blob: 63c031b1921f356d1070167d1abc82780c8e30f8 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9/// \file
Andrew Scullcdfcccc2018-10-05 20:58:37 +010010/// This file exposes an interface to building/using memory SSA to
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010011/// walk memory instructions using a use/def graph.
12///
13/// Memory SSA class builds an SSA form that links together memory access
14/// instructions such as loads, stores, atomics, and calls. Additionally, it
15/// does a trivial form of "heap versioning" Every time the memory state changes
16/// in the program, we generate a new heap version. It generates
17/// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
18///
19/// As a trivial example,
20/// define i32 @main() #0 {
21/// entry:
22/// %call = call noalias i8* @_Znwm(i64 4) #2
23/// %0 = bitcast i8* %call to i32*
24/// %call1 = call noalias i8* @_Znwm(i64 4) #2
25/// %1 = bitcast i8* %call1 to i32*
26/// store i32 5, i32* %0, align 4
27/// store i32 7, i32* %1, align 4
28/// %2 = load i32* %0, align 4
29/// %3 = load i32* %1, align 4
30/// %add = add nsw i32 %2, %3
31/// ret i32 %add
32/// }
33///
34/// Will become
35/// define i32 @main() #0 {
36/// entry:
37/// ; 1 = MemoryDef(0)
38/// %call = call noalias i8* @_Znwm(i64 4) #3
39/// %2 = bitcast i8* %call to i32*
40/// ; 2 = MemoryDef(1)
41/// %call1 = call noalias i8* @_Znwm(i64 4) #3
42/// %4 = bitcast i8* %call1 to i32*
43/// ; 3 = MemoryDef(2)
44/// store i32 5, i32* %2, align 4
45/// ; 4 = MemoryDef(3)
46/// store i32 7, i32* %4, align 4
47/// ; MemoryUse(3)
48/// %7 = load i32* %2, align 4
49/// ; MemoryUse(4)
50/// %8 = load i32* %4, align 4
51/// %add = add nsw i32 %7, %8
52/// ret i32 %add
53/// }
54///
55/// Given this form, all the stores that could ever effect the load at %8 can be
56/// gotten by using the MemoryUse associated with it, and walking from use to
57/// def until you hit the top of the function.
58///
59/// Each def also has a list of users associated with it, so you can walk from
60/// both def to users, and users to defs. Note that we disambiguate MemoryUses,
61/// but not the RHS of MemoryDefs. You can see this above at %7, which would
62/// otherwise be a MemoryUse(4). Being disambiguated means that for a given
63/// store, all the MemoryUses on its use lists are may-aliases of that store
64/// (but the MemoryDefs on its use list may not be).
65///
66/// MemoryDefs are not disambiguated because it would require multiple reaching
67/// definitions, which would require multiple phis, and multiple memoryaccesses
68/// per instruction.
69//
70//===----------------------------------------------------------------------===//
71
72#ifndef LLVM_ANALYSIS_MEMORYSSA_H
73#define LLVM_ANALYSIS_MEMORYSSA_H
74
75#include "llvm/ADT/DenseMap.h"
76#include "llvm/ADT/GraphTraits.h"
77#include "llvm/ADT/SmallPtrSet.h"
78#include "llvm/ADT/SmallVector.h"
79#include "llvm/ADT/ilist.h"
80#include "llvm/ADT/ilist_node.h"
81#include "llvm/ADT/iterator.h"
82#include "llvm/ADT/iterator_range.h"
83#include "llvm/ADT/simple_ilist.h"
84#include "llvm/Analysis/AliasAnalysis.h"
85#include "llvm/Analysis/MemoryLocation.h"
86#include "llvm/Analysis/PHITransAddr.h"
87#include "llvm/IR/BasicBlock.h"
88#include "llvm/IR/DerivedUser.h"
89#include "llvm/IR/Dominators.h"
90#include "llvm/IR/Module.h"
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020091#include "llvm/IR/Operator.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010092#include "llvm/IR/Type.h"
93#include "llvm/IR/Use.h"
94#include "llvm/IR/User.h"
95#include "llvm/IR/Value.h"
96#include "llvm/IR/ValueHandle.h"
97#include "llvm/Pass.h"
98#include "llvm/Support/Casting.h"
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020099#include "llvm/Support/CommandLine.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100100#include <algorithm>
101#include <cassert>
102#include <cstddef>
103#include <iterator>
104#include <memory>
105#include <utility>
106
107namespace llvm {
108
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100109/// Enables memory ssa as a dependency for loop passes.
110extern cl::opt<bool> EnableMSSALoopDependency;
111
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200112class AllocaInst;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100113class Function;
114class Instruction;
115class MemoryAccess;
116class MemorySSAWalker;
117class LLVMContext;
118class raw_ostream;
119
120namespace MSSAHelpers {
121
122struct AllAccessTag {};
123struct DefsOnlyTag {};
124
125} // end namespace MSSAHelpers
126
127enum : unsigned {
128 // Used to signify what the default invalid ID is for MemoryAccess's
129 // getID()
130 INVALID_MEMORYACCESS_ID = -1U
131};
132
133template <class T> class memoryaccess_def_iterator_base;
134using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
135using const_memoryaccess_def_iterator =
136 memoryaccess_def_iterator_base<const MemoryAccess>;
137
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100138// The base for all memory accesses. All memory accesses in a block are
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100139// linked together using an intrusive list.
140class MemoryAccess
141 : public DerivedUser,
142 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
143 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
144public:
145 using AllAccessType =
146 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
147 using DefsOnlyType =
148 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
149
150 MemoryAccess(const MemoryAccess &) = delete;
151 MemoryAccess &operator=(const MemoryAccess &) = delete;
152
153 void *operator new(size_t) = delete;
154
155 // Methods for support type inquiry through isa, cast, and
156 // dyn_cast
157 static bool classof(const Value *V) {
158 unsigned ID = V->getValueID();
159 return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
160 }
161
162 BasicBlock *getBlock() const { return Block; }
163
164 void print(raw_ostream &OS) const;
165 void dump() const;
166
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100167 /// The user iterators for a memory access
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100168 using iterator = user_iterator;
169 using const_iterator = const_user_iterator;
170
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100171 /// This iterator walks over all of the defs in a given
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100172 /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
173 /// MemoryUse/MemoryDef, this walks the defining access.
