Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | /// \file |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 11 | /// This file exposes an interface to building/using memory SSA to |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 12 | /// walk memory instructions using a use/def graph. |
| 13 | /// |
| 14 | /// Memory SSA class builds an SSA form that links together memory access |
| 15 | /// instructions such as loads, stores, atomics, and calls. Additionally, it |
| 16 | /// does a trivial form of "heap versioning" Every time the memory state changes |
| 17 | /// in the program, we generate a new heap version. It generates |
| 18 | /// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions. |
| 19 | /// |
| 20 | /// As a trivial example, |
| 21 | /// define i32 @main() #0 { |
| 22 | /// entry: |
| 23 | /// %call = call noalias i8* @_Znwm(i64 4) #2 |
| 24 | /// %0 = bitcast i8* %call to i32* |
| 25 | /// %call1 = call noalias i8* @_Znwm(i64 4) #2 |
| 26 | /// %1 = bitcast i8* %call1 to i32* |
| 27 | /// store i32 5, i32* %0, align 4 |
| 28 | /// store i32 7, i32* %1, align 4 |
| 29 | /// %2 = load i32* %0, align 4 |
| 30 | /// %3 = load i32* %1, align 4 |
| 31 | /// %add = add nsw i32 %2, %3 |
| 32 | /// ret i32 %add |
| 33 | /// } |
| 34 | /// |
| 35 | /// Will become |
| 36 | /// define i32 @main() #0 { |
| 37 | /// entry: |
| 38 | /// ; 1 = MemoryDef(0) |
| 39 | /// %call = call noalias i8* @_Znwm(i64 4) #3 |
| 40 | /// %2 = bitcast i8* %call to i32* |
| 41 | /// ; 2 = MemoryDef(1) |
| 42 | /// %call1 = call noalias i8* @_Znwm(i64 4) #3 |
| 43 | /// %4 = bitcast i8* %call1 to i32* |
| 44 | /// ; 3 = MemoryDef(2) |
| 45 | /// store i32 5, i32* %2, align 4 |
| 46 | /// ; 4 = MemoryDef(3) |
| 47 | /// store i32 7, i32* %4, align 4 |
| 48 | /// ; MemoryUse(3) |
| 49 | /// %7 = load i32* %2, align 4 |
| 50 | /// ; MemoryUse(4) |
| 51 | /// %8 = load i32* %4, align 4 |
| 52 | /// %add = add nsw i32 %7, %8 |
| 53 | /// ret i32 %add |
| 54 | /// } |
| 55 | /// |
| 56 | /// Given this form, all the stores that could ever effect the load at %8 can be |
| 57 | /// gotten by using the MemoryUse associated with it, and walking from use to |
| 58 | /// def until you hit the top of the function. |
| 59 | /// |
| 60 | /// Each def also has a list of users associated with it, so you can walk from |
| 61 | /// both def to users, and users to defs. Note that we disambiguate MemoryUses, |
| 62 | /// but not the RHS of MemoryDefs. You can see this above at %7, which would |
| 63 | /// otherwise be a MemoryUse(4). Being disambiguated means that for a given |
| 64 | /// store, all the MemoryUses on its use lists are may-aliases of that store |
| 65 | /// (but the MemoryDefs on its use list may not be). |
| 66 | /// |
| 67 | /// MemoryDefs are not disambiguated because it would require multiple reaching |
| 68 | /// definitions, which would require multiple phis, and multiple memoryaccesses |
| 69 | /// per instruction. |
| 70 | // |
| 71 | //===----------------------------------------------------------------------===// |
| 72 | |
| 73 | #ifndef LLVM_ANALYSIS_MEMORYSSA_H |
| 74 | #define LLVM_ANALYSIS_MEMORYSSA_H |
| 75 | |
| 76 | #include "llvm/ADT/DenseMap.h" |
| 77 | #include "llvm/ADT/GraphTraits.h" |
| 78 | #include "llvm/ADT/SmallPtrSet.h" |
| 79 | #include "llvm/ADT/SmallVector.h" |
| 80 | #include "llvm/ADT/ilist.h" |
| 81 | #include "llvm/ADT/ilist_node.h" |
| 82 | #include "llvm/ADT/iterator.h" |
| 83 | #include "llvm/ADT/iterator_range.h" |
| 84 | #include "llvm/ADT/simple_ilist.h" |
| 85 | #include "llvm/Analysis/AliasAnalysis.h" |
| 86 | #include "llvm/Analysis/MemoryLocation.h" |
| 87 | #include "llvm/Analysis/PHITransAddr.h" |
| 88 | #include "llvm/IR/BasicBlock.h" |
| 89 | #include "llvm/IR/DerivedUser.h" |
| 90 | #include "llvm/IR/Dominators.h" |
| 91 | #include "llvm/IR/Module.h" |
| 92 | #include "llvm/IR/Type.h" |
| 93 | #include "llvm/IR/Use.h" |
| 94 | #include "llvm/IR/User.h" |
| 95 | #include "llvm/IR/Value.h" |
| 96 | #include "llvm/IR/ValueHandle.h" |
| 97 | #include "llvm/Pass.h" |
| 98 | #include "llvm/Support/Casting.h" |
| 99 | #include <algorithm> |
| 100 | #include <cassert> |
| 101 | #include <cstddef> |
| 102 | #include <iterator> |
| 103 | #include <memory> |
| 104 | #include <utility> |
| 105 | |
| 106 | namespace llvm { |
| 107 | |
| 108 | class Function; |
| 109 | class Instruction; |
| 110 | class MemoryAccess; |
| 111 | class MemorySSAWalker; |
| 112 | class LLVMContext; |
| 113 | class raw_ostream; |
| 114 | |
| 115 | namespace MSSAHelpers { |
| 116 | |
| 117 | struct AllAccessTag {}; |
| 118 | struct DefsOnlyTag {}; |
| 119 | |
| 120 | } // end namespace MSSAHelpers |
| 121 | |
| 122 | enum : unsigned { |
| 123 | // Used to signify what the default invalid ID is for MemoryAccess's |
| 124 | // getID() |
| 125 | INVALID_MEMORYACCESS_ID = -1U |
| 126 | }; |
| 127 | |
| 128 | template <class T> class memoryaccess_def_iterator_base; |
| 129 | using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>; |
| 130 | using const_memoryaccess_def_iterator = |
| 131 | memoryaccess_def_iterator_base<const MemoryAccess>; |
| 132 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 133 | // The base for all memory accesses. All memory accesses in a block are |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 134 | // linked together using an intrusive list. |
| 135 | class MemoryAccess |
| 136 | : public DerivedUser, |
| 137 | public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>, |
| 138 | public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> { |
| 139 | public: |
| 140 | using AllAccessType = |
| 141 | ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; |
| 142 | using DefsOnlyType = |
| 143 | ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; |
| 144 | |
| 145 | MemoryAccess(const MemoryAccess &) = delete; |
| 146 | MemoryAccess &operator=(const MemoryAccess &) = delete; |
| 147 | |
| 148 | void *operator new(size_t) = delete; |
| 149 | |
| 150 | // Methods for support type inquiry through isa, cast, and |
| 151 | // dyn_cast |
| 152 | static bool classof(const Value *V) { |
| 153 | unsigned ID = V->getValueID(); |
| 154 | return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal; |
| 155 | } |
| 156 | |
| 157 | BasicBlock *getBlock() const { return Block; } |
| 158 | |
