Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/Analysis/TargetTransformInfo.h b/linux-x64/clang/include/llvm/Analysis/TargetTransformInfo.h
new file mode 100644
index 0000000..9e9c661
--- /dev/null
+++ b/linux-x64/clang/include/llvm/Analysis/TargetTransformInfo.h
@@ -0,0 +1,1662 @@
+//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This pass exposes codegen information to IR-level passes. Every
+/// transformation that uses codegen information is broken into three parts:
+/// 1. The IR-level analysis pass.
+/// 2. The IR-level transformation interface which provides the needed
+///    information.
+/// 3. Codegen-level implementation which uses target-specific hooks.
+///
+/// This file defines #2, which is the interface that IR-level transformations
+/// use for querying the codegen.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
+#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
+
+#include "llvm/ADT/Optional.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/DataTypes.h"
+#include <functional>
+
+namespace llvm {
+
+namespace Intrinsic {
+enum ID : unsigned;
+}
+
+class Function;
+class GlobalValue;
+class IntrinsicInst;
+class LoadInst;
+class Loop;
+class SCEV;
+class ScalarEvolution;
+class StoreInst;
+class SwitchInst;
+class Type;
+class User;
+class Value;
+
+/// \brief Information about a load/store intrinsic defined by the target.
+struct MemIntrinsicInfo {
+  /// This is the pointer that the intrinsic is loading from or storing to.
+  /// If this is non-null, then analysis/optimization passes can assume that
+  /// this intrinsic is functionally equivalent to a load/store from this
+  /// pointer.
+  Value *PtrVal = nullptr;
+
+  // Ordering for atomic operations.
+  AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
+
+  // Same Id is set by the target for corresponding load/store intrinsics.
+  unsigned short MatchingId = 0;
+
+  bool ReadMem = false;
+  bool WriteMem = false;
+  bool IsVolatile = false;
+
+  bool isUnordered() const {
+    return (Ordering == AtomicOrdering::NotAtomic ||
+            Ordering == AtomicOrdering::Unordered) && !IsVolatile;
+  }
+};
+
+/// \brief This pass provides access to the codegen interfaces that are needed
+/// for IR-level transformations.
+class TargetTransformInfo {
+public:
+  /// \brief Construct a TTI object using a type implementing the \c Concept
+  /// API below.
+  ///
+  /// This is used by targets to construct a TTI wrapping their target-specific
+  /// implementaion that encodes appropriate costs for their target.
+  template <typename T> TargetTransformInfo(T Impl);
+
+  /// \brief Construct a baseline TTI object using a minimal implementation of
+  /// the \c Concept API below.
+  ///
+  /// The TTI implementation will reflect the information in the DataLayout
+  /// provided if non-null.
+  explicit TargetTransformInfo(const DataLayout &DL);
+
+  // Provide move semantics.
+  TargetTransformInfo(TargetTransformInfo &&Arg);
+  TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
+
+  // We need to define the destructor out-of-line to define our sub-classes
+  // out-of-line.
+  ~TargetTransformInfo();
+
+  /// \brief Handle the invalidation of this information.
+  ///
+  /// When used as a result of \c TargetIRAnalysis this method will be called
+  /// when the function this was computed for changes. When it returns false,
+  /// the information is preserved across those changes.
+  bool invalidate(Function &, const PreservedAnalyses &,
+                  FunctionAnalysisManager::Invalidator &) {
+    // FIXME: We should probably in some way ensure that the subtarget
+    // information for a function hasn't changed.
+    return false;
+  }
+
+  /// \name Generic Target Information
+  /// @{
+
+  /// \brief The kind of cost model.
+  ///
+  /// There are several different cost models that can be customized by the
+  /// target. The normalization of each cost model may be target specific.
+  enum TargetCostKind {
+    TCK_RecipThroughput, ///< Reciprocal throughput.
+    TCK_Latency,         ///< The latency of instruction.
+    TCK_CodeSize         ///< Instruction code size.
+  };
+
+  /// \brief Query the cost of a specified instruction.
+  ///
+  /// Clients should use this interface to query the cost of an existing
+  /// instruction. The instruction must have a valid parent (basic block).
+  ///
+  /// Note, this method does not cache the cost calculation and it
+  /// can be expensive in some cases.
+  int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
+    switch (kind){
+    case TCK_RecipThroughput:
+      return getInstructionThroughput(I);
+
+    case TCK_Latency:
+      return getInstructionLatency(I);
+
+    case TCK_CodeSize:
+      return getUserCost(I);
+    }
+    llvm_unreachable("Unknown instruction cost kind");
+  }
+
+  /// \brief Underlying constants for 'cost' values in this interface.
+  ///
+  /// Many APIs in this interface return a cost. This enum defines the
+  /// fundamental values that should be used to interpret (and produce) those
+  /// costs. The costs are returned as an int rather than a member of this
+  /// enumeration because it is expected that the cost of one IR instruction
+  /// may have a multiplicative factor to it or otherwise won't fit directly
+  /// into the enum. Moreover, it is common to sum or average costs which works
+  /// better as simple integral values. Thus this enum only provides constants.
+  /// Also note that the returned costs are signed integers to make it natural
+  /// to add, subtract, and test with zero (a common boundary condition). It is
+  /// not expected that 2^32 is a realistic cost to be modeling at any point.
+  ///
+  /// Note that these costs should usually reflect the intersection of code-size
+  /// cost and execution cost. A free instruction is typically one that folds
+  /// into another instruction. For example, reg-to-reg moves can often be
+  /// skipped by renaming the registers in the CPU, but they still are encoded
+  /// and thus wouldn't be considered 'free' here.
+  enum TargetCostConstants {
+    TCC_Free = 0,     ///< Expected to fold away in lowering.
+    TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
+    TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
+  };
+
+  /// \brief Estimate the cost of a specific operation when lowered.
+  ///
+  /// Note that this is designed to work on an arbitrary synthetic opcode, and
+  /// thus work for hypothetical queries before an instruction has even been
+  /// formed. However, this does *not* work for GEPs, and must not be called
+  /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
+  /// analyzing a GEP's cost required more information.
+  ///
+  /// Typically only the result type is required, and the operand type can be
+  /// omitted. However, if the opcode is one of the cast instructions, the
+  /// operand type is required.
+  ///
+  /// The returned cost is defined in terms of \c TargetCostConstants, see its
+  /// comments for a detailed explanation of the cost values.
+  int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
+
+  /// \brief Estimate the cost of a GEP operation when lowered.
+  ///
+  /// The contract for this function is the same as \c getOperationCost except
+  /// that it supports an interface that provides extra information specific to
+  /// the GEP operation.
+  int getGEPCost(Type *PointeeType, const Value *Ptr,
+                 ArrayRef<const Value *> Operands) const;
+
+  /// \brief Estimate the cost of a EXT operation when lowered.
+  ///
+  /// The contract for this function is the same as \c getOperationCost except
+  /// that it supports an interface that provides extra information specific to
+  /// the EXT operation.
+  int getExtCost(const Instruction *I, const Value *Src) const;
+
+  /// \brief Estimate the cost of a function call when lowered.
+  ///
+  /// The contract for this is the same as \c getOperationCost except that it
+  /// supports an interface that provides extra information specific to call
+  /// instructions.
+  ///
+  /// This is the most basic query for estimating call cost: it only knows the
+  /// function type and (potentially) the number of arguments at the call site.
+  /// The latter is only interesting for varargs function types.
+  int getCallCost(FunctionType *FTy, int NumArgs = -1) const;
+
+  /// \brief Estimate the cost of calling a specific function when lowered.
+  ///
+  /// This overload adds the ability to reason about the particular function
+  /// being called in the event it is a library call with special lowering.
+  int getCallCost(const Function *F, int NumArgs = -1) const;
+
+  /// \brief Estimate the cost of calling a specific function when lowered.
