938 /// If false, the vectorization factor will be chosen based on the
939 /// size of the widest element type.
940 bool shouldMaximizeVectorBandwidth(bool OptSize) const;
941
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100942 /// \return The minimum vectorization factor for types of given element
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100943 /// bit width, or 0 if there is no minimum VF. The returned value only
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100944 /// applies when shouldMaximizeVectorBandwidth returns true.
945 unsigned getMinimumVF(unsigned ElemWidth) const;
946
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200947 /// \return The maximum vectorization factor for types of given element
948 /// bit width and opcode, or 0 if there is no maximum VF.
949 /// Currently only used by the SLP vectorizer.
950 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
951
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100952 /// \return True if it should be considered for address type promotion.
953 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
954 /// profitable without finding other extensions fed by the same input.
955 bool shouldConsiderAddressTypePromotion(
956 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
957
958 /// \return The size of a cache line in bytes.
959 unsigned getCacheLineSize() const;
960
961 /// The possible cache levels
962 enum class CacheLevel {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200963 L1D, // The L1 data cache
964 L2D, // The L2 data cache
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100965
966 // We currently do not model L3 caches, as their sizes differ widely between
967 // microarchitectures. Also, we currently do not have a use for L3 cache
968 // size modeling yet.
969 };
970
971 /// \return The size of the cache level in bytes, if available.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200972 Optional<unsigned> getCacheSize(CacheLevel Level) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100973
974 /// \return The associativity of the cache level, if available.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200975 Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100976
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200977 /// \return How much before a load we should place the prefetch
978 /// instruction. This is currently measured in number of
979 /// instructions.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100980 unsigned getPrefetchDistance() const;
981
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200982 /// Some HW prefetchers can handle accesses up to a certain constant stride.
983 /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
984 /// and the arguments provided are meant to serve as a basis for deciding this
985 /// for a particular loop.
986 ///
987 /// \param NumMemAccesses Number of memory accesses in the loop.
988 /// \param NumStridedMemAccesses Number of the memory accesses that
989 /// ScalarEvolution could find a known stride
990 /// for.
991 /// \param NumPrefetches Number of software prefetches that will be
992 /// emitted as determined by the addresses
993 /// involved and the cache line size.
994 /// \param HasCall True if the loop contains a call.
995 ///
996 /// \return This is the minimum stride in bytes where it makes sense to start
997 /// adding SW prefetches. The default is 1, i.e. prefetch with any
998 /// stride.
999 unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1000 unsigned NumStridedMemAccesses,
1001 unsigned NumPrefetches, bool HasCall) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001002
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001003 /// \return The maximum number of iterations to prefetch ahead. If
1004 /// the required number of iterations is more than this number, no
1005 /// prefetching is performed.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001006 unsigned getMaxPrefetchIterationsAhead() const;
1007
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001008 /// \return True if prefetching should also be done for writes.
1009 bool enableWritePrefetching() const;
1010
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001011 /// \return The maximum interleave factor that any transform should try to
1012 /// perform for this target. This number depends on the level of parallelism
1013 /// and the number of execution units in the CPU.
1014 unsigned getMaxInterleaveFactor(unsigned VF) const;
1015
Andrew Walbran16937d02019-10-22 13:54:20 +01001016 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001017 static OperandValueKind getOperandInfo(const Value *V,
Andrew Walbran16937d02019-10-22 13:54:20 +01001018 OperandValueProperties &OpProps);
Andrew Scull0372a572018-11-16 15:47:06 +00001019
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001020 /// This is an approximation of reciprocal throughput of a math/logic op.
1021 /// A higher cost indicates less expected throughput.
1022 /// From Agner Fog's guides, reciprocal throughput is "the average number of
1023 /// clock cycles per instruction when the instructions are not part of a
1024 /// limiting dependency chain."
1025 /// Therefore, costs should be scaled to account for multiple execution units
1026 /// on the target that can process this type of instruction. For example, if
1027 /// there are 5 scalar integer units and 2 vector integer units that can
1028 /// calculate an 'add' in a single cycle, this model should indicate that the
1029 /// cost of the vector add instruction is 2.5 times the cost of the scalar
1030 /// add instruction.
1031 /// \p Args is an optional argument which holds the instruction operands
1032 /// values so the TTI can analyze those values searching for special
1033 /// cases or optimizations based on those values.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001034 /// \p CxtI is the optional original context instruction, if one exists, to
1035 /// provide even more information.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001036 int getArithmeticInstrCost(
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001037 unsigned Opcode, Type *Ty,
1038 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1039 OperandValueKind Opd1Info = OK_AnyValue,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001040 OperandValueKind Opd2Info = OK_AnyValue,
1041 OperandValueProperties Opd1PropInfo = OP_None,
1042 OperandValueProperties Opd2PropInfo = OP_None,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001043 ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
1044 const Instruction *CxtI = nullptr) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001045
1046 /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
1047 /// The index and subtype parameters are used by the subvector insertion and
Andrew Walbran16937d02019-10-22 13:54:20 +01001048 /// extraction shuffle kinds to show the insert/extract point and the type of
1049 /// the subvector being inserted/extracted.
1050 /// NOTE: For subvector extractions Tp represents the source type.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001051 int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index = 0,
1052 VectorType *SubTp = nullptr) const;
1053
1054 /// Represents a hint about the context in which a cast is used.
1055 ///
1056 /// For zext/sext, the context of the cast is the operand, which must be a
1057 /// load of some kind. For trunc, the context is of the cast is the single
1058 /// user of the instruction, which must be a store of some kind.
1059 ///
1060 /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1061 /// type of cast it's dealing with, as not every cast is equal. For instance,
1062 /// the zext of a load may be free, but the zext of an interleaving load can
1063 //// be (very) expensive!
1064 ///
1065 /// See \c getCastContextHint to compute a CastContextHint from a cast
1066 /// Instruction*. Callers can use it if they don't need to override the
1067 /// context and just want it to be calculated from the instruction.
1068 ///
1069 /// FIXME: This handles the types of load/store that the vectorizer can
1070 /// produce, which are the cases where the context instruction is most
1071 /// likely to be incorrect. There are other situations where that can happen
1072 /// too, which might be handled here but in the long run a more general
1073 /// solution of costing multiple instructions at the same times may be better.
