blob: 18b5a5cf0e5c385400d40c52f0221f90f708b99a [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This pass exposes codegen information to IR-level passes. Every
11/// transformation that uses codegen information is broken into three parts:
12/// 1. The IR-level analysis pass.
13/// 2. The IR-level transformation interface which provides the needed
14/// information.
15/// 3. Codegen-level implementation which uses target-specific hooks.
16///
17/// This file defines #2, which is the interface that IR-level transformations
18/// use for querying the codegen.
19///
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
24
25#include "llvm/ADT/Optional.h"
26#include "llvm/IR/Operator.h"
27#include "llvm/IR/PassManager.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/AtomicOrdering.h"
30#include "llvm/Support/DataTypes.h"
31#include <functional>
32
33namespace llvm {
34
35namespace Intrinsic {
36enum ID : unsigned;
37}
38
39class Function;
40class GlobalValue;
41class IntrinsicInst;
42class LoadInst;
43class Loop;
44class SCEV;
45class ScalarEvolution;
46class StoreInst;
47class SwitchInst;
48class Type;
49class User;
50class Value;
51
Andrew Scullcdfcccc2018-10-05 20:58:37 +010052/// Information about a load/store intrinsic defined by the target.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010053struct MemIntrinsicInfo {
54 /// This is the pointer that the intrinsic is loading from or storing to.
55 /// If this is non-null, then analysis/optimization passes can assume that
56 /// this intrinsic is functionally equivalent to a load/store from this
57 /// pointer.
58 Value *PtrVal = nullptr;
59
60 // Ordering for atomic operations.
61 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
62
63 // Same Id is set by the target for corresponding load/store intrinsics.
64 unsigned short MatchingId = 0;
65
66 bool ReadMem = false;
67 bool WriteMem = false;
68 bool IsVolatile = false;
69
70 bool isUnordered() const {
71 return (Ordering == AtomicOrdering::NotAtomic ||
72 Ordering == AtomicOrdering::Unordered) && !IsVolatile;
73 }
74};
75
Andrew Scullcdfcccc2018-10-05 20:58:37 +010076/// This pass provides access to the codegen interfaces that are needed
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010077/// for IR-level transformations.
78class TargetTransformInfo {
79public:
Andrew Scullcdfcccc2018-10-05 20:58:37 +010080 /// Construct a TTI object using a type implementing the \c Concept
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010081 /// API below.
82 ///
83 /// This is used by targets to construct a TTI wrapping their target-specific
84 /// implementaion that encodes appropriate costs for their target.
85 template <typename T> TargetTransformInfo(T Impl);
86
Andrew Scullcdfcccc2018-10-05 20:58:37 +010087 /// Construct a baseline TTI object using a minimal implementation of
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010088 /// the \c Concept API below.
89 ///
90 /// The TTI implementation will reflect the information in the DataLayout
91 /// provided if non-null.
92 explicit TargetTransformInfo(const DataLayout &DL);
93
94 // Provide move semantics.
95 TargetTransformInfo(TargetTransformInfo &&Arg);
96 TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
97
98 // We need to define the destructor out-of-line to define our sub-classes
99 // out-of-line.
100 ~TargetTransformInfo();
101
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100102 /// Handle the invalidation of this information.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100103 ///
104 /// When used as a result of \c TargetIRAnalysis this method will be called
105 /// when the function this was computed for changes. When it returns false,
106 /// the information is preserved across those changes.
107 bool invalidate(Function &, const PreservedAnalyses &,
108 FunctionAnalysisManager::Invalidator &) {
109 // FIXME: We should probably in some way ensure that the subtarget
110 // information for a function hasn't changed.
111 return false;
112 }
113
114 /// \name Generic Target Information
115 /// @{
116
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100117 /// The kind of cost model.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100118 ///
119 /// There are several different cost models that can be customized by the
120 /// target. The normalization of each cost model may be target specific.
121 enum TargetCostKind {
122 TCK_RecipThroughput, ///< Reciprocal throughput.
123 TCK_Latency, ///< The latency of instruction.
124 TCK_CodeSize ///< Instruction code size.
125 };
126
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100127 /// Query the cost of a specified instruction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100128 ///
129 /// Clients should use this interface to query the cost of an existing
130 /// instruction. The instruction must have a valid parent (basic block).
131 ///
132 /// Note, this method does not cache the cost calculation and it
133 /// can be expensive in some cases.
134 int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
135 switch (kind){
136 case TCK_RecipThroughput:
137 return getInstructionThroughput(I);
138
139 case TCK_Latency:
140 return getInstructionLatency(I);
141
142 case TCK_CodeSize:
143 return getUserCost(I);
144 }
145 llvm_unreachable("Unknown instruction cost kind");
146 }
147
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100148 /// Underlying constants for 'cost' values in this interface.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100149 ///
150 /// Many APIs in this interface return a cost. This enum defines the
151 /// fundamental values that should be used to interpret (and produce) those
152 /// costs. The costs are returned as an int rather than a member of this
153 /// enumeration because it is expected that the cost of one IR instruction
154 /// may have a multiplicative factor to it or otherwise won't fit directly
155 /// into the enum. Moreover, it is common to sum or average costs which works
156 /// better as simple integral values. Thus this enum only provides constants.
157 /// Also note that the returned costs are signed integers to make it natural
158 /// to add, subtract, and test with zero (a common boundary condition). It is
159 /// not expected that 2^32 is a realistic cost to be modeling at any point.
160 ///
161 /// Note that these costs should usually reflect the intersection of code-size
162 /// cost and execution cost. A free instruction is typically one that folds
163 /// into another instruction. For example, reg-to-reg moves can often be
164 /// skipped by renaming the registers in the CPU, but they still are encoded
165 /// and thus wouldn't be considered 'free' here.
166 enum TargetCostConstants {
167 TCC_Free = 0, ///< Expected to fold away in lowering.
168 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
169 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
170 };
171
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100172 /// Estimate the cost of a specific operation when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100173 ///
174 /// Note that this is designed to work on an arbitrary synthetic opcode, and
175 /// thus work for hypothetical queries before an instruction has even been
176 /// formed. However, this does *not* work for GEPs, and must not be called
177 /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
178 /// analyzing a GEP's cost required more information.
179 ///
180 /// Typically only the result type is required, and the operand type can be
181 /// omitted. However, if the opcode is one of the cast instructions, the
182 /// operand type is required.
183 ///
184 /// The returned cost is defined in terms of \c TargetCostConstants, see its
185 /// comments for a detailed explanation of the cost values.
186 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
187
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100188 /// Estimate the cost of a GEP operation when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100189 ///
190 /// The contract for this function is the same as \c getOperationCost except
191 /// that it supports an interface that provides extra information specific to
192 /// the GEP operation.
193 int getGEPCost(Type *PointeeType, const Value *Ptr,
194 ArrayRef<const Value *> Operands) const;
195
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100196 /// Estimate the cost of a EXT operation when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100197 ///
198 /// The contract for this function is the same as \c getOperationCost except
199 /// that it supports an interface that provides extra information specific to
200 /// the EXT operation.
201 int getExtCost(const Instruction *I, const Value *Src) const;
202
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100203 /// Estimate the cost of a function call when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100204 ///
205 /// The contract for this is the same as \c getOperationCost except that it
206 /// supports an interface that provides extra information specific to call
207 /// instructions.
208 ///
209 /// This is the most basic query for estimating call cost: it only knows the
210 /// function type and (potentially) the number of arguments at the call site.
211 /// The latter is only interesting for varargs function types.
212 int getCallCost(FunctionType *FTy, int NumArgs = -1) const;
213
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100214 /// Estimate the cost of calling a specific function when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100215 ///
216 /// This overload adds the ability to reason about the particular function
217 /// being called in the event it is a library call with special lowering.
218 int getCallCost(const Function *F, int NumArgs = -1) const;
219
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100220 /// Estimate the cost of calling a specific function when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100221 ///
222 /// This overload allows specifying a set of candidate argument values.