+  ///
+  /// This overload allows specifying a set of candidate argument values.
+  int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const;
+
+  /// \returns A value by which our inlining threshold should be multiplied.
+  /// This is primarily used to bump up the inlining threshold wholesale on
+  /// targets where calls are unusually expensive.
+  ///
+  /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
+  /// individual classes of instructions would be better.
+  unsigned getInliningThresholdMultiplier() const;
+
+  /// \brief Estimate the cost of an intrinsic when lowered.
+  ///
+  /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
+  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                       ArrayRef<Type *> ParamTys) const;
+
+  /// \brief Estimate the cost of an intrinsic when lowered.
+  ///
+  /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
+  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                       ArrayRef<const Value *> Arguments) const;
+
+  /// \return The estimated number of case clusters when lowering \p 'SI'.
+  /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
+  /// table.
+  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
+                                            unsigned &JTSize) const;
+
+  /// \brief Estimate the cost of a given IR user when lowered.
+  ///
+  /// This can estimate the cost of either a ConstantExpr or Instruction when
+  /// lowered. It has two primary advantages over the \c getOperationCost and
+  /// \c getGEPCost above, and one significant disadvantage: it can only be
+  /// used when the IR construct has already been formed.
+  ///
+  /// The advantages are that it can inspect the SSA use graph to reason more
+  /// accurately about the cost. For example, all-constant-GEPs can often be
+  /// folded into a load or other instruction, but if they are used in some
+  /// other context they may not be folded. This routine can distinguish such
+  /// cases.
+  ///
+  /// \p Operands is a list of operands which can be a result of transformations
+  /// of the current operands. The number of the operands on the list must equal
+  /// to the number of the current operands the IR user has. Their order on the
+  /// list must be the same as the order of the current operands the IR user
+  /// has.
+  ///
+  /// The returned cost is defined in terms of \c TargetCostConstants, see its
+  /// comments for a detailed explanation of the cost values.
+  int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;
+
+  /// \brief This is a helper function which calls the two-argument getUserCost
+  /// with \p Operands which are the current operands U has.
+  int getUserCost(const User *U) const {
+    SmallVector<const Value *, 4> Operands(U->value_op_begin(),
+                                           U->value_op_end());
+    return getUserCost(U, Operands);
+  }
+
+  /// \brief Return true if branch divergence exists.
+  ///
+  /// Branch divergence has a significantly negative impact on GPU performance
+  /// when threads in the same wavefront take different paths due to conditional
+  /// branches.
+  bool hasBranchDivergence() const;
+
+  /// \brief Returns whether V is a source of divergence.
+  ///
+  /// This function provides the target-dependent information for
+  /// the target-independent DivergenceAnalysis. DivergenceAnalysis first
+  /// builds the dependency graph, and then runs the reachability algorithm
+  /// starting with the sources of divergence.
+  bool isSourceOfDivergence(const Value *V) const;
+
+  // \brief Returns true for the target specific
+  // set of operations which produce uniform result
+  // even taking non-unform arguments
+  bool isAlwaysUniform(const Value *V) const;
+
+  /// Returns the address space ID for a target's 'flat' address space. Note
+  /// this is not necessarily the same as addrspace(0), which LLVM sometimes
+  /// refers to as the generic address space. The flat address space is a
+  /// generic address space that can be used access multiple segments of memory
+  /// with different address spaces. Access of a memory location through a
+  /// pointer with this address space is expected to be legal but slower
+  /// compared to the same memory location accessed through a pointer with a
+  /// different address space.
+  //
+  /// This is for targets with different pointer representations which can
+  /// be converted with the addrspacecast instruction. If a pointer is converted
+  /// to this address space, optimizations should attempt to replace the access
+  /// with the source address space.
+  ///
+  /// \returns ~0u if the target does not have such a flat address space to
+  /// optimize away.
+  unsigned getFlatAddressSpace() const;
+
+  /// \brief Test whether calls to a function lower to actual program function
+  /// calls.
+  ///
+  /// The idea is to test whether the program is likely to require a 'call'
+  /// instruction or equivalent in order to call the given function.
+  ///
+  /// FIXME: It's not clear that this is a good or useful query API. Client's
+  /// should probably move to simpler cost metrics using the above.
+  /// Alternatively, we could split the cost interface into distinct code-size
+  /// and execution-speed costs. This would allow modelling the core of this
+  /// query more accurately as a call is a single small instruction, but
+  /// incurs significant execution cost.
+  bool isLoweredToCall(const Function *F) const;
+
+  struct LSRCost {
+    /// TODO: Some of these could be merged. Also, a lexical ordering
+    /// isn't always optimal.
+    unsigned Insns;
+    unsigned NumRegs;
+    unsigned AddRecCost;
+    unsigned NumIVMuls;
+    unsigned NumBaseAdds;
+    unsigned ImmCost;
+    unsigned SetupCost;
+    unsigned ScaleCost;
+  };
+
+  /// Parameters that control the generic loop unrolling transformation.
+  struct UnrollingPreferences {
+    /// The cost threshold for the unrolled loop. Should be relative to the
+    /// getUserCost values returned by this API, and the expectation is that
+    /// the unrolled loop's instructions when run through that interface should
+    /// not exceed this cost. However, this is only an estimate. Also, specific
+    /// loops may be unrolled even with a cost above this threshold if deemed
+    /// profitable. Set this to UINT_MAX to disable the loop body cost
+    /// restriction.
+    unsigned Threshold;
+    /// If complete unrolling will reduce the cost of the loop, we will boost
+    /// the Threshold by a certain percent to allow more aggressive complete
+    /// unrolling. This value provides the maximum boost percentage that we
+    /// can apply to Threshold (The value should be no less than 100).
+    /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
+    ///                                    MaxPercentThresholdBoost / 100)
+    /// E.g. if complete unrolling reduces the loop execution time by 50%
+    /// then we boost the threshold by the factor of 2x. If unrolling is not
+    /// expected to reduce the running time, then we do not increase the
+    /// threshold.
+    unsigned MaxPercentThresholdBoost;
+    /// The cost threshold for the unrolled loop when optimizing for size (set
+    /// to UINT_MAX to disable).
+    unsigned OptSizeThreshold;
+    /// The cost threshold for the unrolled loop, like Threshold, but used
+    /// for partial/runtime unrolling (set to UINT_MAX to disable).
+    unsigned PartialThreshold;
+    /// The cost threshold for the unrolled loop when optimizing for size, like
+    /// OptSizeThreshold, but used for partial/runtime unrolling (set to
+    /// UINT_MAX to disable).
+    unsigned PartialOptSizeThreshold;
+    /// A forced unrolling factor (the number of concatenated bodies of the
+    /// original loop in the unrolled loop body). When set to 0, the unrolling
+    /// transformation will select an unrolling factor based on the current cost
+    /// threshold and other factors.
+    unsigned Count;
+    /// A forced peeling factor (the number of bodied of the original loop
+    /// that should be peeled off before the loop body). When set to 0, the
+    /// unrolling transformation will select a peeling factor based on profile
+    /// information and other factors.
+    unsigned PeelCount;
+    /// Default unroll count for loops with run-time trip count.
+    unsigned DefaultUnrollRuntimeCount;
+    // Set the maximum unrolling factor. The unrolling factor may be selected
+    // using the appropriate cost threshold, but may not exceed this number
+    // (set to UINT_MAX to disable). This does not apply in cases where the
+    // loop is being fully unrolled.
+    unsigned MaxCount;
+    /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
+    /// applies even if full unrolling is selected. This allows a target to fall
+    /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
+    unsigned FullUnrollMaxCount;
+    // Represents number of instructions optimized when "back edge"
+    // becomes "fall through" in unrolled loop.
+    // For now we count a conditional branch on a backedge and a comparison
+    // feeding it.
