Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// This pass exposes codegen information to IR-level passes. Every |
| 11 | /// transformation that uses codegen information is broken into three parts: |
| 12 | /// 1. The IR-level analysis pass. |
| 13 | /// 2. The IR-level transformation interface which provides the needed |
| 14 | /// information. |
| 15 | /// 3. Codegen-level implementation which uses target-specific hooks. |
| 16 | /// |
| 17 | /// This file defines #2, which is the interface that IR-level transformations |
| 18 | /// use for querying the codegen. |
| 19 | /// |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H |
| 23 | #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H |
| 24 | |
| 25 | #include "llvm/ADT/Optional.h" |
| 26 | #include "llvm/IR/Operator.h" |
| 27 | #include "llvm/IR/PassManager.h" |
| 28 | #include "llvm/Pass.h" |
| 29 | #include "llvm/Support/AtomicOrdering.h" |
| 30 | #include "llvm/Support/DataTypes.h" |
| 31 | #include <functional> |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | namespace Intrinsic { |
| 36 | enum ID : unsigned; |
| 37 | } |
| 38 | |
| 39 | class Function; |
| 40 | class GlobalValue; |
| 41 | class IntrinsicInst; |
| 42 | class LoadInst; |
| 43 | class Loop; |
| 44 | class SCEV; |
| 45 | class ScalarEvolution; |
| 46 | class StoreInst; |
| 47 | class SwitchInst; |
| 48 | class Type; |
| 49 | class User; |
| 50 | class Value; |
| 51 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 52 | /// Information about a load/store intrinsic defined by the target. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 53 | struct MemIntrinsicInfo { |
| 54 | /// This is the pointer that the intrinsic is loading from or storing to. |
| 55 | /// If this is non-null, then analysis/optimization passes can assume that |
| 56 | /// this intrinsic is functionally equivalent to a load/store from this |
| 57 | /// pointer. |
| 58 | Value *PtrVal = nullptr; |
| 59 | |
| 60 | // Ordering for atomic operations. |
| 61 | AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
| 62 | |
| 63 | // Same Id is set by the target for corresponding load/store intrinsics. |
| 64 | unsigned short MatchingId = 0; |
| 65 | |
| 66 | bool ReadMem = false; |
| 67 | bool WriteMem = false; |
| 68 | bool IsVolatile = false; |
| 69 | |
| 70 | bool isUnordered() const { |
| 71 | return (Ordering == AtomicOrdering::NotAtomic || |
| 72 | Ordering == AtomicOrdering::Unordered) && !IsVolatile; |
| 73 | } |
| 74 | }; |
| 75 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 76 | /// This pass provides access to the codegen interfaces that are needed |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 77 | /// for IR-level transformations. |
| 78 | class TargetTransformInfo { |
| 79 | public: |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 80 | /// Construct a TTI object using a type implementing the \c Concept |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 81 | /// API below. |
| 82 | /// |
| 83 | /// This is used by targets to construct a TTI wrapping their target-specific |
| 84 | /// implementaion that encodes appropriate costs for their target. |
| 85 | template <typename T> TargetTransformInfo(T Impl); |
| 86 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 87 | /// Construct a baseline TTI object using a minimal implementation of |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 88 | /// the \c Concept API below. |
| 89 | /// |
| 90 | /// The TTI implementation will reflect the information in the DataLayout |
| 91 | /// provided if non-null. |
| 92 | explicit TargetTransformInfo(const DataLayout &DL); |
| 93 | |
| 94 | // Provide move semantics. |
| 95 | TargetTransformInfo(TargetTransformInfo &&Arg); |
| 96 | TargetTransformInfo &operator=(TargetTransformInfo &&RHS); |
| 97 | |
| 98 | // We need to define the destructor out-of-line to define our sub-classes |
| 99 | // out-of-line. |
| 100 | ~TargetTransformInfo(); |
| 101 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 102 | /// Handle the invalidation of this information. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 103 | /// |
| 104 | /// When used as a result of \c TargetIRAnalysis this method will be called |
| 105 | /// when the function this was computed for changes. When it returns false, |
| 106 | /// the information is preserved across those changes. |
| 107 | bool invalidate(Function &, const PreservedAnalyses &, |
| 108 | FunctionAnalysisManager::Invalidator &) { |
| 109 | // FIXME: We should probably in some way ensure that the subtarget |
| 110 | // information for a function hasn't changed. |
| 111 | return false; |
| 112 | } |
| 113 | |
| 114 | /// \name Generic Target Information |
| 115 | /// @{ |
| 116 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 117 | /// The kind of cost model. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 118 | /// |
| 119 | /// There are several different cost models that can be customized by the |
| 120 | /// target. The normalization of each cost model may be target specific. |
| 121 | enum TargetCostKind { |
| 122 | TCK_RecipThroughput, ///< Reciprocal throughput. |
| 123 | TCK_Latency, ///< The latency of instruction. |
| 124 | TCK_CodeSize ///< Instruction code size. |
| 125 | }; |
| 126 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 127 | /// Query the cost of a specified instruction. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 128 | /// |
| 129 | /// Clients should use this interface to query the cost of an existing |
| 130 | /// instruction. The instruction must have a valid parent (basic block). |
| 131 | /// |
| 132 | /// Note, this method does not cache the cost calculation and it |
| 133 | /// can be expensive in some cases. |
| 134 | int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const { |
| 135 | switch (kind){ |
| 136 | case TCK_RecipThroughput: |
| 137 | return getInstructionThroughput(I); |
| 138 | |
| 139 | case TCK_Latency: |
| 140 | return getInstructionLatency(I); |
| 141 | |
| 142 | case TCK_CodeSize: |
| 143 | return getUserCost(I); |
| 144 | } |
| 145 | llvm_unreachable("Unknown instruction cost kind"); |
| 146 | } |
| 147 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 148 | /// Underlying constants for 'cost' values in this interface. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 149 | /// |
| 150 | /// Many APIs in this interface return a cost. This enum defines the |
| 151 | /// fundamental values that should be used to interpret (and produce) those |
| 152 | /// costs. The costs are returned as an int rather than a member of this |
| 153 | /// enumeration because it is expected that the cost of one IR instruction |
| 154 | /// may have a multiplicative factor to it or otherwise won't fit directly |
| 155 | /// into the enum. Moreover, it is common to sum or average costs which works |
| 156 | /// better as simple integral values. Thus this enum only provides constants. |
| 157 | /// Also note that the returned costs are signed integers to make it natural |
| 158 | /// to add, subtract, and test with zero (a common boundary condition). It is |
| 159 | /// not expected that 2^32 is a realistic cost to be modeling at any point. |
| 160 | /// |
| 161 | /// Note that these costs should usually reflect the intersection of code-size |
| 162 | /// cost and execution cost. A free instruction is typically one that folds |
| 163 | /// into another instruction. For example, reg-to-reg moves can often be |
| 164 | /// skipped by renaming the registers in the CPU, but they still are encoded |
| 165 | /// and thus wouldn't be considered 'free' here. |
| 166 | enum TargetCostConstants { |
| 167 | TCC_Free = 0, ///< Expected to fold away in lowering. |
| 168 | TCC_Basic = 1, ///< The cost of a typical 'add' instruction. |
| 169 | TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86. |
| 170 | }; |
| 171 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 172 | /// Estimate the cost of a specific operation when lowered. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 173 | /// |
| 174 | /// Note that this is designed to work on an arbitrary synthetic opcode, and |
| 175 | /// thus work for hypothetical queries before an instruction has even been |
| 176 | /// formed. However, this does *not* work for GEPs, and must not be called |
| 177 | /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as |
| 178 | /// analyzing a GEP's cost required more information. |
| 179 | /// |
| 180 | /// Typically only the result type is required, and the operand type can be |
| 181 | /// omitted. However, if the opcode is one of the cast instructions, the |
| 182 | /// operand type is required. |
| 183 | /// |
| 184 | /// The returned cost is defined in terms of \c TargetCostConstants, see its |
| 185 | /// comments for a detailed explanation of the cost values. |
| 186 | int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const; |
| 187 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 188 | /// Estimate the cost of a GEP operation when lowered. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 189 | /// |
| 190 | /// The contract for this function is the same as \c getOperationCost except |
| 191 | /// that it supports an interface that provides extra information specific to |
| 192 | /// the GEP operation. |
| 193 | int getGEPCost(Type *PointeeType, const Value *Ptr, |
| 194 | ArrayRef<const Value *> Operands) const; |
| 195 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 196 | /// Estimate the cost of a EXT operation when lowered. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 197 | /// |
| 198 | /// The contract for this function is the same as \c getOperationCost except |
| 199 | /// that it supports an interface that provides extra information specific to |
| 200 | /// the EXT operation. |
| 201 | int getExtCost(const Instruction *I, const Value *Src) const; |
| 202 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 203 | /// Estimate the cost of a function call when lowered. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 204 | /// |
| 205 | /// The contract for this is the same as \c getOperationCost except that it |
| 206 | /// supports an interface that provides extra information specific to call |
| 207 | /// instructions. |
| 208 | /// |
| 209 | /// This is the most basic query for estimating call cost: it only knows the |
| 210 | /// function type and (potentially) the number of arguments at the call site. |
| 211 | /// The latter is only interesting for varargs function types. |
| 212 | int getCallCost(FunctionType *FTy, int NumArgs = -1) const; |
| 213 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 214 | /// Estimate the cost of calling a specific function when lowered. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 215 | /// |
| 216 | /// This overload adds the ability to reason about the particular function |
| 217 | /// being called in the event it is a library call with special lowering. |
| 218 | int getCallCost(const Function *F, int NumArgs = -1) const; |
| 219 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 220 | /// Estimate the cost of calling a specific function when lowered. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 221 | /// |
| 222 | /// This overload allows specifying a set of candidate argument values. |
| 223 | int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const; |