1074 enum class CastContextHint : uint8_t {
1075 None, ///< The cast is not used with a load/store of any kind.
1076 Normal, ///< The cast is used with a normal load/store.
1077 Masked, ///< The cast is used with a masked load/store.
1078 GatherScatter, ///< The cast is used with a gather/scatter.
1079 Interleave, ///< The cast is used with an interleaved load/store.
1080 Reversed, ///< The cast is used with a reversed load/store.
1081 };
1082
1083 /// Calculates a CastContextHint from \p I.
1084 /// This should be used by callers of getCastInstrCost if they wish to
1085 /// determine the context from some instruction.
1086 /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1087 /// or if it's another type of cast.
1088 static CastContextHint getCastContextHint(const Instruction *I);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001089
1090 /// \return The expected cost of cast instructions, such as bitcast, trunc,
1091 /// zext, etc. If there is an existing instruction that holds Opcode, it
1092 /// may be passed in the 'I' parameter.
1093 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001094 TTI::CastContextHint CCH,
1095 TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001096 const Instruction *I = nullptr) const;
1097
1098 /// \return The expected cost of a sign- or zero-extended vector extract. Use
1099 /// -1 to indicate that there is no information about the index value.
1100 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1101 unsigned Index = -1) const;
1102
1103 /// \return The expected cost of control-flow related instructions such as
1104 /// Phi, Ret, Br.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001105 int getCFInstrCost(unsigned Opcode,
1106 TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001107
1108 /// \returns The expected cost of compare and select instructions. If there
1109 /// is an existing instruction that holds Opcode, it may be passed in the
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001110 /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1111 /// is using a compare with the specified predicate as condition. When vector
1112 /// types are passed, \p VecPred must be used for all lanes.
1113 int getCmpSelInstrCost(
1114 unsigned Opcode, Type *ValTy, Type *CondTy = nullptr,
1115 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE,
1116 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1117 const Instruction *I = nullptr) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001118
1119 /// \return The expected cost of vector Insert and Extract.
1120 /// Use -1 to indicate that there is no information on the index value.
1121 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
1122
1123 /// \return The cost of Load and Store instructions.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001124 int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1125 unsigned AddressSpace,
1126 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1127 const Instruction *I = nullptr) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001128
1129 /// \return The cost of masked Load and Store instructions.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001130 int getMaskedMemoryOpCost(
1131 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1132 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001133
1134 /// \return The cost of Gather or Scatter operation
1135 /// \p Opcode - is a type of memory access Load or Store
1136 /// \p DataTy - a vector type of the data to be loaded or stored
1137 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1138 /// \p VariableMask - true when the memory access is predicated with a mask
1139 /// that is not a compile-time constant
1140 /// \p Alignment - alignment of single element
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001141 /// \p I - the optional original context instruction, if one exists, e.g. the
1142 /// load/store to transform or the call to the gather/scatter intrinsic
1143 int getGatherScatterOpCost(
1144 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1145 Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1146 const Instruction *I = nullptr) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001147
1148 /// \return The cost of the interleaved memory operation.
1149 /// \p Opcode is the memory operation code
1150 /// \p VecTy is the vector type of the interleaved access.
1151 /// \p Factor is the interleave factor
1152 /// \p Indices is the indices for interleaved load members (as interleaved
1153 /// load allows gaps)
1154 /// \p Alignment is the alignment of the memory operation
1155 /// \p AddressSpace is address space of the pointer.
Andrew Walbran16937d02019-10-22 13:54:20 +01001156 /// \p UseMaskForCond indicates if the memory access is predicated.
1157 /// \p UseMaskForGaps indicates if gaps should be masked.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001158 int getInterleavedMemoryOpCost(
1159 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1160 Align Alignment, unsigned AddressSpace,
1161 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1162 bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001163
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001164 /// Calculate the cost of performing a vector reduction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001165 ///
1166 /// This is the cost of reducing the vector value of type \p Ty to a scalar
1167 /// value using the operation denoted by \p Opcode. The form of the reduction
1168 /// can either be a pairwise reduction or a reduction that splits the vector
1169 /// at every reduction level.
1170 ///
1171 /// Pairwise:
1172 /// (v0, v1, v2, v3)
1173 /// ((v0+v1), (v2+v3), undef, undef)
1174 /// Split:
1175 /// (v0, v1, v2, v3)
1176 /// ((v0+v2), (v1+v3), undef, undef)
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001177 int getArithmeticReductionCost(
1178 unsigned Opcode, VectorType *Ty, bool IsPairwiseForm,
1179 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1180
1181 int getMinMaxReductionCost(
1182 VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
1183 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001184
1185 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1186 /// Three cases are handled: 1. scalar instruction 2. vector instruction
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001187 /// 3. scalar instruction which is to be vectorized.
1188 int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1189 TTI::TargetCostKind CostKind) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001190
1191 /// \returns The cost of Call instructions.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001192 int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1193 TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001194
1195 /// \returns The number of pieces into which the provided type must be
1196 /// split during legalization. Zero is returned when the answer is unknown.
1197 unsigned getNumberOfParts(Type *Tp) const;
1198
1199 /// \returns The cost of the address computation. For most targets this can be
1200 /// merged into the instruction indexing mode. Some targets might want to
1201 /// distinguish between address computation for memory operations on vector
1202 /// types and scalar types. Such targets should override this function.
1203 /// The 'SE' parameter holds pointer for the scalar evolution object which
1204 /// is used in order to get the Ptr step value in case of constant stride.
1205 /// The 'Ptr' parameter holds SCEV of the access pointer.
1206 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
1207 const SCEV *Ptr = nullptr) const;
1208
1209 /// \returns The cost, if any, of keeping values of the given types alive
1210 /// over a callsite.
1211 ///
1212 /// Some types may require the use of register classes that do not have
1213 /// any callee-saved registers, so would require a spill and fill.
1214 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
1215
1216 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1217 /// will contain additional information - whether the intrinsic may write
1218 /// or read to memory, volatility and the pointer. Info is undefined
1219 /// if false is returned.
1220 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
1221
1222 /// \returns The maximum element size, in bytes, for an element
1223 /// unordered-atomic memory intrinsic.
1224 unsigned getAtomicMemIntrinsicMaxElementSize() const;
1225
1226 /// \returns A value which is the result of the given memory intrinsic. New
1227 /// instructions may be created to extract the result from the given intrinsic
1228 /// memory operation. Returns nullptr if the target cannot create a result
1229 /// from the given intrinsic.
1230 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1231 Type *ExpectedType) const;
1232
1233 /// \returns The type to use in a loop expansion of a memcpy call.