+    unsigned BEInsns;
+    /// Allow partial unrolling (unrolling of loops to expand the size of the
+    /// loop body, not only to eliminate small constant-trip-count loops).
+    bool Partial;
+    /// Allow runtime unrolling (unrolling of loops to expand the size of the
+    /// loop body even when the number of loop iterations is not known at
+    /// compile time).
+    bool Runtime;
+    /// Allow generation of a loop remainder (extra iterations after unroll).
+    bool AllowRemainder;
+    /// Allow emitting expensive instructions (such as divisions) when computing
+    /// the trip count of a loop for runtime unrolling.
+    bool AllowExpensiveTripCount;
+    /// Apply loop unroll on any kind of loop
+    /// (mainly to loops that fail runtime unrolling).
+    bool Force;
+    /// Allow using trip count upper bound to unroll loops.
+    bool UpperBound;
+    /// Allow peeling off loop iterations for loops with low dynamic tripcount.
+    bool AllowPeeling;
+    /// Allow unrolling of all the iterations of the runtime loop remainder.
+    bool UnrollRemainder;
+  };
+
+  /// \brief Get target-customized preferences for the generic loop unrolling
+  /// transformation. The caller will initialize UP with the current
+  /// target-independent defaults.
+  void getUnrollingPreferences(Loop *L, ScalarEvolution &,
+                               UnrollingPreferences &UP) const;
+
+  /// @}
+
+  /// \name Scalar Target Information
+  /// @{
+
+  /// \brief Flags indicating the kind of support for population count.
+  ///
+  /// Compared to the SW implementation, HW support is supposed to
+  /// significantly boost the performance when the population is dense, and it
+  /// may or may not degrade performance if the population is sparse. A HW
+  /// support is considered as "Fast" if it can outperform, or is on a par
+  /// with, SW implementation when the population is sparse; otherwise, it is
+  /// considered as "Slow".
+  enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
+
+  /// \brief Return true if the specified immediate is legal add immediate, that
+  /// is the target has add instructions which can add a register with the
+  /// immediate without having to materialize the immediate into a register.
+  bool isLegalAddImmediate(int64_t Imm) const;
+
+  /// \brief Return true if the specified immediate is legal icmp immediate,
+  /// that is the target has icmp instructions which can compare a register
+  /// against the immediate without having to materialize the immediate into a
+  /// register.
+  bool isLegalICmpImmediate(int64_t Imm) const;
+
+  /// \brief Return true if the addressing mode represented by AM is legal for
+  /// this target, for a load/store of the specified type.
+  /// The type may be VoidTy, in which case only return true if the addressing
+  /// mode is legal for a load/store of any legal type.
+  /// If target returns true in LSRWithInstrQueries(), I may be valid.
+  /// TODO: Handle pre/postinc as well.
+  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+                             bool HasBaseReg, int64_t Scale,
+                             unsigned AddrSpace = 0,
+                             Instruction *I = nullptr) const;
+
+  /// \brief Return true if LSR cost of C1 is lower than C1.
+  bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
+                     TargetTransformInfo::LSRCost &C2) const;
+
+  /// Return true if the target can fuse a compare and branch.
+  /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
+  /// calculation for the instructions in a loop.
+  bool canMacroFuseCmp() const;
+
+  /// \return True is LSR should make efforts to create/preserve post-inc
+  /// addressing mode expressions.
+  bool shouldFavorPostInc() const;
+
+  /// \brief Return true if the target supports masked load/store
+  /// AVX2 and AVX-512 targets allow masks for consecutive load and store
+  bool isLegalMaskedStore(Type *DataType) const;
+  bool isLegalMaskedLoad(Type *DataType) const;
+
+  /// \brief Return true if the target supports masked gather/scatter
+  /// AVX-512 fully supports gather and scatter for vectors with 32 and 64
+  /// bits scalar type.
+  bool isLegalMaskedScatter(Type *DataType) const;
+  bool isLegalMaskedGather(Type *DataType) const;
+
+  /// Return true if the target has a unified operation to calculate division
+  /// and remainder. If so, the additional implicit multiplication and
+  /// subtraction required to calculate a remainder from division are free. This
+  /// can enable more aggressive transformations for division and remainder than
+  /// would typically be allowed using throughput or size cost models.
+  bool hasDivRemOp(Type *DataType, bool IsSigned) const;
+
+  /// Return true if the given instruction (assumed to be a memory access
+  /// instruction) has a volatile variant. If that's the case then we can avoid
+  /// addrspacecast to generic AS for volatile loads/stores. Default
+  /// implementation returns false, which prevents address space inference for
+  /// volatile loads/stores.
+  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
+
+  /// Return true if target doesn't mind addresses in vectors.
+  bool prefersVectorizedAddressing() const;
+
+  /// \brief Return the cost of the scaling factor used in the addressing
+  /// mode represented by AM for this target, for a load/store
+  /// of the specified type.
+  /// If the AM is supported, the return value must be >= 0.
+  /// If the AM is not supported, it returns a negative value.
+  /// TODO: Handle pre/postinc as well.
+  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+                           bool HasBaseReg, int64_t Scale,
+                           unsigned AddrSpace = 0) const;
+
+  /// \brief Return true if the loop strength reduce pass should make
+  /// Instruction* based TTI queries to isLegalAddressingMode(). This is
+  /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
+  /// immediate offset and no index register.
+  bool LSRWithInstrQueries() const;
+
+  /// \brief Return true if it's free to truncate a value of type Ty1 to type
+  /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
+  /// by referencing its sub-register AX.
+  bool isTruncateFree(Type *Ty1, Type *Ty2) const;
+
+  /// \brief Return true if it is profitable to hoist instruction in the
+  /// then/else to before if.
+  bool isProfitableToHoist(Instruction *I) const;
+
+  bool useAA() const;
+
+  /// \brief Return true if this type is legal.
+  bool isTypeLegal(Type *Ty) const;
+
+  /// \brief Returns the target's jmp_buf alignment in bytes.
+  unsigned getJumpBufAlignment() const;
+
+  /// \brief Returns the target's jmp_buf size in bytes.
+  unsigned getJumpBufSize() const;
+
+  /// \brief Return true if switches should be turned into lookup tables for the
+  /// target.
+  bool shouldBuildLookupTables() const;
+
+  /// \brief Return true if switches should be turned into lookup tables
+  /// containing this constant value for the target.
+  bool shouldBuildLookupTablesForConstant(Constant *C) const;
+
+  /// \brief Return true if the input function which is cold at all call sites,
+  ///  should use coldcc calling convention.
+  bool useColdCCForColdCall(Function &F) const;
+
+  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
+
+  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
+                                            unsigned VF) const;
+
+  /// If target has efficient vector element load/store instructions, it can
+  /// return true here so that insertion/extraction costs are not added to
+  /// the scalarization cost of a load/store.
+  bool supportsEfficientVectorElementLoadStore() const;
+
+  /// \brief Don't restrict interleaved unrolling to small loops.
+  bool enableAggressiveInterleaving(bool LoopHasReductions) const;
+
+  /// \brief If not nullptr, enable inline expansion of memcmp. IsZeroCmp is
+  /// true if this is the expansion of memcmp(p1, p2, s) == 0.
+  struct MemCmpExpansionOptions {
+    // The list of available load sizes (in bytes), sorted in decreasing order.
+    SmallVector<unsigned, 8> LoadSizes;
+  };
+  const MemCmpExpansionOptions *enableMemCmpExpansion(bool IsZeroCmp) const;
+
+  /// \brief Enable matching of interleaved access groups.
+  bool enableInterleavedAccessVectorization() const;
+
+  /// \brief Indicate that it is potentially unsafe to automatically vectorize
+  /// floating-point operations because the semantics of vector and scalar
+  /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
+  /// does not support IEEE-754 denormal numbers, while depending on the
+  /// platform, scalar floating-point math does.