| 224 | |
| 225 | /// \returns A value by which our inlining threshold should be multiplied. |
| 226 | /// This is primarily used to bump up the inlining threshold wholesale on |
| 227 | /// targets where calls are unusually expensive. |
| 228 | /// |
| 229 | /// TODO: This is a rather blunt instrument. Perhaps altering the costs of |
| 230 | /// individual classes of instructions would be better. |
| 231 | unsigned getInliningThresholdMultiplier() const; |
| 232 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 233 | /// Estimate the cost of an intrinsic when lowered. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 234 | /// |
| 235 | /// Mirrors the \c getCallCost method but uses an intrinsic identifier. |
| 236 | int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| 237 | ArrayRef<Type *> ParamTys) const; |
| 238 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 239 | /// Estimate the cost of an intrinsic when lowered. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 240 | /// |
| 241 | /// Mirrors the \c getCallCost method but uses an intrinsic identifier. |
| 242 | int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| 243 | ArrayRef<const Value *> Arguments) const; |
| 244 | |
| 245 | /// \return The estimated number of case clusters when lowering \p 'SI'. |
| 246 | /// \p JTSize Set a jump table size only when \p SI is suitable for a jump |
| 247 | /// table. |
| 248 | unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
| 249 | unsigned &JTSize) const; |
| 250 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 251 | /// Estimate the cost of a given IR user when lowered. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 252 | /// |
| 253 | /// This can estimate the cost of either a ConstantExpr or Instruction when |
| 254 | /// lowered. It has two primary advantages over the \c getOperationCost and |
| 255 | /// \c getGEPCost above, and one significant disadvantage: it can only be |
| 256 | /// used when the IR construct has already been formed. |
| 257 | /// |
| 258 | /// The advantages are that it can inspect the SSA use graph to reason more |
| 259 | /// accurately about the cost. For example, all-constant-GEPs can often be |
| 260 | /// folded into a load or other instruction, but if they are used in some |
| 261 | /// other context they may not be folded. This routine can distinguish such |
| 262 | /// cases. |
| 263 | /// |
| 264 | /// \p Operands is a list of operands which can be a result of transformations |
| 265 | /// of the current operands. The number of the operands on the list must equal |
| 266 | /// to the number of the current operands the IR user has. Their order on the |
| 267 | /// list must be the same as the order of the current operands the IR user |
| 268 | /// has. |
| 269 | /// |
| 270 | /// The returned cost is defined in terms of \c TargetCostConstants, see its |
| 271 | /// comments for a detailed explanation of the cost values. |
| 272 | int getUserCost(const User *U, ArrayRef<const Value *> Operands) const; |
| 273 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 274 | /// This is a helper function which calls the two-argument getUserCost |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 275 | /// with \p Operands which are the current operands U has. |
| 276 | int getUserCost(const User *U) const { |
| 277 | SmallVector<const Value *, 4> Operands(U->value_op_begin(), |
| 278 | U->value_op_end()); |
| 279 | return getUserCost(U, Operands); |
| 280 | } |
| 281 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 282 | /// Return true if branch divergence exists. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 283 | /// |
| 284 | /// Branch divergence has a significantly negative impact on GPU performance |
| 285 | /// when threads in the same wavefront take different paths due to conditional |
| 286 | /// branches. |
| 287 | bool hasBranchDivergence() const; |
| 288 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 289 | /// Returns whether V is a source of divergence. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 290 | /// |
| 291 | /// This function provides the target-dependent information for |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 292 | /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis first |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 293 | /// builds the dependency graph, and then runs the reachability algorithm |
| 294 | /// starting with the sources of divergence. |
| 295 | bool isSourceOfDivergence(const Value *V) const; |
| 296 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 297 | // Returns true for the target specific |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 298 | // set of operations which produce uniform result |
| 299 | // even taking non-unform arguments |
| 300 | bool isAlwaysUniform(const Value *V) const; |
| 301 | |
| 302 | /// Returns the address space ID for a target's 'flat' address space. Note |
| 303 | /// this is not necessarily the same as addrspace(0), which LLVM sometimes |
| 304 | /// refers to as the generic address space. The flat address space is a |
| 305 | /// generic address space that can be used access multiple segments of memory |
| 306 | /// with different address spaces. Access of a memory location through a |
| 307 | /// pointer with this address space is expected to be legal but slower |
| 308 | /// compared to the same memory location accessed through a pointer with a |
| 309 | /// different address space. |
| 310 | // |
| 311 | /// This is for targets with different pointer representations which can |
| 312 | /// be converted with the addrspacecast instruction. If a pointer is converted |
| 313 | /// to this address space, optimizations should attempt to replace the access |
| 314 | /// with the source address space. |
| 315 | /// |
| 316 | /// \returns ~0u if the target does not have such a flat address space to |
| 317 | /// optimize away. |
| 318 | unsigned getFlatAddressSpace() const; |
| 319 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 320 | /// Test whether calls to a function lower to actual program function |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 321 | /// calls. |
| 322 | /// |
| 323 | /// The idea is to test whether the program is likely to require a 'call' |
| 324 | /// instruction or equivalent in order to call the given function. |
| 325 | /// |
| 326 | /// FIXME: It's not clear that this is a good or useful query API. Client's |
| 327 | /// should probably move to simpler cost metrics using the above. |
| 328 | /// Alternatively, we could split the cost interface into distinct code-size |
| 329 | /// and execution-speed costs. This would allow modelling the core of this |
| 330 | /// query more accurately as a call is a single small instruction, but |
| 331 | /// incurs significant execution cost. |
| 332 | bool isLoweredToCall(const Function *F) const; |
| 333 | |
| 334 | struct LSRCost { |
| 335 | /// TODO: Some of these could be merged. Also, a lexical ordering |
| 336 | /// isn't always optimal. |
| 337 | unsigned Insns; |
| 338 | unsigned NumRegs; |
| 339 | unsigned AddRecCost; |
| 340 | unsigned NumIVMuls; |
| 341 | unsigned NumBaseAdds; |
| 342 | unsigned ImmCost; |
| 343 | unsigned SetupCost; |
| 344 | unsigned ScaleCost; |
| 345 | }; |
| 346 | |
| 347 | /// Parameters that control the generic loop unrolling transformation. |
| 348 | struct UnrollingPreferences { |
| 349 | /// The cost threshold for the unrolled loop. Should be relative to the |
| 350 | /// getUserCost values returned by this API, and the expectation is that |
| 351 | /// the unrolled loop's instructions when run through that interface should |
| 352 | /// not exceed this cost. However, this is only an estimate. Also, specific |
| 353 | /// loops may be unrolled even with a cost above this threshold if deemed |
| 354 | /// profitable. Set this to UINT_MAX to disable the loop body cost |
| 355 | /// restriction. |
| 356 | unsigned Threshold; |
| 357 | /// If complete unrolling will reduce the cost of the loop, we will boost |
| 358 | /// the Threshold by a certain percent to allow more aggressive complete |
| 359 | /// unrolling. This value provides the maximum boost percentage that we |
| 360 | /// can apply to Threshold (The value should be no less than 100). |
| 361 | /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost, |
| 362 | /// MaxPercentThresholdBoost / 100) |
| 363 | /// E.g. if complete unrolling reduces the loop execution time by 50% |
| 364 | /// then we boost the threshold by the factor of 2x. If unrolling is not |
| 365 | /// expected to reduce the running time, then we do not increase the |
| 366 | /// threshold. |
| 367 | unsigned MaxPercentThresholdBoost; |
| 368 | /// The cost threshold for the unrolled loop when optimizing for size (set |
| 369 | /// to UINT_MAX to disable). |
| 370 | unsigned OptSizeThreshold; |
| 371 | /// The cost threshold for the unrolled loop, like Threshold, but used |
| 372 | /// for partial/runtime unrolling (set to UINT_MAX to disable). |
| 373 | unsigned PartialThreshold; |
| 374 | /// The cost threshold for the unrolled loop when optimizing for size, like |
| 375 | /// OptSizeThreshold, but used for partial/runtime unrolling (set to |
| 376 | /// UINT_MAX to disable). |
| 377 | unsigned PartialOptSizeThreshold; |
| 378 | /// A forced unrolling factor (the number of concatenated bodies of the |
| 379 | /// original loop in the unrolled loop body). When set to 0, the unrolling |
| 380 | /// transformation will select an unrolling factor based on the current cost |
| 381 | /// threshold and other factors. |
| 382 | unsigned Count; |
| 383 | /// A forced peeling factor (the number of bodied of the original loop |
| 384 | /// that should be peeled off before the loop body). When set to 0, the |
| 385 | /// unrolling transformation will select a peeling factor based on profile |
| 386 | /// information and other factors. |
| 387 | unsigned PeelCount; |
| 388 | /// Default unroll count for loops with run-time trip count. |
| 389 | unsigned DefaultUnrollRuntimeCount; |
| 390 | // Set the maximum unrolling factor. The unrolling factor may be selected |
| 391 | // using the appropriate cost threshold, but may not exceed this number |
| 392 | // (set to UINT_MAX to disable). This does not apply in cases where the |
| 393 | // loop is being fully unrolled. |
| 394 | unsigned MaxCount; |
| 395 | /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but |
| 396 | /// applies even if full unrolling is selected. This allows a target to fall |
| 397 | /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount. |
| 398 | unsigned FullUnrollMaxCount; |
| 399 | // Represents number of instructions optimized when "back edge" |
| 400 | // becomes "fall through" in unrolled loop. |
| 401 | // For now we count a conditional branch on a backedge and a comparison |
| 402 | // feeding it. |
| 403 | unsigned BEInsns; |
| 404 | /// Allow partial unrolling (unrolling of loops to expand the size of the |
| 405 | /// loop body, not only to eliminate small constant-trip-count loops). |
| 406 | bool Partial; |
| 407 | /// Allow runtime unrolling (unrolling of loops to expand the size of the |
| 408 | /// loop body even when the number of loop iterations is not known at |
| 409 | /// compile time). |
| 410 | bool Runtime; |
| 411 | /// Allow generation of a loop remainder (extra iterations after unroll). |