| 159 | void print(raw_ostream &OS) const; |
| 160 | void dump() const; |
| 161 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 162 | /// The user iterators for a memory access |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 163 | using iterator = user_iterator; |
| 164 | using const_iterator = const_user_iterator; |
| 165 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 166 | /// This iterator walks over all of the defs in a given |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 167 | /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For |
| 168 | /// MemoryUse/MemoryDef, this walks the defining access. |
| 169 | memoryaccess_def_iterator defs_begin(); |
| 170 | const_memoryaccess_def_iterator defs_begin() const; |
| 171 | memoryaccess_def_iterator defs_end(); |
| 172 | const_memoryaccess_def_iterator defs_end() const; |
| 173 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 174 | /// Get the iterators for the all access list and the defs only list |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 175 | /// We default to the all access list. |
| 176 | AllAccessType::self_iterator getIterator() { |
| 177 | return this->AllAccessType::getIterator(); |
| 178 | } |
| 179 | AllAccessType::const_self_iterator getIterator() const { |
| 180 | return this->AllAccessType::getIterator(); |
| 181 | } |
| 182 | AllAccessType::reverse_self_iterator getReverseIterator() { |
| 183 | return this->AllAccessType::getReverseIterator(); |
| 184 | } |
| 185 | AllAccessType::const_reverse_self_iterator getReverseIterator() const { |
| 186 | return this->AllAccessType::getReverseIterator(); |
| 187 | } |
| 188 | DefsOnlyType::self_iterator getDefsIterator() { |
| 189 | return this->DefsOnlyType::getIterator(); |
| 190 | } |
| 191 | DefsOnlyType::const_self_iterator getDefsIterator() const { |
| 192 | return this->DefsOnlyType::getIterator(); |
| 193 | } |
| 194 | DefsOnlyType::reverse_self_iterator getReverseDefsIterator() { |
| 195 | return this->DefsOnlyType::getReverseIterator(); |
| 196 | } |
| 197 | DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const { |
| 198 | return this->DefsOnlyType::getReverseIterator(); |
| 199 | } |
| 200 | |
| 201 | protected: |
| 202 | friend class MemoryDef; |
| 203 | friend class MemoryPhi; |
| 204 | friend class MemorySSA; |
| 205 | friend class MemoryUse; |
| 206 | friend class MemoryUseOrDef; |
| 207 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 208 | /// Used by MemorySSA to change the block of a MemoryAccess when it is |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 209 | /// moved. |
| 210 | void setBlock(BasicBlock *BB) { Block = BB; } |
| 211 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 212 | /// Used for debugging and tracking things about MemoryAccesses. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 213 | /// Guaranteed unique among MemoryAccesses, no guarantees otherwise. |
| 214 | inline unsigned getID() const; |
| 215 | |
| 216 | MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue, |
| 217 | BasicBlock *BB, unsigned NumOperands) |
| 218 | : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue), |
| 219 | Block(BB) {} |
| 220 | |
| 221 | // Use deleteValue() to delete a generic MemoryAccess. |
| 222 | ~MemoryAccess() = default; |
| 223 | |
| 224 | private: |
| 225 | BasicBlock *Block; |
| 226 | }; |
| 227 | |
| 228 | template <> |
| 229 | struct ilist_alloc_traits<MemoryAccess> { |
| 230 | static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); } |
| 231 | }; |
| 232 | |
| 233 | inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) { |
| 234 | MA.print(OS); |
| 235 | return OS; |
| 236 | } |
| 237 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 238 | /// Class that has the common methods + fields of memory uses/defs. It's |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 239 | /// a little awkward to have, but there are many cases where we want either a |
| 240 | /// use or def, and there are many cases where uses are needed (defs aren't |
| 241 | /// acceptable), and vice-versa. |
| 242 | /// |
| 243 | /// This class should never be instantiated directly; make a MemoryUse or |
| 244 | /// MemoryDef instead. |
| 245 | class MemoryUseOrDef : public MemoryAccess { |
| 246 | public: |
| 247 | void *operator new(size_t) = delete; |
| 248 | |
| 249 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); |
| 250 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 251 | /// Get the instruction that this MemoryUse represents. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 252 | Instruction *getMemoryInst() const { return MemoryInstruction; } |
| 253 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 254 | /// Get the access that produces the memory state used by this Use. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 255 | MemoryAccess *getDefiningAccess() const { return getOperand(0); } |
| 256 | |
| 257 | static bool classof(const Value *MA) { |
| 258 | return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal; |
| 259 | } |
| 260 | |
| 261 | // Sadly, these have to be public because they are needed in some of the |
| 262 | // iterators. |
| 263 | inline bool isOptimized() const; |
| 264 | inline MemoryAccess *getOptimized() const; |
| 265 | inline void setOptimized(MemoryAccess *); |
| 266 | |
| 267 | // Retrieve AliasResult type of the optimized access. Ideally this would be |
| 268 | // returned by the caching walker and may go away in the future. |
| 269 | Optional<AliasResult> getOptimizedAccessType() const { |
| 270 | return OptimizedAccessAlias; |
| 271 | } |
| 272 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 273 | /// Reset the ID of what this MemoryUse was optimized to, causing it to |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 274 | /// be rewalked by the walker if necessary. |
| 275 | /// This really should only be called by tests. |
| 276 | inline void resetOptimized(); |
| 277 | |
| 278 | protected: |
| 279 | friend class MemorySSA; |
| 280 | friend class MemorySSAUpdater; |
| 281 | |
| 282 | MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty, |
| 283 | DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB) |
| 284 | : MemoryAccess(C, Vty, DeleteValue, BB, 1), MemoryInstruction(MI), |
| 285 | OptimizedAccessAlias(MayAlias) { |
| 286 | setDefiningAccess(DMA); |
| 287 | } |
| 288 | |