223 int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const;
224
225 /// \returns A value by which our inlining threshold should be multiplied.
226 /// This is primarily used to bump up the inlining threshold wholesale on
227 /// targets where calls are unusually expensive.
228 ///
229 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
230 /// individual classes of instructions would be better.
231 unsigned getInliningThresholdMultiplier() const;
232
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100233 /// Estimate the cost of an intrinsic when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100234 ///
235 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
236 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
237 ArrayRef<Type *> ParamTys) const;
238
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100239 /// Estimate the cost of an intrinsic when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100240 ///
241 /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
242 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
243 ArrayRef<const Value *> Arguments) const;
244
245 /// \return The estimated number of case clusters when lowering \p 'SI'.
246 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
247 /// table.
248 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
249 unsigned &JTSize) const;
250
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100251 /// Estimate the cost of a given IR user when lowered.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100252 ///
253 /// This can estimate the cost of either a ConstantExpr or Instruction when
254 /// lowered. It has two primary advantages over the \c getOperationCost and
255 /// \c getGEPCost above, and one significant disadvantage: it can only be
256 /// used when the IR construct has already been formed.
257 ///
258 /// The advantages are that it can inspect the SSA use graph to reason more
259 /// accurately about the cost. For example, all-constant-GEPs can often be
260 /// folded into a load or other instruction, but if they are used in some
261 /// other context they may not be folded. This routine can distinguish such
262 /// cases.
263 ///
264 /// \p Operands is a list of operands which can be a result of transformations
265 /// of the current operands. The number of the operands on the list must equal
266 /// to the number of the current operands the IR user has. Their order on the
267 /// list must be the same as the order of the current operands the IR user
268 /// has.
269 ///
270 /// The returned cost is defined in terms of \c TargetCostConstants, see its
271 /// comments for a detailed explanation of the cost values.
272 int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;
273
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100274 /// This is a helper function which calls the two-argument getUserCost
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100275 /// with \p Operands which are the current operands U has.
276 int getUserCost(const User *U) const {
277 SmallVector<const Value *, 4> Operands(U->value_op_begin(),
278 U->value_op_end());
279 return getUserCost(U, Operands);
280 }
281
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100282 /// Return true if branch divergence exists.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100283 ///
284 /// Branch divergence has a significantly negative impact on GPU performance
285 /// when threads in the same wavefront take different paths due to conditional
286 /// branches.
287 bool hasBranchDivergence() const;
288
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100289 /// Returns whether V is a source of divergence.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100290 ///
291 /// This function provides the target-dependent information for
Andrew Scull0372a572018-11-16 15:47:06 +0000292 /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis first
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100293 /// builds the dependency graph, and then runs the reachability algorithm
294 /// starting with the sources of divergence.
295 bool isSourceOfDivergence(const Value *V) const;
296
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100297 // Returns true for the target specific
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100298 // set of operations which produce uniform result
299 // even taking non-unform arguments
300 bool isAlwaysUniform(const Value *V) const;
301
302 /// Returns the address space ID for a target's 'flat' address space. Note
303 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
304 /// refers to as the generic address space. The flat address space is a
305 /// generic address space that can be used access multiple segments of memory
306 /// with different address spaces. Access of a memory location through a
307 /// pointer with this address space is expected to be legal but slower
308 /// compared to the same memory location accessed through a pointer with a
309 /// different address space.
310 //
311 /// This is for targets with different pointer representations which can
312 /// be converted with the addrspacecast instruction. If a pointer is converted
313 /// to this address space, optimizations should attempt to replace the access
314 /// with the source address space.
315 ///
316 /// \returns ~0u if the target does not have such a flat address space to
317 /// optimize away.
318 unsigned getFlatAddressSpace() const;
319
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100320 /// Test whether calls to a function lower to actual program function
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100321 /// calls.
322 ///
323 /// The idea is to test whether the program is likely to require a 'call'
324 /// instruction or equivalent in order to call the given function.
325 ///
326 /// FIXME: It's not clear that this is a good or useful query API. Client's
327 /// should probably move to simpler cost metrics using the above.
328 /// Alternatively, we could split the cost interface into distinct code-size
329 /// and execution-speed costs. This would allow modelling the core of this
330 /// query more accurately as a call is a single small instruction, but
331 /// incurs significant execution cost.
332 bool isLoweredToCall(const Function *F) const;
333
334 struct LSRCost {
335 /// TODO: Some of these could be merged. Also, a lexical ordering
336 /// isn't always optimal.
337 unsigned Insns;
338 unsigned NumRegs;
339 unsigned AddRecCost;
340 unsigned NumIVMuls;
341 unsigned NumBaseAdds;
342 unsigned ImmCost;
343 unsigned SetupCost;
344 unsigned ScaleCost;
345 };
346
347 /// Parameters that control the generic loop unrolling transformation.
348 struct UnrollingPreferences {
349 /// The cost threshold for the unrolled loop. Should be relative to the
350 /// getUserCost values returned by this API, and the expectation is that
351 /// the unrolled loop's instructions when run through that interface should
352 /// not exceed this cost. However, this is only an estimate. Also, specific
353 /// loops may be unrolled even with a cost above this threshold if deemed
354 /// profitable. Set this to UINT_MAX to disable the loop body cost
355 /// restriction.
356 unsigned Threshold;
357 /// If complete unrolling will reduce the cost of the loop, we will boost
358 /// the Threshold by a certain percent to allow more aggressive complete
359 /// unrolling. This value provides the maximum boost percentage that we
360 /// can apply to Threshold (The value should be no less than 100).
361 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
362 /// MaxPercentThresholdBoost / 100)
363 /// E.g. if complete unrolling reduces the loop execution time by 50%
364 /// then we boost the threshold by the factor of 2x. If unrolling is not
365 /// expected to reduce the running time, then we do not increase the
366 /// threshold.
367 unsigned MaxPercentThresholdBoost;
368 /// The cost threshold for the unrolled loop when optimizing for size (set
369 /// to UINT_MAX to disable).
370 unsigned OptSizeThreshold;
371 /// The cost threshold for the unrolled loop, like Threshold, but used
372 /// for partial/runtime unrolling (set to UINT_MAX to disable).
373 unsigned PartialThreshold;
374 /// The cost threshold for the unrolled loop when optimizing for size, like
375 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
376 /// UINT_MAX to disable).
377 unsigned PartialOptSizeThreshold;
378 /// A forced unrolling factor (the number of concatenated bodies of the
379 /// original loop in the unrolled loop body). When set to 0, the unrolling
380 /// transformation will select an unrolling factor based on the current cost
381 /// threshold and other factors.
382 unsigned Count;
383 /// A forced peeling factor (the number of bodied of the original loop
384 /// that should be peeled off before the loop body). When set to 0, the
385 /// unrolling transformation will select a peeling factor based on profile
386 /// information and other factors.
387 unsigned PeelCount;
388 /// Default unroll count for loops with run-time trip count.
389 unsigned DefaultUnrollRuntimeCount;
390 // Set the maximum unrolling factor. The unrolling factor may be selected
391 // using the appropriate cost threshold, but may not exceed this number
392 // (set to UINT_MAX to disable). This does not apply in cases where the
393 // loop is being fully unrolled.
394 unsigned MaxCount;
395 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
396 /// applies even if full unrolling is selected. This allows a target to fall
397 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
398 unsigned FullUnrollMaxCount;
399 // Represents number of instructions optimized when "back edge"
400 // becomes "fall through" in unrolled loop.
401 // For now we count a conditional branch on a backedge and a comparison
402 // feeding it.
403 unsigned BEInsns;
404 /// Allow partial unrolling (unrolling of loops to expand the size of the
405 /// loop body, not only to eliminate small constant-trip-count loops).
406 bool Partial;
407 /// Allow runtime unrolling (unrolling of loops to expand the size of the
408 /// loop body even when the number of loop iterations is not known at
409 /// compile time).
410 bool Runtime;
411 /// Allow generation of a loop remainder (extra iterations after unroll).