+  /// This applies to floating-point math operations and calls, not memory
+  /// operations, shuffles, or casts.
+  bool isFPVectorizationPotentiallyUnsafe() const;
+
+  /// \brief Determine if the target supports unaligned memory accesses.
+  bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
+                                      unsigned BitWidth, unsigned AddressSpace = 0,
+                                      unsigned Alignment = 1,
+                                      bool *Fast = nullptr) const;
+
+  /// \brief Return hardware support for population count.
+  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
+
+  /// \brief Return true if the hardware has a fast square-root instruction.
+  bool haveFastSqrt(Type *Ty) const;
+
+  /// Return true if it is faster to check if a floating-point value is NaN
+  /// (or not-NaN) versus a comparison against a constant FP zero value.
+  /// Targets should override this if materializing a 0.0 for comparison is
+  /// generally as cheap as checking for ordered/unordered.
+  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
+
+  /// \brief Return the expected cost of supporting the floating point operation
+  /// of the specified type.
+  int getFPOpCost(Type *Ty) const;
+
+  /// \brief Return the expected cost of materializing for the given integer
+  /// immediate of the specified type.
+  int getIntImmCost(const APInt &Imm, Type *Ty) const;
+
+  /// \brief Return the expected cost of materialization for the given integer
+  /// immediate of the specified type for a given instruction. The cost can be
+  /// zero if the immediate can be folded into the specified instruction.
+  int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
+                    Type *Ty) const;
+  int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+                    Type *Ty) const;
+
+  /// \brief Return the expected cost for the given integer when optimising
+  /// for size. This is different than the other integer immediate cost
+  /// functions in that it is subtarget agnostic. This is useful when you e.g.
+  /// target one ISA such as Aarch32 but smaller encodings could be possible
+  /// with another such as Thumb. This return value is used as a penalty when
+  /// the total costs for a constant is calculated (the bigger the cost, the
+  /// more beneficial constant hoisting is).
+  int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
+                            Type *Ty) const;
+  /// @}
+
+  /// \name Vector Target Information
+  /// @{
+
+  /// \brief The various kinds of shuffle patterns for vector queries.
+  enum ShuffleKind {
+    SK_Broadcast,       ///< Broadcast element 0 to all other elements.
+    SK_Reverse,         ///< Reverse the order of the vector.
+    SK_Alternate,       ///< Choose alternate elements from vector.
+    SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
+    SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
+    SK_PermuteTwoSrc,   ///< Merge elements from two source vectors into one
+                        ///< with any shuffle mask.
+    SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
+                        ///< shuffle mask.
+  };
+
+  /// \brief Additional information about an operand's possible values.
+  enum OperandValueKind {
+    OK_AnyValue,               // Operand can have any value.
+    OK_UniformValue,           // Operand is uniform (splat of a value).
+    OK_UniformConstantValue,   // Operand is uniform constant.
+    OK_NonUniformConstantValue // Operand is a non uniform constant value.
+  };
+
+  /// \brief Additional properties of an operand's values.
+  enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
+
+  /// \return The number of scalar or vector registers that the target has.
+  /// If 'Vectors' is true, it returns the number of vector registers. If it is
+  /// set to false, it returns the number of scalar registers.
+  unsigned getNumberOfRegisters(bool Vector) const;
+
+  /// \return The width of the largest scalar or vector register type.
+  unsigned getRegisterBitWidth(bool Vector) const;
+
+  /// \return The width of the smallest vector register type.
+  unsigned getMinVectorRegisterBitWidth() const;
+
+  /// \return True if the vectorization factor should be chosen to
+  /// make the vector of the smallest element type match the size of a
+  /// vector register. For wider element types, this could result in
+  /// creating vectors that span multiple vector registers.
+  /// If false, the vectorization factor will be chosen based on the
+  /// size of the widest element type.
+  bool shouldMaximizeVectorBandwidth(bool OptSize) const;
+
+  /// \return True if it should be considered for address type promotion.
+  /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
+  /// profitable without finding other extensions fed by the same input.
+  bool shouldConsiderAddressTypePromotion(
+      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
+
+  /// \return The size of a cache line in bytes.
+  unsigned getCacheLineSize() const;
+
+  /// The possible cache levels
+  enum class CacheLevel {
+    L1D,   // The L1 data cache
+    L2D,   // The L2 data cache
+
+    // We currently do not model L3 caches, as their sizes differ widely between
+    // microarchitectures. Also, we currently do not have a use for L3 cache
+    // size modeling yet.
+  };
+
+  /// \return The size of the cache level in bytes, if available.
+  llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;
+
+  /// \return The associativity of the cache level, if available.
+  llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
+
+  /// \return How much before a load we should place the prefetch instruction.
+  /// This is currently measured in number of instructions.
+  unsigned getPrefetchDistance() const;
+
+  /// \return Some HW prefetchers can handle accesses up to a certain constant
+  /// stride.  This is the minimum stride in bytes where it makes sense to start
+  /// adding SW prefetches.  The default is 1, i.e. prefetch with any stride.
+  unsigned getMinPrefetchStride() const;
+
+  /// \return The maximum number of iterations to prefetch ahead.  If the
+  /// required number of iterations is more than this number, no prefetching is
+  /// performed.
+  unsigned getMaxPrefetchIterationsAhead() const;
+
+  /// \return The maximum interleave factor that any transform should try to
+  /// perform for this target. This number depends on the level of parallelism
+  /// and the number of execution units in the CPU.
+  unsigned getMaxInterleaveFactor(unsigned VF) const;
+
+  /// This is an approximation of reciprocal throughput of a math/logic op.
+  /// A higher cost indicates less expected throughput.
+  /// From Agner Fog's guides, reciprocal throughput is "the average number of
+  /// clock cycles per instruction when the instructions are not part of a
+  /// limiting dependency chain."
+  /// Therefore, costs should be scaled to account for multiple execution units
+  /// on the target that can process this type of instruction. For example, if
+  /// there are 5 scalar integer units and 2 vector integer units that can
+  /// calculate an 'add' in a single cycle, this model should indicate that the
+  /// cost of the vector add instruction is 2.5 times the cost of the scalar
+  /// add instruction.
+  /// \p Args is an optional argument which holds the instruction operands
+  /// values so the TTI can analyze those values searching for special
+  /// cases or optimizations based on those values.
+  int getArithmeticInstrCost(
+      unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
+      OperandValueKind Opd2Info = OK_AnyValue,
+      OperandValueProperties Opd1PropInfo = OP_None,
+      OperandValueProperties Opd2PropInfo = OP_None,
+      ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;
+
+  /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
+  /// The index and subtype parameters are used by the subvector insertion and
+  /// extraction shuffle kinds.
+  int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
+                     Type *SubTp = nullptr) const;
+
+  /// \return The expected cost of cast instructions, such as bitcast, trunc,
+  /// zext, etc. If there is an existing instruction that holds Opcode, it
+  /// may be passed in the 'I' parameter.
+  int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+                       const Instruction *I = nullptr) const;
+
+  /// \return The expected cost of a sign- or zero-extended vector extract. Use
+  /// -1 to indicate that there is no information about the index value.
+  int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
+                               unsigned Index = -1) const;
+
+  /// \return The expected cost of control-flow related instructions such as
+  /// Phi, Ret, Br.
+  int getCFInstrCost(unsigned Opcode) const;
+
+  /// \returns The expected cost of compare and select instructions. If there
+  /// is an existing instruction that holds Opcode, it may be passed in the
+  /// 'I' parameter.
+  int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+                 Type *CondTy = nullptr, const Instruction *I = nullptr) const;
+
+  /// \return The expected cost of vector Insert and Extract.
+  /// Use -1 to indicate that there is no information on the index value.