174 memoryaccess_def_iterator defs_begin();
175 const_memoryaccess_def_iterator defs_begin() const;
176 memoryaccess_def_iterator defs_end();
177 const_memoryaccess_def_iterator defs_end() const;
178
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100179 /// Get the iterators for the all access list and the defs only list
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100180 /// We default to the all access list.
181 AllAccessType::self_iterator getIterator() {
182 return this->AllAccessType::getIterator();
183 }
184 AllAccessType::const_self_iterator getIterator() const {
185 return this->AllAccessType::getIterator();
186 }
187 AllAccessType::reverse_self_iterator getReverseIterator() {
188 return this->AllAccessType::getReverseIterator();
189 }
190 AllAccessType::const_reverse_self_iterator getReverseIterator() const {
191 return this->AllAccessType::getReverseIterator();
192 }
193 DefsOnlyType::self_iterator getDefsIterator() {
194 return this->DefsOnlyType::getIterator();
195 }
196 DefsOnlyType::const_self_iterator getDefsIterator() const {
197 return this->DefsOnlyType::getIterator();
198 }
199 DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
200 return this->DefsOnlyType::getReverseIterator();
201 }
202 DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
203 return this->DefsOnlyType::getReverseIterator();
204 }
205
206protected:
207 friend class MemoryDef;
208 friend class MemoryPhi;
209 friend class MemorySSA;
210 friend class MemoryUse;
211 friend class MemoryUseOrDef;
212
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100213 /// Used by MemorySSA to change the block of a MemoryAccess when it is
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100214 /// moved.
215 void setBlock(BasicBlock *BB) { Block = BB; }
216
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100217 /// Used for debugging and tracking things about MemoryAccesses.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100218 /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
219 inline unsigned getID() const;
220
221 MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
222 BasicBlock *BB, unsigned NumOperands)
223 : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
224 Block(BB) {}
225
226 // Use deleteValue() to delete a generic MemoryAccess.
227 ~MemoryAccess() = default;
228
229private:
230 BasicBlock *Block;
231};
232
233template <>
234struct ilist_alloc_traits<MemoryAccess> {
235 static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
236};
237
238inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
239 MA.print(OS);
240 return OS;
241}
242
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100243/// Class that has the common methods + fields of memory uses/defs. It's
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100244/// a little awkward to have, but there are many cases where we want either a
245/// use or def, and there are many cases where uses are needed (defs aren't
246/// acceptable), and vice-versa.
247///
248/// This class should never be instantiated directly; make a MemoryUse or
249/// MemoryDef instead.
250class MemoryUseOrDef : public MemoryAccess {
251public:
252 void *operator new(size_t) = delete;
253
254 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
255
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100256 /// Get the instruction that this MemoryUse represents.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100257 Instruction *getMemoryInst() const { return MemoryInstruction; }
258
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100259 /// Get the access that produces the memory state used by this Use.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100260 MemoryAccess *getDefiningAccess() const { return getOperand(0); }
261
262 static bool classof(const Value *MA) {
263 return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
264 }
265
266 // Sadly, these have to be public because they are needed in some of the
267 // iterators.
268 inline bool isOptimized() const;
269 inline MemoryAccess *getOptimized() const;
270 inline void setOptimized(MemoryAccess *);
271
272 // Retrieve AliasResult type of the optimized access. Ideally this would be
273 // returned by the caching walker and may go away in the future.
274 Optional<AliasResult> getOptimizedAccessType() const {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200275 return isOptimized() ? OptimizedAccessAlias : None;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100276 }
277
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100278 /// Reset the ID of what this MemoryUse was optimized to, causing it to
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100279 /// be rewalked by the walker if necessary.
280 /// This really should only be called by tests.
281 inline void resetOptimized();
282
283protected:
284 friend class MemorySSA;
285 friend class MemorySSAUpdater;
286
287 MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
Andrew Scull0372a572018-11-16 15:47:06 +0000288 DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB,
289 unsigned NumOperands)
290 : MemoryAccess(C, Vty, DeleteValue, BB, NumOperands),
291 MemoryInstruction(MI), OptimizedAccessAlias(MayAlias) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100292 setDefiningAccess(DMA);
293 }
294
295 // Use deleteValue() to delete a generic MemoryUseOrDef.
296 ~MemoryUseOrDef() = default;
297
298 void setOptimizedAccessType(Optional<AliasResult> AR) {
299 OptimizedAccessAlias = AR;
300 }
301
302 void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false,
303 Optional<AliasResult> AR = MayAlias) {
304 if (!Optimized) {
305 setOperand(0, DMA);
306 return;
307 }
308 setOptimized(DMA);
309 setOptimizedAccessType(AR);
310 }
311
312private:
313 Instruction *MemoryInstruction;
314 Optional<AliasResult> OptimizedAccessAlias;
315};
316
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100317/// Represents read-only accesses to memory
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100318///
319/// In particular, the set of Instructions that will be represented by
320/// MemoryUse's is exactly the set of Instructions for which
321/// AliasAnalysis::getModRefInfo returns "Ref".