1234 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001235 unsigned SrcAddrSpace, unsigned DestAddrSpace,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001236 unsigned SrcAlign, unsigned DestAlign) const;
1237
1238 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1239 /// \param RemainingBytes The number of bytes to copy.
1240 ///
1241 /// Calculates the operand types to use when copying \p RemainingBytes of
1242 /// memory, where source and destination alignments are \p SrcAlign and
1243 /// \p DestAlign respectively.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001244 void getMemcpyLoopResidualLoweringType(
1245 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1246 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1247 unsigned SrcAlign, unsigned DestAlign) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001248
1249 /// \returns True if the two functions have compatible attributes for inlining
1250 /// purposes.
1251 bool areInlineCompatible(const Function *Caller,
1252 const Function *Callee) const;
1253
Andrew Walbran16937d02019-10-22 13:54:20 +01001254 /// \returns True if the caller and callee agree on how \p Args will be passed
1255 /// to the callee.
1256 /// \param[out] Args The list of compatible arguments. The implementation may
1257 /// filter out any incompatible args from this list.
1258 bool areFunctionArgsABICompatible(const Function *Caller,
1259 const Function *Callee,
1260 SmallPtrSetImpl<Argument *> &Args) const;
1261
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001262 /// The type of load/store indexing.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001263 enum MemIndexedMode {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001264 MIM_Unindexed, ///< No indexing.
1265 MIM_PreInc, ///< Pre-incrementing.
1266 MIM_PreDec, ///< Pre-decrementing.
1267 MIM_PostInc, ///< Post-incrementing.
1268 MIM_PostDec ///< Post-decrementing.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001269 };
1270
1271 /// \returns True if the specified indexed load for the given type is legal.
1272 bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1273
1274 /// \returns True if the specified indexed store for the given type is legal.
1275 bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1276
1277 /// \returns The bitwidth of the largest vector type that should be used to
1278 /// load/store in the given address space.
1279 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1280
1281 /// \returns True if the load instruction is legal to vectorize.
1282 bool isLegalToVectorizeLoad(LoadInst *LI) const;
1283
1284 /// \returns True if the store instruction is legal to vectorize.
1285 bool isLegalToVectorizeStore(StoreInst *SI) const;
1286
1287 /// \returns True if it is legal to vectorize the given load chain.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001288 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001289 unsigned AddrSpace) const;
1290
1291 /// \returns True if it is legal to vectorize the given store chain.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001292 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001293 unsigned AddrSpace) const;
1294
1295 /// \returns The new vector factor value if the target doesn't support \p
1296 /// SizeInBytes loads or has a better vector factor.
1297 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1298 unsigned ChainSizeInBytes,
1299 VectorType *VecTy) const;
1300
1301 /// \returns The new vector factor value if the target doesn't support \p
1302 /// SizeInBytes stores or has a better vector factor.
1303 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1304 unsigned ChainSizeInBytes,
1305 VectorType *VecTy) const;
1306
1307 /// Flags describing the kind of vector reduction.
1308 struct ReductionFlags {
1309 ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
1310 bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation.
1311 bool IsSigned; ///< Whether the operation is a signed int reduction.
1312 bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present.
1313 };
1314
1315 /// \returns True if the target wants to handle the given reduction idiom in
1316 /// the intrinsics form instead of the shuffle form.
1317 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1318 ReductionFlags Flags) const;
1319
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001320 /// \returns True if the target prefers reductions in loop.
1321 bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1322 ReductionFlags Flags) const;
1323
1324 /// \returns True if the target prefers reductions select kept in the loop
1325 /// when tail folding. i.e.
1326 /// loop:
1327 /// p = phi (0, s)
1328 /// a = add (p, x)
1329 /// s = select (mask, a, p)
1330 /// vecreduce.add(s)
1331 ///
1332 /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1333 /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1334 /// by the target, this can lead to cleaner code generation.
1335 bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1336 ReductionFlags Flags) const;
1337
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001338 /// \returns True if the target wants to expand the given reduction intrinsic
1339 /// into a shuffle sequence.
1340 bool shouldExpandReduction(const IntrinsicInst *II) const;
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001341
1342 /// \returns the size cost of rematerializing a GlobalValue address relative
1343 /// to a stack reload.
1344 unsigned getGISelRematGlobalCost() const;
1345
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001346 /// \returns True if the target supports scalable vectors.
1347 bool supportsScalableVectors() const;
1348
1349 /// \name Vector Predication Information
1350 /// @{
1351 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1352 /// in hardware. (see LLVM Language Reference - "Vector Predication
1353 /// Intrinsics") Use of %evl is discouraged when that is not the case.
1354 bool hasActiveVectorLength() const;
1355
1356 /// @}
1357
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001358 /// @}
1359
1360private:
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001361 /// Estimate the latency of specified instruction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001362 /// Returns 1 as the default value.
1363 int getInstructionLatency(const Instruction *I) const;
1364
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001365 /// Returns the expected throughput cost of the instruction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001366 /// Returns -1 if the cost is unknown.
1367 int getInstructionThroughput(const Instruction *I) const;
1368
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001369 /// The abstract base class used to type erase specific TTI
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001370 /// implementations.
1371 class Concept;
1372
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001373 /// The template model for the base class which wraps a concrete
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001374 /// implementation in a type erased interface.