+  int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
+
+  /// \return The cost of Load and Store instructions.
+  int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+                      unsigned AddressSpace, const Instruction *I = nullptr) const;
+
+  /// \return The cost of masked Load and Store instructions.
+  int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+                            unsigned AddressSpace) const;
+
+  /// \return The cost of Gather or Scatter operation
+  /// \p Opcode - is a type of memory access Load or Store
+  /// \p DataTy - a vector type of the data to be loaded or stored
+  /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
+  /// \p VariableMask - true when the memory access is predicated with a mask
+  ///                   that is not a compile-time constant
+  /// \p Alignment - alignment of single element
+  int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
+                             bool VariableMask, unsigned Alignment) const;
+
+  /// \return The cost of the interleaved memory operation.
+  /// \p Opcode is the memory operation code
+  /// \p VecTy is the vector type of the interleaved access.
+  /// \p Factor is the interleave factor
+  /// \p Indices is the indices for interleaved load members (as interleaved
+  ///    load allows gaps)
+  /// \p Alignment is the alignment of the memory operation
+  /// \p AddressSpace is address space of the pointer.
+  int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
+                                 ArrayRef<unsigned> Indices, unsigned Alignment,
+                                 unsigned AddressSpace) const;
+
+  /// \brief Calculate the cost of performing a vector reduction.
+  ///
+  /// This is the cost of reducing the vector value of type \p Ty to a scalar
+  /// value using the operation denoted by \p Opcode. The form of the reduction
+  /// can either be a pairwise reduction or a reduction that splits the vector
+  /// at every reduction level.
+  ///
+  /// Pairwise:
+  ///  (v0, v1, v2, v3)
+  ///  ((v0+v1), (v2+v3), undef, undef)
+  /// Split:
+  ///  (v0, v1, v2, v3)
+  ///  ((v0+v2), (v1+v3), undef, undef)
+  int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
+                                 bool IsPairwiseForm) const;
+  int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
+                             bool IsUnsigned) const;
+
+  /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
+  /// Three cases are handled: 1. scalar instruction 2. vector instruction
+  /// 3. scalar instruction which is to be vectorized with VF.
+  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+                            ArrayRef<Value *> Args, FastMathFlags FMF,
+                            unsigned VF = 1) const;
+
+  /// \returns The cost of Intrinsic instructions. Types analysis only.
+  /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
+  /// arguments and the return value will be computed based on types.
+  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+                            ArrayRef<Type *> Tys, FastMathFlags FMF,
+                            unsigned ScalarizationCostPassed = UINT_MAX) const;
+
+  /// \returns The cost of Call instructions.
+  int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
+
+  /// \returns The number of pieces into which the provided type must be
+  /// split during legalization. Zero is returned when the answer is unknown.
+  unsigned getNumberOfParts(Type *Tp) const;
+
+  /// \returns The cost of the address computation. For most targets this can be
+  /// merged into the instruction indexing mode. Some targets might want to
+  /// distinguish between address computation for memory operations on vector
+  /// types and scalar types. Such targets should override this function.
+  /// The 'SE' parameter holds pointer for the scalar evolution object which
+  /// is used in order to get the Ptr step value in case of constant stride.
+  /// The 'Ptr' parameter holds SCEV of the access pointer.
+  int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
+                                const SCEV *Ptr = nullptr) const;
+
+  /// \returns The cost, if any, of keeping values of the given types alive
+  /// over a callsite.
+  ///
+  /// Some types may require the use of register classes that do not have
+  /// any callee-saved registers, so would require a spill and fill.
+  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
+
+  /// \returns True if the intrinsic is a supported memory intrinsic.  Info
+  /// will contain additional information - whether the intrinsic may write
+  /// or read to memory, volatility and the pointer.  Info is undefined
+  /// if false is returned.
+  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
+
+  /// \returns The maximum element size, in bytes, for an element
+  /// unordered-atomic memory intrinsic.
+  unsigned getAtomicMemIntrinsicMaxElementSize() const;
+
+  /// \returns A value which is the result of the given memory intrinsic.  New
+  /// instructions may be created to extract the result from the given intrinsic
+  /// memory operation.  Returns nullptr if the target cannot create a result
+  /// from the given intrinsic.
+  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+                                           Type *ExpectedType) const;
+
+  /// \returns The type to use in a loop expansion of a memcpy call.
+  Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
+                                  unsigned SrcAlign, unsigned DestAlign) const;
+
+  /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
+  /// \param RemainingBytes The number of bytes to copy.
+  ///
+  /// Calculates the operand types to use when copying \p RemainingBytes of
+  /// memory, where source and destination alignments are \p SrcAlign and
+  /// \p DestAlign respectively.
+  void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
+                                         LLVMContext &Context,
+                                         unsigned RemainingBytes,
+                                         unsigned SrcAlign,
+                                         unsigned DestAlign) const;
+
+  /// \returns True if the two functions have compatible attributes for inlining
+  /// purposes.
+  bool areInlineCompatible(const Function *Caller,
+                           const Function *Callee) const;
+
+  /// \brief The type of load/store indexing.
+  enum MemIndexedMode {
+    MIM_Unindexed,  ///< No indexing.
+    MIM_PreInc,     ///< Pre-incrementing.
+    MIM_PreDec,     ///< Pre-decrementing.
+    MIM_PostInc,    ///< Post-incrementing.
+    MIM_PostDec     ///< Post-decrementing.
+  };
+
+  /// \returns True if the specified indexed load for the given type is legal.
+  bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
+
+  /// \returns True if the specified indexed store for the given type is legal.
+  bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
+
+  /// \returns The bitwidth of the largest vector type that should be used to
+  /// load/store in the given address space.
+  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
+
+  /// \returns True if the load instruction is legal to vectorize.
+  bool isLegalToVectorizeLoad(LoadInst *LI) const;
+
+  /// \returns True if the store instruction is legal to vectorize.
+  bool isLegalToVectorizeStore(StoreInst *SI) const;
+
+  /// \returns True if it is legal to vectorize the given load chain.
+  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
+                                   unsigned Alignment,
+                                   unsigned AddrSpace) const;
+
+  /// \returns True if it is legal to vectorize the given store chain.
+  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
+                                    unsigned Alignment,
+                                    unsigned AddrSpace) const;
+
+  /// \returns The new vector factor value if the target doesn't support \p
+  /// SizeInBytes loads or has a better vector factor.
+  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
+                               unsigned ChainSizeInBytes,
+                               VectorType *VecTy) const;
+
+  /// \returns The new vector factor value if the target doesn't support \p
+  /// SizeInBytes stores or has a better vector factor.
+  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
+                                unsigned ChainSizeInBytes,
+                                VectorType *VecTy) const;
+
+  /// Flags describing the kind of vector reduction.
+  struct ReductionFlags {
+    ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
+    bool IsMaxOp;  ///< If the op a min/max kind, true if it's a max operation.
+    bool IsSigned; ///< Whether the operation is a signed int reduction.
+    bool NoNaN;    ///< If op is an fp min/max, whether NaNs may be present.
+  };
+
+  /// \returns True if the target wants to handle the given reduction idiom in
+  /// the intrinsics form instead of the shuffle form.
+  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
+                             ReductionFlags Flags) const;
+
+  /// \returns True if the target wants to expand the given reduction intrinsic
+  /// into a shuffle sequence.
+  bool shouldExpandReduction(const IntrinsicInst *II) const;
+  /// @}
+
+private:
+  /// \brief Estimate the latency of specified instruction.
+  /// Returns 1 as the default value.
+  int getInstructionLatency(const Instruction *I) const;
+
+  /// \brief Returns the expected throughput cost of the instruction.
+  /// Returns -1 if the cost is unknown.
+  int getInstructionThroughput(const Instruction *I) const;
+
+  /// \brief The abstract base class used to type erase specific TTI
+  /// implementations.