| 412 | bool AllowRemainder; |
| 413 | /// Allow emitting expensive instructions (such as divisions) when computing |
| 414 | /// the trip count of a loop for runtime unrolling. |
| 415 | bool AllowExpensiveTripCount; |
| 416 | /// Apply loop unroll on any kind of loop |
| 417 | /// (mainly to loops that fail runtime unrolling). |
| 418 | bool Force; |
| 419 | /// Allow using trip count upper bound to unroll loops. |
| 420 | bool UpperBound; |
| 421 | /// Allow peeling off loop iterations for loops with low dynamic tripcount. |
| 422 | bool AllowPeeling; |
| 423 | /// Allow unrolling of all the iterations of the runtime loop remainder. |
| 424 | bool UnrollRemainder; |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 425 | /// Allow unroll and jam. Used to enable unroll and jam for the target. |
| 426 | bool UnrollAndJam; |
| 427 | /// Threshold for unroll and jam, for inner loop size. The 'Threshold' |
| 428 | /// value above is used during unroll and jam for the outer loop size. |
| 429 | /// This value is used in the same manner to limit the size of the inner |
| 430 | /// loop. |
| 431 | unsigned UnrollAndJamInnerLoopThreshold; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 432 | }; |
| 433 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 434 | /// Get target-customized preferences for the generic loop unrolling |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 435 | /// transformation. The caller will initialize UP with the current |
| 436 | /// target-independent defaults. |
| 437 | void getUnrollingPreferences(Loop *L, ScalarEvolution &, |
| 438 | UnrollingPreferences &UP) const; |
| 439 | |
| 440 | /// @} |
| 441 | |
| 442 | /// \name Scalar Target Information |
| 443 | /// @{ |
| 444 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 445 | /// Flags indicating the kind of support for population count. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 446 | /// |
| 447 | /// Compared to the SW implementation, HW support is supposed to |
| 448 | /// significantly boost the performance when the population is dense, and it |
| 449 | /// may or may not degrade performance if the population is sparse. A HW |
| 450 | /// support is considered as "Fast" if it can outperform, or is on a par |
| 451 | /// with, SW implementation when the population is sparse; otherwise, it is |
| 452 | /// considered as "Slow". |
| 453 | enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware }; |
| 454 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 455 | /// Return true if the specified immediate is legal add immediate, that |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 456 | /// is the target has add instructions which can add a register with the |
| 457 | /// immediate without having to materialize the immediate into a register. |
| 458 | bool isLegalAddImmediate(int64_t Imm) const; |
| 459 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 460 | /// Return true if the specified immediate is legal icmp immediate, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 461 | /// that is the target has icmp instructions which can compare a register |
| 462 | /// against the immediate without having to materialize the immediate into a |
| 463 | /// register. |
| 464 | bool isLegalICmpImmediate(int64_t Imm) const; |
| 465 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 466 | /// Return true if the addressing mode represented by AM is legal for |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 467 | /// this target, for a load/store of the specified type. |
| 468 | /// The type may be VoidTy, in which case only return true if the addressing |
| 469 | /// mode is legal for a load/store of any legal type. |
| 470 | /// If target returns true in LSRWithInstrQueries(), I may be valid. |
| 471 | /// TODO: Handle pre/postinc as well. |
| 472 | bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| 473 | bool HasBaseReg, int64_t Scale, |
| 474 | unsigned AddrSpace = 0, |
| 475 | Instruction *I = nullptr) const; |
| 476 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 477 | /// Return true if LSR cost of C1 is lower than C1. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 478 | bool isLSRCostLess(TargetTransformInfo::LSRCost &C1, |
| 479 | TargetTransformInfo::LSRCost &C2) const; |
| 480 | |
| 481 | /// Return true if the target can fuse a compare and branch. |
| 482 | /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost |
| 483 | /// calculation for the instructions in a loop. |
| 484 | bool canMacroFuseCmp() const; |
| 485 | |
| 486 | /// \return True is LSR should make efforts to create/preserve post-inc |
| 487 | /// addressing mode expressions. |
| 488 | bool shouldFavorPostInc() const; |
| 489 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 490 | /// Return true if the target supports masked load/store |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 491 | /// AVX2 and AVX-512 targets allow masks for consecutive load and store |
| 492 | bool isLegalMaskedStore(Type *DataType) const; |
| 493 | bool isLegalMaskedLoad(Type *DataType) const; |
| 494 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 495 | /// Return true if the target supports masked gather/scatter |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 496 | /// AVX-512 fully supports gather and scatter for vectors with 32 and 64 |
| 497 | /// bits scalar type. |
| 498 | bool isLegalMaskedScatter(Type *DataType) const; |
| 499 | bool isLegalMaskedGather(Type *DataType) const; |
| 500 | |
| 501 | /// Return true if the target has a unified operation to calculate division |
| 502 | /// and remainder. If so, the additional implicit multiplication and |
| 503 | /// subtraction required to calculate a remainder from division are free. This |
| 504 | /// can enable more aggressive transformations for division and remainder than |
| 505 | /// would typically be allowed using throughput or size cost models. |
| 506 | bool hasDivRemOp(Type *DataType, bool IsSigned) const; |
| 507 | |
| 508 | /// Return true if the given instruction (assumed to be a memory access |
| 509 | /// instruction) has a volatile variant. If that's the case then we can avoid |
| 510 | /// addrspacecast to generic AS for volatile loads/stores. Default |
| 511 | /// implementation returns false, which prevents address space inference for |
| 512 | /// volatile loads/stores. |
| 513 | bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const; |
| 514 | |
| 515 | /// Return true if target doesn't mind addresses in vectors. |
| 516 | bool prefersVectorizedAddressing() const; |
| 517 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 518 | /// Return the cost of the scaling factor used in the addressing |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 519 | /// mode represented by AM for this target, for a load/store |
| 520 | /// of the specified type. |
| 521 | /// If the AM is supported, the return value must be >= 0. |
| 522 | /// If the AM is not supported, it returns a negative value. |
| 523 | /// TODO: Handle pre/postinc as well. |
| 524 | int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| 525 | bool HasBaseReg, int64_t Scale, |
| 526 | unsigned AddrSpace = 0) const; |
| 527 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 528 | /// Return true if the loop strength reduce pass should make |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 529 | /// Instruction* based TTI queries to isLegalAddressingMode(). This is |
| 530 | /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned |
| 531 | /// immediate offset and no index register. |
| 532 | bool LSRWithInstrQueries() const; |
| 533 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 534 | /// Return true if it's free to truncate a value of type Ty1 to type |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 535 | /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 |
| 536 | /// by referencing its sub-register AX. |
| 537 | bool isTruncateFree(Type *Ty1, Type *Ty2) const; |
| 538 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 539 | /// Return true if it is profitable to hoist instruction in the |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 540 | /// then/else to before if. |
| 541 | bool isProfitableToHoist(Instruction *I) const; |
| 542 | |
| 543 | bool useAA() const; |
| 544 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 545 | /// Return true if this type is legal. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 546 | bool isTypeLegal(Type *Ty) const; |
| 547 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 548 | /// Returns the target's jmp_buf alignment in bytes. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 549 | unsigned getJumpBufAlignment() const; |
| 550 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 551 | /// Returns the target's jmp_buf size in bytes. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 552 | unsigned getJumpBufSize() const; |
| 553 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 554 | /// Return true if switches should be turned into lookup tables for the |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 555 | /// target. |
| 556 | bool shouldBuildLookupTables() const; |
| 557 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 558 | /// Return true if switches should be turned into lookup tables |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 559 | /// containing this constant value for the target. |
| 560 | bool shouldBuildLookupTablesForConstant(Constant *C) const; |
| 561 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 562 | /// Return true if the input function which is cold at all call sites, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 563 | /// should use coldcc calling convention. |
| 564 | bool useColdCCForColdCall(Function &F) const; |
| 565 | |
| 566 | unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; |
| 567 | |
| 568 | unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
| 569 | unsigned VF) const; |
| 570 | |
| 571 | /// If target has efficient vector element load/store instructions, it can |
| 572 | /// return true here so that insertion/extraction costs are not added to |
| 573 | /// the scalarization cost of a load/store. |
| 574 | bool supportsEfficientVectorElementLoadStore() const; |
| 575 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 576 | /// Don't restrict interleaved unrolling to small loops. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 577 | bool enableAggressiveInterleaving(bool LoopHasReductions) const; |
| 578 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 579 | /// If not nullptr, enable inline expansion of memcmp. IsZeroCmp is |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 580 | /// true if this is the expansion of memcmp(p1, p2, s) == 0. |
| 581 | struct MemCmpExpansionOptions { |
| 582 | // The list of available load sizes (in bytes), sorted in decreasing order. |
| 583 | SmallVector<unsigned, 8> LoadSizes; |
| 584 | }; |
| 585 | const MemCmpExpansionOptions *enableMemCmpExpansion(bool IsZeroCmp) const; |
| 586 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 587 | /// Enable matching of interleaved access groups. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 588 | bool enableInterleavedAccessVectorization() const; |