1375 template <typename T> class Model;
1376
1377 std::unique_ptr<Concept> TTIImpl;
1378};
1379
1380class TargetTransformInfo::Concept {
1381public:
1382 virtual ~Concept() = 0;
1383 virtual const DataLayout &getDataLayout() const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001384 virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001385 ArrayRef<const Value *> Operands,
1386 TTI::TargetCostKind CostKind) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001387 virtual unsigned getInliningThresholdMultiplier() = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001388 virtual int getInlinerVectorBonusPercent() = 0;
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001389 virtual int getMemcpyCost(const Instruction *I) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001390 virtual unsigned
1391 getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
1392 ProfileSummaryInfo *PSI,
1393 BlockFrequencyInfo *BFI) = 0;
1394 virtual int getUserCost(const User *U, ArrayRef<const Value *> Operands,
1395 TargetCostKind CostKind) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001396 virtual bool hasBranchDivergence() = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001397 virtual bool useGPUDivergenceAnalysis() = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001398 virtual bool isSourceOfDivergence(const Value *V) = 0;
1399 virtual bool isAlwaysUniform(const Value *V) = 0;
1400 virtual unsigned getFlatAddressSpace() = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001401 virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1402 Intrinsic::ID IID) const = 0;
1403 virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1404 virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
1405 virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1406 Value *OldV,
1407 Value *NewV) const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001408 virtual bool isLoweredToCall(const Function *F) = 0;
1409 virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1410 UnrollingPreferences &UP) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001411 virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1412 PeelingPreferences &PP) = 0;
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001413 virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1414 AssumptionCache &AC,
1415 TargetLibraryInfo *LibInfo,
1416 HardwareLoopInfo &HWLoopInfo) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001417 virtual bool
1418 preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
1419 AssumptionCache &AC, TargetLibraryInfo *TLI,
1420 DominatorTree *DT, const LoopAccessInfo *LAI) = 0;
1421 virtual bool emitGetActiveLaneMask() = 0;
1422 virtual Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
1423 IntrinsicInst &II) = 0;
1424 virtual Optional<Value *>
1425 simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
1426 APInt DemandedMask, KnownBits &Known,
1427 bool &KnownBitsComputed) = 0;
1428 virtual Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1429 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
1430 APInt &UndefElts2, APInt &UndefElts3,
1431 std::function<void(Instruction *, unsigned, APInt, APInt &)>
1432 SimplifyAndSetOp) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001433 virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1434 virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1435 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1436 int64_t BaseOffset, bool HasBaseReg,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001437 int64_t Scale, unsigned AddrSpace,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001438 Instruction *I) = 0;
1439 virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1440 TargetTransformInfo::LSRCost &C2) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001441 virtual bool isNumRegsMajorCostOfLSR() = 0;
1442 virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001443 virtual bool canMacroFuseCmp() = 0;
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001444 virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1445 LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1446 TargetLibraryInfo *LibInfo) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001447 virtual bool shouldFavorPostInc() const = 0;
Andrew Walbran16937d02019-10-22 13:54:20 +01001448 virtual bool shouldFavorBackedgeIndex(const Loop *L) const = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001449 virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
1450 virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
1451 virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
1452 virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
1453 virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
1454 virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001455 virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
1456 virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001457 virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1458 virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1459 virtual bool prefersVectorizedAddressing() = 0;
1460 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1461 int64_t BaseOffset, bool HasBaseReg,
1462 int64_t Scale, unsigned AddrSpace) = 0;
1463 virtual bool LSRWithInstrQueries() = 0;
1464 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1465 virtual bool isProfitableToHoist(Instruction *I) = 0;
1466 virtual bool useAA() = 0;
1467 virtual bool isTypeLegal(Type *Ty) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001468 virtual unsigned getRegUsageForType(Type *Ty) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001469 virtual bool shouldBuildLookupTables() = 0;
1470 virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1471 virtual bool useColdCCForColdCall(Function &F) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001472 virtual unsigned getScalarizationOverhead(VectorType *Ty,
1473 const APInt &DemandedElts,
1474 bool Insert, bool Extract) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001475 virtual unsigned
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001476 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1477 unsigned VF) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001478 virtual bool supportsEfficientVectorElementLoadStore() = 0;
1479 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001480 virtual MemCmpExpansionOptions
1481 enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001482 virtual bool enableInterleavedAccessVectorization() = 0;
Andrew Walbran16937d02019-10-22 13:54:20 +01001483 virtual bool enableMaskedInterleavedAccessVectorization() = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001484 virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1485 virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1486 unsigned BitWidth,
1487 unsigned AddressSpace,
1488 unsigned Alignment,
1489 bool *Fast) = 0;
1490 virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1491 virtual bool haveFastSqrt(Type *Ty) = 0;
1492 virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1493 virtual int getFPOpCost(Type *Ty) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001494 virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1495 const APInt &Imm, Type *Ty) = 0;
1496 virtual int getIntImmCost(const APInt &Imm, Type *Ty,
1497 TargetCostKind CostKind) = 0;
1498 virtual int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm,
1499 Type *Ty, TargetCostKind CostKind,
1500 Instruction *Inst = nullptr) = 0;
1501 virtual int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
1502 const APInt &Imm, Type *Ty,
1503 TargetCostKind CostKind) = 0;
1504 virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
1505 virtual unsigned getRegisterClassForType(bool Vector,
1506 Type *Ty = nullptr) const = 0;
1507 virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001508 virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
1509 virtual unsigned getMinVectorRegisterBitWidth() = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001510 virtual Optional<unsigned> getMaxVScale() const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001511 virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001512 virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001513 virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001514 virtual bool shouldConsiderAddressTypePromotion(
1515 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001516 virtual unsigned getCacheLineSize() const = 0;
1517 virtual Optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
1518 virtual Optional<unsigned> getCacheAssociativity(CacheLevel Level) const = 0;
1519
1520 /// \return How much before a load we should place the prefetch
1521 /// instruction. This is currently measured in number of
1522 /// instructions.
1523 virtual unsigned getPrefetchDistance() const = 0;
1524
1525 /// \return Some HW prefetchers can handle accesses up to a certain
1526 /// constant stride. This is the minimum stride in bytes where it
1527 /// makes sense to start adding SW prefetches. The default is 1,
1528 /// i.e. prefetch with any stride. Sometimes prefetching is beneficial
1529 /// even below the HW prefetcher limit, and the arguments provided are
1530 /// meant to serve as a basis for deciding this for a particular loop.
1531 virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1532 unsigned NumStridedMemAccesses,
1533 unsigned NumPrefetches,
1534 bool HasCall) const = 0;
1535
1536 /// \return The maximum number of iterations to prefetch ahead. If
1537 /// the required number of iterations is more than this number, no
1538 /// prefetching is performed.
1539 virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
1540
1541 /// \return True if prefetching should also be done for writes.