+  class Concept;
+
+  /// \brief The template model for the base class which wraps a concrete
+  /// implementation in a type erased interface.
+  template <typename T> class Model;
+
+  std::unique_ptr<Concept> TTIImpl;
+};
+
+class TargetTransformInfo::Concept {
+public:
+  virtual ~Concept() = 0;
+  virtual const DataLayout &getDataLayout() const = 0;
+  virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
+  virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
+                         ArrayRef<const Value *> Operands) = 0;
+  virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
+  virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
+  virtual int getCallCost(const Function *F, int NumArgs) = 0;
+  virtual int getCallCost(const Function *F,
+                          ArrayRef<const Value *> Arguments) = 0;
+  virtual unsigned getInliningThresholdMultiplier() = 0;
+  virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                               ArrayRef<Type *> ParamTys) = 0;
+  virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                               ArrayRef<const Value *> Arguments) = 0;
+  virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
+                                                    unsigned &JTSize) = 0;
+  virtual int
+  getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
+  virtual bool hasBranchDivergence() = 0;
+  virtual bool isSourceOfDivergence(const Value *V) = 0;
+  virtual bool isAlwaysUniform(const Value *V) = 0;
+  virtual unsigned getFlatAddressSpace() = 0;
+  virtual bool isLoweredToCall(const Function *F) = 0;
+  virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
+                                       UnrollingPreferences &UP) = 0;
+  virtual bool isLegalAddImmediate(int64_t Imm) = 0;
+  virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
+  virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
+                                     int64_t BaseOffset, bool HasBaseReg,
+                                     int64_t Scale,
+                                     unsigned AddrSpace,
+                                     Instruction *I) = 0;
+  virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
+                             TargetTransformInfo::LSRCost &C2) = 0;
+  virtual bool canMacroFuseCmp() = 0;
+  virtual bool shouldFavorPostInc() const = 0;
+  virtual bool isLegalMaskedStore(Type *DataType) = 0;
+  virtual bool isLegalMaskedLoad(Type *DataType) = 0;
+  virtual bool isLegalMaskedScatter(Type *DataType) = 0;
+  virtual bool isLegalMaskedGather(Type *DataType) = 0;
+  virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
+  virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
+  virtual bool prefersVectorizedAddressing() = 0;
+  virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
+                                   int64_t BaseOffset, bool HasBaseReg,
+                                   int64_t Scale, unsigned AddrSpace) = 0;
+  virtual bool LSRWithInstrQueries() = 0;
+  virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
+  virtual bool isProfitableToHoist(Instruction *I) = 0;
+  virtual bool useAA() = 0;
+  virtual bool isTypeLegal(Type *Ty) = 0;
+  virtual unsigned getJumpBufAlignment() = 0;
+  virtual unsigned getJumpBufSize() = 0;
+  virtual bool shouldBuildLookupTables() = 0;
+  virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
+  virtual bool useColdCCForColdCall(Function &F) = 0;
+  virtual unsigned
+  getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
+  virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
+                                                    unsigned VF) = 0;
+  virtual bool supportsEfficientVectorElementLoadStore() = 0;
+  virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
+  virtual const MemCmpExpansionOptions *enableMemCmpExpansion(
+      bool IsZeroCmp) const = 0;
+  virtual bool enableInterleavedAccessVectorization() = 0;
+  virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
+  virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
+                                              unsigned BitWidth,
+                                              unsigned AddressSpace,
+                                              unsigned Alignment,
+                                              bool *Fast) = 0;
+  virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
+  virtual bool haveFastSqrt(Type *Ty) = 0;
+  virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
+  virtual int getFPOpCost(Type *Ty) = 0;
+  virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
+                                    Type *Ty) = 0;
+  virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
+  virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
+                            Type *Ty) = 0;
+  virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+                            Type *Ty) = 0;
+  virtual unsigned getNumberOfRegisters(bool Vector) = 0;
+  virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
+  virtual unsigned getMinVectorRegisterBitWidth() = 0;
+  virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
+  virtual bool shouldConsiderAddressTypePromotion(
+      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
+  virtual unsigned getCacheLineSize() = 0;
+  virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0;
+  virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0;
+  virtual unsigned getPrefetchDistance() = 0;
+  virtual unsigned getMinPrefetchStride() = 0;
+  virtual unsigned getMaxPrefetchIterationsAhead() = 0;
+  virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
+  virtual unsigned
+  getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
+                         OperandValueKind Opd2Info,
+                         OperandValueProperties Opd1PropInfo,
+                         OperandValueProperties Opd2PropInfo,
+                         ArrayRef<const Value *> Args) = 0;
+  virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
+                             Type *SubTp) = 0;
+  virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+                               const Instruction *I) = 0;
+  virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
+                                       VectorType *VecTy, unsigned Index) = 0;
+  virtual int getCFInstrCost(unsigned Opcode) = 0;
+  virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+                                Type *CondTy, const Instruction *I) = 0;
+  virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
+                                 unsigned Index) = 0;
+  virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+                              unsigned AddressSpace, const Instruction *I) = 0;
+  virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
+                                    unsigned Alignment,
+                                    unsigned AddressSpace) = 0;
+  virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
+                                     Value *Ptr, bool VariableMask,
+                                     unsigned Alignment) = 0;
+  virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
+                                         unsigned Factor,
+                                         ArrayRef<unsigned> Indices,
+                                         unsigned Alignment,
+                                         unsigned AddressSpace) = 0;
+  virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
+                                         bool IsPairwiseForm) = 0;
+  virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
+                                     bool IsPairwiseForm, bool IsUnsigned) = 0;
+  virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+                      ArrayRef<Type *> Tys, FastMathFlags FMF,
+                      unsigned ScalarizationCostPassed) = 0;
+  virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+         ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
+  virtual int getCallInstrCost(Function *F, Type *RetTy,
+                               ArrayRef<Type *> Tys) = 0;
+  virtual unsigned getNumberOfParts(Type *Tp) = 0;
+  virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
+                                        const SCEV *Ptr) = 0;
+  virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
+  virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
+                                  MemIntrinsicInfo &Info) = 0;
+  virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
+  virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+                                                   Type *ExpectedType) = 0;
+  virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
+                                          unsigned SrcAlign,
+                                          unsigned DestAlign) const = 0;
+  virtual void getMemcpyLoopResidualLoweringType(
+      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
+      unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
+  virtual bool areInlineCompatible(const Function *Caller,
+                                   const Function *Callee) const = 0;
+  virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
+  virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0;
+  virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
+  virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
+  virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
+  virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
+                                           unsigned Alignment,
+                                           unsigned AddrSpace) const = 0;
+  virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
+                                            unsigned Alignment,
+                                            unsigned AddrSpace) const = 0;
+  virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
+                                       unsigned ChainSizeInBytes,
+                                       VectorType *VecTy) const = 0;
+  virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
+                                        unsigned ChainSizeInBytes,