| 589 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 590 | /// Indicate that it is potentially unsafe to automatically vectorize |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 591 | /// floating-point operations because the semantics of vector and scalar |
| 592 | /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math |
| 593 | /// does not support IEEE-754 denormal numbers, while depending on the |
| 594 | /// platform, scalar floating-point math does. |
| 595 | /// This applies to floating-point math operations and calls, not memory |
| 596 | /// operations, shuffles, or casts. |
| 597 | bool isFPVectorizationPotentiallyUnsafe() const; |
| 598 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 599 | /// Determine if the target supports unaligned memory accesses. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 600 | bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
| 601 | unsigned BitWidth, unsigned AddressSpace = 0, |
| 602 | unsigned Alignment = 1, |
| 603 | bool *Fast = nullptr) const; |
| 604 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 605 | /// Return hardware support for population count. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 606 | PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; |
| 607 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 608 | /// Return true if the hardware has a fast square-root instruction. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 609 | bool haveFastSqrt(Type *Ty) const; |
| 610 | |
| 611 | /// Return true if it is faster to check if a floating-point value is NaN |
| 612 | /// (or not-NaN) versus a comparison against a constant FP zero value. |
| 613 | /// Targets should override this if materializing a 0.0 for comparison is |
| 614 | /// generally as cheap as checking for ordered/unordered. |
| 615 | bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const; |
| 616 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 617 | /// Return the expected cost of supporting the floating point operation |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 618 | /// of the specified type. |
| 619 | int getFPOpCost(Type *Ty) const; |
| 620 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 621 | /// Return the expected cost of materializing for the given integer |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 622 | /// immediate of the specified type. |
| 623 | int getIntImmCost(const APInt &Imm, Type *Ty) const; |
| 624 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 625 | /// Return the expected cost of materialization for the given integer |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 626 | /// immediate of the specified type for a given instruction. The cost can be |
| 627 | /// zero if the immediate can be folded into the specified instruction. |
| 628 | int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| 629 | Type *Ty) const; |
| 630 | int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, |
| 631 | Type *Ty) const; |
| 632 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 633 | /// Return the expected cost for the given integer when optimising |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 634 | /// for size. This is different than the other integer immediate cost |
| 635 | /// functions in that it is subtarget agnostic. This is useful when you e.g. |
| 636 | /// target one ISA such as Aarch32 but smaller encodings could be possible |
| 637 | /// with another such as Thumb. This return value is used as a penalty when |
| 638 | /// the total costs for a constant is calculated (the bigger the cost, the |
| 639 | /// more beneficial constant hoisting is). |
| 640 | int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| 641 | Type *Ty) const; |
| 642 | /// @} |
| 643 | |
| 644 | /// \name Vector Target Information |
| 645 | /// @{ |
| 646 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 647 | /// The various kinds of shuffle patterns for vector queries. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 648 | enum ShuffleKind { |
| 649 | SK_Broadcast, ///< Broadcast element 0 to all other elements. |
| 650 | SK_Reverse, ///< Reverse the order of the vector. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 651 | SK_Select, ///< Selects elements from the corresponding lane of |
| 652 | ///< either source operand. This is equivalent to a |
| 653 | ///< vector select with a constant condition operand. |
| 654 | SK_Transpose, ///< Transpose two vectors. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 655 | SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset. |
| 656 | SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset. |
| 657 | SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one |
| 658 | ///< with any shuffle mask. |
| 659 | SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any |
| 660 | ///< shuffle mask. |
| 661 | }; |
| 662 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 663 | /// Additional information about an operand's possible values. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 664 | enum OperandValueKind { |
| 665 | OK_AnyValue, // Operand can have any value. |
| 666 | OK_UniformValue, // Operand is uniform (splat of a value). |
| 667 | OK_UniformConstantValue, // Operand is uniform constant. |
| 668 | OK_NonUniformConstantValue // Operand is a non uniform constant value. |
| 669 | }; |
| 670 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 671 | /// Additional properties of an operand's values. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 672 | enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 }; |
| 673 | |
| 674 | /// \return The number of scalar or vector registers that the target has. |
| 675 | /// If 'Vectors' is true, it returns the number of vector registers. If it is |
| 676 | /// set to false, it returns the number of scalar registers. |
| 677 | unsigned getNumberOfRegisters(bool Vector) const; |
| 678 | |
| 679 | /// \return The width of the largest scalar or vector register type. |
| 680 | unsigned getRegisterBitWidth(bool Vector) const; |
| 681 | |
| 682 | /// \return The width of the smallest vector register type. |
| 683 | unsigned getMinVectorRegisterBitWidth() const; |
| 684 | |
| 685 | /// \return True if the vectorization factor should be chosen to |
| 686 | /// make the vector of the smallest element type match the size of a |
| 687 | /// vector register. For wider element types, this could result in |
| 688 | /// creating vectors that span multiple vector registers. |
| 689 | /// If false, the vectorization factor will be chosen based on the |
| 690 | /// size of the widest element type. |
| 691 | bool shouldMaximizeVectorBandwidth(bool OptSize) const; |
| 692 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 693 | /// \return The minimum vectorization factor for types of given element |
| 694 | /// bit width, or 0 if there is no mimimum VF. The returned value only |
| 695 | /// applies when shouldMaximizeVectorBandwidth returns true. |
| 696 | unsigned getMinimumVF(unsigned ElemWidth) const; |
| 697 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 698 | /// \return True if it should be considered for address type promotion. |
| 699 | /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is |
| 700 | /// profitable without finding other extensions fed by the same input. |
| 701 | bool shouldConsiderAddressTypePromotion( |
| 702 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const; |
| 703 | |
| 704 | /// \return The size of a cache line in bytes. |
| 705 | unsigned getCacheLineSize() const; |
| 706 | |
| 707 | /// The possible cache levels |
| 708 | enum class CacheLevel { |
| 709 | L1D, // The L1 data cache |
| 710 | L2D, // The L2 data cache |
| 711 | |
| 712 | // We currently do not model L3 caches, as their sizes differ widely between |
| 713 | // microarchitectures. Also, we currently do not have a use for L3 cache |
| 714 | // size modeling yet. |
| 715 | }; |
| 716 | |
| 717 | /// \return The size of the cache level in bytes, if available. |
| 718 | llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const; |
| 719 | |
| 720 | /// \return The associativity of the cache level, if available. |
| 721 | llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const; |
| 722 | |
| 723 | /// \return How much before a load we should place the prefetch instruction. |
| 724 | /// This is currently measured in number of instructions. |
| 725 | unsigned getPrefetchDistance() const; |
| 726 | |
| 727 | /// \return Some HW prefetchers can handle accesses up to a certain constant |
| 728 | /// stride. This is the minimum stride in bytes where it makes sense to start |
| 729 | /// adding SW prefetches. The default is 1, i.e. prefetch with any stride. |
| 730 | unsigned getMinPrefetchStride() const; |
| 731 | |
| 732 | /// \return The maximum number of iterations to prefetch ahead. If the |
| 733 | /// required number of iterations is more than this number, no prefetching is |
| 734 | /// performed. |
| 735 | unsigned getMaxPrefetchIterationsAhead() const; |
| 736 | |
| 737 | /// \return The maximum interleave factor that any transform should try to |
| 738 | /// perform for this target. This number depends on the level of parallelism |
| 739 | /// and the number of execution units in the CPU. |
| 740 | unsigned getMaxInterleaveFactor(unsigned VF) const; |
| 741 | |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame^] | 742 | /// Collect properties of V used in cost analyzis, e.g. OP_PowerOf2. |
| 743 | OperandValueKind getOperandInfo(Value *V, |
| 744 | OperandValueProperties &OpProps) const; |
| 745 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 746 | /// This is an approximation of reciprocal throughput of a math/logic op. |
| 747 | /// A higher cost indicates less expected throughput. |
| 748 | /// From Agner Fog's guides, reciprocal throughput is "the average number of |
| 749 | /// clock cycles per instruction when the instructions are not part of a |
| 750 | /// limiting dependency chain." |
| 751 | /// Therefore, costs should be scaled to account for multiple execution units |
| 752 | /// on the target that can process this type of instruction. For example, if |
| 753 | /// there are 5 scalar integer units and 2 vector integer units that can |
| 754 | /// calculate an 'add' in a single cycle, this model should indicate that the |
| 755 | /// cost of the vector add instruction is 2.5 times the cost of the scalar |
| 756 | /// add instruction. |
| 757 | /// \p Args is an optional argument which holds the instruction operands |
| 758 | /// values so the TTI can analyze those values searching for special |
| 759 | /// cases or optimizations based on those values. |
| 760 | int getArithmeticInstrCost( |
| 761 | unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue, |
| 762 | OperandValueKind Opd2Info = OK_AnyValue, |
| 763 | OperandValueProperties Opd1PropInfo = OP_None, |
| 764 | OperandValueProperties Opd2PropInfo = OP_None, |
| 765 | ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const; |
| 766 | |
| 767 | /// \return The cost of a shuffle instruction of kind Kind and of type Tp. |
| 768 | /// The index and subtype parameters are used by the subvector insertion and |
| 769 | /// extraction shuffle kinds. |
| 770 | int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0, |
| 771 | Type *SubTp = nullptr) const; |
| 772 | |
| 773 | /// \return The expected cost of cast instructions, such as bitcast, trunc, |