412 bool AllowRemainder;
413 /// Allow emitting expensive instructions (such as divisions) when computing
414 /// the trip count of a loop for runtime unrolling.
415 bool AllowExpensiveTripCount;
416 /// Apply loop unroll on any kind of loop
417 /// (mainly to loops that fail runtime unrolling).
418 bool Force;
419 /// Allow using trip count upper bound to unroll loops.
420 bool UpperBound;
421 /// Allow peeling off loop iterations for loops with low dynamic tripcount.
422 bool AllowPeeling;
423 /// Allow unrolling of all the iterations of the runtime loop remainder.
424 bool UnrollRemainder;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100425 /// Allow unroll and jam. Used to enable unroll and jam for the target.
426 bool UnrollAndJam;
427 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
428 /// value above is used during unroll and jam for the outer loop size.
429 /// This value is used in the same manner to limit the size of the inner
430 /// loop.
431 unsigned UnrollAndJamInnerLoopThreshold;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100432 };
433
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100434 /// Get target-customized preferences for the generic loop unrolling
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100435 /// transformation. The caller will initialize UP with the current
436 /// target-independent defaults.
437 void getUnrollingPreferences(Loop *L, ScalarEvolution &,
438 UnrollingPreferences &UP) const;
439
440 /// @}
441
442 /// \name Scalar Target Information
443 /// @{
444
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100445 /// Flags indicating the kind of support for population count.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100446 ///
447 /// Compared to the SW implementation, HW support is supposed to
448 /// significantly boost the performance when the population is dense, and it
449 /// may or may not degrade performance if the population is sparse. A HW
450 /// support is considered as "Fast" if it can outperform, or is on a par
451 /// with, SW implementation when the population is sparse; otherwise, it is
452 /// considered as "Slow".
453 enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
454
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100455 /// Return true if the specified immediate is legal add immediate, that
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100456 /// is the target has add instructions which can add a register with the
457 /// immediate without having to materialize the immediate into a register.
458 bool isLegalAddImmediate(int64_t Imm) const;
459
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100460 /// Return true if the specified immediate is legal icmp immediate,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100461 /// that is the target has icmp instructions which can compare a register
462 /// against the immediate without having to materialize the immediate into a
463 /// register.
464 bool isLegalICmpImmediate(int64_t Imm) const;
465
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100466 /// Return true if the addressing mode represented by AM is legal for
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100467 /// this target, for a load/store of the specified type.
468 /// The type may be VoidTy, in which case only return true if the addressing
469 /// mode is legal for a load/store of any legal type.
470 /// If target returns true in LSRWithInstrQueries(), I may be valid.
471 /// TODO: Handle pre/postinc as well.
472 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
473 bool HasBaseReg, int64_t Scale,
474 unsigned AddrSpace = 0,
475 Instruction *I = nullptr) const;
476
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100477 /// Return true if LSR cost of C1 is lower than C1.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100478 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
479 TargetTransformInfo::LSRCost &C2) const;
480
481 /// Return true if the target can fuse a compare and branch.
482 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
483 /// calculation for the instructions in a loop.
484 bool canMacroFuseCmp() const;
485
486 /// \return True is LSR should make efforts to create/preserve post-inc
487 /// addressing mode expressions.
488 bool shouldFavorPostInc() const;
489
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100490 /// Return true if the target supports masked load/store
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100491 /// AVX2 and AVX-512 targets allow masks for consecutive load and store
492 bool isLegalMaskedStore(Type *DataType) const;
493 bool isLegalMaskedLoad(Type *DataType) const;
494
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100495 /// Return true if the target supports masked gather/scatter
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100496 /// AVX-512 fully supports gather and scatter for vectors with 32 and 64
497 /// bits scalar type.
498 bool isLegalMaskedScatter(Type *DataType) const;
499 bool isLegalMaskedGather(Type *DataType) const;
500
501 /// Return true if the target has a unified operation to calculate division
502 /// and remainder. If so, the additional implicit multiplication and
503 /// subtraction required to calculate a remainder from division are free. This
504 /// can enable more aggressive transformations for division and remainder than
505 /// would typically be allowed using throughput or size cost models.
506 bool hasDivRemOp(Type *DataType, bool IsSigned) const;
507
508 /// Return true if the given instruction (assumed to be a memory access
509 /// instruction) has a volatile variant. If that's the case then we can avoid
510 /// addrspacecast to generic AS for volatile loads/stores. Default
511 /// implementation returns false, which prevents address space inference for
512 /// volatile loads/stores.
513 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
514
515 /// Return true if target doesn't mind addresses in vectors.
516 bool prefersVectorizedAddressing() const;
517
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100518 /// Return the cost of the scaling factor used in the addressing
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100519 /// mode represented by AM for this target, for a load/store
520 /// of the specified type.
521 /// If the AM is supported, the return value must be >= 0.
522 /// If the AM is not supported, it returns a negative value.
523 /// TODO: Handle pre/postinc as well.
524 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
525 bool HasBaseReg, int64_t Scale,
526 unsigned AddrSpace = 0) const;
527
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100528 /// Return true if the loop strength reduce pass should make
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100529 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
530 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
531 /// immediate offset and no index register.
532 bool LSRWithInstrQueries() const;
533
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100534 /// Return true if it's free to truncate a value of type Ty1 to type
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100535 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
536 /// by referencing its sub-register AX.
537 bool isTruncateFree(Type *Ty1, Type *Ty2) const;
538
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100539 /// Return true if it is profitable to hoist instruction in the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100540 /// then/else to before if.
541 bool isProfitableToHoist(Instruction *I) const;
542
543 bool useAA() const;
544
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100545 /// Return true if this type is legal.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100546 bool isTypeLegal(Type *Ty) const;
547
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100548 /// Returns the target's jmp_buf alignment in bytes.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100549 unsigned getJumpBufAlignment() const;
550
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100551 /// Returns the target's jmp_buf size in bytes.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100552 unsigned getJumpBufSize() const;
553
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100554 /// Return true if switches should be turned into lookup tables for the
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100555 /// target.
556 bool shouldBuildLookupTables() const;
557
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100558 /// Return true if switches should be turned into lookup tables
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100559 /// containing this constant value for the target.
560 bool shouldBuildLookupTablesForConstant(Constant *C) const;
561
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100562 /// Return true if the input function which is cold at all call sites,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100563 /// should use coldcc calling convention.
564 bool useColdCCForColdCall(Function &F) const;
565
566 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
567
568 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
569 unsigned VF) const;
570
571 /// If target has efficient vector element load/store instructions, it can
572 /// return true here so that insertion/extraction costs are not added to
573 /// the scalarization cost of a load/store.
574 bool supportsEfficientVectorElementLoadStore() const;
575
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100576 /// Don't restrict interleaved unrolling to small loops.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100577 bool enableAggressiveInterleaving(bool LoopHasReductions) const;
578
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100579 /// If not nullptr, enable inline expansion of memcmp. IsZeroCmp is
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100580 /// true if this is the expansion of memcmp(p1, p2, s) == 0.
581 struct MemCmpExpansionOptions {
582 // The list of available load sizes (in bytes), sorted in decreasing order.
583 SmallVector<unsigned, 8> LoadSizes;
584 };
585 const MemCmpExpansionOptions *enableMemCmpExpansion(bool IsZeroCmp) const;
586
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100587 /// Enable matching of interleaved access groups.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100588 bool enableInterleavedAccessVectorization() const;
589
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100590 /// Indicate that it is potentially unsafe to automatically vectorize
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100591 /// floating-point operations because the semantics of vector and scalar
592 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
593 /// does not support IEEE-754 denormal numbers, while depending on the
594 /// platform, scalar floating-point math does.
595 /// This applies to floating-point math operations and calls, not memory
596 /// operations, shuffles, or casts.