+                                        VectorType *VecTy) const = 0;
+  virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
+                                     ReductionFlags) const = 0;
+  virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
+  virtual int getInstructionLatency(const Instruction *I) = 0;
+};
+
+template <typename T>
+class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
+  T Impl;
+
+public:
+  Model(T Impl) : Impl(std::move(Impl)) {}
+  ~Model() override {}
+
+  const DataLayout &getDataLayout() const override {
+    return Impl.getDataLayout();
+  }
+
+  int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
+    return Impl.getOperationCost(Opcode, Ty, OpTy);
+  }
+  int getGEPCost(Type *PointeeType, const Value *Ptr,
+                 ArrayRef<const Value *> Operands) override {
+    return Impl.getGEPCost(PointeeType, Ptr, Operands);
+  }
+  int getExtCost(const Instruction *I, const Value *Src) override {
+    return Impl.getExtCost(I, Src);
+  }
+  int getCallCost(FunctionType *FTy, int NumArgs) override {
+    return Impl.getCallCost(FTy, NumArgs);
+  }
+  int getCallCost(const Function *F, int NumArgs) override {
+    return Impl.getCallCost(F, NumArgs);
+  }
+  int getCallCost(const Function *F,
+                  ArrayRef<const Value *> Arguments) override {
+    return Impl.getCallCost(F, Arguments);
+  }
+  unsigned getInliningThresholdMultiplier() override {
+    return Impl.getInliningThresholdMultiplier();
+  }
+  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                       ArrayRef<Type *> ParamTys) override {
+    return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
+  }
+  int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
+                       ArrayRef<const Value *> Arguments) override {
+    return Impl.getIntrinsicCost(IID, RetTy, Arguments);
+  }
+  int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
+    return Impl.getUserCost(U, Operands);
+  }
+  bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
+  bool isSourceOfDivergence(const Value *V) override {
+    return Impl.isSourceOfDivergence(V);
+  }
+
+  bool isAlwaysUniform(const Value *V) override {
+    return Impl.isAlwaysUniform(V);
+  }
+
+  unsigned getFlatAddressSpace() override {
+    return Impl.getFlatAddressSpace();
+  }
+
+  bool isLoweredToCall(const Function *F) override {
+    return Impl.isLoweredToCall(F);
+  }
+  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+                               UnrollingPreferences &UP) override {
+    return Impl.getUnrollingPreferences(L, SE, UP);
+  }
+  bool isLegalAddImmediate(int64_t Imm) override {
+    return Impl.isLegalAddImmediate(Imm);
+  }
+  bool isLegalICmpImmediate(int64_t Imm) override {
+    return Impl.isLegalICmpImmediate(Imm);
+  }
+  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+                             bool HasBaseReg, int64_t Scale,
+                             unsigned AddrSpace,
+                             Instruction *I) override {
+    return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
+                                      Scale, AddrSpace, I);
+  }
+  bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
+                     TargetTransformInfo::LSRCost &C2) override {
+    return Impl.isLSRCostLess(C1, C2);
+  }
+  bool canMacroFuseCmp() override {
+    return Impl.canMacroFuseCmp();
+  }
+  bool shouldFavorPostInc() const override {
+    return Impl.shouldFavorPostInc();
+  }
+  bool isLegalMaskedStore(Type *DataType) override {
+    return Impl.isLegalMaskedStore(DataType);
+  }
+  bool isLegalMaskedLoad(Type *DataType) override {
+    return Impl.isLegalMaskedLoad(DataType);
+  }
+  bool isLegalMaskedScatter(Type *DataType) override {
+    return Impl.isLegalMaskedScatter(DataType);
+  }
+  bool isLegalMaskedGather(Type *DataType) override {
+    return Impl.isLegalMaskedGather(DataType);
+  }
+  bool hasDivRemOp(Type *DataType, bool IsSigned) override {
+    return Impl.hasDivRemOp(DataType, IsSigned);
+  }
+  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
+    return Impl.hasVolatileVariant(I, AddrSpace);
+  }
+  bool prefersVectorizedAddressing() override {
+    return Impl.prefersVectorizedAddressing();
+  }
+  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+                           bool HasBaseReg, int64_t Scale,
+                           unsigned AddrSpace) override {
+    return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
+                                     Scale, AddrSpace);
+  }
+  bool LSRWithInstrQueries() override {
+    return Impl.LSRWithInstrQueries();
+  }
+  bool isTruncateFree(Type *Ty1, Type *Ty2) override {
+    return Impl.isTruncateFree(Ty1, Ty2);
+  }
+  bool isProfitableToHoist(Instruction *I) override {
+    return Impl.isProfitableToHoist(I);
+  }
+  bool useAA() override { return Impl.useAA(); }
+  bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
+  unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
+  unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
+  bool shouldBuildLookupTables() override {
+    return Impl.shouldBuildLookupTables();
+  }
+  bool shouldBuildLookupTablesForConstant(Constant *C) override {
+    return Impl.shouldBuildLookupTablesForConstant(C);
+  }
+  bool useColdCCForColdCall(Function &F) override {
+    return Impl.useColdCCForColdCall(F);
+  }
+
+  unsigned getScalarizationOverhead(Type *Ty, bool Insert,
+                                    bool Extract) override {
+    return Impl.getScalarizationOverhead(Ty, Insert, Extract);
+  }
+  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
+                                            unsigned VF) override {
+    return Impl.getOperandsScalarizationOverhead(Args, VF);
+  }
+
+  bool supportsEfficientVectorElementLoadStore() override {
+    return Impl.supportsEfficientVectorElementLoadStore();
+  }
+
+  bool enableAggressiveInterleaving(bool LoopHasReductions) override {
+    return Impl.enableAggressiveInterleaving(LoopHasReductions);
+  }
+  const MemCmpExpansionOptions *enableMemCmpExpansion(
+      bool IsZeroCmp) const override {
+    return Impl.enableMemCmpExpansion(IsZeroCmp);
+  }
+  bool enableInterleavedAccessVectorization() override {
+    return Impl.enableInterleavedAccessVectorization();
+  }
+  bool isFPVectorizationPotentiallyUnsafe() override {
+    return Impl.isFPVectorizationPotentiallyUnsafe();
+  }
+  bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
+                                      unsigned BitWidth, unsigned AddressSpace,
+                                      unsigned Alignment, bool *Fast) override {
+    return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
+                                               Alignment, Fast);
+  }
+  PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
+    return Impl.getPopcntSupport(IntTyWidthInBit);
+  }
+  bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
+
+  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
+    return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
+  }
+
+  int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
+
+  int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
+                            Type *Ty) override {
+    return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
+  }
+  int getIntImmCost(const APInt &Imm, Type *Ty) override {
+    return Impl.getIntImmCost(Imm, Ty);
+  }
+  int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
+                    Type *Ty) override {
+    return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
+  }
+  int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
+                    Type *Ty) override {
+    return Impl.getIntImmCost(IID, Idx, Imm, Ty);
+  }
+  unsigned getNumberOfRegisters(bool Vector) override {
+    return Impl.getNumberOfRegisters(Vector);
+  }
+  unsigned getRegisterBitWidth(bool Vector) const override {
+    return Impl.getRegisterBitWidth(Vector);
+  }
+  unsigned getMinVectorRegisterBitWidth() override {
+    return Impl.getMinVectorRegisterBitWidth();
+  }
+  bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
+    return Impl.shouldMaximizeVectorBandwidth(OptSize);
+  }
+  bool shouldConsiderAddressTypePromotion(
+      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
+    return Impl.shouldConsiderAddressTypePromotion(
+        I, AllowPromotionWithoutCommonHeader);
+  }
+  unsigned getCacheLineSize() override {
+    return Impl.getCacheLineSize();
+  }
+  llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override {
+    return Impl.getCacheSize(Level);
+  }
+  llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override {
+    return Impl.getCacheAssociativity(Level);
+  }
+  unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); }
+  unsigned getMinPrefetchStride() override {
+    return Impl.getMinPrefetchStride();
+  }
+  unsigned getMaxPrefetchIterationsAhead() override {
+    return Impl.getMaxPrefetchIterationsAhead();
+  }
+  unsigned getMaxInterleaveFactor(unsigned VF) override {
+    return Impl.getMaxInterleaveFactor(VF);
+  }
+  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
+                                            unsigned &JTSize) override {
+    return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
+  }
+  unsigned
+  getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
+                         OperandValueKind Opd2Info,
+                         OperandValueProperties Opd1PropInfo,
+                         OperandValueProperties Opd2PropInfo,
+                         ArrayRef<const Value *> Args) override {
+    return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
+                                       Opd1PropInfo, Opd2PropInfo, Args);
+  }
+  int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
+                     Type *SubTp) override {
+    return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
+  }
+  int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+                       const Instruction *I) override {
+    return Impl.getCastInstrCost(Opcode, Dst, Src, I);
+  }
+  int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
+                               unsigned Index) override {