1542 virtual bool enableWritePrefetching() const = 0;
1543
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001544 virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001545 virtual unsigned getArithmeticInstrCost(
1546 unsigned Opcode, Type *Ty,
1547 TTI::TargetCostKind CostKind,
1548 OperandValueKind Opd1Info,
1549 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
1550 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1551 const Instruction *CxtI = nullptr) = 0;
1552 virtual int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index,
1553 VectorType *SubTp) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001554 virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001555 CastContextHint CCH,
1556 TTI::TargetCostKind CostKind,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001557 const Instruction *I) = 0;
1558 virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1559 VectorType *VecTy, unsigned Index) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001560 virtual int getCFInstrCost(unsigned Opcode,
1561 TTI::TargetCostKind CostKind) = 0;
1562 virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1563 CmpInst::Predicate VecPred,
1564 TTI::TargetCostKind CostKind,
1565 const Instruction *I) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001566 virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
1567 unsigned Index) = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001568 virtual int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1569 unsigned AddressSpace,
1570 TTI::TargetCostKind CostKind,
1571 const Instruction *I) = 0;
1572 virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1573 unsigned AddressSpace,
1574 TTI::TargetCostKind CostKind) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001575 virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001576 const Value *Ptr, bool VariableMask,
1577 Align Alignment,
1578 TTI::TargetCostKind CostKind,
1579 const Instruction *I = nullptr) = 0;
1580
1581 virtual int getInterleavedMemoryOpCost(
1582 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1583 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1584 bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
1585 virtual int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
1586 bool IsPairwiseForm,
1587 TTI::TargetCostKind CostKind) = 0;
1588 virtual int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
1589 bool IsPairwiseForm, bool IsUnsigned,
1590 TTI::TargetCostKind CostKind) = 0;
1591 virtual int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1592 TTI::TargetCostKind CostKind) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001593 virtual int getCallInstrCost(Function *F, Type *RetTy,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001594 ArrayRef<Type *> Tys,
1595 TTI::TargetCostKind CostKind) = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001596 virtual unsigned getNumberOfParts(Type *Tp) = 0;
1597 virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1598 const SCEV *Ptr) = 0;
1599 virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
1600 virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1601 MemIntrinsicInfo &Info) = 0;
1602 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1603 virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1604 Type *ExpectedType) = 0;
1605 virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001606 unsigned SrcAddrSpace,
1607 unsigned DestAddrSpace,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001608 unsigned SrcAlign,
1609 unsigned DestAlign) const = 0;
1610 virtual void getMemcpyLoopResidualLoweringType(
1611 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001612 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1613 unsigned SrcAlign, unsigned DestAlign) const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001614 virtual bool areInlineCompatible(const Function *Caller,
1615 const Function *Callee) const = 0;
Andrew Walbran16937d02019-10-22 13:54:20 +01001616 virtual bool
1617 areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
1618 SmallPtrSetImpl<Argument *> &Args) const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001619 virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001620 virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001621 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
1622 virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
1623 virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
1624 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001625 Align Alignment,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001626 unsigned AddrSpace) const = 0;
1627 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001628 Align Alignment,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001629 unsigned AddrSpace) const = 0;
1630 virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1631 unsigned ChainSizeInBytes,
1632 VectorType *VecTy) const = 0;
1633 virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1634 unsigned ChainSizeInBytes,
1635 VectorType *VecTy) const = 0;
1636 virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1637 ReductionFlags) const = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001638 virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1639 ReductionFlags) const = 0;
1640 virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1641 ReductionFlags) const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001642 virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001643 virtual unsigned getGISelRematGlobalCost() const = 0;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001644 virtual bool supportsScalableVectors() const = 0;
1645 virtual bool hasActiveVectorLength() const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001646 virtual int getInstructionLatency(const Instruction *I) = 0;
1647};
1648
1649template <typename T>
1650class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
1651 T Impl;
1652
1653public:
1654 Model(T Impl) : Impl(std::move(Impl)) {}
1655 ~Model() override {}
1656
1657 const DataLayout &getDataLayout() const override {
1658 return Impl.getDataLayout();
1659 }
1660
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001661 int getGEPCost(Type *PointeeType, const Value *Ptr,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001662 ArrayRef<const Value *> Operands,
1663 enum TargetTransformInfo::TargetCostKind CostKind) override {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001664 return Impl.getGEPCost(PointeeType, Ptr, Operands);
1665 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001666 unsigned getInliningThresholdMultiplier() override {
1667 return Impl.getInliningThresholdMultiplier();
1668 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001669 int getInlinerVectorBonusPercent() override {
1670 return Impl.getInlinerVectorBonusPercent();
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001671 }
1672 int getMemcpyCost(const Instruction *I) override {
1673 return Impl.getMemcpyCost(I);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001674 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001675 int getUserCost(const User *U, ArrayRef<const Value *> Operands,
1676 TargetCostKind CostKind) override {
1677 return Impl.getUserCost(U, Operands, CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001678 }
1679 bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001680 bool useGPUDivergenceAnalysis() override {
1681 return Impl.useGPUDivergenceAnalysis();
1682 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001683 bool isSourceOfDivergence(const Value *V) override {
1684 return Impl.isSourceOfDivergence(V);
1685 }
1686
1687 bool isAlwaysUniform(const Value *V) override {
1688 return Impl.isAlwaysUniform(V);
1689 }
1690
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001691 unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
1692
1693 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1694 Intrinsic::ID IID) const override {
1695 return Impl.collectFlatAddressOperands(OpIndexes, IID);
1696 }
1697
1698 bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
1699 return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
1700 }
1701
1702 unsigned getAssumedAddrSpace(const Value *V) const override {
1703 return Impl.getAssumedAddrSpace(V);
1704 }
1705
1706 Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
1707 Value *NewV) const override {
1708 return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001709 }
1710
1711 bool isLoweredToCall(const Function *F) override {
1712 return Impl.isLoweredToCall(F);
1713 }
1714 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1715 UnrollingPreferences &UP) override {
1716 return Impl.getUnrollingPreferences(L, SE, UP);
1717 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001718 void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1719 PeelingPreferences &PP) override {
1720 return Impl.getPeelingPreferences(L, SE, PP);
1721 }
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001722 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001723 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001724 HardwareLoopInfo &HWLoopInfo) override {
1725 return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
1726 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001727 bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
1728 AssumptionCache &AC, TargetLibraryInfo *TLI,
1729 DominatorTree *DT,
1730 const LoopAccessInfo *LAI) override {
1731 return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
1732 }
1733 bool emitGetActiveLaneMask() override {
1734 return Impl.emitGetActiveLaneMask();
1735 }
1736 Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
1737 IntrinsicInst &II) override {
1738 return Impl.instCombineIntrinsic(IC, II);
1739 }
1740 Optional<Value *>
1741 simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
1742 APInt DemandedMask, KnownBits &Known,
1743 bool &KnownBitsComputed) override {
1744 return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
1745 KnownBitsComputed);
1746 }
1747 Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1748 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
1749 APInt &UndefElts2, APInt &UndefElts3,
1750 std::function<void(Instruction *, unsigned, APInt, APInt &)>
1751 SimplifyAndSetOp) override {
1752 return Impl.simplifyDemandedVectorEltsIntrinsic(
1753 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1754 SimplifyAndSetOp);