322class MemoryUse final : public MemoryUseOrDef {
323public:
324 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
325
326 MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
Andrew Scull0372a572018-11-16 15:47:06 +0000327 : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB,
328 /*NumOperands=*/1) {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100329
330 // allocate space for exactly one operand
331 void *operator new(size_t s) { return User::operator new(s, 1); }
332
333 static bool classof(const Value *MA) {
334 return MA->getValueID() == MemoryUseVal;
335 }
336
337 void print(raw_ostream &OS) const;
338
339 void setOptimized(MemoryAccess *DMA) {
340 OptimizedID = DMA->getID();
341 setOperand(0, DMA);
342 }
343
344 bool isOptimized() const {
345 return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
346 }
347
348 MemoryAccess *getOptimized() const {
349 return getDefiningAccess();
350 }
351
352 void resetOptimized() {
353 OptimizedID = INVALID_MEMORYACCESS_ID;
354 }
355
356protected:
357 friend class MemorySSA;
358
359private:
360 static void deleteMe(DerivedUser *Self);
361
362 unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
363};
364
365template <>
366struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
367DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
368
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100369/// Represents a read-write access to memory, whether it is a must-alias,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100370/// or a may-alias.
371///
372/// In particular, the set of Instructions that will be represented by
373/// MemoryDef's is exactly the set of Instructions for which
374/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
375/// Note that, in order to provide def-def chains, all defs also have a use
376/// associated with them. This use points to the nearest reaching
377/// MemoryDef/MemoryPhi.
378class MemoryDef final : public MemoryUseOrDef {
379public:
380 friend class MemorySSA;
381
382 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
383
384 MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
385 unsigned Ver)
Andrew Scull0372a572018-11-16 15:47:06 +0000386 : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB,
387 /*NumOperands=*/2),
388 ID(Ver) {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100389
Andrew Scull0372a572018-11-16 15:47:06 +0000390 // allocate space for exactly two operands
391 void *operator new(size_t s) { return User::operator new(s, 2); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100392
393 static bool classof(const Value *MA) {
394 return MA->getValueID() == MemoryDefVal;
395 }
396
397 void setOptimized(MemoryAccess *MA) {
Andrew Scull0372a572018-11-16 15:47:06 +0000398 setOperand(1, MA);
399 OptimizedID = MA->getID();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100400 }
401
402 MemoryAccess *getOptimized() const {
Andrew Scull0372a572018-11-16 15:47:06 +0000403 return cast_or_null<MemoryAccess>(getOperand(1));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100404 }
405
406 bool isOptimized() const {
Andrew Scull0372a572018-11-16 15:47:06 +0000407 return getOptimized() && OptimizedID == getOptimized()->getID();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100408 }
409
410 void resetOptimized() {
411 OptimizedID = INVALID_MEMORYACCESS_ID;
Andrew Walbran16937d02019-10-22 13:54:20 +0100412 setOperand(1, nullptr);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100413 }
414
415 void print(raw_ostream &OS) const;
416
417 unsigned getID() const { return ID; }
418
419private:
420 static void deleteMe(DerivedUser *Self);
421
422 const unsigned ID;
423 unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100424};
425
426template <>
Andrew Scull0372a572018-11-16 15:47:06 +0000427struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 2> {};
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100428DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
429
Andrew Scull0372a572018-11-16 15:47:06 +0000430template <>
431struct OperandTraits<MemoryUseOrDef> {
432 static Use *op_begin(MemoryUseOrDef *MUD) {
433 if (auto *MU = dyn_cast<MemoryUse>(MUD))
434 return OperandTraits<MemoryUse>::op_begin(MU);
435 return OperandTraits<MemoryDef>::op_begin(cast<MemoryDef>(MUD));
436 }
437
438 static Use *op_end(MemoryUseOrDef *MUD) {
439 if (auto *MU = dyn_cast<MemoryUse>(MUD))
440 return OperandTraits<MemoryUse>::op_end(MU);
441 return OperandTraits<MemoryDef>::op_end(cast<MemoryDef>(MUD));
442 }
443
444 static unsigned operands(const MemoryUseOrDef *MUD) {
445 if (const auto *MU = dyn_cast<MemoryUse>(MUD))
446 return OperandTraits<MemoryUse>::operands(MU);
447 return OperandTraits<MemoryDef>::operands(cast<MemoryDef>(MUD));
448 }
449};
450DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
451
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100452/// Represents phi nodes for memory accesses.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100453///
454/// These have the same semantic as regular phi nodes, with the exception that
455/// only one phi will ever exist in a given basic block.
456/// Guaranteeing one phi per block means guaranteeing there is only ever one
457/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
458/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
459/// a MemoryPhi's operands.
460/// That is, given
461/// if (a) {
462/// store %a
463/// store %b
464/// }
465/// it *must* be transformed into
466/// if (a) {
467/// 1 = MemoryDef(liveOnEntry)
468/// store %a
469/// 2 = MemoryDef(1)
470/// store %b
471/// }
472/// and *not*
473/// if (a) {
474/// 1 = MemoryDef(liveOnEntry)
475/// store %a
476/// 2 = MemoryDef(liveOnEntry)
477/// store %b
478/// }
479/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
480/// end of the branch, and if there are not two phi nodes, one will be
481/// disconnected completely from the SSA graph below that point.
482/// Because MemoryUse's do not generate new definitions, they do not have this
483/// issue.
484class MemoryPhi final : public MemoryAccess {
485 // allocate space for exactly zero operands
486 void *operator new(size_t s) { return User::operator new(s); }
487
488public:
489 /// Provide fast operand accessors
490 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
491
492 MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
493 : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
494 ReservedSpace(NumPreds) {
495 allocHungoffUses(ReservedSpace);
496 }
497
498 // Block iterator interface. This provides access to the list of incoming
499 // basic blocks, which parallels the list of incoming values.