| 289 | // Use deleteValue() to delete a generic MemoryUseOrDef. |
| 290 | ~MemoryUseOrDef() = default; |
| 291 | |
| 292 | void setOptimizedAccessType(Optional<AliasResult> AR) { |
| 293 | OptimizedAccessAlias = AR; |
| 294 | } |
| 295 | |
| 296 | void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false, |
| 297 | Optional<AliasResult> AR = MayAlias) { |
| 298 | if (!Optimized) { |
| 299 | setOperand(0, DMA); |
| 300 | return; |
| 301 | } |
| 302 | setOptimized(DMA); |
| 303 | setOptimizedAccessType(AR); |
| 304 | } |
| 305 | |
| 306 | private: |
| 307 | Instruction *MemoryInstruction; |
| 308 | Optional<AliasResult> OptimizedAccessAlias; |
| 309 | }; |
| 310 | |
| 311 | template <> |
| 312 | struct OperandTraits<MemoryUseOrDef> |
| 313 | : public FixedNumOperandTraits<MemoryUseOrDef, 1> {}; |
| 314 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess) |
| 315 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 316 | /// Represents read-only accesses to memory |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 317 | /// |
| 318 | /// In particular, the set of Instructions that will be represented by |
| 319 | /// MemoryUse's is exactly the set of Instructions for which |
| 320 | /// AliasAnalysis::getModRefInfo returns "Ref". |
| 321 | class MemoryUse final : public MemoryUseOrDef { |
| 322 | public: |
| 323 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); |
| 324 | |
| 325 | MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB) |
| 326 | : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB) {} |
| 327 | |
| 328 | // allocate space for exactly one operand |
| 329 | void *operator new(size_t s) { return User::operator new(s, 1); } |
| 330 | |
| 331 | static bool classof(const Value *MA) { |
| 332 | return MA->getValueID() == MemoryUseVal; |
| 333 | } |
| 334 | |
| 335 | void print(raw_ostream &OS) const; |
| 336 | |
| 337 | void setOptimized(MemoryAccess *DMA) { |
| 338 | OptimizedID = DMA->getID(); |
| 339 | setOperand(0, DMA); |
| 340 | } |
| 341 | |
| 342 | bool isOptimized() const { |
| 343 | return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID(); |
| 344 | } |
| 345 | |
| 346 | MemoryAccess *getOptimized() const { |
| 347 | return getDefiningAccess(); |
| 348 | } |
| 349 | |
| 350 | void resetOptimized() { |
| 351 | OptimizedID = INVALID_MEMORYACCESS_ID; |
| 352 | } |
| 353 | |
| 354 | protected: |
| 355 | friend class MemorySSA; |
| 356 | |
| 357 | private: |
| 358 | static void deleteMe(DerivedUser *Self); |
| 359 | |
| 360 | unsigned OptimizedID = INVALID_MEMORYACCESS_ID; |
| 361 | }; |
| 362 | |
| 363 | template <> |
| 364 | struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {}; |
| 365 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess) |
| 366 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 367 | /// Represents a read-write access to memory, whether it is a must-alias, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 368 | /// or a may-alias. |
| 369 | /// |
| 370 | /// In particular, the set of Instructions that will be represented by |
| 371 | /// MemoryDef's is exactly the set of Instructions for which |
| 372 | /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef". |
| 373 | /// Note that, in order to provide def-def chains, all defs also have a use |
| 374 | /// associated with them. This use points to the nearest reaching |
| 375 | /// MemoryDef/MemoryPhi. |
| 376 | class MemoryDef final : public MemoryUseOrDef { |
| 377 | public: |
| 378 | friend class MemorySSA; |
| 379 | |
| 380 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); |
| 381 | |
| 382 | MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB, |
| 383 | unsigned Ver) |
| 384 | : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB), ID(Ver) {} |
| 385 | |
| 386 | // allocate space for exactly one operand |
| 387 | void *operator new(size_t s) { return User::operator new(s, 1); } |
| 388 | |
| 389 | static bool classof(const Value *MA) { |
| 390 | return MA->getValueID() == MemoryDefVal; |
| 391 | } |
| 392 | |
| 393 | void setOptimized(MemoryAccess *MA) { |
| 394 | Optimized = MA; |
| 395 | OptimizedID = getDefiningAccess()->getID(); |
| 396 | } |
| 397 | |
| 398 | MemoryAccess *getOptimized() const { |
| 399 | return cast_or_null<MemoryAccess>(Optimized); |
| 400 | } |
| 401 | |
| 402 | bool isOptimized() const { |
| 403 | return getOptimized() && getDefiningAccess() && |
| 404 | OptimizedID == getDefiningAccess()->getID(); |
| 405 | } |
| 406 | |
| 407 | void resetOptimized() { |
| 408 | OptimizedID = INVALID_MEMORYACCESS_ID; |
| 409 | } |
| 410 | |
| 411 | void print(raw_ostream &OS) const; |
| 412 | |
| 413 | unsigned getID() const { return ID; } |
| 414 | |
| 415 | private: |
| 416 | static void deleteMe(DerivedUser *Self); |
| 417 | |
| 418 | const unsigned ID; |
| 419 | unsigned OptimizedID = INVALID_MEMORYACCESS_ID; |
| 420 | WeakVH Optimized; |
| 421 | }; |
| 422 | |
| 423 | template <> |
| 424 | struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {}; |
| 425 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess) |
| 426 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 427 | /// Represents phi nodes for memory accesses. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 428 | /// |
| 429 | /// These have the same semantic as regular phi nodes, with the exception that |
| 430 | /// only one phi will ever exist in a given basic block. |
| 431 | /// Guaranteeing one phi per block means guaranteeing there is only ever one |
| 432 | /// valid reaching MemoryDef/MemoryPHI along each path to the phi node. |
| 433 | /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or |
| 434 | /// a MemoryPhi's operands. |
| 435 | /// That is, given |
| 436 | /// if (a) { |
| 437 | /// store %a |
| 438 | /// store %b |
| 439 | /// } |
| 440 | /// it *must* be transformed into |
| 441 | /// if (a) { |
| 442 | /// 1 = MemoryDef(liveOnEntry) |
| 443 | /// store %a |
| 444 | /// 2 = MemoryDef(1) |
| 445 | /// store %b |
| 446 | /// } |
| 447 | /// and *not* |
| 448 | /// if (a) { |
| 449 | /// 1 = MemoryDef(liveOnEntry) |
| 450 | /// store %a |
| 451 | /// 2 = MemoryDef(liveOnEntry) |
| 452 | /// store %b |
| 453 | /// } |
| 454 | /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the |
| 455 | /// end of the branch, and if there are not two phi nodes, one will be |