| 774 | /// zext, etc. If there is an existing instruction that holds Opcode, it |
| 775 | /// may be passed in the 'I' parameter. |
| 776 | int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| 777 | const Instruction *I = nullptr) const; |
| 778 | |
| 779 | /// \return The expected cost of a sign- or zero-extended vector extract. Use |
| 780 | /// -1 to indicate that there is no information about the index value. |
| 781 | int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, |
| 782 | unsigned Index = -1) const; |
| 783 | |
| 784 | /// \return The expected cost of control-flow related instructions such as |
| 785 | /// Phi, Ret, Br. |
| 786 | int getCFInstrCost(unsigned Opcode) const; |
| 787 | |
| 788 | /// \returns The expected cost of compare and select instructions. If there |
| 789 | /// is an existing instruction that holds Opcode, it may be passed in the |
| 790 | /// 'I' parameter. |
| 791 | int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| 792 | Type *CondTy = nullptr, const Instruction *I = nullptr) const; |
| 793 | |
| 794 | /// \return The expected cost of vector Insert and Extract. |
| 795 | /// Use -1 to indicate that there is no information on the index value. |
| 796 | int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const; |
| 797 | |
| 798 | /// \return The cost of Load and Store instructions. |
| 799 | int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| 800 | unsigned AddressSpace, const Instruction *I = nullptr) const; |
| 801 | |
| 802 | /// \return The cost of masked Load and Store instructions. |
| 803 | int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| 804 | unsigned AddressSpace) const; |
| 805 | |
| 806 | /// \return The cost of Gather or Scatter operation |
| 807 | /// \p Opcode - is a type of memory access Load or Store |
| 808 | /// \p DataTy - a vector type of the data to be loaded or stored |
| 809 | /// \p Ptr - pointer [or vector of pointers] - address[es] in memory |
| 810 | /// \p VariableMask - true when the memory access is predicated with a mask |
| 811 | /// that is not a compile-time constant |
| 812 | /// \p Alignment - alignment of single element |
| 813 | int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr, |
| 814 | bool VariableMask, unsigned Alignment) const; |
| 815 | |
| 816 | /// \return The cost of the interleaved memory operation. |
| 817 | /// \p Opcode is the memory operation code |
| 818 | /// \p VecTy is the vector type of the interleaved access. |
| 819 | /// \p Factor is the interleave factor |
| 820 | /// \p Indices is the indices for interleaved load members (as interleaved |
| 821 | /// load allows gaps) |
| 822 | /// \p Alignment is the alignment of the memory operation |
| 823 | /// \p AddressSpace is address space of the pointer. |
| 824 | int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, |
| 825 | ArrayRef<unsigned> Indices, unsigned Alignment, |
| 826 | unsigned AddressSpace) const; |
| 827 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 828 | /// Calculate the cost of performing a vector reduction. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 829 | /// |
| 830 | /// This is the cost of reducing the vector value of type \p Ty to a scalar |
| 831 | /// value using the operation denoted by \p Opcode. The form of the reduction |
| 832 | /// can either be a pairwise reduction or a reduction that splits the vector |
| 833 | /// at every reduction level. |
| 834 | /// |
| 835 | /// Pairwise: |
| 836 | /// (v0, v1, v2, v3) |
| 837 | /// ((v0+v1), (v2+v3), undef, undef) |
| 838 | /// Split: |
| 839 | /// (v0, v1, v2, v3) |
| 840 | /// ((v0+v2), (v1+v3), undef, undef) |
| 841 | int getArithmeticReductionCost(unsigned Opcode, Type *Ty, |
| 842 | bool IsPairwiseForm) const; |
| 843 | int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm, |
| 844 | bool IsUnsigned) const; |
| 845 | |
| 846 | /// \returns The cost of Intrinsic instructions. Analyses the real arguments. |
| 847 | /// Three cases are handled: 1. scalar instruction 2. vector instruction |
| 848 | /// 3. scalar instruction which is to be vectorized with VF. |
| 849 | int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| 850 | ArrayRef<Value *> Args, FastMathFlags FMF, |
| 851 | unsigned VF = 1) const; |
| 852 | |
| 853 | /// \returns The cost of Intrinsic instructions. Types analysis only. |
| 854 | /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the |
| 855 | /// arguments and the return value will be computed based on types. |
| 856 | int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| 857 | ArrayRef<Type *> Tys, FastMathFlags FMF, |
| 858 | unsigned ScalarizationCostPassed = UINT_MAX) const; |
| 859 | |
| 860 | /// \returns The cost of Call instructions. |
| 861 | int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const; |
| 862 | |
| 863 | /// \returns The number of pieces into which the provided type must be |
| 864 | /// split during legalization. Zero is returned when the answer is unknown. |
| 865 | unsigned getNumberOfParts(Type *Tp) const; |
| 866 | |
| 867 | /// \returns The cost of the address computation. For most targets this can be |
| 868 | /// merged into the instruction indexing mode. Some targets might want to |
| 869 | /// distinguish between address computation for memory operations on vector |
| 870 | /// types and scalar types. Such targets should override this function. |
| 871 | /// The 'SE' parameter holds pointer for the scalar evolution object which |
| 872 | /// is used in order to get the Ptr step value in case of constant stride. |
| 873 | /// The 'Ptr' parameter holds SCEV of the access pointer. |
| 874 | int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr, |
| 875 | const SCEV *Ptr = nullptr) const; |
| 876 | |
| 877 | /// \returns The cost, if any, of keeping values of the given types alive |
| 878 | /// over a callsite. |
| 879 | /// |
| 880 | /// Some types may require the use of register classes that do not have |
| 881 | /// any callee-saved registers, so would require a spill and fill. |
| 882 | unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const; |
| 883 | |
| 884 | /// \returns True if the intrinsic is a supported memory intrinsic. Info |
| 885 | /// will contain additional information - whether the intrinsic may write |
| 886 | /// or read to memory, volatility and the pointer. Info is undefined |
| 887 | /// if false is returned. |
| 888 | bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const; |
| 889 | |
| 890 | /// \returns The maximum element size, in bytes, for an element |
| 891 | /// unordered-atomic memory intrinsic. |
| 892 | unsigned getAtomicMemIntrinsicMaxElementSize() const; |
| 893 | |
| 894 | /// \returns A value which is the result of the given memory intrinsic. New |
| 895 | /// instructions may be created to extract the result from the given intrinsic |
| 896 | /// memory operation. Returns nullptr if the target cannot create a result |
| 897 | /// from the given intrinsic. |
| 898 | Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
| 899 | Type *ExpectedType) const; |
| 900 | |
| 901 | /// \returns The type to use in a loop expansion of a memcpy call. |
| 902 | Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, |
| 903 | unsigned SrcAlign, unsigned DestAlign) const; |
| 904 | |
| 905 | /// \param[out] OpsOut The operand types to copy RemainingBytes of memory. |
| 906 | /// \param RemainingBytes The number of bytes to copy. |
| 907 | /// |
| 908 | /// Calculates the operand types to use when copying \p RemainingBytes of |
| 909 | /// memory, where source and destination alignments are \p SrcAlign and |
| 910 | /// \p DestAlign respectively. |
| 911 | void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut, |
| 912 | LLVMContext &Context, |
| 913 | unsigned RemainingBytes, |
| 914 | unsigned SrcAlign, |
| 915 | unsigned DestAlign) const; |
| 916 | |
| 917 | /// \returns True if the two functions have compatible attributes for inlining |
| 918 | /// purposes. |
| 919 | bool areInlineCompatible(const Function *Caller, |
| 920 | const Function *Callee) const; |
| 921 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 922 | /// The type of load/store indexing. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 923 | enum MemIndexedMode { |
| 924 | MIM_Unindexed, ///< No indexing. |
| 925 | MIM_PreInc, ///< Pre-incrementing. |
| 926 | MIM_PreDec, ///< Pre-decrementing. |
| 927 | MIM_PostInc, ///< Post-incrementing. |
| 928 | MIM_PostDec ///< Post-decrementing. |
| 929 | }; |
| 930 | |
| 931 | /// \returns True if the specified indexed load for the given type is legal. |
| 932 | bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const; |
| 933 | |
| 934 | /// \returns True if the specified indexed store for the given type is legal. |
| 935 | bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const; |
| 936 | |
| 937 | /// \returns The bitwidth of the largest vector type that should be used to |
| 938 | /// load/store in the given address space. |
| 939 | unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const; |
| 940 | |
| 941 | /// \returns True if the load instruction is legal to vectorize. |
| 942 | bool isLegalToVectorizeLoad(LoadInst *LI) const; |
| 943 | |
| 944 | /// \returns True if the store instruction is legal to vectorize. |
| 945 | bool isLegalToVectorizeStore(StoreInst *SI) const; |
| 946 | |
| 947 | /// \returns True if it is legal to vectorize the given load chain. |
| 948 | bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, |
| 949 | unsigned Alignment, |
| 950 | unsigned AddrSpace) const; |
| 951 | |
| 952 | /// \returns True if it is legal to vectorize the given store chain. |
| 953 | bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, |
| 954 | unsigned Alignment, |
| 955 | unsigned AddrSpace) const; |
| 956 | |
| 957 | /// \returns The new vector factor value if the target doesn't support \p |
| 958 | /// SizeInBytes loads or has a better vector factor. |
| 959 | unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
| 960 | unsigned ChainSizeInBytes, |
| 961 | VectorType *VecTy) const; |
| 962 | |
| 963 | /// \returns The new vector factor value if the target doesn't support \p |
| 964 | /// SizeInBytes stores or has a better vector factor. |
| 965 | unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
| 966 | unsigned ChainSizeInBytes, |
| 967 | VectorType *VecTy) const; |
| 968 | |
| 969 | /// Flags describing the kind of vector reduction. |
| 970 | struct ReductionFlags { |
| 971 | ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {} |
| 972 | bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation. |
| 973 | bool IsSigned; ///< Whether the operation is a signed int reduction. |
| 974 | bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present. |
| 975 | }; |
| 976 | |
| 977 | /// \returns True if the target wants to handle the given reduction idiom in |
| 978 | /// the intrinsics form instead of the shuffle form. |
| 979 | bool useReductionIntrinsic(unsigned Opcode, Type *Ty, |
| 980 | ReductionFlags Flags) const; |
| 981 | |
| 982 | /// \returns True if the target wants to expand the given reduction intrinsic |
| 983 | /// into a shuffle sequence. |
| 984 | bool shouldExpandReduction(const IntrinsicInst *II) const; |
| 985 | /// @} |
| 986 | |