500 using block_iterator = BasicBlock **;
501 using const_block_iterator = BasicBlock *const *;
502
503 block_iterator block_begin() {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200504 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100505 }
506
507 const_block_iterator block_begin() const {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200508 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100509 }
510
511 block_iterator block_end() { return block_begin() + getNumOperands(); }
512
513 const_block_iterator block_end() const {
514 return block_begin() + getNumOperands();
515 }
516
517 iterator_range<block_iterator> blocks() {
518 return make_range(block_begin(), block_end());
519 }
520
521 iterator_range<const_block_iterator> blocks() const {
522 return make_range(block_begin(), block_end());
523 }
524
525 op_range incoming_values() { return operands(); }
526
527 const_op_range incoming_values() const { return operands(); }
528
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100529 /// Return the number of incoming edges
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100530 unsigned getNumIncomingValues() const { return getNumOperands(); }
531
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100532 /// Return incoming value number x
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100533 MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
534 void setIncomingValue(unsigned I, MemoryAccess *V) {
535 assert(V && "PHI node got a null value!");
536 setOperand(I, V);
537 }
538
539 static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
540 static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
541
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100542 /// Return incoming basic block number @p i.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100543 BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
544
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100545 /// Return incoming basic block corresponding
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100546 /// to an operand of the PHI.
547 BasicBlock *getIncomingBlock(const Use &U) const {
548 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
549 return getIncomingBlock(unsigned(&U - op_begin()));
550 }
551
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100552 /// Return incoming basic block corresponding
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100553 /// to value use iterator.
554 BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
555 return getIncomingBlock(I.getUse());
556 }
557
558 void setIncomingBlock(unsigned I, BasicBlock *BB) {
559 assert(BB && "PHI node got a null basic block!");
560 block_begin()[I] = BB;
561 }
562
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100563 /// Add an incoming value to the end of the PHI list
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100564 void addIncoming(MemoryAccess *V, BasicBlock *BB) {
565 if (getNumOperands() == ReservedSpace)
566 growOperands(); // Get more space!
567 // Initialize some new operands.
568 setNumHungOffUseOperands(getNumOperands() + 1);
569 setIncomingValue(getNumOperands() - 1, V);
570 setIncomingBlock(getNumOperands() - 1, BB);
571 }
572
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100573 /// Return the first index of the specified basic
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100574 /// block in the value list for this PHI. Returns -1 if no instance.
575 int getBasicBlockIndex(const BasicBlock *BB) const {
576 for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
577 if (block_begin()[I] == BB)
578 return I;
579 return -1;
580 }
581
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100582 MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100583 int Idx = getBasicBlockIndex(BB);
584 assert(Idx >= 0 && "Invalid basic block argument!");
585 return getIncomingValue(Idx);
586 }
587
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100588 // After deleting incoming position I, the order of incoming may be changed.
589 void unorderedDeleteIncoming(unsigned I) {
590 unsigned E = getNumOperands();
591 assert(I < E && "Cannot remove out of bounds Phi entry.");
592 // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
593 // itself should be deleted.
594 assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
595 "at least 2 values.");
596 setIncomingValue(I, getIncomingValue(E - 1));
597 setIncomingBlock(I, block_begin()[E - 1]);
598 setOperand(E - 1, nullptr);
599 block_begin()[E - 1] = nullptr;
600 setNumHungOffUseOperands(getNumOperands() - 1);
601 }
602
603 // After deleting entries that satisfy Pred, remaining entries may have
604 // changed order.
605 template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
606 for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
607 if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
608 unorderedDeleteIncoming(I);
609 E = getNumOperands();
610 --I;
611 }
612 assert(getNumOperands() >= 1 &&
613 "Cannot remove all incoming blocks in a MemoryPhi.");
614 }
615
616 // After deleting incoming block BB, the incoming blocks order may be changed.
617 void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
618 unorderedDeleteIncomingIf(
619 [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
620 }
621
622 // After deleting incoming memory access MA, the incoming accesses order may
623 // be changed.
624 void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
625 unorderedDeleteIncomingIf(
626 [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
627 }
628
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100629 static bool classof(const Value *V) {
630 return V->getValueID() == MemoryPhiVal;
631 }
632
633 void print(raw_ostream &OS) const;
634
635 unsigned getID() const { return ID; }
636
637protected:
638 friend class MemorySSA;
639
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100640 /// this is more complicated than the generic
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100641 /// User::allocHungoffUses, because we have to allocate Uses for the incoming
642 /// values and pointers to the incoming blocks, all in one allocation.
643 void allocHungoffUses(unsigned N) {
644 User::allocHungoffUses(N, /* IsPhi */ true);
645 }
646
647private:
648 // For debugging only
649 const unsigned ID;
650 unsigned ReservedSpace;
651
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100652 /// This grows the operand list in response to a push_back style of
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100653 /// operation. This grows the number of ops by 1.5 times.
654 void growOperands() {
655 unsigned E = getNumOperands();
656 // 2 op PHI nodes are VERY common, so reserve at least enough for that.
657 ReservedSpace = std::max(E + E / 2, 2u);
658 growHungoffUses(ReservedSpace, /* IsPhi */ true);
659 }
660
661 static void deleteMe(DerivedUser *Self);
662};
663
664inline unsigned MemoryAccess::getID() const {
665 assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
666 "only memory defs and phis have ids");
667 if (const auto *MD = dyn_cast<MemoryDef>(this))
668 return MD->getID();
669 return cast<MemoryPhi>(this)->getID();
670}
671
672inline bool MemoryUseOrDef::isOptimized() const {
673 if (const auto *MD = dyn_cast<MemoryDef>(this))
674 return MD->isOptimized();
675 return cast<MemoryUse>(this)->isOptimized();
676}
677
678inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
679 if (const auto *MD = dyn_cast<MemoryDef>(this))
680 return MD->getOptimized();
681 return cast<MemoryUse>(this)->getOptimized();
682}
683
684inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
685 if (auto *MD = dyn_cast<MemoryDef>(this))
686 MD->setOptimized(MA);
687 else
688 cast<MemoryUse>(this)->setOptimized(MA);
689}
690
691inline void MemoryUseOrDef::resetOptimized() {
692 if (auto *MD = dyn_cast<MemoryDef>(this))
693 MD->resetOptimized();
694 else
695 cast<MemoryUse>(this)->resetOptimized();
696}
697
698template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
699DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
700
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100701/// Encapsulates MemorySSA, including all data associated with memory
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100702/// accesses.