| 456 | /// disconnected completely from the SSA graph below that point. |
| 457 | /// Because MemoryUse's do not generate new definitions, they do not have this |
| 458 | /// issue. |
| 459 | class MemoryPhi final : public MemoryAccess { |
| 460 | // allocate space for exactly zero operands |
| 461 | void *operator new(size_t s) { return User::operator new(s); } |
| 462 | |
| 463 | public: |
| 464 | /// Provide fast operand accessors |
| 465 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); |
| 466 | |
| 467 | MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0) |
| 468 | : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver), |
| 469 | ReservedSpace(NumPreds) { |
| 470 | allocHungoffUses(ReservedSpace); |
| 471 | } |
| 472 | |
| 473 | // Block iterator interface. This provides access to the list of incoming |
| 474 | // basic blocks, which parallels the list of incoming values. |
| 475 | using block_iterator = BasicBlock **; |
| 476 | using const_block_iterator = BasicBlock *const *; |
| 477 | |
| 478 | block_iterator block_begin() { |
| 479 | auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace); |
| 480 | return reinterpret_cast<block_iterator>(Ref + 1); |
| 481 | } |
| 482 | |
| 483 | const_block_iterator block_begin() const { |
| 484 | const auto *Ref = |
| 485 | reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace); |
| 486 | return reinterpret_cast<const_block_iterator>(Ref + 1); |
| 487 | } |
| 488 | |
| 489 | block_iterator block_end() { return block_begin() + getNumOperands(); } |
| 490 | |
| 491 | const_block_iterator block_end() const { |
| 492 | return block_begin() + getNumOperands(); |
| 493 | } |
| 494 | |
| 495 | iterator_range<block_iterator> blocks() { |
| 496 | return make_range(block_begin(), block_end()); |
| 497 | } |
| 498 | |
| 499 | iterator_range<const_block_iterator> blocks() const { |
| 500 | return make_range(block_begin(), block_end()); |
| 501 | } |
| 502 | |
| 503 | op_range incoming_values() { return operands(); } |
| 504 | |
| 505 | const_op_range incoming_values() const { return operands(); } |
| 506 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 507 | /// Return the number of incoming edges |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 508 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
| 509 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 510 | /// Return incoming value number x |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 511 | MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); } |
| 512 | void setIncomingValue(unsigned I, MemoryAccess *V) { |
| 513 | assert(V && "PHI node got a null value!"); |
| 514 | setOperand(I, V); |
| 515 | } |
| 516 | |
| 517 | static unsigned getOperandNumForIncomingValue(unsigned I) { return I; } |
| 518 | static unsigned getIncomingValueNumForOperand(unsigned I) { return I; } |
| 519 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 520 | /// Return incoming basic block number @p i. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 521 | BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; } |
| 522 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 523 | /// Return incoming basic block corresponding |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 524 | /// to an operand of the PHI. |
| 525 | BasicBlock *getIncomingBlock(const Use &U) const { |
| 526 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); |
| 527 | return getIncomingBlock(unsigned(&U - op_begin())); |
| 528 | } |
| 529 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 530 | /// Return incoming basic block corresponding |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 531 | /// to value use iterator. |
| 532 | BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const { |
| 533 | return getIncomingBlock(I.getUse()); |
| 534 | } |
| 535 | |
| 536 | void setIncomingBlock(unsigned I, BasicBlock *BB) { |
| 537 | assert(BB && "PHI node got a null basic block!"); |
| 538 | block_begin()[I] = BB; |
| 539 | } |
| 540 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 541 | /// Add an incoming value to the end of the PHI list |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 542 | void addIncoming(MemoryAccess *V, BasicBlock *BB) { |
| 543 | if (getNumOperands() == ReservedSpace) |
| 544 | growOperands(); // Get more space! |
| 545 | // Initialize some new operands. |
| 546 | setNumHungOffUseOperands(getNumOperands() + 1); |
| 547 | setIncomingValue(getNumOperands() - 1, V); |
| 548 | setIncomingBlock(getNumOperands() - 1, BB); |
| 549 | } |
| 550 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 551 | /// Return the first index of the specified basic |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 552 | /// block in the value list for this PHI. Returns -1 if no instance. |
| 553 | int getBasicBlockIndex(const BasicBlock *BB) const { |
| 554 | for (unsigned I = 0, E = getNumOperands(); I != E; ++I) |
| 555 | if (block_begin()[I] == BB) |
| 556 | return I; |
| 557 | return -1; |
| 558 | } |
| 559 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 560 | MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 561 | int Idx = getBasicBlockIndex(BB); |
| 562 | assert(Idx >= 0 && "Invalid basic block argument!"); |
| 563 | return getIncomingValue(Idx); |
| 564 | } |
| 565 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 566 | // After deleting incoming position I, the order of incoming may be changed. |
| 567 | void unorderedDeleteIncoming(unsigned I) { |
| 568 | unsigned E = getNumOperands(); |
| 569 | assert(I < E && "Cannot remove out of bounds Phi entry."); |
| 570 | // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi |
| 571 | // itself should be deleted. |
| 572 | assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with " |
| 573 | "at least 2 values."); |
| 574 | setIncomingValue(I, getIncomingValue(E - 1)); |
| 575 | setIncomingBlock(I, block_begin()[E - 1]); |
| 576 | setOperand(E - 1, nullptr); |
| 577 | block_begin()[E - 1] = nullptr; |
| 578 | setNumHungOffUseOperands(getNumOperands() - 1); |
| 579 | } |
| 580 | |
| 581 | // After deleting entries that satisfy Pred, remaining entries may have |
| 582 | // changed order. |
| 583 | template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) { |
| 584 | for (unsigned I = 0, E = getNumOperands(); I != E; ++I) |
| 585 | if (Pred(getIncomingValue(I), getIncomingBlock(I))) { |