597 bool isFPVectorizationPotentiallyUnsafe() const;
598
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100599 /// Determine if the target supports unaligned memory accesses.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100600 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
601 unsigned BitWidth, unsigned AddressSpace = 0,
602 unsigned Alignment = 1,
603 bool *Fast = nullptr) const;
604
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100605 /// Return hardware support for population count.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100606 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
607
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100608 /// Return true if the hardware has a fast square-root instruction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100609 bool haveFastSqrt(Type *Ty) const;
610
611 /// Return true if it is faster to check if a floating-point value is NaN
612 /// (or not-NaN) versus a comparison against a constant FP zero value.
613 /// Targets should override this if materializing a 0.0 for comparison is
614 /// generally as cheap as checking for ordered/unordered.
615 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
616
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100617 /// Return the expected cost of supporting the floating point operation
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100618 /// of the specified type.
619 int getFPOpCost(Type *Ty) const;
620
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100621 /// Return the expected cost of materializing for the given integer
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100622 /// immediate of the specified type.
623 int getIntImmCost(const APInt &Imm, Type *Ty) const;
624
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100625 /// Return the expected cost of materialization for the given integer
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100626 /// immediate of the specified type for a given instruction. The cost can be
627 /// zero if the immediate can be folded into the specified instruction.
628 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
629 Type *Ty) const;
630 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
631 Type *Ty) const;
632
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100633 /// Return the expected cost for the given integer when optimising
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100634 /// for size. This is different than the other integer immediate cost
635 /// functions in that it is subtarget agnostic. This is useful when you e.g.
636 /// target one ISA such as Aarch32 but smaller encodings could be possible
637 /// with another such as Thumb. This return value is used as a penalty when
638 /// the total costs for a constant is calculated (the bigger the cost, the
639 /// more beneficial constant hoisting is).
640 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
641 Type *Ty) const;
642 /// @}
643
644 /// \name Vector Target Information
645 /// @{
646
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100647 /// The various kinds of shuffle patterns for vector queries.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100648 enum ShuffleKind {
649 SK_Broadcast, ///< Broadcast element 0 to all other elements.
650 SK_Reverse, ///< Reverse the order of the vector.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100651 SK_Select, ///< Selects elements from the corresponding lane of
652 ///< either source operand. This is equivalent to a
653 ///< vector select with a constant condition operand.
654 SK_Transpose, ///< Transpose two vectors.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100655 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
656 SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
657 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
658 ///< with any shuffle mask.
659 SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
660 ///< shuffle mask.
661 };
662
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100663 /// Additional information about an operand's possible values.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100664 enum OperandValueKind {
665 OK_AnyValue, // Operand can have any value.
666 OK_UniformValue, // Operand is uniform (splat of a value).
667 OK_UniformConstantValue, // Operand is uniform constant.
668 OK_NonUniformConstantValue // Operand is a non uniform constant value.
669 };
670
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100671 /// Additional properties of an operand's values.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100672 enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
673
674 /// \return The number of scalar or vector registers that the target has.
675 /// If 'Vectors' is true, it returns the number of vector registers. If it is
676 /// set to false, it returns the number of scalar registers.
677 unsigned getNumberOfRegisters(bool Vector) const;
678
679 /// \return The width of the largest scalar or vector register type.
680 unsigned getRegisterBitWidth(bool Vector) const;
681
682 /// \return The width of the smallest vector register type.
683 unsigned getMinVectorRegisterBitWidth() const;
684
685 /// \return True if the vectorization factor should be chosen to
686 /// make the vector of the smallest element type match the size of a
687 /// vector register. For wider element types, this could result in
688 /// creating vectors that span multiple vector registers.
689 /// If false, the vectorization factor will be chosen based on the
690 /// size of the widest element type.
691 bool shouldMaximizeVectorBandwidth(bool OptSize) const;
692
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100693 /// \return The minimum vectorization factor for types of given element
694 /// bit width, or 0 if there is no mimimum VF. The returned value only
695 /// applies when shouldMaximizeVectorBandwidth returns true.
696 unsigned getMinimumVF(unsigned ElemWidth) const;
697
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100698 /// \return True if it should be considered for address type promotion.
699 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
700 /// profitable without finding other extensions fed by the same input.
701 bool shouldConsiderAddressTypePromotion(
702 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
703
704 /// \return The size of a cache line in bytes.
705 unsigned getCacheLineSize() const;
706
707 /// The possible cache levels
708 enum class CacheLevel {
709 L1D, // The L1 data cache
710 L2D, // The L2 data cache
711
712 // We currently do not model L3 caches, as their sizes differ widely between
713 // microarchitectures. Also, we currently do not have a use for L3 cache
714 // size modeling yet.
715 };
716
717 /// \return The size of the cache level in bytes, if available.
718 llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;
719
720 /// \return The associativity of the cache level, if available.
721 llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
722
723 /// \return How much before a load we should place the prefetch instruction.
724 /// This is currently measured in number of instructions.
725 unsigned getPrefetchDistance() const;
726
727 /// \return Some HW prefetchers can handle accesses up to a certain constant
728 /// stride. This is the minimum stride in bytes where it makes sense to start
729 /// adding SW prefetches. The default is 1, i.e. prefetch with any stride.
730 unsigned getMinPrefetchStride() const;
731
732 /// \return The maximum number of iterations to prefetch ahead. If the
733 /// required number of iterations is more than this number, no prefetching is
734 /// performed.
735 unsigned getMaxPrefetchIterationsAhead() const;
736
737 /// \return The maximum interleave factor that any transform should try to
738 /// perform for this target. This number depends on the level of parallelism
739 /// and the number of execution units in the CPU.
740 unsigned getMaxInterleaveFactor(unsigned VF) const;
741
Andrew Scull0372a572018-11-16 15:47:06 +0000742 /// Collect properties of V used in cost analyzis, e.g. OP_PowerOf2.
743 OperandValueKind getOperandInfo(Value *V,
744 OperandValueProperties &OpProps) const;
745
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100746 /// This is an approximation of reciprocal throughput of a math/logic op.
747 /// A higher cost indicates less expected throughput.
748 /// From Agner Fog's guides, reciprocal throughput is "the average number of
749 /// clock cycles per instruction when the instructions are not part of a
750 /// limiting dependency chain."
751 /// Therefore, costs should be scaled to account for multiple execution units
752 /// on the target that can process this type of instruction. For example, if
753 /// there are 5 scalar integer units and 2 vector integer units that can
754 /// calculate an 'add' in a single cycle, this model should indicate that the
755 /// cost of the vector add instruction is 2.5 times the cost of the scalar
756 /// add instruction.
757 /// \p Args is an optional argument which holds the instruction operands
758 /// values so the TTI can analyze those values searching for special
759 /// cases or optimizations based on those values.
760 int getArithmeticInstrCost(
761 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
762 OperandValueKind Opd2Info = OK_AnyValue,
763 OperandValueProperties Opd1PropInfo = OP_None,
764 OperandValueProperties Opd2PropInfo = OP_None,
765 ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;
766
767 /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
768 /// The index and subtype parameters are used by the subvector insertion and
769 /// extraction shuffle kinds.
770 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
771 Type *SubTp = nullptr) const;
772
773 /// \return The expected cost of cast instructions, such as bitcast, trunc,
774 /// zext, etc. If there is an existing instruction that holds Opcode, it
775 /// may be passed in the 'I' parameter.
776 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
777 const Instruction *I = nullptr) const;
778
779 /// \return The expected cost of a sign- or zero-extended vector extract. Use
780 /// -1 to indicate that there is no information about the index value.
781 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
782 unsigned Index = -1) const;
783
784 /// \return The expected cost of control-flow related instructions such as
785 /// Phi, Ret, Br.
786 int getCFInstrCost(unsigned Opcode) const;
787
788 /// \returns The expected cost of compare and select instructions. If there
789 /// is an existing instruction that holds Opcode, it may be passed in the
790 /// 'I' parameter.
791 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
792 Type *CondTy = nullptr, const Instruction *I = nullptr) const;
793
794 /// \return The expected cost of vector Insert and Extract.