703class MemorySSA {
704public:
705 MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100706
707 // MemorySSA must remain where it's constructed; Walkers it creates store
708 // pointers to it.
709 MemorySSA(MemorySSA &&) = delete;
710
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100711 ~MemorySSA();
712
713 MemorySSAWalker *getWalker();
Andrew Walbran16937d02019-10-22 13:54:20 +0100714 MemorySSAWalker *getSkipSelfWalker();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100715
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100716 /// Given a memory Mod/Ref'ing instruction, get the MemorySSA
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100717 /// access associated with it. If passed a basic block gets the memory phi
718 /// node that exists for that block, if there is one. Otherwise, this will get
719 /// a MemoryUseOrDef.
Andrew Scull0372a572018-11-16 15:47:06 +0000720 MemoryUseOrDef *getMemoryAccess(const Instruction *I) const {
721 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
722 }
723
724 MemoryPhi *getMemoryAccess(const BasicBlock *BB) const {
725 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
726 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100727
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200728 DominatorTree &getDomTree() const { return *DT; }
729
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100730 void dump() const;
731 void print(raw_ostream &) const;
732
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100733 /// Return true if \p MA represents the live on entry value
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100734 ///
735 /// Loads and stores from pointer arguments and other global values may be
736 /// defined by memory operations that do not occur in the current function, so
737 /// they may be live on entry to the function. MemorySSA represents such
738 /// memory state by the live on entry definition, which is guaranteed to occur
739 /// before any other memory access in the function.
740 inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
741 return MA == LiveOnEntryDef.get();
742 }
743
744 inline MemoryAccess *getLiveOnEntryDef() const {
745 return LiveOnEntryDef.get();
746 }
747
748 // Sadly, iplists, by default, owns and deletes pointers added to the
749 // list. It's not currently possible to have two iplists for the same type,
750 // where one owns the pointers, and one does not. This is because the traits
751 // are per-type, not per-tag. If this ever changes, we should make the
752 // DefList an iplist.
753 using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
754 using DefsList =
755 simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
756
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100757 /// Return the list of MemoryAccess's for a given basic block.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100758 ///
759 /// This list is not modifiable by the user.
760 const AccessList *getBlockAccesses(const BasicBlock *BB) const {
761 return getWritableBlockAccesses(BB);
762 }
763
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100764 /// Return the list of MemoryDef's and MemoryPhi's for a given basic
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100765 /// block.
766 ///
767 /// This list is not modifiable by the user.
768 const DefsList *getBlockDefs(const BasicBlock *BB) const {
769 return getWritableBlockDefs(BB);
770 }
771
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100772 /// Given two memory accesses in the same basic block, determine
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100773 /// whether MemoryAccess \p A dominates MemoryAccess \p B.
774 bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
775
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100776 /// Given two memory accesses in potentially different blocks,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100777 /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
778 bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
779
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100780 /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100781 /// dominates Use \p B.
782 bool dominates(const MemoryAccess *A, const Use &B) const;
783
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100784 /// Verify that MemorySSA is self consistent (IE definitions dominate
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100785 /// all uses, uses appear in the right places). This is used by unit tests.
786 void verifyMemorySSA() const;
787
788 /// Used in various insertion functions to specify whether we are talking
789 /// about the beginning or end of a block.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200790 enum InsertionPlace { Beginning, End, BeforeTerminator };
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100791
792protected:
793 // Used by Memory SSA annotater, dumpers, and wrapper pass
794 friend class MemorySSAAnnotatedWriter;
795 friend class MemorySSAPrinterLegacyPass;
796 friend class MemorySSAUpdater;
797
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200798 void verifyOrderingDominationAndDefUses(Function &F) const;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100799 void verifyDominationNumbers(const Function &F) const;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200800 void verifyPrevDefInPhis(Function &F) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100801
802 // This is used by the use optimizer and updater.
803 AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
804 auto It = PerBlockAccesses.find(BB);
805 return It == PerBlockAccesses.end() ? nullptr : It->second.get();
806 }
807
808 // This is used by the use optimizer and updater.
809 DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
810 auto It = PerBlockDefs.find(BB);
811 return It == PerBlockDefs.end() ? nullptr : It->second.get();
812 }
813
814 // These is used by the updater to perform various internal MemorySSA
815 // machinsations. They do not always leave the IR in a correct state, and
816 // relies on the updater to fixup what it breaks, so it is not public.
817
818 void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100819 void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100820
821 // Rename the dominator tree branch rooted at BB.