| 586 | unorderedDeleteIncoming(I); |
| 587 | E = getNumOperands(); |
| 588 | --I; |
| 589 | } |
| 590 | assert(getNumOperands() >= 1 && |
| 591 | "Cannot remove all incoming blocks in a MemoryPhi."); |
| 592 | } |
| 593 | |
| 594 | // After deleting incoming block BB, the incoming blocks order may be changed. |
| 595 | void unorderedDeleteIncomingBlock(const BasicBlock *BB) { |
| 596 | unorderedDeleteIncomingIf( |
| 597 | [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; }); |
| 598 | } |
| 599 | |
| 600 | // After deleting incoming memory access MA, the incoming accesses order may |
| 601 | // be changed. |
| 602 | void unorderedDeleteIncomingValue(const MemoryAccess *MA) { |
| 603 | unorderedDeleteIncomingIf( |
| 604 | [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; }); |
| 605 | } |
| 606 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 607 | static bool classof(const Value *V) { |
| 608 | return V->getValueID() == MemoryPhiVal; |
| 609 | } |
| 610 | |
| 611 | void print(raw_ostream &OS) const; |
| 612 | |
| 613 | unsigned getID() const { return ID; } |
| 614 | |
| 615 | protected: |
| 616 | friend class MemorySSA; |
| 617 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 618 | /// this is more complicated than the generic |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 619 | /// User::allocHungoffUses, because we have to allocate Uses for the incoming |
| 620 | /// values and pointers to the incoming blocks, all in one allocation. |
| 621 | void allocHungoffUses(unsigned N) { |
| 622 | User::allocHungoffUses(N, /* IsPhi */ true); |
| 623 | } |
| 624 | |
| 625 | private: |
| 626 | // For debugging only |
| 627 | const unsigned ID; |
| 628 | unsigned ReservedSpace; |
| 629 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 630 | /// This grows the operand list in response to a push_back style of |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 631 | /// operation. This grows the number of ops by 1.5 times. |
| 632 | void growOperands() { |
| 633 | unsigned E = getNumOperands(); |
| 634 | // 2 op PHI nodes are VERY common, so reserve at least enough for that. |
| 635 | ReservedSpace = std::max(E + E / 2, 2u); |
| 636 | growHungoffUses(ReservedSpace, /* IsPhi */ true); |
| 637 | } |
| 638 | |
| 639 | static void deleteMe(DerivedUser *Self); |
| 640 | }; |
| 641 | |
| 642 | inline unsigned MemoryAccess::getID() const { |
| 643 | assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) && |
| 644 | "only memory defs and phis have ids"); |
| 645 | if (const auto *MD = dyn_cast<MemoryDef>(this)) |
| 646 | return MD->getID(); |
| 647 | return cast<MemoryPhi>(this)->getID(); |
| 648 | } |
| 649 | |
| 650 | inline bool MemoryUseOrDef::isOptimized() const { |
| 651 | if (const auto *MD = dyn_cast<MemoryDef>(this)) |
| 652 | return MD->isOptimized(); |
| 653 | return cast<MemoryUse>(this)->isOptimized(); |
| 654 | } |
| 655 | |
| 656 | inline MemoryAccess *MemoryUseOrDef::getOptimized() const { |
| 657 | if (const auto *MD = dyn_cast<MemoryDef>(this)) |
| 658 | return MD->getOptimized(); |
| 659 | return cast<MemoryUse>(this)->getOptimized(); |
| 660 | } |
| 661 | |
| 662 | inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) { |
| 663 | if (auto *MD = dyn_cast<MemoryDef>(this)) |
| 664 | MD->setOptimized(MA); |
| 665 | else |
| 666 | cast<MemoryUse>(this)->setOptimized(MA); |
| 667 | } |
| 668 | |
| 669 | inline void MemoryUseOrDef::resetOptimized() { |
| 670 | if (auto *MD = dyn_cast<MemoryDef>(this)) |
| 671 | MD->resetOptimized(); |
| 672 | else |
| 673 | cast<MemoryUse>(this)->resetOptimized(); |
| 674 | } |
| 675 | |
| 676 | template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {}; |
| 677 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess) |
| 678 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 679 | /// Encapsulates MemorySSA, including all data associated with memory |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 680 | /// accesses. |
| 681 | class MemorySSA { |
| 682 | public: |
| 683 | MemorySSA(Function &, AliasAnalysis *, DominatorTree *); |
| 684 | ~MemorySSA(); |
| 685 | |
| 686 | MemorySSAWalker *getWalker(); |
| 687 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 688 | /// Given a memory Mod/Ref'ing instruction, get the MemorySSA |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 689 | /// access associated with it. If passed a basic block gets the memory phi |
| 690 | /// node that exists for that block, if there is one. Otherwise, this will get |
| 691 | /// a MemoryUseOrDef. |
| 692 | MemoryUseOrDef *getMemoryAccess(const Instruction *) const; |
| 693 | MemoryPhi *getMemoryAccess(const BasicBlock *BB) const; |
| 694 | |
| 695 | void dump() const; |
| 696 | void print(raw_ostream &) const; |
| 697 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 698 | /// Return true if \p MA represents the live on entry value |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 699 | /// |
| 700 | /// Loads and stores from pointer arguments and other global values may be |
| 701 | /// defined by memory operations that do not occur in the current function, so |
| 702 | /// they may be live on entry to the function. MemorySSA represents such |
| 703 | /// memory state by the live on entry definition, which is guaranteed to occur |
| 704 | /// before any other memory access in the function. |
| 705 | inline bool isLiveOnEntryDef(const MemoryAccess *MA) const { |
| 706 | return MA == LiveOnEntryDef.get(); |
| 707 | } |
| 708 | |
| 709 | inline MemoryAccess *getLiveOnEntryDef() const { |
| 710 | return LiveOnEntryDef.get(); |
| 711 | } |
| 712 | |
| 713 | // Sadly, iplists, by default, owns and deletes pointers added to the |
| 714 | // list. It's not currently possible to have two iplists for the same type, |
| 715 | // where one owns the pointers, and one does not. This is because the traits |
| 716 | // are per-type, not per-tag. If this ever changes, we should make the |
| 717 | // DefList an iplist. |
| 718 | using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>; |
| 719 | using DefsList = |
| 720 | simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>; |
| 721 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 722 | /// Return the list of MemoryAccess's for a given basic block. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 723 | /// |