+    return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
+  }
+  int getCFInstrCost(unsigned Opcode) override {
+    return Impl.getCFInstrCost(Opcode);
+  }
+  int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
+                         const Instruction *I) override {
+    return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
+  }
+  int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
+    return Impl.getVectorInstrCost(Opcode, Val, Index);
+  }
+  int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+                      unsigned AddressSpace, const Instruction *I) override {
+    return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
+  }
+  int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+                            unsigned AddressSpace) override {
+    return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
+  }
+  int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
+                             Value *Ptr, bool VariableMask,
+                             unsigned Alignment) override {
+    return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
+                                       Alignment);
+  }
+  int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
+                                 ArrayRef<unsigned> Indices, unsigned Alignment,
+                                 unsigned AddressSpace) override {
+    return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+                                           Alignment, AddressSpace);
+  }
+  int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
+                                 bool IsPairwiseForm) override {
+    return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
+  }
+  int getMinMaxReductionCost(Type *Ty, Type *CondTy,
+                             bool IsPairwiseForm, bool IsUnsigned) override {
+    return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
+   }
+  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
+               FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
+    return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
+                                      ScalarizationCostPassed);
+  }
+  int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
+       ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
+    return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
+  }
+  int getCallInstrCost(Function *F, Type *RetTy,
+                       ArrayRef<Type *> Tys) override {
+    return Impl.getCallInstrCost(F, RetTy, Tys);
+  }
+  unsigned getNumberOfParts(Type *Tp) override {
+    return Impl.getNumberOfParts(Tp);
+  }
+  int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
+                                const SCEV *Ptr) override {
+    return Impl.getAddressComputationCost(Ty, SE, Ptr);
+  }
+  unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
+    return Impl.getCostOfKeepingLiveOverCall(Tys);
+  }
+  bool getTgtMemIntrinsic(IntrinsicInst *Inst,
+                          MemIntrinsicInfo &Info) override {
+    return Impl.getTgtMemIntrinsic(Inst, Info);
+  }
+  unsigned getAtomicMemIntrinsicMaxElementSize() const override {
+    return Impl.getAtomicMemIntrinsicMaxElementSize();
+  }
+  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
+                                           Type *ExpectedType) override {
+    return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
+  }
+  Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
+                                  unsigned SrcAlign,
+                                  unsigned DestAlign) const override {
+    return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
+  }
+  void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
+                                         LLVMContext &Context,
+                                         unsigned RemainingBytes,
+                                         unsigned SrcAlign,
+                                         unsigned DestAlign) const override {
+    Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
+                                           SrcAlign, DestAlign);
+  }
+  bool areInlineCompatible(const Function *Caller,
+                           const Function *Callee) const override {
+    return Impl.areInlineCompatible(Caller, Callee);
+  }
+  bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
+    return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
+  }
+  bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
+    return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
+  }
+  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
+    return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
+  }
+  bool isLegalToVectorizeLoad(LoadInst *LI) const override {
+    return Impl.isLegalToVectorizeLoad(LI);
+  }
+  bool isLegalToVectorizeStore(StoreInst *SI) const override {
+    return Impl.isLegalToVectorizeStore(SI);
+  }
+  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
+                                   unsigned Alignment,
+                                   unsigned AddrSpace) const override {
+    return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
+                                            AddrSpace);
+  }
+  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
+                                    unsigned Alignment,
+                                    unsigned AddrSpace) const override {
+    return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
+                                             AddrSpace);
+  }
+  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
+                               unsigned ChainSizeInBytes,
+                               VectorType *VecTy) const override {
+    return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
+  }
+  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
+                                unsigned ChainSizeInBytes,
+                                VectorType *VecTy) const override {
+    return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
+  }
+  bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
+                             ReductionFlags Flags) const override {
+    return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
+  }
+  bool shouldExpandReduction(const IntrinsicInst *II) const override {
+    return Impl.shouldExpandReduction(II);
+  }
+  int getInstructionLatency(const Instruction *I) override {
+    return Impl.getInstructionLatency(I);
+  }
+};
+
+template <typename T>
+TargetTransformInfo::TargetTransformInfo(T Impl)
+    : TTIImpl(new Model<T>(Impl)) {}
+
+/// \brief Analysis pass providing the \c TargetTransformInfo.
+///
+/// The core idea of the TargetIRAnalysis is to expose an interface through
+/// which LLVM targets can analyze and provide information about the middle
+/// end's target-independent IR. This supports use cases such as target-aware
+/// cost modeling of IR constructs.
+///
+/// This is a function analysis because much of the cost modeling for targets
+/// is done in a subtarget specific way and LLVM supports compiling different
+/// functions targeting different subtargets in order to support runtime
+/// dispatch according to the observed subtarget.
+class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
+public:
+  typedef TargetTransformInfo Result;
+
+  /// \brief Default construct a target IR analysis.
+  ///
+  /// This will use the module's datalayout to construct a baseline
+  /// conservative TTI result.
+  TargetIRAnalysis();
+
+  /// \brief Construct an IR analysis pass around a target-provide callback.
+  ///
+  /// The callback will be called with a particular function for which the TTI
+  /// is needed and must return a TTI object for that function.
+  TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
+
+  // Value semantics. We spell out the constructors for MSVC.
+  TargetIRAnalysis(const TargetIRAnalysis &Arg)
+      : TTICallback(Arg.TTICallback) {}
+  TargetIRAnalysis(TargetIRAnalysis &&Arg)
+      : TTICallback(std::move(Arg.TTICallback)) {}
+  TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
+    TTICallback = RHS.TTICallback;
+    return *this;
+  }
+  TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
+    TTICallback = std::move(RHS.TTICallback);
+    return *this;
+  }
+
+  Result run(const Function &F, FunctionAnalysisManager &);
+
+private:
+  friend AnalysisInfoMixin<TargetIRAnalysis>;
+  static AnalysisKey Key;
+
+  /// \brief The callback used to produce a result.
+  ///
+  /// We use a completely opaque callback so that targets can provide whatever
+  /// mechanism they desire for constructing the TTI for a given function.
+  ///
+  /// FIXME: Should we really use std::function? It's relatively inefficient.
+  /// It might be possible to arrange for even stateful callbacks to outlive
+  /// the analysis and thus use a function_ref which would be lighter weight.
+  /// This may also be less error prone as the callback is likely to reference
+  /// the external TargetMachine, and that reference needs to never dangle.
+  std::function<Result(const Function &)> TTICallback;
+
+  /// \brief Helper function used as the callback in the default constructor.
+  static Result getDefaultTTI(const Function &F);
+};
+
+/// \brief Wrapper pass for TargetTransformInfo.
+///
+/// This pass can be constructed from a TTI object which it stores internally
+/// and is queried by passes.
+class TargetTransformInfoWrapperPass : public ImmutablePass {
+  TargetIRAnalysis TIRA;
+  Optional<TargetTransformInfo> TTI;
+
+  virtual void anchor();
+
+public:
+  static char ID;
+
+  /// \brief We must provide a default constructor for the pass but it should
+  /// never be used.
+  ///
+  /// Use the constructor below or call one of the creation routines.
+  TargetTransformInfoWrapperPass();
+
+  explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
+
+  TargetTransformInfo &getTTI(const Function &F);
+};
+
+/// \brief Create an analysis pass wrapper around a TTI object.
+///
+/// This analysis pass just holds the TTI instance and makes it available to
+/// clients.
+ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
+
+} // End llvm namespace
+
+#endif