1755 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001756 bool isLegalAddImmediate(int64_t Imm) override {
1757 return Impl.isLegalAddImmediate(Imm);
1758 }
1759 bool isLegalICmpImmediate(int64_t Imm) override {
1760 return Impl.isLegalICmpImmediate(Imm);
1761 }
1762 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001763 bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001764 Instruction *I) override {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001765 return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
1766 AddrSpace, I);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001767 }
1768 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1769 TargetTransformInfo::LSRCost &C2) override {
1770 return Impl.isLSRCostLess(C1, C2);
1771 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001772 bool isNumRegsMajorCostOfLSR() override {
1773 return Impl.isNumRegsMajorCostOfLSR();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001774 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001775 bool isProfitableLSRChainElement(Instruction *I) override {
1776 return Impl.isProfitableLSRChainElement(I);
1777 }
1778 bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
1779 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
1780 DominatorTree *DT, AssumptionCache *AC,
1781 TargetLibraryInfo *LibInfo) override {
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001782 return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
1783 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001784 bool shouldFavorPostInc() const override { return Impl.shouldFavorPostInc(); }
Andrew Walbran16937d02019-10-22 13:54:20 +01001785 bool shouldFavorBackedgeIndex(const Loop *L) const override {
1786 return Impl.shouldFavorBackedgeIndex(L);
1787 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001788 bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
1789 return Impl.isLegalMaskedStore(DataType, Alignment);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001790 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001791 bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
1792 return Impl.isLegalMaskedLoad(DataType, Alignment);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001793 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001794 bool isLegalNTStore(Type *DataType, Align Alignment) override {
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001795 return Impl.isLegalNTStore(DataType, Alignment);
1796 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001797 bool isLegalNTLoad(Type *DataType, Align Alignment) override {
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001798 return Impl.isLegalNTLoad(DataType, Alignment);
1799 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001800 bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
1801 return Impl.isLegalMaskedScatter(DataType, Alignment);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001802 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001803 bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
1804 return Impl.isLegalMaskedGather(DataType, Alignment);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001805 }
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001806 bool isLegalMaskedCompressStore(Type *DataType) override {
1807 return Impl.isLegalMaskedCompressStore(DataType);
1808 }
1809 bool isLegalMaskedExpandLoad(Type *DataType) override {
1810 return Impl.isLegalMaskedExpandLoad(DataType);
1811 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001812 bool hasDivRemOp(Type *DataType, bool IsSigned) override {
1813 return Impl.hasDivRemOp(DataType, IsSigned);
1814 }
1815 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
1816 return Impl.hasVolatileVariant(I, AddrSpace);
1817 }
1818 bool prefersVectorizedAddressing() override {
1819 return Impl.prefersVectorizedAddressing();
1820 }
1821 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1822 bool HasBaseReg, int64_t Scale,
1823 unsigned AddrSpace) override {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001824 return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
1825 AddrSpace);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001826 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001827 bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001828 bool isTruncateFree(Type *Ty1, Type *Ty2) override {
1829 return Impl.isTruncateFree(Ty1, Ty2);
1830 }
1831 bool isProfitableToHoist(Instruction *I) override {
1832 return Impl.isProfitableToHoist(I);
1833 }
1834 bool useAA() override { return Impl.useAA(); }
1835 bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001836 unsigned getRegUsageForType(Type *Ty) override {
1837 return Impl.getRegUsageForType(Ty);
1838 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001839 bool shouldBuildLookupTables() override {
1840 return Impl.shouldBuildLookupTables();
1841 }
1842 bool shouldBuildLookupTablesForConstant(Constant *C) override {
1843 return Impl.shouldBuildLookupTablesForConstant(C);
1844 }
1845 bool useColdCCForColdCall(Function &F) override {
1846 return Impl.useColdCCForColdCall(F);
1847 }
1848
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001849 unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
1850 bool Insert, bool Extract) override {
1851 return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001852 }
1853 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1854 unsigned VF) override {
1855 return Impl.getOperandsScalarizationOverhead(Args, VF);
1856 }
1857
1858 bool supportsEfficientVectorElementLoadStore() override {
1859 return Impl.supportsEfficientVectorElementLoadStore();
1860 }
1861
1862 bool enableAggressiveInterleaving(bool LoopHasReductions) override {
1863 return Impl.enableAggressiveInterleaving(LoopHasReductions);
1864 }
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001865 MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
1866 bool IsZeroCmp) const override {
1867 return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001868 }
1869 bool enableInterleavedAccessVectorization() override {
1870 return Impl.enableInterleavedAccessVectorization();
1871 }
Andrew Walbran16937d02019-10-22 13:54:20 +01001872 bool enableMaskedInterleavedAccessVectorization() override {
1873 return Impl.enableMaskedInterleavedAccessVectorization();
1874 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001875 bool isFPVectorizationPotentiallyUnsafe() override {
1876 return Impl.isFPVectorizationPotentiallyUnsafe();
1877 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001878 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
1879 unsigned AddressSpace, unsigned Alignment,
1880 bool *Fast) override {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001881 return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
1882 Alignment, Fast);
1883 }
1884 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
1885 return Impl.getPopcntSupport(IntTyWidthInBit);
1886 }
1887 bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
1888
1889 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
1890 return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
1891 }
1892
1893 int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
1894
1895 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1896 Type *Ty) override {
1897 return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
1898 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001899 int getIntImmCost(const APInt &Imm, Type *Ty,
1900 TargetCostKind CostKind) override {
1901 return Impl.getIntImmCost(Imm, Ty, CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001902 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001903 int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty,
1904 TargetCostKind CostKind,
1905 Instruction *Inst = nullptr) override {
1906 return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001907 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001908 int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1909 Type *Ty, TargetCostKind CostKind) override {
1910 return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001911 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001912 unsigned getNumberOfRegisters(unsigned ClassID) const override {
1913 return Impl.getNumberOfRegisters(ClassID);
1914 }
1915 unsigned getRegisterClassForType(bool Vector,
1916 Type *Ty = nullptr) const override {
1917 return Impl.getRegisterClassForType(Vector, Ty);
1918 }
1919 const char *getRegisterClassName(unsigned ClassID) const override {
1920 return Impl.getRegisterClassName(ClassID);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001921 }
1922 unsigned getRegisterBitWidth(bool Vector) const override {
1923 return Impl.getRegisterBitWidth(Vector);
1924 }
1925 unsigned getMinVectorRegisterBitWidth() override {
1926 return Impl.getMinVectorRegisterBitWidth();
1927 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001928 Optional<unsigned> getMaxVScale() const override {
1929 return Impl.getMaxVScale();
1930 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001931 bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
1932 return Impl.shouldMaximizeVectorBandwidth(OptSize);
1933 }
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001934 unsigned getMinimumVF(unsigned ElemWidth) const override {
1935 return Impl.getMinimumVF(ElemWidth);
1936 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001937 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
1938 return Impl.getMaximumVF(ElemWidth, Opcode);
1939 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001940 bool shouldConsiderAddressTypePromotion(
1941 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
1942 return Impl.shouldConsiderAddressTypePromotion(
1943 I, AllowPromotionWithoutCommonHeader);
1944 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001945 unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
1946 Optional<unsigned> getCacheSize(CacheLevel Level) const override {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001947 return Impl.getCacheSize(Level);
1948 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001949 Optional<unsigned> getCacheAssociativity(CacheLevel Level) const override {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001950 return Impl.getCacheAssociativity(Level);
1951 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001952
1953 /// Return the preferred prefetch distance in terms of instructions.