| 724 | /// This list is not modifiable by the user. |
| 725 | const AccessList *getBlockAccesses(const BasicBlock *BB) const { |
| 726 | return getWritableBlockAccesses(BB); |
| 727 | } |
| 728 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 729 | /// Return the list of MemoryDef's and MemoryPhi's for a given basic |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 730 | /// block. |
| 731 | /// |
| 732 | /// This list is not modifiable by the user. |
| 733 | const DefsList *getBlockDefs(const BasicBlock *BB) const { |
| 734 | return getWritableBlockDefs(BB); |
| 735 | } |
| 736 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 737 | /// Given two memory accesses in the same basic block, determine |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 738 | /// whether MemoryAccess \p A dominates MemoryAccess \p B. |
| 739 | bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const; |
| 740 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 741 | /// Given two memory accesses in potentially different blocks, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 742 | /// determine whether MemoryAccess \p A dominates MemoryAccess \p B. |
| 743 | bool dominates(const MemoryAccess *A, const MemoryAccess *B) const; |
| 744 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 745 | /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 746 | /// dominates Use \p B. |
| 747 | bool dominates(const MemoryAccess *A, const Use &B) const; |
| 748 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 749 | /// Verify that MemorySSA is self consistent (IE definitions dominate |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 750 | /// all uses, uses appear in the right places). This is used by unit tests. |
| 751 | void verifyMemorySSA() const; |
| 752 | |
| 753 | /// Used in various insertion functions to specify whether we are talking |
| 754 | /// about the beginning or end of a block. |
| 755 | enum InsertionPlace { Beginning, End }; |
| 756 | |
| 757 | protected: |
| 758 | // Used by Memory SSA annotater, dumpers, and wrapper pass |
| 759 | friend class MemorySSAAnnotatedWriter; |
| 760 | friend class MemorySSAPrinterLegacyPass; |
| 761 | friend class MemorySSAUpdater; |
| 762 | |
| 763 | void verifyDefUses(Function &F) const; |
| 764 | void verifyDomination(Function &F) const; |
| 765 | void verifyOrdering(Function &F) const; |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 766 | void verifyDominationNumbers(const Function &F) const; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 767 | |
| 768 | // This is used by the use optimizer and updater. |
| 769 | AccessList *getWritableBlockAccesses(const BasicBlock *BB) const { |
| 770 | auto It = PerBlockAccesses.find(BB); |
| 771 | return It == PerBlockAccesses.end() ? nullptr : It->second.get(); |
| 772 | } |
| 773 | |
| 774 | // This is used by the use optimizer and updater. |
| 775 | DefsList *getWritableBlockDefs(const BasicBlock *BB) const { |
| 776 | auto It = PerBlockDefs.find(BB); |
| 777 | return It == PerBlockDefs.end() ? nullptr : It->second.get(); |
| 778 | } |
| 779 | |
| 780 | // These is used by the updater to perform various internal MemorySSA |
| 781 | // machinsations. They do not always leave the IR in a correct state, and |
| 782 | // relies on the updater to fixup what it breaks, so it is not public. |
| 783 | |
| 784 | void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 785 | void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 786 | |
| 787 | // Rename the dominator tree branch rooted at BB. |
| 788 | void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal, |
| 789 | SmallPtrSetImpl<BasicBlock *> &Visited) { |
| 790 | renamePass(DT->getNode(BB), IncomingVal, Visited, true, true); |
| 791 | } |
| 792 | |
| 793 | void removeFromLookups(MemoryAccess *); |
| 794 | void removeFromLists(MemoryAccess *, bool ShouldDelete = true); |
| 795 | void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *, |
| 796 | InsertionPlace); |
| 797 | void insertIntoListsBefore(MemoryAccess *, const BasicBlock *, |
| 798 | AccessList::iterator); |
| 799 | MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *); |
| 800 | |
| 801 | private: |
| 802 | class CachingWalker; |
| 803 | class OptimizeUses; |
| 804 | |
| 805 | CachingWalker *getWalkerImpl(); |
| 806 | void buildMemorySSA(); |
| 807 | void optimizeUses(); |
| 808 | |
| 809 | void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const; |
| 810 | |
| 811 | using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>; |
| 812 | using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>; |
| 813 | |
| 814 | void |
| 815 | determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks); |
| 816 | void markUnreachableAsLiveOnEntry(BasicBlock *BB); |
| 817 | bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const; |
| 818 | MemoryPhi *createMemoryPhi(BasicBlock *BB); |
| 819 | MemoryUseOrDef *createNewAccess(Instruction *); |
| 820 | MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 821 | void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 822 | MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool); |
| 823 | void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool); |
| 824 | void renamePass(DomTreeNode *, MemoryAccess *IncomingVal, |
| 825 | SmallPtrSetImpl<BasicBlock *> &Visited, |
| 826 | bool SkipVisited = false, bool RenameAllUses = false); |
| 827 | AccessList *getOrCreateAccessList(const BasicBlock *); |
| 828 | DefsList *getOrCreateDefsList(const BasicBlock *); |
| 829 | void renumberBlock(const BasicBlock *) const; |
| 830 | AliasAnalysis *AA; |
| 831 | DominatorTree *DT; |
| 832 | Function &F; |
| 833 | |
| 834 | // Memory SSA mappings |
| 835 | DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess; |
| 836 | |
| 837 | // These two mappings contain the main block to access/def mappings for |
| 838 | // MemorySSA. The list contained in PerBlockAccesses really owns all the |
| 839 | // MemoryAccesses. |
| 840 | // Both maps maintain the invariant that if a block is found in them, the |
| 841 | // corresponding list is not empty, and if a block is not found in them, the |
| 842 | // corresponding list is empty. |
| 843 | AccessMap PerBlockAccesses; |
| 844 | DefsMap PerBlockDefs; |
| 845 | std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef; |
| 846 | |