822 void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
823 SmallPtrSetImpl<BasicBlock *> &Visited) {
824 renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
825 }
826
827 void removeFromLookups(MemoryAccess *);
828 void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
829 void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
830 InsertionPlace);
831 void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
832 AccessList::iterator);
Andrew Scull0372a572018-11-16 15:47:06 +0000833 MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *,
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200834 const MemoryUseOrDef *Template = nullptr,
835 bool CreationMustSucceed = true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100836
837private:
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100838 template <class AliasAnalysisType> class ClobberWalkerBase;
839 template <class AliasAnalysisType> class CachingWalker;
840 template <class AliasAnalysisType> class SkipSelfWalker;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100841 class OptimizeUses;
842
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100843 CachingWalker<AliasAnalysis> *getWalkerImpl();
844 void buildMemorySSA(BatchAAResults &BAA);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100845
Andrew Scull0372a572018-11-16 15:47:06 +0000846 void prepareForMoveTo(MemoryAccess *, BasicBlock *);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100847 void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
848
849 using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
850 using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
851
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100852 void markUnreachableAsLiveOnEntry(BasicBlock *BB);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100853 MemoryPhi *createMemoryPhi(BasicBlock *BB);
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100854 template <typename AliasAnalysisType>
855 MemoryUseOrDef *createNewAccess(Instruction *, AliasAnalysisType *,
Andrew Scull0372a572018-11-16 15:47:06 +0000856 const MemoryUseOrDef *Template = nullptr);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100857 void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100858 MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
859 void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
860 void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
861 SmallPtrSetImpl<BasicBlock *> &Visited,
862 bool SkipVisited = false, bool RenameAllUses = false);
863 AccessList *getOrCreateAccessList(const BasicBlock *);
864 DefsList *getOrCreateDefsList(const BasicBlock *);
865 void renumberBlock(const BasicBlock *) const;
866 AliasAnalysis *AA;
867 DominatorTree *DT;
868 Function &F;
869
870 // Memory SSA mappings
871 DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
872
873 // These two mappings contain the main block to access/def mappings for
874 // MemorySSA. The list contained in PerBlockAccesses really owns all the
875 // MemoryAccesses.
876 // Both maps maintain the invariant that if a block is found in them, the
877 // corresponding list is not empty, and if a block is not found in them, the
878 // corresponding list is empty.
879 AccessMap PerBlockAccesses;
880 DefsMap PerBlockDefs;
881 std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
882
883 // Domination mappings
884 // Note that the numbering is local to a block, even though the map is
885 // global.
886 mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
887 mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
888
889 // Memory SSA building info
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100890 std::unique_ptr<ClobberWalkerBase<AliasAnalysis>> WalkerBase;
891 std::unique_ptr<CachingWalker<AliasAnalysis>> Walker;
892 std::unique_ptr<SkipSelfWalker<AliasAnalysis>> SkipWalker;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100893 unsigned NextID;
894};
895
896// Internal MemorySSA utils, for use by MemorySSA classes and walkers
897class MemorySSAUtil {
898protected:
899 friend class GVNHoist;
900 friend class MemorySSAWalker;
901
902 // This function should not be used by new passes.
903 static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
904 AliasAnalysis &AA);
905};
906
907// This pass does eager building and then printing of MemorySSA. It is used by
908// the tests to be able to build, dump, and verify Memory SSA.
909class MemorySSAPrinterLegacyPass : public FunctionPass {
910public:
911 MemorySSAPrinterLegacyPass();
912
913 bool runOnFunction(Function &) override;
914 void getAnalysisUsage(AnalysisUsage &AU) const override;
915
916 static char ID;
917};
918
919/// An analysis that produces \c MemorySSA for a function.
920///
921class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
922 friend AnalysisInfoMixin<MemorySSAAnalysis>;
923
924 static AnalysisKey Key;
925
926public:
927 // Wrap MemorySSA result to ensure address stability of internal MemorySSA
928 // pointers after construction. Use a wrapper class instead of plain
929 // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
930 struct Result {
931 Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
932
933 MemorySSA &getMSSA() { return *MSSA.get(); }
934
935 std::unique_ptr<MemorySSA> MSSA;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100936
937 bool invalidate(Function &F, const PreservedAnalyses &PA,
938 FunctionAnalysisManager::Invalidator &Inv);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100939 };
940
941 Result run(Function &F, FunctionAnalysisManager &AM);
942};
943
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100944/// Printer pass for \c MemorySSA.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100945class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
946 raw_ostream &OS;
947
948public:
949 explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
950
951 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
952};
953
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100954/// Verifier pass for \c MemorySSA.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100955struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
956 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
957};
958
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100959/// Legacy analysis pass which computes \c MemorySSA.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100960class MemorySSAWrapperPass : public FunctionPass {
961public:
962 MemorySSAWrapperPass();
963
964 static char ID;
965
966 bool runOnFunction(Function &) override;
967 void releaseMemory() override;
968 MemorySSA &getMSSA() { return *MSSA; }
969 const MemorySSA &getMSSA() const { return *MSSA; }
970
971 void getAnalysisUsage(AnalysisUsage &AU) const override;
972
973 void verifyAnalysis() const override;
974 void print(raw_ostream &OS, const Module *M = nullptr) const override;
975
976private:
977 std::unique_ptr<MemorySSA> MSSA;
978};
979
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100980/// This is the generic walker interface for walkers of MemorySSA.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100981/// Walkers are used to be able to further disambiguate the def-use chains
982/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
983/// you.
984/// In particular, while the def-use chains provide basic information, and are
985/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
986/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
987/// information. In particular, they may want to use SCEV info to further
988/// disambiguate memory accesses, or they may want the nearest dominating
989/// may-aliasing MemoryDef for a call or a store. This API enables a
990/// standardized interface to getting and using that info.
991class MemorySSAWalker {
992public:
993 MemorySSAWalker(MemorySSA *);
994 virtual ~MemorySSAWalker() = default;
995
996 using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
997
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100998 /// Given a memory Mod/Ref/ModRef'ing instruction, calling this
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100999 /// will give you the nearest dominating MemoryAccess that Mod's the location
1000 /// the instruction accesses (by skipping any def which AA can prove does not
1001 /// alias the location(s) accessed by the instruction given).
1002 ///
1003 /// Note that this will return a single access, and it must dominate the
1004 /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
1005 /// this will return the MemoryPhi, not the operand. This means that
1006 /// given:
1007 /// if (a) {
1008 /// 1 = MemoryDef(liveOnEntry)
1009 /// store %a
1010 /// } else {
1011 /// 2 = MemoryDef(liveOnEntry)
1012 /// store %b
1013 /// }
1014 /// 3 = MemoryPhi(2, 1)
1015 /// MemoryUse(3)
1016 /// load %a
1017 ///
1018 /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
1019 /// in the if (a) branch.