1954 ///
1955 unsigned getPrefetchDistance() const override {
1956 return Impl.getPrefetchDistance();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001957 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001958
1959 /// Return the minimum stride necessary to trigger software
1960 /// prefetching.
1961 ///
1962 unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1963 unsigned NumStridedMemAccesses,
1964 unsigned NumPrefetches,
1965 bool HasCall) const override {
1966 return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
1967 NumPrefetches, HasCall);
1968 }
1969
1970 /// Return the maximum prefetch distance in terms of loop
1971 /// iterations.
1972 ///
1973 unsigned getMaxPrefetchIterationsAhead() const override {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001974 return Impl.getMaxPrefetchIterationsAhead();
1975 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001976
1977 /// \return True if prefetching should also be done for writes.
1978 bool enableWritePrefetching() const override {
1979 return Impl.enableWritePrefetching();
1980 }
1981
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001982 unsigned getMaxInterleaveFactor(unsigned VF) override {
1983 return Impl.getMaxInterleaveFactor(VF);
1984 }
1985 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001986 unsigned &JTSize,
1987 ProfileSummaryInfo *PSI,
1988 BlockFrequencyInfo *BFI) override {
1989 return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001990 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001991 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
1992 TTI::TargetCostKind CostKind,
1993 OperandValueKind Opd1Info,
1994 OperandValueKind Opd2Info,
1995 OperandValueProperties Opd1PropInfo,
1996 OperandValueProperties Opd2PropInfo,
1997 ArrayRef<const Value *> Args,
1998 const Instruction *CxtI = nullptr) override {
1999 return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
2000 Opd1PropInfo, Opd2PropInfo, Args, CxtI);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002001 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002002 int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index,
2003 VectorType *SubTp) override {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002004 return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
2005 }
2006 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002007 CastContextHint CCH, TTI::TargetCostKind CostKind,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002008 const Instruction *I) override {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002009 return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002010 }
2011 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
2012 unsigned Index) override {
2013 return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
2014 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002015 int getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) override {
2016 return Impl.getCFInstrCost(Opcode, CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002017 }
2018 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002019 CmpInst::Predicate VecPred,
2020 TTI::TargetCostKind CostKind,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002021 const Instruction *I) override {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002022 return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002023 }
2024 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
2025 return Impl.getVectorInstrCost(Opcode, Val, Index);
2026 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002027 int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2028 unsigned AddressSpace, TTI::TargetCostKind CostKind,
2029 const Instruction *I) override {
2030 return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2031 CostKind, I);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002032 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002033 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2034 unsigned AddressSpace,
2035 TTI::TargetCostKind CostKind) override {
2036 return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2037 CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002038 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002039 int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2040 bool VariableMask, Align Alignment,
2041 TTI::TargetCostKind CostKind,
2042 const Instruction *I = nullptr) override {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002043 return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002044 Alignment, CostKind, I);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002045 }
2046 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002047 ArrayRef<unsigned> Indices, Align Alignment,
2048 unsigned AddressSpace,
2049 TTI::TargetCostKind CostKind,
2050 bool UseMaskForCond,
Andrew Walbran16937d02019-10-22 13:54:20 +01002051 bool UseMaskForGaps) override {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002052 return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002053 Alignment, AddressSpace, CostKind,
Andrew Walbran16937d02019-10-22 13:54:20 +01002054 UseMaskForCond, UseMaskForGaps);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002055 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002056 int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2057 bool IsPairwiseForm,
2058 TTI::TargetCostKind CostKind) override {
2059 return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
2060 CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002061 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002062 int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
2063 bool IsPairwiseForm, bool IsUnsigned,
2064 TTI::TargetCostKind CostKind) override {
2065 return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
2066 CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002067 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002068 int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2069 TTI::TargetCostKind CostKind) override {
2070 return Impl.getIntrinsicInstrCost(ICA, CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002071 }
2072 int getCallInstrCost(Function *F, Type *RetTy,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002073 ArrayRef<Type *> Tys,
2074 TTI::TargetCostKind CostKind) override {
2075 return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002076 }
2077 unsigned getNumberOfParts(Type *Tp) override {
2078 return Impl.getNumberOfParts(Tp);
2079 }
2080 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2081 const SCEV *Ptr) override {
2082 return Impl.getAddressComputationCost(Ty, SE, Ptr);
2083 }
2084 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
2085 return Impl.getCostOfKeepingLiveOverCall(Tys);
2086 }
2087 bool getTgtMemIntrinsic(IntrinsicInst *Inst,
2088 MemIntrinsicInfo &Info) override {
2089 return Impl.getTgtMemIntrinsic(Inst, Info);
2090 }
2091 unsigned getAtomicMemIntrinsicMaxElementSize() const override {
2092 return Impl.getAtomicMemIntrinsicMaxElementSize();
2093 }
2094 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2095 Type *ExpectedType) override {
2096 return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
2097 }
2098 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002099 unsigned SrcAddrSpace, unsigned DestAddrSpace,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002100 unsigned SrcAlign,
2101 unsigned DestAlign) const override {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002102 return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
2103 DestAddrSpace, SrcAlign, DestAlign);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002104 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002105 void getMemcpyLoopResidualLoweringType(
2106 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2107 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2108 unsigned SrcAlign, unsigned DestAlign) const override {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002109 Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002110 SrcAddrSpace, DestAddrSpace,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002111 SrcAlign, DestAlign);
2112 }
2113 bool areInlineCompatible(const Function *Caller,