| 847 | // Domination mappings |
| 848 | // Note that the numbering is local to a block, even though the map is |
| 849 | // global. |
| 850 | mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid; |
| 851 | mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering; |
| 852 | |
| 853 | // Memory SSA building info |
| 854 | std::unique_ptr<CachingWalker> Walker; |
| 855 | unsigned NextID; |
| 856 | }; |
| 857 | |
| 858 | // Internal MemorySSA utils, for use by MemorySSA classes and walkers |
| 859 | class MemorySSAUtil { |
| 860 | protected: |
| 861 | friend class GVNHoist; |
| 862 | friend class MemorySSAWalker; |
| 863 | |
| 864 | // This function should not be used by new passes. |
| 865 | static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, |
| 866 | AliasAnalysis &AA); |
| 867 | }; |
| 868 | |
| 869 | // This pass does eager building and then printing of MemorySSA. It is used by |
| 870 | // the tests to be able to build, dump, and verify Memory SSA. |
| 871 | class MemorySSAPrinterLegacyPass : public FunctionPass { |
| 872 | public: |
| 873 | MemorySSAPrinterLegacyPass(); |
| 874 | |
| 875 | bool runOnFunction(Function &) override; |
| 876 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 877 | |
| 878 | static char ID; |
| 879 | }; |
| 880 | |
| 881 | /// An analysis that produces \c MemorySSA for a function. |
| 882 | /// |
| 883 | class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> { |
| 884 | friend AnalysisInfoMixin<MemorySSAAnalysis>; |
| 885 | |
| 886 | static AnalysisKey Key; |
| 887 | |
| 888 | public: |
| 889 | // Wrap MemorySSA result to ensure address stability of internal MemorySSA |
| 890 | // pointers after construction. Use a wrapper class instead of plain |
| 891 | // unique_ptr<MemorySSA> to avoid build breakage on MSVC. |
| 892 | struct Result { |
| 893 | Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {} |
| 894 | |
| 895 | MemorySSA &getMSSA() { return *MSSA.get(); } |
| 896 | |
| 897 | std::unique_ptr<MemorySSA> MSSA; |
| 898 | }; |
| 899 | |
| 900 | Result run(Function &F, FunctionAnalysisManager &AM); |
| 901 | }; |
| 902 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 903 | /// Printer pass for \c MemorySSA. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 904 | class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> { |
| 905 | raw_ostream &OS; |
| 906 | |
| 907 | public: |
| 908 | explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {} |
| 909 | |
| 910 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
| 911 | }; |
| 912 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 913 | /// Verifier pass for \c MemorySSA. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 914 | struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> { |
| 915 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
| 916 | }; |
| 917 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 918 | /// Legacy analysis pass which computes \c MemorySSA. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 919 | class MemorySSAWrapperPass : public FunctionPass { |
| 920 | public: |
| 921 | MemorySSAWrapperPass(); |
| 922 | |
| 923 | static char ID; |
| 924 | |
| 925 | bool runOnFunction(Function &) override; |
| 926 | void releaseMemory() override; |
| 927 | MemorySSA &getMSSA() { return *MSSA; } |
| 928 | const MemorySSA &getMSSA() const { return *MSSA; } |
| 929 | |
| 930 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 931 | |
| 932 | void verifyAnalysis() const override; |
| 933 | void print(raw_ostream &OS, const Module *M = nullptr) const override; |
| 934 | |
| 935 | private: |
| 936 | std::unique_ptr<MemorySSA> MSSA; |
| 937 | }; |
| 938 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 939 | /// This is the generic walker interface for walkers of MemorySSA. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 940 | /// Walkers are used to be able to further disambiguate the def-use chains |
| 941 | /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives |
| 942 | /// you. |
| 943 | /// In particular, while the def-use chains provide basic information, and are |
| 944 | /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a |
| 945 | /// MemoryUse as AliasAnalysis considers it, a user mant want better or other |
| 946 | /// information. In particular, they may want to use SCEV info to further |
| 947 | /// disambiguate memory accesses, or they may want the nearest dominating |
| 948 | /// may-aliasing MemoryDef for a call or a store. This API enables a |
| 949 | /// standardized interface to getting and using that info. |
| 950 | class MemorySSAWalker { |
| 951 | public: |
| 952 | MemorySSAWalker(MemorySSA *); |
| 953 | virtual ~MemorySSAWalker() = default; |
| 954 | |
| 955 | using MemoryAccessSet = SmallVector<MemoryAccess *, 8>; |
| 956 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 957 | /// Given a memory Mod/Ref/ModRef'ing instruction, calling this |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 958 | /// will give you the nearest dominating MemoryAccess that Mod's the location |
| 959 | /// the instruction accesses (by skipping any def which AA can prove does not |
| 960 | /// alias the location(s) accessed by the instruction given). |
| 961 | /// |
| 962 | /// Note that this will return a single access, and it must dominate the |
| 963 | /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction, |
| 964 | /// this will return the MemoryPhi, not the operand. This means that |
| 965 | /// given: |
| 966 | /// if (a) { |
| 967 | /// 1 = MemoryDef(liveOnEntry) |
| 968 | /// store %a |
| 969 | /// } else { |
| 970 | /// 2 = MemoryDef(liveOnEntry) |
| 971 | /// store %b |
| 972 | /// } |
| 973 | /// 3 = MemoryPhi(2, 1) |
| 974 | /// MemoryUse(3) |
| 975 | /// load %a |
| 976 | /// |
| 977 | /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef |
| 978 | /// in the if (a) branch. |
| 979 | MemoryAccess *getClobberingMemoryAccess(const Instruction *I) { |
| 980 | MemoryAccess *MA = MSSA->getMemoryAccess(I); |
| 981 | assert(MA && "Handed an instruction that MemorySSA doesn't recognize?"); |
| 982 | return getClobberingMemoryAccess(MA); |
| 983 | } |
| 984 | |
| 985 | /// Does the same thing as getClobberingMemoryAccess(const Instruction *I), |
| 986 | /// but takes a MemoryAccess instead of an Instruction. |
| 987 | virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0; |