795 /// Use -1 to indicate that there is no information on the index value.
796 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
797
798 /// \return The cost of Load and Store instructions.
799 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
800 unsigned AddressSpace, const Instruction *I = nullptr) const;
801
802 /// \return The cost of masked Load and Store instructions.
803 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
804 unsigned AddressSpace) const;
805
806 /// \return The cost of Gather or Scatter operation
807 /// \p Opcode - is a type of memory access Load or Store
808 /// \p DataTy - a vector type of the data to be loaded or stored
809 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
810 /// \p VariableMask - true when the memory access is predicated with a mask
811 /// that is not a compile-time constant
812 /// \p Alignment - alignment of single element
813 int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
814 bool VariableMask, unsigned Alignment) const;
815
816 /// \return The cost of the interleaved memory operation.
817 /// \p Opcode is the memory operation code
818 /// \p VecTy is the vector type of the interleaved access.
819 /// \p Factor is the interleave factor
820 /// \p Indices is the indices for interleaved load members (as interleaved
821 /// load allows gaps)
822 /// \p Alignment is the alignment of the memory operation
823 /// \p AddressSpace is address space of the pointer.
824 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
825 ArrayRef<unsigned> Indices, unsigned Alignment,
826 unsigned AddressSpace) const;
827
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100828 /// Calculate the cost of performing a vector reduction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100829 ///
830 /// This is the cost of reducing the vector value of type \p Ty to a scalar
831 /// value using the operation denoted by \p Opcode. The form of the reduction
832 /// can either be a pairwise reduction or a reduction that splits the vector
833 /// at every reduction level.
834 ///
835 /// Pairwise:
836 /// (v0, v1, v2, v3)
837 /// ((v0+v1), (v2+v3), undef, undef)
838 /// Split:
839 /// (v0, v1, v2, v3)
840 /// ((v0+v2), (v1+v3), undef, undef)
841 int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
842 bool IsPairwiseForm) const;
843 int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
844 bool IsUnsigned) const;
845
846 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
847 /// Three cases are handled: 1. scalar instruction 2. vector instruction
848 /// 3. scalar instruction which is to be vectorized with VF.
849 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
850 ArrayRef<Value *> Args, FastMathFlags FMF,
851 unsigned VF = 1) const;
852
853 /// \returns The cost of Intrinsic instructions. Types analysis only.
854 /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
855 /// arguments and the return value will be computed based on types.
856 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
857 ArrayRef<Type *> Tys, FastMathFlags FMF,
858 unsigned ScalarizationCostPassed = UINT_MAX) const;
859
860 /// \returns The cost of Call instructions.
861 int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
862
863 /// \returns The number of pieces into which the provided type must be
864 /// split during legalization. Zero is returned when the answer is unknown.
865 unsigned getNumberOfParts(Type *Tp) const;
866
867 /// \returns The cost of the address computation. For most targets this can be
868 /// merged into the instruction indexing mode. Some targets might want to
869 /// distinguish between address computation for memory operations on vector
870 /// types and scalar types. Such targets should override this function.
871 /// The 'SE' parameter holds pointer for the scalar evolution object which
872 /// is used in order to get the Ptr step value in case of constant stride.
873 /// The 'Ptr' parameter holds SCEV of the access pointer.
874 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
875 const SCEV *Ptr = nullptr) const;
876
877 /// \returns The cost, if any, of keeping values of the given types alive
878 /// over a callsite.
879 ///
880 /// Some types may require the use of register classes that do not have
881 /// any callee-saved registers, so would require a spill and fill.
882 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
883
884 /// \returns True if the intrinsic is a supported memory intrinsic. Info
885 /// will contain additional information - whether the intrinsic may write
886 /// or read to memory, volatility and the pointer. Info is undefined
887 /// if false is returned.
888 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
889
890 /// \returns The maximum element size, in bytes, for an element
891 /// unordered-atomic memory intrinsic.
892 unsigned getAtomicMemIntrinsicMaxElementSize() const;
893
894 /// \returns A value which is the result of the given memory intrinsic. New
895 /// instructions may be created to extract the result from the given intrinsic
896 /// memory operation. Returns nullptr if the target cannot create a result
897 /// from the given intrinsic.
898 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
899 Type *ExpectedType) const;
900
901 /// \returns The type to use in a loop expansion of a memcpy call.
902 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
903 unsigned SrcAlign, unsigned DestAlign) const;
904
905 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
906 /// \param RemainingBytes The number of bytes to copy.
907 ///
908 /// Calculates the operand types to use when copying \p RemainingBytes of
909 /// memory, where source and destination alignments are \p SrcAlign and
910 /// \p DestAlign respectively.
911 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
912 LLVMContext &Context,
913 unsigned RemainingBytes,
914 unsigned SrcAlign,
915 unsigned DestAlign) const;
916
917 /// \returns True if the two functions have compatible attributes for inlining
918 /// purposes.
919 bool areInlineCompatible(const Function *Caller,
920 const Function *Callee) const;
921
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100922 /// The type of load/store indexing.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100923 enum MemIndexedMode {
924 MIM_Unindexed, ///< No indexing.
925 MIM_PreInc, ///< Pre-incrementing.
926 MIM_PreDec, ///< Pre-decrementing.
927 MIM_PostInc, ///< Post-incrementing.
928 MIM_PostDec ///< Post-decrementing.
929 };
930
931 /// \returns True if the specified indexed load for the given type is legal.
932 bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
933
934 /// \returns True if the specified indexed store for the given type is legal.
935 bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
936
937 /// \returns The bitwidth of the largest vector type that should be used to
938 /// load/store in the given address space.
939 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
940
941 /// \returns True if the load instruction is legal to vectorize.
942 bool isLegalToVectorizeLoad(LoadInst *LI) const;
943
944 /// \returns True if the store instruction is legal to vectorize.
945 bool isLegalToVectorizeStore(StoreInst *SI) const;
946
947 /// \returns True if it is legal to vectorize the given load chain.
948 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
949 unsigned Alignment,
950 unsigned AddrSpace) const;
951
952 /// \returns True if it is legal to vectorize the given store chain.
953 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
954 unsigned Alignment,
955 unsigned AddrSpace) const;
956
957 /// \returns The new vector factor value if the target doesn't support \p
958 /// SizeInBytes loads or has a better vector factor.
959 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
960 unsigned ChainSizeInBytes,
961 VectorType *VecTy) const;
962
963 /// \returns The new vector factor value if the target doesn't support \p
964 /// SizeInBytes stores or has a better vector factor.
965 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
966 unsigned ChainSizeInBytes,
967 VectorType *VecTy) const;
968
969 /// Flags describing the kind of vector reduction.
970 struct ReductionFlags {
971 ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
972 bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation.
973 bool IsSigned; ///< Whether the operation is a signed int reduction.
974 bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present.
975 };
976
977 /// \returns True if the target wants to handle the given reduction idiom in
978 /// the intrinsics form instead of the shuffle form.
979 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
980 ReductionFlags Flags) const;
981
982 /// \returns True if the target wants to expand the given reduction intrinsic
983 /// into a shuffle sequence.
984 bool shouldExpandReduction(const IntrinsicInst *II) const;
985 /// @}
986
987private:
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100988 /// Estimate the latency of specified instruction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100989 /// Returns 1 as the default value.
990 int getInstructionLatency(const Instruction *I) const;
991
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100992 /// Returns the expected throughput cost of the instruction.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100993 /// Returns -1 if the cost is unknown.
994 int getInstructionThroughput(const Instruction *I) const;
995
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100996 /// The abstract base class used to type erase specific TTI
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100997 /// implementations.
998 class Concept;
999
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001000 /// The template model for the base class which wraps a concrete
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001001 /// implementation in a type erased interface.