| 987 | private: |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 988 | /// Estimate the latency of specified instruction. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 989 | /// Returns 1 as the default value. |
| 990 | int getInstructionLatency(const Instruction *I) const; |
| 991 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 992 | /// Returns the expected throughput cost of the instruction. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 993 | /// Returns -1 if the cost is unknown. |
| 994 | int getInstructionThroughput(const Instruction *I) const; |
| 995 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 996 | /// The abstract base class used to type erase specific TTI |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 997 | /// implementations. |
| 998 | class Concept; |
| 999 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1000 | /// The template model for the base class which wraps a concrete |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1001 | /// implementation in a type erased interface. |
| 1002 | template <typename T> class Model; |
| 1003 | |
| 1004 | std::unique_ptr<Concept> TTIImpl; |
| 1005 | }; |
| 1006 | |
| 1007 | class TargetTransformInfo::Concept { |
| 1008 | public: |
| 1009 | virtual ~Concept() = 0; |
| 1010 | virtual const DataLayout &getDataLayout() const = 0; |
| 1011 | virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0; |
| 1012 | virtual int getGEPCost(Type *PointeeType, const Value *Ptr, |
| 1013 | ArrayRef<const Value *> Operands) = 0; |
| 1014 | virtual int getExtCost(const Instruction *I, const Value *Src) = 0; |
| 1015 | virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0; |
| 1016 | virtual int getCallCost(const Function *F, int NumArgs) = 0; |
| 1017 | virtual int getCallCost(const Function *F, |
| 1018 | ArrayRef<const Value *> Arguments) = 0; |
| 1019 | virtual unsigned getInliningThresholdMultiplier() = 0; |
| 1020 | virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| 1021 | ArrayRef<Type *> ParamTys) = 0; |
| 1022 | virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| 1023 | ArrayRef<const Value *> Arguments) = 0; |
| 1024 | virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
| 1025 | unsigned &JTSize) = 0; |
| 1026 | virtual int |
| 1027 | getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0; |
| 1028 | virtual bool hasBranchDivergence() = 0; |
| 1029 | virtual bool isSourceOfDivergence(const Value *V) = 0; |
| 1030 | virtual bool isAlwaysUniform(const Value *V) = 0; |
| 1031 | virtual unsigned getFlatAddressSpace() = 0; |
| 1032 | virtual bool isLoweredToCall(const Function *F) = 0; |
| 1033 | virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &, |
| 1034 | UnrollingPreferences &UP) = 0; |
| 1035 | virtual bool isLegalAddImmediate(int64_t Imm) = 0; |
| 1036 | virtual bool isLegalICmpImmediate(int64_t Imm) = 0; |
| 1037 | virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, |
| 1038 | int64_t BaseOffset, bool HasBaseReg, |
| 1039 | int64_t Scale, |
| 1040 | unsigned AddrSpace, |
| 1041 | Instruction *I) = 0; |
| 1042 | virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1, |
| 1043 | TargetTransformInfo::LSRCost &C2) = 0; |
| 1044 | virtual bool canMacroFuseCmp() = 0; |
| 1045 | virtual bool shouldFavorPostInc() const = 0; |
| 1046 | virtual bool isLegalMaskedStore(Type *DataType) = 0; |
| 1047 | virtual bool isLegalMaskedLoad(Type *DataType) = 0; |
| 1048 | virtual bool isLegalMaskedScatter(Type *DataType) = 0; |
| 1049 | virtual bool isLegalMaskedGather(Type *DataType) = 0; |
| 1050 | virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0; |
| 1051 | virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0; |
| 1052 | virtual bool prefersVectorizedAddressing() = 0; |
| 1053 | virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
| 1054 | int64_t BaseOffset, bool HasBaseReg, |
| 1055 | int64_t Scale, unsigned AddrSpace) = 0; |
| 1056 | virtual bool LSRWithInstrQueries() = 0; |
| 1057 | virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0; |
| 1058 | virtual bool isProfitableToHoist(Instruction *I) = 0; |
| 1059 | virtual bool useAA() = 0; |
| 1060 | virtual bool isTypeLegal(Type *Ty) = 0; |
| 1061 | virtual unsigned getJumpBufAlignment() = 0; |
| 1062 | virtual unsigned getJumpBufSize() = 0; |
| 1063 | virtual bool shouldBuildLookupTables() = 0; |
| 1064 | virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0; |
| 1065 | virtual bool useColdCCForColdCall(Function &F) = 0; |
| 1066 | virtual unsigned |
| 1067 | getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0; |
| 1068 | virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
| 1069 | unsigned VF) = 0; |
| 1070 | virtual bool supportsEfficientVectorElementLoadStore() = 0; |
| 1071 | virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0; |
| 1072 | virtual const MemCmpExpansionOptions *enableMemCmpExpansion( |
| 1073 | bool IsZeroCmp) const = 0; |
| 1074 | virtual bool enableInterleavedAccessVectorization() = 0; |
| 1075 | virtual bool isFPVectorizationPotentiallyUnsafe() = 0; |
| 1076 | virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
| 1077 | unsigned BitWidth, |
| 1078 | unsigned AddressSpace, |
| 1079 | unsigned Alignment, |
| 1080 | bool *Fast) = 0; |
| 1081 | virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0; |
| 1082 | virtual bool haveFastSqrt(Type *Ty) = 0; |
| 1083 | virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0; |
| 1084 | virtual int getFPOpCost(Type *Ty) = 0; |
| 1085 | virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| 1086 | Type *Ty) = 0; |
| 1087 | virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0; |
| 1088 | virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| 1089 | Type *Ty) = 0; |
| 1090 | virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, |
| 1091 | Type *Ty) = 0; |
| 1092 | virtual unsigned getNumberOfRegisters(bool Vector) = 0; |
| 1093 | virtual unsigned getRegisterBitWidth(bool Vector) const = 0; |
| 1094 | virtual unsigned getMinVectorRegisterBitWidth() = 0; |
| 1095 | virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0; |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1096 | virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1097 | virtual bool shouldConsiderAddressTypePromotion( |
| 1098 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0; |
| 1099 | virtual unsigned getCacheLineSize() = 0; |
| 1100 | virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0; |
| 1101 | virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0; |
| 1102 | virtual unsigned getPrefetchDistance() = 0; |
| 1103 | virtual unsigned getMinPrefetchStride() = 0; |
| 1104 | virtual unsigned getMaxPrefetchIterationsAhead() = 0; |
| 1105 | virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0; |
| 1106 | virtual unsigned |
| 1107 | getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, |
| 1108 | OperandValueKind Opd2Info, |
| 1109 | OperandValueProperties Opd1PropInfo, |
| 1110 | OperandValueProperties Opd2PropInfo, |
| 1111 | ArrayRef<const Value *> Args) = 0; |
| 1112 | virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, |
| 1113 | Type *SubTp) = 0; |
| 1114 | virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| 1115 | const Instruction *I) = 0; |
| 1116 | virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
| 1117 | VectorType *VecTy, unsigned Index) = 0; |
| 1118 | virtual int getCFInstrCost(unsigned Opcode) = 0; |
| 1119 | virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| 1120 | Type *CondTy, const Instruction *I) = 0; |
| 1121 | virtual int getVectorInstrCost(unsigned Opcode, Type *Val, |
| 1122 | unsigned Index) = 0; |
| 1123 | virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| 1124 | unsigned AddressSpace, const Instruction *I) = 0; |
| 1125 | virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, |
| 1126 | unsigned Alignment, |
| 1127 | unsigned AddressSpace) = 0; |
| 1128 | virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, |
| 1129 | Value *Ptr, bool VariableMask, |
| 1130 | unsigned Alignment) = 0; |
| 1131 | virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, |
| 1132 | unsigned Factor, |
| 1133 | ArrayRef<unsigned> Indices, |
| 1134 | unsigned Alignment, |
| 1135 | unsigned AddressSpace) = 0; |
| 1136 | virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty, |
| 1137 | bool IsPairwiseForm) = 0; |
| 1138 | virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy, |
| 1139 | bool IsPairwiseForm, bool IsUnsigned) = 0; |
| 1140 | virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| 1141 | ArrayRef<Type *> Tys, FastMathFlags FMF, |
| 1142 | unsigned ScalarizationCostPassed) = 0; |
| 1143 | virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| 1144 | ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0; |
| 1145 | virtual int getCallInstrCost(Function *F, Type *RetTy, |
| 1146 | ArrayRef<Type *> Tys) = 0; |
| 1147 | virtual unsigned getNumberOfParts(Type *Tp) = 0; |
| 1148 | virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE, |
| 1149 | const SCEV *Ptr) = 0; |
| 1150 | virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0; |
| 1151 | virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, |
| 1152 | MemIntrinsicInfo &Info) = 0; |
| 1153 | virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0; |
| 1154 | virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
| 1155 | Type *ExpectedType) = 0; |
| 1156 | virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, |
| 1157 | unsigned SrcAlign, |
| 1158 | unsigned DestAlign) const = 0; |
| 1159 | virtual void getMemcpyLoopResidualLoweringType( |
| 1160 | SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, |
| 1161 | unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0; |
| 1162 | virtual bool areInlineCompatible(const Function *Caller, |
| 1163 | const Function *Callee) const = 0; |
| 1164 | virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0; |
| 1165 | virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0; |
| 1166 | virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0; |
| 1167 | virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0; |
| 1168 | virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0; |
| 1169 | virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, |
| 1170 | unsigned Alignment, |
| 1171 | unsigned AddrSpace) const = 0; |
| 1172 | virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, |
| 1173 | unsigned Alignment, |
| 1174 | unsigned AddrSpace) const = 0; |
| 1175 | virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
| 1176 | unsigned ChainSizeInBytes, |
| 1177 | VectorType *VecTy) const = 0; |
| 1178 | virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
| 1179 | unsigned ChainSizeInBytes, |
| 1180 | VectorType *VecTy) const = 0; |
| 1181 | virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty, |
| 1182 | ReductionFlags) const = 0; |
| 1183 | virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0; |
| 1184 | virtual int getInstructionLatency(const Instruction *I) = 0; |
| 1185 | }; |
| 1186 | |
| 1187 | template <typename T> |
| 1188 | class TargetTransformInfo::Model final : public TargetTransformInfo::Concept { |
| 1189 | T Impl; |
| 1190 | |
| 1191 | public: |
| 1192 | Model(T Impl) : Impl(std::move(Impl)) {} |
| 1193 | ~Model() override {} |
| 1194 | |
| 1195 | const DataLayout &getDataLayout() const override { |
| 1196 | return Impl.getDataLayout(); |
| 1197 | } |
| 1198 | |