2114 const Function *Callee) const override {
2115 return Impl.areInlineCompatible(Caller, Callee);
2116 }
Andrew Walbran16937d02019-10-22 13:54:20 +01002117 bool areFunctionArgsABICompatible(
2118 const Function *Caller, const Function *Callee,
2119 SmallPtrSetImpl<Argument *> &Args) const override {
2120 return Impl.areFunctionArgsABICompatible(Caller, Callee, Args);
2121 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002122 bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
2123 return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
2124 }
2125 bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
2126 return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
2127 }
2128 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
2129 return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
2130 }
2131 bool isLegalToVectorizeLoad(LoadInst *LI) const override {
2132 return Impl.isLegalToVectorizeLoad(LI);
2133 }
2134 bool isLegalToVectorizeStore(StoreInst *SI) const override {
2135 return Impl.isLegalToVectorizeStore(SI);
2136 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002137 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002138 unsigned AddrSpace) const override {
2139 return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
2140 AddrSpace);
2141 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002142 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002143 unsigned AddrSpace) const override {
2144 return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
2145 AddrSpace);
2146 }
2147 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2148 unsigned ChainSizeInBytes,
2149 VectorType *VecTy) const override {
2150 return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
2151 }
2152 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2153 unsigned ChainSizeInBytes,
2154 VectorType *VecTy) const override {
2155 return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
2156 }
2157 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
2158 ReductionFlags Flags) const override {
2159 return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
2160 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002161 bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2162 ReductionFlags Flags) const override {
2163 return Impl.preferInLoopReduction(Opcode, Ty, Flags);
2164 }
2165 bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2166 ReductionFlags Flags) const override {
2167 return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
2168 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002169 bool shouldExpandReduction(const IntrinsicInst *II) const override {
2170 return Impl.shouldExpandReduction(II);
2171 }
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002172
2173 unsigned getGISelRematGlobalCost() const override {
2174 return Impl.getGISelRematGlobalCost();
2175 }
2176
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002177 bool supportsScalableVectors() const override {
2178 return Impl.supportsScalableVectors();
2179 }
2180
2181 bool hasActiveVectorLength() const override {
2182 return Impl.hasActiveVectorLength();
2183 }
2184
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002185 int getInstructionLatency(const Instruction *I) override {
2186 return Impl.getInstructionLatency(I);
2187 }
2188};
2189
2190template <typename T>
2191TargetTransformInfo::TargetTransformInfo(T Impl)
2192 : TTIImpl(new Model<T>(Impl)) {}
2193
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002194/// Analysis pass providing the \c TargetTransformInfo.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002195///
2196/// The core idea of the TargetIRAnalysis is to expose an interface through
2197/// which LLVM targets can analyze and provide information about the middle
2198/// end's target-independent IR. This supports use cases such as target-aware
2199/// cost modeling of IR constructs.
2200///
2201/// This is a function analysis because much of the cost modeling for targets
2202/// is done in a subtarget specific way and LLVM supports compiling different
2203/// functions targeting different subtargets in order to support runtime
2204/// dispatch according to the observed subtarget.
2205class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2206public:
2207 typedef TargetTransformInfo Result;
2208
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002209 /// Default construct a target IR analysis.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002210 ///
2211 /// This will use the module's datalayout to construct a baseline
2212 /// conservative TTI result.
2213 TargetIRAnalysis();
2214
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002215 /// Construct an IR analysis pass around a target-provide callback.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002216 ///
2217 /// The callback will be called with a particular function for which the TTI
2218 /// is needed and must return a TTI object for that function.
2219 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2220
2221 // Value semantics. We spell out the constructors for MSVC.
2222 TargetIRAnalysis(const TargetIRAnalysis &Arg)
2223 : TTICallback(Arg.TTICallback) {}
2224 TargetIRAnalysis(TargetIRAnalysis &&Arg)
2225 : TTICallback(std::move(Arg.TTICallback)) {}
2226 TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
2227 TTICallback = RHS.TTICallback;
2228 return *this;
2229 }
2230 TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
2231 TTICallback = std::move(RHS.TTICallback);
2232 return *this;
2233 }
2234
2235 Result run(const Function &F, FunctionAnalysisManager &);
2236
2237private:
2238 friend AnalysisInfoMixin<TargetIRAnalysis>;
2239 static AnalysisKey Key;
2240
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002241 /// The callback used to produce a result.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002242 ///
2243 /// We use a completely opaque callback so that targets can provide whatever
2244 /// mechanism they desire for constructing the TTI for a given function.
2245 ///
2246 /// FIXME: Should we really use std::function? It's relatively inefficient.
2247 /// It might be possible to arrange for even stateful callbacks to outlive
2248 /// the analysis and thus use a function_ref which would be lighter weight.
2249 /// This may also be less error prone as the callback is likely to reference
2250 /// the external TargetMachine, and that reference needs to never dangle.
2251 std::function<Result(const Function &)> TTICallback;
2252
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002253 /// Helper function used as the callback in the default constructor.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002254 static Result getDefaultTTI(const Function &F);
2255};
2256
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002257/// Wrapper pass for TargetTransformInfo.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002258///
2259/// This pass can be constructed from a TTI object which it stores internally
2260/// and is queried by passes.
2261class TargetTransformInfoWrapperPass : public ImmutablePass {
2262 TargetIRAnalysis TIRA;
2263 Optional<TargetTransformInfo> TTI;
2264
2265 virtual void anchor();
2266
2267public:
2268 static char ID;
2269
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002270 /// We must provide a default constructor for the pass but it should
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002271 /// never be used.
2272 ///
2273 /// Use the constructor below or call one of the creation routines.
2274 TargetTransformInfoWrapperPass();
2275
2276 explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2277
2278 TargetTransformInfo &getTTI(const Function &F);
2279};
2280
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002281/// Create an analysis pass wrapper around a TTI object.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002282///
2283/// This analysis pass just holds the TTI instance and makes it available to
2284/// clients.
2285ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2286
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002287} // namespace llvm
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002288
2289#endif