1002 template <typename T> class Model;
1003
1004 std::unique_ptr<Concept> TTIImpl;
1005};
1006
1007class TargetTransformInfo::Concept {
1008public:
1009 virtual ~Concept() = 0;
1010 virtual const DataLayout &getDataLayout() const = 0;
1011 virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
1012 virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
1013 ArrayRef<const Value *> Operands) = 0;
1014 virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
1015 virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
1016 virtual int getCallCost(const Function *F, int NumArgs) = 0;
1017 virtual int getCallCost(const Function *F,
1018 ArrayRef<const Value *> Arguments) = 0;
1019 virtual unsigned getInliningThresholdMultiplier() = 0;
1020 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1021 ArrayRef<Type *> ParamTys) = 0;
1022 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1023 ArrayRef<const Value *> Arguments) = 0;
1024 virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1025 unsigned &JTSize) = 0;
1026 virtual int
1027 getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
1028 virtual bool hasBranchDivergence() = 0;
1029 virtual bool isSourceOfDivergence(const Value *V) = 0;
1030 virtual bool isAlwaysUniform(const Value *V) = 0;
1031 virtual unsigned getFlatAddressSpace() = 0;
1032 virtual bool isLoweredToCall(const Function *F) = 0;
1033 virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1034 UnrollingPreferences &UP) = 0;
1035 virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1036 virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1037 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1038 int64_t BaseOffset, bool HasBaseReg,
1039 int64_t Scale,
1040 unsigned AddrSpace,
1041 Instruction *I) = 0;
1042 virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1043 TargetTransformInfo::LSRCost &C2) = 0;
1044 virtual bool canMacroFuseCmp() = 0;
1045 virtual bool shouldFavorPostInc() const = 0;
1046 virtual bool isLegalMaskedStore(Type *DataType) = 0;
1047 virtual bool isLegalMaskedLoad(Type *DataType) = 0;
1048 virtual bool isLegalMaskedScatter(Type *DataType) = 0;
1049 virtual bool isLegalMaskedGather(Type *DataType) = 0;
1050 virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1051 virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1052 virtual bool prefersVectorizedAddressing() = 0;
1053 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1054 int64_t BaseOffset, bool HasBaseReg,
1055 int64_t Scale, unsigned AddrSpace) = 0;
1056 virtual bool LSRWithInstrQueries() = 0;
1057 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1058 virtual bool isProfitableToHoist(Instruction *I) = 0;
1059 virtual bool useAA() = 0;
1060 virtual bool isTypeLegal(Type *Ty) = 0;
1061 virtual unsigned getJumpBufAlignment() = 0;
1062 virtual unsigned getJumpBufSize() = 0;
1063 virtual bool shouldBuildLookupTables() = 0;
1064 virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1065 virtual bool useColdCCForColdCall(Function &F) = 0;
1066 virtual unsigned
1067 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
1068 virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1069 unsigned VF) = 0;
1070 virtual bool supportsEfficientVectorElementLoadStore() = 0;
1071 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1072 virtual const MemCmpExpansionOptions *enableMemCmpExpansion(
1073 bool IsZeroCmp) const = 0;
1074 virtual bool enableInterleavedAccessVectorization() = 0;
1075 virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1076 virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1077 unsigned BitWidth,
1078 unsigned AddressSpace,
1079 unsigned Alignment,
1080 bool *Fast) = 0;
1081 virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1082 virtual bool haveFastSqrt(Type *Ty) = 0;
1083 virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1084 virtual int getFPOpCost(Type *Ty) = 0;
1085 virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1086 Type *Ty) = 0;
1087 virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
1088 virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1089 Type *Ty) = 0;
1090 virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1091 Type *Ty) = 0;
1092 virtual unsigned getNumberOfRegisters(bool Vector) = 0;
1093 virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
1094 virtual unsigned getMinVectorRegisterBitWidth() = 0;
1095 virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001096 virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001097 virtual bool shouldConsiderAddressTypePromotion(
1098 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1099 virtual unsigned getCacheLineSize() = 0;
1100 virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0;
1101 virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0;
1102 virtual unsigned getPrefetchDistance() = 0;
1103 virtual unsigned getMinPrefetchStride() = 0;
1104 virtual unsigned getMaxPrefetchIterationsAhead() = 0;
1105 virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
1106 virtual unsigned
1107 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1108 OperandValueKind Opd2Info,
1109 OperandValueProperties Opd1PropInfo,
1110 OperandValueProperties Opd2PropInfo,
1111 ArrayRef<const Value *> Args) = 0;
1112 virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1113 Type *SubTp) = 0;
1114 virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1115 const Instruction *I) = 0;
1116 virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1117 VectorType *VecTy, unsigned Index) = 0;
1118 virtual int getCFInstrCost(unsigned Opcode) = 0;
1119 virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1120 Type *CondTy, const Instruction *I) = 0;
1121 virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
1122 unsigned Index) = 0;
1123 virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1124 unsigned AddressSpace, const Instruction *I) = 0;
1125 virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
1126 unsigned Alignment,
1127 unsigned AddressSpace) = 0;
1128 virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1129 Value *Ptr, bool VariableMask,
1130 unsigned Alignment) = 0;
1131 virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
1132 unsigned Factor,
1133 ArrayRef<unsigned> Indices,
1134 unsigned Alignment,
1135 unsigned AddressSpace) = 0;
1136 virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1137 bool IsPairwiseForm) = 0;
1138 virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1139 bool IsPairwiseForm, bool IsUnsigned) = 0;
1140 virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1141 ArrayRef<Type *> Tys, FastMathFlags FMF,
1142 unsigned ScalarizationCostPassed) = 0;
1143 virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1144 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
1145 virtual int getCallInstrCost(Function *F, Type *RetTy,
1146 ArrayRef<Type *> Tys) = 0;
1147 virtual unsigned getNumberOfParts(Type *Tp) = 0;
1148 virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1149 const SCEV *Ptr) = 0;
1150 virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
1151 virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1152 MemIntrinsicInfo &Info) = 0;
1153 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1154 virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1155 Type *ExpectedType) = 0;
1156 virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1157 unsigned SrcAlign,
1158 unsigned DestAlign) const = 0;
1159 virtual void getMemcpyLoopResidualLoweringType(
1160 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1161 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
1162 virtual bool areInlineCompatible(const Function *Caller,
1163 const Function *Callee) const = 0;
1164 virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1165 virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0;
1166 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
1167 virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
1168 virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
1169 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1170 unsigned Alignment,
1171 unsigned AddrSpace) const = 0;
1172 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1173 unsigned Alignment,
1174 unsigned AddrSpace) const = 0;
1175 virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1176 unsigned ChainSizeInBytes,
1177 VectorType *VecTy) const = 0;
1178 virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1179 unsigned ChainSizeInBytes,
1180 VectorType *VecTy) const = 0;
1181 virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1182 ReductionFlags) const = 0;
1183 virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
1184 virtual int getInstructionLatency(const Instruction *I) = 0;
1185};
1186
1187template <typename T>
1188class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
1189 T Impl;
1190
1191public:
1192 Model(T Impl) : Impl(std::move(Impl)) {}
1193 ~Model() override {}
1194
1195 const DataLayout &getDataLayout() const override {
1196 return Impl.getDataLayout();
1197 }
1198
1199 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
1200 return Impl.getOperationCost(Opcode, Ty, OpTy);
1201 }
1202 int getGEPCost(Type *PointeeType, const Value *Ptr,
1203 ArrayRef<const Value *> Operands) override {
1204 return Impl.getGEPCost(PointeeType, Ptr, Operands);
1205 }
1206 int getExtCost(const Instruction *I, const Value *Src) override {
1207 return Impl.getExtCost(I, Src);
1208 }
1209 int getCallCost(FunctionType *FTy, int NumArgs) override {
1210 return Impl.getCallCost(FTy, NumArgs);
1211 }