1020 MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
1021 MemoryAccess *MA = MSSA->getMemoryAccess(I);
1022 assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
1023 return getClobberingMemoryAccess(MA);
1024 }
1025
1026 /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
1027 /// but takes a MemoryAccess instead of an Instruction.
1028 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
1029
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001030 /// Given a potentially clobbering memory access and a new location,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001031 /// calling this will give you the nearest dominating clobbering MemoryAccess
1032 /// (by skipping non-aliasing def links).
1033 ///
1034 /// This version of the function is mainly used to disambiguate phi translated
1035 /// pointers, where the value of a pointer may have changed from the initial
1036 /// memory access. Note that this expects to be handed either a MemoryUse,
1037 /// or an already potentially clobbering access. Unlike the above API, if
1038 /// given a MemoryDef that clobbers the pointer as the starting access, it
1039 /// will return that MemoryDef, whereas the above would return the clobber
1040 /// starting from the use side of the memory def.
1041 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1042 const MemoryLocation &) = 0;
1043
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001044 /// Given a memory access, invalidate anything this walker knows about
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001045 /// that access.
1046 /// This API is used by walkers that store information to perform basic cache
1047 /// invalidation. This will be called by MemorySSA at appropriate times for
1048 /// the walker it uses or returns.
1049 virtual void invalidateInfo(MemoryAccess *) {}
1050
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001051protected:
1052 friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
1053 // constructor.
1054 MemorySSA *MSSA;
1055};
1056
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001057/// A MemorySSAWalker that does no alias queries, or anything else. It
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001058/// simply returns the links as they were constructed by the builder.
1059class DoNothingMemorySSAWalker final : public MemorySSAWalker {
1060public:
1061 // Keep the overrides below from hiding the Instruction overload of
1062 // getClobberingMemoryAccess.
1063 using MemorySSAWalker::getClobberingMemoryAccess;
1064
1065 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
1066 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1067 const MemoryLocation &) override;
1068};
1069
1070using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
1071using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
1072
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001073/// Iterator base class used to implement const and non-const iterators
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001074/// over the defining accesses of a MemoryAccess.
1075template <class T>
1076class memoryaccess_def_iterator_base
1077 : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
1078 std::forward_iterator_tag, T, ptrdiff_t, T *,
1079 T *> {
1080 using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
1081
1082public:
1083 memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
1084 memoryaccess_def_iterator_base() = default;
1085
1086 bool operator==(const memoryaccess_def_iterator_base &Other) const {
1087 return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
1088 }
1089
1090 // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
1091 // block from the operand in constant time (In a PHINode, the uselist has
1092 // both, so it's just subtraction). We provide it as part of the
1093 // iterator to avoid callers having to linear walk to get the block.
1094 // If the operation becomes constant time on MemoryPHI's, this bit of
1095 // abstraction breaking should be removed.
1096 BasicBlock *getPhiArgBlock() const {
1097 MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
1098 assert(MP && "Tried to get phi arg block when not iterating over a PHI");
1099 return MP->getIncomingBlock(ArgNo);
1100 }
1101
1102 typename BaseT::iterator::pointer operator*() const {
1103 assert(Access && "Tried to access past the end of our iterator");
1104 // Go to the first argument for phis, and the defining access for everything
1105 // else.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001106 if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001107 return MP->getIncomingValue(ArgNo);
1108 return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
1109 }
1110
1111 using BaseT::operator++;
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001112 memoryaccess_def_iterator_base &operator++() {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001113 assert(Access && "Hit end of iterator");
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001114 if (const MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001115 if (++ArgNo >= MP->getNumIncomingValues()) {
1116 ArgNo = 0;
1117 Access = nullptr;
1118 }
1119 } else {
1120 Access = nullptr;
1121 }
1122 return *this;
1123 }
1124
1125private:
1126 T *Access = nullptr;
1127 unsigned ArgNo = 0;
1128};
1129
1130inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
1131 return memoryaccess_def_iterator(this);
1132}
1133
1134inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
1135 return const_memoryaccess_def_iterator(this);
1136}
1137
1138inline memoryaccess_def_iterator MemoryAccess::defs_end() {
1139 return memoryaccess_def_iterator();
1140}
1141
1142inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
1143 return const_memoryaccess_def_iterator();
1144}
1145
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001146/// GraphTraits for a MemoryAccess, which walks defs in the normal case,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001147/// and uses in the inverse case.
1148template <> struct GraphTraits<MemoryAccess *> {
1149 using NodeRef = MemoryAccess *;
1150 using ChildIteratorType = memoryaccess_def_iterator;
1151
1152 static NodeRef getEntryNode(NodeRef N) { return N; }
1153 static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
1154 static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
1155};
1156
1157template <> struct GraphTraits<Inverse<MemoryAccess *>> {
1158 using NodeRef = MemoryAccess *;
1159 using ChildIteratorType = MemoryAccess::iterator;
1160
1161 static NodeRef getEntryNode(NodeRef N) { return N; }
1162 static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
1163 static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
1164};
1165
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001166/// Provide an iterator that walks defs, giving both the memory access,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001167/// and the current pointer location, updating the pointer location as it
1168/// changes due to phi node translation.
1169///
1170/// This iterator, while somewhat specialized, is what most clients actually
1171/// want when walking upwards through MemorySSA def chains. It takes a pair of
1172/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
1173/// memory location through phi nodes for the user.