| 1199 | int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override { |
| 1200 | return Impl.getOperationCost(Opcode, Ty, OpTy); |
| 1201 | } |
| 1202 | int getGEPCost(Type *PointeeType, const Value *Ptr, |
| 1203 | ArrayRef<const Value *> Operands) override { |
| 1204 | return Impl.getGEPCost(PointeeType, Ptr, Operands); |
| 1205 | } |
| 1206 | int getExtCost(const Instruction *I, const Value *Src) override { |
| 1207 | return Impl.getExtCost(I, Src); |
| 1208 | } |
| 1209 | int getCallCost(FunctionType *FTy, int NumArgs) override { |
| 1210 | return Impl.getCallCost(FTy, NumArgs); |
| 1211 | } |
| 1212 | int getCallCost(const Function *F, int NumArgs) override { |
| 1213 | return Impl.getCallCost(F, NumArgs); |
| 1214 | } |
| 1215 | int getCallCost(const Function *F, |
| 1216 | ArrayRef<const Value *> Arguments) override { |
| 1217 | return Impl.getCallCost(F, Arguments); |
| 1218 | } |
| 1219 | unsigned getInliningThresholdMultiplier() override { |
| 1220 | return Impl.getInliningThresholdMultiplier(); |
| 1221 | } |
| 1222 | int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| 1223 | ArrayRef<Type *> ParamTys) override { |
| 1224 | return Impl.getIntrinsicCost(IID, RetTy, ParamTys); |
| 1225 | } |
| 1226 | int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| 1227 | ArrayRef<const Value *> Arguments) override { |
| 1228 | return Impl.getIntrinsicCost(IID, RetTy, Arguments); |
| 1229 | } |
| 1230 | int getUserCost(const User *U, ArrayRef<const Value *> Operands) override { |
| 1231 | return Impl.getUserCost(U, Operands); |
| 1232 | } |
| 1233 | bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); } |
| 1234 | bool isSourceOfDivergence(const Value *V) override { |
| 1235 | return Impl.isSourceOfDivergence(V); |
| 1236 | } |
| 1237 | |
| 1238 | bool isAlwaysUniform(const Value *V) override { |
| 1239 | return Impl.isAlwaysUniform(V); |
| 1240 | } |
| 1241 | |
| 1242 | unsigned getFlatAddressSpace() override { |
| 1243 | return Impl.getFlatAddressSpace(); |
| 1244 | } |
| 1245 | |
| 1246 | bool isLoweredToCall(const Function *F) override { |
| 1247 | return Impl.isLoweredToCall(F); |
| 1248 | } |
| 1249 | void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| 1250 | UnrollingPreferences &UP) override { |
| 1251 | return Impl.getUnrollingPreferences(L, SE, UP); |
| 1252 | } |
| 1253 | bool isLegalAddImmediate(int64_t Imm) override { |
| 1254 | return Impl.isLegalAddImmediate(Imm); |
| 1255 | } |
| 1256 | bool isLegalICmpImmediate(int64_t Imm) override { |
| 1257 | return Impl.isLegalICmpImmediate(Imm); |
| 1258 | } |
| 1259 | bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| 1260 | bool HasBaseReg, int64_t Scale, |
| 1261 | unsigned AddrSpace, |
| 1262 | Instruction *I) override { |
| 1263 | return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, |
| 1264 | Scale, AddrSpace, I); |
| 1265 | } |
| 1266 | bool isLSRCostLess(TargetTransformInfo::LSRCost &C1, |
| 1267 | TargetTransformInfo::LSRCost &C2) override { |
| 1268 | return Impl.isLSRCostLess(C1, C2); |
| 1269 | } |
| 1270 | bool canMacroFuseCmp() override { |
| 1271 | return Impl.canMacroFuseCmp(); |
| 1272 | } |
| 1273 | bool shouldFavorPostInc() const override { |
| 1274 | return Impl.shouldFavorPostInc(); |
| 1275 | } |
| 1276 | bool isLegalMaskedStore(Type *DataType) override { |
| 1277 | return Impl.isLegalMaskedStore(DataType); |
| 1278 | } |
| 1279 | bool isLegalMaskedLoad(Type *DataType) override { |
| 1280 | return Impl.isLegalMaskedLoad(DataType); |
| 1281 | } |
| 1282 | bool isLegalMaskedScatter(Type *DataType) override { |
| 1283 | return Impl.isLegalMaskedScatter(DataType); |
| 1284 | } |
| 1285 | bool isLegalMaskedGather(Type *DataType) override { |
| 1286 | return Impl.isLegalMaskedGather(DataType); |
| 1287 | } |
| 1288 | bool hasDivRemOp(Type *DataType, bool IsSigned) override { |
| 1289 | return Impl.hasDivRemOp(DataType, IsSigned); |
| 1290 | } |
| 1291 | bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override { |
| 1292 | return Impl.hasVolatileVariant(I, AddrSpace); |
| 1293 | } |
| 1294 | bool prefersVectorizedAddressing() override { |
| 1295 | return Impl.prefersVectorizedAddressing(); |
| 1296 | } |
| 1297 | int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| 1298 | bool HasBaseReg, int64_t Scale, |
| 1299 | unsigned AddrSpace) override { |
| 1300 | return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, |
| 1301 | Scale, AddrSpace); |
| 1302 | } |
| 1303 | bool LSRWithInstrQueries() override { |
| 1304 | return Impl.LSRWithInstrQueries(); |
| 1305 | } |
| 1306 | bool isTruncateFree(Type *Ty1, Type *Ty2) override { |
| 1307 | return Impl.isTruncateFree(Ty1, Ty2); |
| 1308 | } |
| 1309 | bool isProfitableToHoist(Instruction *I) override { |
| 1310 | return Impl.isProfitableToHoist(I); |
| 1311 | } |
| 1312 | bool useAA() override { return Impl.useAA(); } |
| 1313 | bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); } |
| 1314 | unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); } |
| 1315 | unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); } |
| 1316 | bool shouldBuildLookupTables() override { |
| 1317 | return Impl.shouldBuildLookupTables(); |
| 1318 | } |
| 1319 | bool shouldBuildLookupTablesForConstant(Constant *C) override { |
| 1320 | return Impl.shouldBuildLookupTablesForConstant(C); |
| 1321 | } |
| 1322 | bool useColdCCForColdCall(Function &F) override { |
| 1323 | return Impl.useColdCCForColdCall(F); |
| 1324 | } |
| 1325 | |
| 1326 | unsigned getScalarizationOverhead(Type *Ty, bool Insert, |
| 1327 | bool Extract) override { |
| 1328 | return Impl.getScalarizationOverhead(Ty, Insert, Extract); |
| 1329 | } |
| 1330 | unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
| 1331 | unsigned VF) override { |
| 1332 | return Impl.getOperandsScalarizationOverhead(Args, VF); |
| 1333 | } |
| 1334 | |
| 1335 | bool supportsEfficientVectorElementLoadStore() override { |
| 1336 | return Impl.supportsEfficientVectorElementLoadStore(); |
| 1337 | } |
| 1338 | |
| 1339 | bool enableAggressiveInterleaving(bool LoopHasReductions) override { |
| 1340 | return Impl.enableAggressiveInterleaving(LoopHasReductions); |
| 1341 | } |
| 1342 | const MemCmpExpansionOptions *enableMemCmpExpansion( |
| 1343 | bool IsZeroCmp) const override { |
| 1344 | return Impl.enableMemCmpExpansion(IsZeroCmp); |
| 1345 | } |
| 1346 | bool enableInterleavedAccessVectorization() override { |
| 1347 | return Impl.enableInterleavedAccessVectorization(); |
| 1348 | } |
| 1349 | bool isFPVectorizationPotentiallyUnsafe() override { |
| 1350 | return Impl.isFPVectorizationPotentiallyUnsafe(); |
| 1351 | } |
| 1352 | bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
| 1353 | unsigned BitWidth, unsigned AddressSpace, |
| 1354 | unsigned Alignment, bool *Fast) override { |
| 1355 | return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, |
| 1356 | Alignment, Fast); |
| 1357 | } |
| 1358 | PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override { |
| 1359 | return Impl.getPopcntSupport(IntTyWidthInBit); |
| 1360 | } |
| 1361 | bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); } |
| 1362 | |
| 1363 | bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override { |
| 1364 | return Impl.isFCmpOrdCheaperThanFCmpZero(Ty); |
| 1365 | } |
| 1366 | |
| 1367 | int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); } |
| 1368 | |
| 1369 | int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| 1370 | Type *Ty) override { |
| 1371 | return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty); |
| 1372 | } |
| 1373 | int getIntImmCost(const APInt &Imm, Type *Ty) override { |
| 1374 | return Impl.getIntImmCost(Imm, Ty); |
| 1375 | } |
| 1376 | int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| 1377 | Type *Ty) override { |
| 1378 | return Impl.getIntImmCost(Opc, Idx, Imm, Ty); |
| 1379 | } |
| 1380 | int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, |
| 1381 | Type *Ty) override { |
| 1382 | return Impl.getIntImmCost(IID, Idx, Imm, Ty); |
| 1383 | } |
| 1384 | unsigned getNumberOfRegisters(bool Vector) override { |
| 1385 | return Impl.getNumberOfRegisters(Vector); |
| 1386 | } |
| 1387 | unsigned getRegisterBitWidth(bool Vector) const override { |
| 1388 | return Impl.getRegisterBitWidth(Vector); |
| 1389 | } |
| 1390 | unsigned getMinVectorRegisterBitWidth() override { |
| 1391 | return Impl.getMinVectorRegisterBitWidth(); |
| 1392 | } |
| 1393 | bool shouldMaximizeVectorBandwidth(bool OptSize) const override { |
| 1394 | return Impl.shouldMaximizeVectorBandwidth(OptSize); |
| 1395 | } |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1396 | unsigned getMinimumVF(unsigned ElemWidth) const override { |
| 1397 | return Impl.getMinimumVF(ElemWidth); |
| 1398 | } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1399 | bool shouldConsiderAddressTypePromotion( |
| 1400 | const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override { |
| 1401 | return Impl.shouldConsiderAddressTypePromotion( |
| 1402 | I, AllowPromotionWithoutCommonHeader); |
| 1403 | } |
| 1404 | unsigned getCacheLineSize() override { |
| 1405 | return Impl.getCacheLineSize(); |
| 1406 | } |
| 1407 | llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override { |
| 1408 | return Impl.getCacheSize(Level); |
| 1409 | } |
| 1410 | llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override { |
| 1411 | return Impl.getCacheAssociativity(Level); |
| 1412 | } |
| 1413 | unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); } |
| 1414 | unsigned getMinPrefetchStride() override { |
| 1415 | return Impl.getMinPrefetchStride(); |
| 1416 | } |
| 1417 | unsigned getMaxPrefetchIterationsAhead() override { |
| 1418 | return Impl.getMaxPrefetchIterationsAhead(); |
| 1419 | } |
| 1420 | unsigned getMaxInterleaveFactor(unsigned VF) override { |
| 1421 | return Impl.getMaxInterleaveFactor(VF); |
| 1422 | } |
| 1423 | unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
| 1424 | unsigned &JTSize) override { |
| 1425 | return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize); |
| 1426 | } |
| 1427 | unsigned |
| 1428 | getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, |
| 1429 | OperandValueKind Opd2Info, |
| 1430 | OperandValueProperties Opd1PropInfo, |
| 1431 | OperandValueProperties Opd2PropInfo, |
| 1432 | ArrayRef<const Value *> Args) override { |
| 1433 | return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, |
| 1434 | Opd1PropInfo, Opd2PropInfo, Args); |
| 1435 | } |
| 1436 | int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, |
| 1437 | Type *SubTp) override { |
| 1438 | return Impl.getShuffleCost(Kind, Tp, Index, SubTp); |
| 1439 | } |
| 1440 | int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| 1441 | const Instruction *I) override { |
| 1442 | return Impl.getCastInstrCost(Opcode, Dst, Src, I); |
| 1443 | } |
| 1444 | int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, |
| 1445 | unsigned Index) override { |
| 1446 | return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index); |
| 1447 | } |
| 1448 | int getCFInstrCost(unsigned Opcode) override { |
| 1449 | return Impl.getCFInstrCost(Opcode); |
| 1450 | } |
| 1451 | int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
| 1452 | const Instruction *I) override { |
| 1453 | return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I); |
| 1454 | } |