1212 int getCallCost(const Function *F, int NumArgs) override {
1213 return Impl.getCallCost(F, NumArgs);
1214 }
1215 int getCallCost(const Function *F,
1216 ArrayRef<const Value *> Arguments) override {
1217 return Impl.getCallCost(F, Arguments);
1218 }
1219 unsigned getInliningThresholdMultiplier() override {
1220 return Impl.getInliningThresholdMultiplier();
1221 }
1222 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1223 ArrayRef<Type *> ParamTys) override {
1224 return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
1225 }
1226 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1227 ArrayRef<const Value *> Arguments) override {
1228 return Impl.getIntrinsicCost(IID, RetTy, Arguments);
1229 }
1230 int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
1231 return Impl.getUserCost(U, Operands);
1232 }
1233 bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
1234 bool isSourceOfDivergence(const Value *V) override {
1235 return Impl.isSourceOfDivergence(V);
1236 }
1237
1238 bool isAlwaysUniform(const Value *V) override {
1239 return Impl.isAlwaysUniform(V);
1240 }
1241
1242 unsigned getFlatAddressSpace() override {
1243 return Impl.getFlatAddressSpace();
1244 }
1245
1246 bool isLoweredToCall(const Function *F) override {
1247 return Impl.isLoweredToCall(F);
1248 }
1249 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1250 UnrollingPreferences &UP) override {
1251 return Impl.getUnrollingPreferences(L, SE, UP);
1252 }
1253 bool isLegalAddImmediate(int64_t Imm) override {
1254 return Impl.isLegalAddImmediate(Imm);
1255 }
1256 bool isLegalICmpImmediate(int64_t Imm) override {
1257 return Impl.isLegalICmpImmediate(Imm);
1258 }
1259 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1260 bool HasBaseReg, int64_t Scale,
1261 unsigned AddrSpace,
1262 Instruction *I) override {
1263 return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
1264 Scale, AddrSpace, I);
1265 }
1266 bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1267 TargetTransformInfo::LSRCost &C2) override {
1268 return Impl.isLSRCostLess(C1, C2);
1269 }
1270 bool canMacroFuseCmp() override {
1271 return Impl.canMacroFuseCmp();
1272 }
1273 bool shouldFavorPostInc() const override {
1274 return Impl.shouldFavorPostInc();
1275 }
1276 bool isLegalMaskedStore(Type *DataType) override {
1277 return Impl.isLegalMaskedStore(DataType);
1278 }
1279 bool isLegalMaskedLoad(Type *DataType) override {
1280 return Impl.isLegalMaskedLoad(DataType);
1281 }
1282 bool isLegalMaskedScatter(Type *DataType) override {
1283 return Impl.isLegalMaskedScatter(DataType);
1284 }
1285 bool isLegalMaskedGather(Type *DataType) override {
1286 return Impl.isLegalMaskedGather(DataType);
1287 }
1288 bool hasDivRemOp(Type *DataType, bool IsSigned) override {
1289 return Impl.hasDivRemOp(DataType, IsSigned);
1290 }
1291 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
1292 return Impl.hasVolatileVariant(I, AddrSpace);
1293 }
1294 bool prefersVectorizedAddressing() override {
1295 return Impl.prefersVectorizedAddressing();
1296 }
1297 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1298 bool HasBaseReg, int64_t Scale,
1299 unsigned AddrSpace) override {
1300 return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
1301 Scale, AddrSpace);
1302 }
1303 bool LSRWithInstrQueries() override {
1304 return Impl.LSRWithInstrQueries();
1305 }
1306 bool isTruncateFree(Type *Ty1, Type *Ty2) override {
1307 return Impl.isTruncateFree(Ty1, Ty2);
1308 }
1309 bool isProfitableToHoist(Instruction *I) override {
1310 return Impl.isProfitableToHoist(I);
1311 }
1312 bool useAA() override { return Impl.useAA(); }
1313 bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
1314 unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
1315 unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
1316 bool shouldBuildLookupTables() override {
1317 return Impl.shouldBuildLookupTables();
1318 }
1319 bool shouldBuildLookupTablesForConstant(Constant *C) override {
1320 return Impl.shouldBuildLookupTablesForConstant(C);
1321 }
1322 bool useColdCCForColdCall(Function &F) override {
1323 return Impl.useColdCCForColdCall(F);
1324 }
1325
1326 unsigned getScalarizationOverhead(Type *Ty, bool Insert,
1327 bool Extract) override {
1328 return Impl.getScalarizationOverhead(Ty, Insert, Extract);
1329 }
1330 unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1331 unsigned VF) override {
1332 return Impl.getOperandsScalarizationOverhead(Args, VF);
1333 }
1334
1335 bool supportsEfficientVectorElementLoadStore() override {
1336 return Impl.supportsEfficientVectorElementLoadStore();
1337 }
1338
1339 bool enableAggressiveInterleaving(bool LoopHasReductions) override {
1340 return Impl.enableAggressiveInterleaving(LoopHasReductions);
1341 }
1342 const MemCmpExpansionOptions *enableMemCmpExpansion(
1343 bool IsZeroCmp) const override {
1344 return Impl.enableMemCmpExpansion(IsZeroCmp);
1345 }
1346 bool enableInterleavedAccessVectorization() override {
1347 return Impl.enableInterleavedAccessVectorization();
1348 }
1349 bool isFPVectorizationPotentiallyUnsafe() override {
1350 return Impl.isFPVectorizationPotentiallyUnsafe();
1351 }
1352 bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1353 unsigned BitWidth, unsigned AddressSpace,
1354 unsigned Alignment, bool *Fast) override {
1355 return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
1356 Alignment, Fast);
1357 }
1358 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
1359 return Impl.getPopcntSupport(IntTyWidthInBit);
1360 }
1361 bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
1362
1363 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
1364 return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
1365 }
1366
1367 int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
1368
1369 int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1370 Type *Ty) override {
1371 return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
1372 }
1373 int getIntImmCost(const APInt &Imm, Type *Ty) override {
1374 return Impl.getIntImmCost(Imm, Ty);
1375 }
1376 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1377 Type *Ty) override {
1378 return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
1379 }
1380 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1381 Type *Ty) override {
1382 return Impl.getIntImmCost(IID, Idx, Imm, Ty);
1383 }
1384 unsigned getNumberOfRegisters(bool Vector) override {
1385 return Impl.getNumberOfRegisters(Vector);
1386 }
1387 unsigned getRegisterBitWidth(bool Vector) const override {
1388 return Impl.getRegisterBitWidth(Vector);
1389 }
1390 unsigned getMinVectorRegisterBitWidth() override {
1391 return Impl.getMinVectorRegisterBitWidth();
1392 }
1393 bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
1394 return Impl.shouldMaximizeVectorBandwidth(OptSize);
1395 }
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001396 unsigned getMinimumVF(unsigned ElemWidth) const override {
1397 return Impl.getMinimumVF(ElemWidth);
1398 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001399 bool shouldConsiderAddressTypePromotion(
1400 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
1401 return Impl.shouldConsiderAddressTypePromotion(
1402 I, AllowPromotionWithoutCommonHeader);
1403 }
1404 unsigned getCacheLineSize() override {
1405 return Impl.getCacheLineSize();
1406 }
1407 llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override {
1408 return Impl.getCacheSize(Level);
1409 }
1410 llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override {
1411 return Impl.getCacheAssociativity(Level);
1412 }
1413 unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); }
1414 unsigned getMinPrefetchStride() override {
1415 return Impl.getMinPrefetchStride();
1416 }
1417 unsigned getMaxPrefetchIterationsAhead() override {
1418 return Impl.getMaxPrefetchIterationsAhead();
1419 }
1420 unsigned getMaxInterleaveFactor(unsigned VF) override {
1421 return Impl.getMaxInterleaveFactor(VF);
1422 }
1423 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1424 unsigned &JTSize) override {
1425 return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
1426 }
1427 unsigned
1428 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1429 OperandValueKind Opd2Info,
1430 OperandValueProperties Opd1PropInfo,
1431 OperandValueProperties Opd2PropInfo,
1432 ArrayRef<const Value *> Args) override {
1433 return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
1434 Opd1PropInfo, Opd2PropInfo, Args);
1435 }
1436 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1437 Type *SubTp) override {
1438 return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
1439 }
1440 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1441 const Instruction *I) override {
1442 return Impl.getCastInstrCost(Opcode, Dst, Src, I);
1443 }
1444 int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1445 unsigned Index) override {
1446 return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
1447 }
1448 int getCFInstrCost(unsigned Opcode) override {
1449 return Impl.getCFInstrCost(Opcode);
1450 }
1451 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1452 const Instruction *I) override {
1453 return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1454 }
1455 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
1456 return Impl.getVectorInstrCost(Opcode, Val, Index);
1457 }
1458 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1459 unsigned AddressSpace, const Instruction *I) override {
1460 return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
1461 }
1462 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1463 unsigned AddressSpace) override {