1174class upward_defs_iterator
1175 : public iterator_facade_base<upward_defs_iterator,
1176 std::forward_iterator_tag,
1177 const MemoryAccessPair> {
1178 using BaseT = upward_defs_iterator::iterator_facade_base;
1179
1180public:
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001181 upward_defs_iterator(const MemoryAccessPair &Info, DominatorTree *DT,
1182 bool *PerformedPhiTranslation = nullptr)
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001183 : DefIterator(Info.first), Location(Info.second),
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001184 OriginalAccess(Info.first), DT(DT),
1185 PerformedPhiTranslation(PerformedPhiTranslation) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001186 CurrentPair.first = nullptr;
1187
1188 WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
1189 fillInCurrentPair();
1190 }
1191
1192 upward_defs_iterator() { CurrentPair.first = nullptr; }
1193
1194 bool operator==(const upward_defs_iterator &Other) const {
1195 return DefIterator == Other.DefIterator;
1196 }
1197
1198 BaseT::iterator::reference operator*() const {
1199 assert(DefIterator != OriginalAccess->defs_end() &&
1200 "Tried to access past the end of our iterator");
1201 return CurrentPair;
1202 }
1203
1204 using BaseT::operator++;
1205 upward_defs_iterator &operator++() {
1206 assert(DefIterator != OriginalAccess->defs_end() &&
1207 "Tried to access past the end of the iterator");
1208 ++DefIterator;
1209 if (DefIterator != OriginalAccess->defs_end())
1210 fillInCurrentPair();
1211 return *this;
1212 }
1213
1214 BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
1215
1216private:
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001217 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1218 /// loop. In particular, this guarantees that it only references a single
1219 /// MemoryLocation during execution of the containing function.
1220 bool IsGuaranteedLoopInvariant(Value *Ptr) const;
1221
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001222 void fillInCurrentPair() {
1223 CurrentPair.first = *DefIterator;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001224 CurrentPair.second = Location;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001225 if (WalkingPhi && Location.Ptr) {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001226 // Mark size as unknown, if the location is not guaranteed to be
1227 // loop-invariant for any possible loop in the function. Setting the size
1228 // to unknown guarantees that any memory accesses that access locations
1229 // after the pointer are considered as clobbers, which is important to
1230 // catch loop carried dependences.
1231 if (Location.Ptr &&
1232 !IsGuaranteedLoopInvariant(const_cast<Value *>(Location.Ptr)))
1233 CurrentPair.second =
1234 Location.getWithNewSize(LocationSize::beforeOrAfterPointer());
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001235 PHITransAddr Translator(
1236 const_cast<Value *>(Location.Ptr),
1237 OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001238
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001239 if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001240 DefIterator.getPhiArgBlock(), DT,
1241 true)) {
1242 Value *TransAddr = Translator.getAddr();
1243 if (TransAddr != Location.Ptr) {
1244 CurrentPair.second = CurrentPair.second.getWithNewPtr(TransAddr);
1245
1246 if (TransAddr &&
1247 !IsGuaranteedLoopInvariant(const_cast<Value *>(TransAddr)))
1248 CurrentPair.second = CurrentPair.second.getWithNewSize(
1249 LocationSize::beforeOrAfterPointer());
1250
1251 if (PerformedPhiTranslation)
1252 *PerformedPhiTranslation = true;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001253 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001254 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001255 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001256 }
1257
1258 MemoryAccessPair CurrentPair;
1259 memoryaccess_def_iterator DefIterator;
1260 MemoryLocation Location;
1261 MemoryAccess *OriginalAccess = nullptr;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001262 DominatorTree *DT = nullptr;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001263 bool WalkingPhi = false;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001264 bool *PerformedPhiTranslation = nullptr;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001265};
1266
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001267inline upward_defs_iterator
1268upward_defs_begin(const MemoryAccessPair &Pair, DominatorTree &DT,
1269 bool *PerformedPhiTranslation = nullptr) {
1270 return upward_defs_iterator(Pair, &DT, PerformedPhiTranslation);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001271}
1272
1273inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
1274
1275inline iterator_range<upward_defs_iterator>
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001276upward_defs(const MemoryAccessPair &Pair, DominatorTree &DT) {
1277 return make_range(upward_defs_begin(Pair, DT), upward_defs_end());
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001278}
1279
1280/// Walks the defining accesses of MemoryDefs. Stops after we hit something that
1281/// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
1282/// comparing against a null def_chain_iterator, this will compare equal only
1283/// after walking said Phi/liveOnEntry.
1284///
1285/// The UseOptimizedChain flag specifies whether to walk the clobbering
1286/// access chain, or all the accesses.
1287///
1288/// Normally, MemoryDef are all just def/use linked together, so a def_chain on
1289/// a MemoryDef will walk all MemoryDefs above it in the program until it hits
1290/// a phi node. The optimized chain walks the clobbering access of a store.
1291/// So if you are just trying to find, given a store, what the next
1292/// thing that would clobber the same memory is, you want the optimized chain.
1293template <class T, bool UseOptimizedChain = false>
1294struct def_chain_iterator
1295 : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
1296 std::forward_iterator_tag, MemoryAccess *> {
1297 def_chain_iterator() : MA(nullptr) {}
1298 def_chain_iterator(T MA) : MA(MA) {}
1299
1300 T operator*() const { return MA; }
1301
1302 def_chain_iterator &operator++() {
1303 // N.B. liveOnEntry has a null defining access.
1304 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1305 if (UseOptimizedChain && MUD->isOptimized())
1306 MA = MUD->getOptimized();
1307 else
1308 MA = MUD->getDefiningAccess();
1309 } else {
1310 MA = nullptr;
1311 }
1312
1313 return *this;
1314 }
1315
1316 bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
1317
1318private:
1319 T MA;
1320};
1321
1322template <class T>
1323inline iterator_range<def_chain_iterator<T>>
1324def_chain(T MA, MemoryAccess *UpTo = nullptr) {
1325#ifdef EXPENSIVE_CHECKS
1326 assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
1327 "UpTo isn't in the def chain!");
1328#endif
1329 return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
1330}
1331
1332template <class T>
1333inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
1334 return make_range(def_chain_iterator<T, true>(MA),
1335 def_chain_iterator<T, true>(nullptr));
1336}
1337
1338} // end namespace llvm
1339
1340#endif // LLVM_ANALYSIS_MEMORYSSA_H