| 1455 | int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override { |
| 1456 | return Impl.getVectorInstrCost(Opcode, Val, Index); |
| 1457 | } |
| 1458 | int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| 1459 | unsigned AddressSpace, const Instruction *I) override { |
| 1460 | return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); |
| 1461 | } |
| 1462 | int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| 1463 | unsigned AddressSpace) override { |
| 1464 | return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); |
| 1465 | } |
| 1466 | int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, |
| 1467 | Value *Ptr, bool VariableMask, |
| 1468 | unsigned Alignment) override { |
| 1469 | return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
| 1470 | Alignment); |
| 1471 | } |
| 1472 | int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, |
| 1473 | ArrayRef<unsigned> Indices, unsigned Alignment, |
| 1474 | unsigned AddressSpace) override { |
| 1475 | return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
| 1476 | Alignment, AddressSpace); |
| 1477 | } |
| 1478 | int getArithmeticReductionCost(unsigned Opcode, Type *Ty, |
| 1479 | bool IsPairwiseForm) override { |
| 1480 | return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); |
| 1481 | } |
| 1482 | int getMinMaxReductionCost(Type *Ty, Type *CondTy, |
| 1483 | bool IsPairwiseForm, bool IsUnsigned) override { |
| 1484 | return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); |
| 1485 | } |
| 1486 | int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys, |
| 1487 | FastMathFlags FMF, unsigned ScalarizationCostPassed) override { |
| 1488 | return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF, |
| 1489 | ScalarizationCostPassed); |
| 1490 | } |
| 1491 | int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| 1492 | ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override { |
| 1493 | return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); |
| 1494 | } |
| 1495 | int getCallInstrCost(Function *F, Type *RetTy, |
| 1496 | ArrayRef<Type *> Tys) override { |
| 1497 | return Impl.getCallInstrCost(F, RetTy, Tys); |
| 1498 | } |
| 1499 | unsigned getNumberOfParts(Type *Tp) override { |
| 1500 | return Impl.getNumberOfParts(Tp); |
| 1501 | } |
| 1502 | int getAddressComputationCost(Type *Ty, ScalarEvolution *SE, |
| 1503 | const SCEV *Ptr) override { |
| 1504 | return Impl.getAddressComputationCost(Ty, SE, Ptr); |
| 1505 | } |
| 1506 | unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override { |
| 1507 | return Impl.getCostOfKeepingLiveOverCall(Tys); |
| 1508 | } |
| 1509 | bool getTgtMemIntrinsic(IntrinsicInst *Inst, |
| 1510 | MemIntrinsicInfo &Info) override { |
| 1511 | return Impl.getTgtMemIntrinsic(Inst, Info); |
| 1512 | } |
| 1513 | unsigned getAtomicMemIntrinsicMaxElementSize() const override { |
| 1514 | return Impl.getAtomicMemIntrinsicMaxElementSize(); |
| 1515 | } |
| 1516 | Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
| 1517 | Type *ExpectedType) override { |
| 1518 | return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); |
| 1519 | } |
| 1520 | Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, |
| 1521 | unsigned SrcAlign, |
| 1522 | unsigned DestAlign) const override { |
| 1523 | return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign); |
| 1524 | } |
| 1525 | void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut, |
| 1526 | LLVMContext &Context, |
| 1527 | unsigned RemainingBytes, |
| 1528 | unsigned SrcAlign, |
| 1529 | unsigned DestAlign) const override { |
| 1530 | Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, |
| 1531 | SrcAlign, DestAlign); |
| 1532 | } |
| 1533 | bool areInlineCompatible(const Function *Caller, |
| 1534 | const Function *Callee) const override { |
| 1535 | return Impl.areInlineCompatible(Caller, Callee); |
| 1536 | } |
| 1537 | bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override { |
| 1538 | return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout()); |
| 1539 | } |
| 1540 | bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override { |
| 1541 | return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout()); |
| 1542 | } |
| 1543 | unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override { |
| 1544 | return Impl.getLoadStoreVecRegBitWidth(AddrSpace); |
| 1545 | } |
| 1546 | bool isLegalToVectorizeLoad(LoadInst *LI) const override { |
| 1547 | return Impl.isLegalToVectorizeLoad(LI); |
| 1548 | } |
| 1549 | bool isLegalToVectorizeStore(StoreInst *SI) const override { |
| 1550 | return Impl.isLegalToVectorizeStore(SI); |
| 1551 | } |
| 1552 | bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, |
| 1553 | unsigned Alignment, |
| 1554 | unsigned AddrSpace) const override { |
| 1555 | return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, |
| 1556 | AddrSpace); |
| 1557 | } |
| 1558 | bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, |
| 1559 | unsigned Alignment, |
| 1560 | unsigned AddrSpace) const override { |
| 1561 | return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, |
| 1562 | AddrSpace); |
| 1563 | } |
| 1564 | unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
| 1565 | unsigned ChainSizeInBytes, |
| 1566 | VectorType *VecTy) const override { |
| 1567 | return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); |
| 1568 | } |
| 1569 | unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
| 1570 | unsigned ChainSizeInBytes, |
| 1571 | VectorType *VecTy) const override { |
| 1572 | return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); |
| 1573 | } |
| 1574 | bool useReductionIntrinsic(unsigned Opcode, Type *Ty, |
| 1575 | ReductionFlags Flags) const override { |
| 1576 | return Impl.useReductionIntrinsic(Opcode, Ty, Flags); |
| 1577 | } |
| 1578 | bool shouldExpandReduction(const IntrinsicInst *II) const override { |
| 1579 | return Impl.shouldExpandReduction(II); |
| 1580 | } |
| 1581 | int getInstructionLatency(const Instruction *I) override { |
| 1582 | return Impl.getInstructionLatency(I); |
| 1583 | } |
| 1584 | }; |
| 1585 | |
| 1586 | template <typename T> |
| 1587 | TargetTransformInfo::TargetTransformInfo(T Impl) |
| 1588 | : TTIImpl(new Model<T>(Impl)) {} |
| 1589 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1590 | /// Analysis pass providing the \c TargetTransformInfo. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1591 | /// |
| 1592 | /// The core idea of the TargetIRAnalysis is to expose an interface through |
| 1593 | /// which LLVM targets can analyze and provide information about the middle |
| 1594 | /// end's target-independent IR. This supports use cases such as target-aware |
| 1595 | /// cost modeling of IR constructs. |
| 1596 | /// |
| 1597 | /// This is a function analysis because much of the cost modeling for targets |
| 1598 | /// is done in a subtarget specific way and LLVM supports compiling different |
| 1599 | /// functions targeting different subtargets in order to support runtime |
| 1600 | /// dispatch according to the observed subtarget. |
| 1601 | class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> { |
| 1602 | public: |
| 1603 | typedef TargetTransformInfo Result; |
| 1604 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1605 | /// Default construct a target IR analysis. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1606 | /// |
| 1607 | /// This will use the module's datalayout to construct a baseline |
| 1608 | /// conservative TTI result. |
| 1609 | TargetIRAnalysis(); |
| 1610 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1611 | /// Construct an IR analysis pass around a target-provide callback. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1612 | /// |
| 1613 | /// The callback will be called with a particular function for which the TTI |
| 1614 | /// is needed and must return a TTI object for that function. |
| 1615 | TargetIRAnalysis(std::function<Result(const Function &)> TTICallback); |
| 1616 | |
| 1617 | // Value semantics. We spell out the constructors for MSVC. |
| 1618 | TargetIRAnalysis(const TargetIRAnalysis &Arg) |
| 1619 | : TTICallback(Arg.TTICallback) {} |
| 1620 | TargetIRAnalysis(TargetIRAnalysis &&Arg) |
| 1621 | : TTICallback(std::move(Arg.TTICallback)) {} |
| 1622 | TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) { |
| 1623 | TTICallback = RHS.TTICallback; |
| 1624 | return *this; |
| 1625 | } |
| 1626 | TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) { |
| 1627 | TTICallback = std::move(RHS.TTICallback); |
| 1628 | return *this; |
| 1629 | } |
| 1630 | |
| 1631 | Result run(const Function &F, FunctionAnalysisManager &); |
| 1632 | |
| 1633 | private: |
| 1634 | friend AnalysisInfoMixin<TargetIRAnalysis>; |
| 1635 | static AnalysisKey Key; |
| 1636 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1637 | /// The callback used to produce a result. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1638 | /// |
| 1639 | /// We use a completely opaque callback so that targets can provide whatever |
| 1640 | /// mechanism they desire for constructing the TTI for a given function. |
| 1641 | /// |
| 1642 | /// FIXME: Should we really use std::function? It's relatively inefficient. |
| 1643 | /// It might be possible to arrange for even stateful callbacks to outlive |
| 1644 | /// the analysis and thus use a function_ref which would be lighter weight. |
| 1645 | /// This may also be less error prone as the callback is likely to reference |
| 1646 | /// the external TargetMachine, and that reference needs to never dangle. |
| 1647 | std::function<Result(const Function &)> TTICallback; |
| 1648 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1649 | /// Helper function used as the callback in the default constructor. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1650 | static Result getDefaultTTI(const Function &F); |
| 1651 | }; |
| 1652 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1653 | /// Wrapper pass for TargetTransformInfo. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1654 | /// |
| 1655 | /// This pass can be constructed from a TTI object which it stores internally |
| 1656 | /// and is queried by passes. |
| 1657 | class TargetTransformInfoWrapperPass : public ImmutablePass { |
| 1658 | TargetIRAnalysis TIRA; |
| 1659 | Optional<TargetTransformInfo> TTI; |
| 1660 | |
| 1661 | virtual void anchor(); |
| 1662 | |
| 1663 | public: |
| 1664 | static char ID; |
| 1665 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1666 | /// We must provide a default constructor for the pass but it should |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1667 | /// never be used. |
| 1668 | /// |
| 1669 | /// Use the constructor below or call one of the creation routines. |
| 1670 | TargetTransformInfoWrapperPass(); |
| 1671 | |
| 1672 | explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); |
| 1673 | |
| 1674 | TargetTransformInfo &getTTI(const Function &F); |
| 1675 | }; |
| 1676 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1677 | /// Create an analysis pass wrapper around a TTI object. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1678 | /// |
| 1679 | /// This analysis pass just holds the TTI instance and makes it available to |
| 1680 | /// clients. |
| 1681 | ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); |
| 1682 | |
| 1683 | } // End llvm namespace |
| 1684 | |
| 1685 | #endif |