1464 return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
1465 }
1466 int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1467 Value *Ptr, bool VariableMask,
1468 unsigned Alignment) override {
1469 return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1470 Alignment);
1471 }
1472 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
1473 ArrayRef<unsigned> Indices, unsigned Alignment,
1474 unsigned AddressSpace) override {
1475 return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1476 Alignment, AddressSpace);
1477 }
1478 int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1479 bool IsPairwiseForm) override {
1480 return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
1481 }
1482 int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1483 bool IsPairwiseForm, bool IsUnsigned) override {
1484 return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
1485 }
1486 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
1487 FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
1488 return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
1489 ScalarizationCostPassed);
1490 }
1491 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1492 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
1493 return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
1494 }
1495 int getCallInstrCost(Function *F, Type *RetTy,
1496 ArrayRef<Type *> Tys) override {
1497 return Impl.getCallInstrCost(F, RetTy, Tys);
1498 }
1499 unsigned getNumberOfParts(Type *Tp) override {
1500 return Impl.getNumberOfParts(Tp);
1501 }
1502 int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1503 const SCEV *Ptr) override {
1504 return Impl.getAddressComputationCost(Ty, SE, Ptr);
1505 }
1506 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
1507 return Impl.getCostOfKeepingLiveOverCall(Tys);
1508 }
1509 bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1510 MemIntrinsicInfo &Info) override {
1511 return Impl.getTgtMemIntrinsic(Inst, Info);
1512 }
1513 unsigned getAtomicMemIntrinsicMaxElementSize() const override {
1514 return Impl.getAtomicMemIntrinsicMaxElementSize();
1515 }
1516 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1517 Type *ExpectedType) override {
1518 return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
1519 }
1520 Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1521 unsigned SrcAlign,
1522 unsigned DestAlign) const override {
1523 return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
1524 }
1525 void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
1526 LLVMContext &Context,
1527 unsigned RemainingBytes,
1528 unsigned SrcAlign,
1529 unsigned DestAlign) const override {
1530 Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
1531 SrcAlign, DestAlign);
1532 }
1533 bool areInlineCompatible(const Function *Caller,
1534 const Function *Callee) const override {
1535 return Impl.areInlineCompatible(Caller, Callee);
1536 }
1537 bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
1538 return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
1539 }
1540 bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
1541 return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
1542 }
1543 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
1544 return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
1545 }
1546 bool isLegalToVectorizeLoad(LoadInst *LI) const override {
1547 return Impl.isLegalToVectorizeLoad(LI);
1548 }
1549 bool isLegalToVectorizeStore(StoreInst *SI) const override {
1550 return Impl.isLegalToVectorizeStore(SI);
1551 }
1552 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1553 unsigned Alignment,
1554 unsigned AddrSpace) const override {
1555 return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1556 AddrSpace);
1557 }
1558 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1559 unsigned Alignment,
1560 unsigned AddrSpace) const override {
1561 return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1562 AddrSpace);
1563 }
1564 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1565 unsigned ChainSizeInBytes,
1566 VectorType *VecTy) const override {
1567 return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1568 }
1569 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1570 unsigned ChainSizeInBytes,
1571 VectorType *VecTy) const override {
1572 return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1573 }
1574 bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1575 ReductionFlags Flags) const override {
1576 return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
1577 }
1578 bool shouldExpandReduction(const IntrinsicInst *II) const override {
1579 return Impl.shouldExpandReduction(II);
1580 }
1581 int getInstructionLatency(const Instruction *I) override {
1582 return Impl.getInstructionLatency(I);
1583 }
1584};
1585
1586template <typename T>
1587TargetTransformInfo::TargetTransformInfo(T Impl)
1588 : TTIImpl(new Model<T>(Impl)) {}
1589
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001590/// Analysis pass providing the \c TargetTransformInfo.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001591///
1592/// The core idea of the TargetIRAnalysis is to expose an interface through
1593/// which LLVM targets can analyze and provide information about the middle
1594/// end's target-independent IR. This supports use cases such as target-aware
1595/// cost modeling of IR constructs.
1596///
1597/// This is a function analysis because much of the cost modeling for targets
1598/// is done in a subtarget specific way and LLVM supports compiling different
1599/// functions targeting different subtargets in order to support runtime
1600/// dispatch according to the observed subtarget.
1601class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
1602public:
1603 typedef TargetTransformInfo Result;
1604
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001605 /// Default construct a target IR analysis.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001606 ///
1607 /// This will use the module's datalayout to construct a baseline
1608 /// conservative TTI result.
1609 TargetIRAnalysis();
1610
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001611 /// Construct an IR analysis pass around a target-provide callback.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001612 ///
1613 /// The callback will be called with a particular function for which the TTI
1614 /// is needed and must return a TTI object for that function.
1615 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
1616
1617 // Value semantics. We spell out the constructors for MSVC.
1618 TargetIRAnalysis(const TargetIRAnalysis &Arg)
1619 : TTICallback(Arg.TTICallback) {}
1620 TargetIRAnalysis(TargetIRAnalysis &&Arg)
1621 : TTICallback(std::move(Arg.TTICallback)) {}
1622 TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
1623 TTICallback = RHS.TTICallback;
1624 return *this;
1625 }
1626 TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
1627 TTICallback = std::move(RHS.TTICallback);
1628 return *this;
1629 }
1630
1631 Result run(const Function &F, FunctionAnalysisManager &);
1632
1633private:
1634 friend AnalysisInfoMixin<TargetIRAnalysis>;
1635 static AnalysisKey Key;
1636
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001637 /// The callback used to produce a result.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001638 ///
1639 /// We use a completely opaque callback so that targets can provide whatever
1640 /// mechanism they desire for constructing the TTI for a given function.
1641 ///
1642 /// FIXME: Should we really use std::function? It's relatively inefficient.
1643 /// It might be possible to arrange for even stateful callbacks to outlive
1644 /// the analysis and thus use a function_ref which would be lighter weight.
1645 /// This may also be less error prone as the callback is likely to reference
1646 /// the external TargetMachine, and that reference needs to never dangle.
1647 std::function<Result(const Function &)> TTICallback;
1648
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001649 /// Helper function used as the callback in the default constructor.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001650 static Result getDefaultTTI(const Function &F);
1651};
1652
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001653/// Wrapper pass for TargetTransformInfo.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001654///
1655/// This pass can be constructed from a TTI object which it stores internally
1656/// and is queried by passes.
1657class TargetTransformInfoWrapperPass : public ImmutablePass {
1658 TargetIRAnalysis TIRA;
1659 Optional<TargetTransformInfo> TTI;
1660
1661 virtual void anchor();
1662
1663public:
1664 static char ID;
1665
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001666 /// We must provide a default constructor for the pass but it should
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001667 /// never be used.
1668 ///
1669 /// Use the constructor below or call one of the creation routines.
1670 TargetTransformInfoWrapperPass();
1671
1672 explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1673
1674 TargetTransformInfo &getTTI(const Function &F);
1675};
1676
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001677/// Create an analysis pass wrapper around a TTI object.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001678///
1679/// This analysis pass just holds the TTI instance and makes it available to
1680/// clients.
1681ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1682
1683} // End llvm namespace
1684
1685#endif