| 988 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 989 | /// Given a potentially clobbering memory access and a new location, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 990 | /// calling this will give you the nearest dominating clobbering MemoryAccess |
| 991 | /// (by skipping non-aliasing def links). |
| 992 | /// |
| 993 | /// This version of the function is mainly used to disambiguate phi translated |
| 994 | /// pointers, where the value of a pointer may have changed from the initial |
| 995 | /// memory access. Note that this expects to be handed either a MemoryUse, |
| 996 | /// or an already potentially clobbering access. Unlike the above API, if |
| 997 | /// given a MemoryDef that clobbers the pointer as the starting access, it |
| 998 | /// will return that MemoryDef, whereas the above would return the clobber |
| 999 | /// starting from the use side of the memory def. |
| 1000 | virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, |
| 1001 | const MemoryLocation &) = 0; |
| 1002 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 1003 | /// Given a memory access, invalidate anything this walker knows about |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1004 | /// that access. |
| 1005 | /// This API is used by walkers that store information to perform basic cache |
| 1006 | /// invalidation. This will be called by MemorySSA at appropriate times for |
| 1007 | /// the walker it uses or returns. |
| 1008 | virtual void invalidateInfo(MemoryAccess *) {} |
| 1009 | |
| 1010 | virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); } |
| 1011 | |
| 1012 | protected: |
| 1013 | friend class MemorySSA; // For updating MSSA pointer in MemorySSA move |
| 1014 | // constructor. |
| 1015 | MemorySSA *MSSA; |
| 1016 | }; |
| 1017 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 1018 | /// A MemorySSAWalker that does no alias queries, or anything else. It |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1019 | /// simply returns the links as they were constructed by the builder. |
| 1020 | class DoNothingMemorySSAWalker final : public MemorySSAWalker { |
| 1021 | public: |
| 1022 | // Keep the overrides below from hiding the Instruction overload of |
| 1023 | // getClobberingMemoryAccess. |
| 1024 | using MemorySSAWalker::getClobberingMemoryAccess; |
| 1025 | |
| 1026 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; |
| 1027 | MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, |
| 1028 | const MemoryLocation &) override; |
| 1029 | }; |
| 1030 | |
| 1031 | using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>; |
| 1032 | using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>; |
| 1033 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 1034 | /// Iterator base class used to implement const and non-const iterators |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1035 | /// over the defining accesses of a MemoryAccess. |
| 1036 | template <class T> |
| 1037 | class memoryaccess_def_iterator_base |
| 1038 | : public iterator_facade_base<memoryaccess_def_iterator_base<T>, |
| 1039 | std::forward_iterator_tag, T, ptrdiff_t, T *, |
| 1040 | T *> { |
| 1041 | using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base; |
| 1042 | |
| 1043 | public: |
| 1044 | memoryaccess_def_iterator_base(T *Start) : Access(Start) {} |
| 1045 | memoryaccess_def_iterator_base() = default; |
| 1046 | |
| 1047 | bool operator==(const memoryaccess_def_iterator_base &Other) const { |
| 1048 | return Access == Other.Access && (!Access || ArgNo == Other.ArgNo); |
| 1049 | } |
| 1050 | |
| 1051 | // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the |
| 1052 | // block from the operand in constant time (In a PHINode, the uselist has |
| 1053 | // both, so it's just subtraction). We provide it as part of the |
| 1054 | // iterator to avoid callers having to linear walk to get the block. |
| 1055 | // If the operation becomes constant time on MemoryPHI's, this bit of |
| 1056 | // abstraction breaking should be removed. |
| 1057 | BasicBlock *getPhiArgBlock() const { |
| 1058 | MemoryPhi *MP = dyn_cast<MemoryPhi>(Access); |
| 1059 | assert(MP && "Tried to get phi arg block when not iterating over a PHI"); |
| 1060 | return MP->getIncomingBlock(ArgNo); |
| 1061 | } |
| 1062 | |
| 1063 | typename BaseT::iterator::pointer operator*() const { |
| 1064 | assert(Access && "Tried to access past the end of our iterator"); |
| 1065 | // Go to the first argument for phis, and the defining access for everything |
| 1066 | // else. |
| 1067 | if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) |
| 1068 | return MP->getIncomingValue(ArgNo); |
| 1069 | return cast<MemoryUseOrDef>(Access)->getDefiningAccess(); |
| 1070 | } |
| 1071 | |
| 1072 | using BaseT::operator++; |
| 1073 | memoryaccess_def_iterator &operator++() { |
| 1074 | assert(Access && "Hit end of iterator"); |
| 1075 | if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) { |
| 1076 | if (++ArgNo >= MP->getNumIncomingValues()) { |
| 1077 | ArgNo = 0; |
| 1078 | Access = nullptr; |
| 1079 | } |
| 1080 | } else { |
| 1081 | Access = nullptr; |
| 1082 | } |
| 1083 | return *this; |
| 1084 | } |
| 1085 | |
| 1086 | private: |
| 1087 | T *Access = nullptr; |
| 1088 | unsigned ArgNo = 0; |
| 1089 | }; |
| 1090 | |
| 1091 | inline memoryaccess_def_iterator MemoryAccess::defs_begin() { |
| 1092 | return memoryaccess_def_iterator(this); |
| 1093 | } |
| 1094 | |
| 1095 | inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const { |
| 1096 | return const_memoryaccess_def_iterator(this); |
| 1097 | } |
| 1098 | |
| 1099 | inline memoryaccess_def_iterator MemoryAccess::defs_end() { |
| 1100 | return memoryaccess_def_iterator(); |
| 1101 | } |
| 1102 | |
| 1103 | inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const { |
| 1104 | return const_memoryaccess_def_iterator(); |
| 1105 | } |
| 1106 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 1107 | /// GraphTraits for a MemoryAccess, which walks defs in the normal case, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1108 | /// and uses in the inverse case. |
| 1109 | template <> struct GraphTraits<MemoryAccess *> { |
| 1110 | using NodeRef = MemoryAccess *; |
| 1111 | using ChildIteratorType = memoryaccess_def_iterator; |
| 1112 | |
| 1113 | static NodeRef getEntryNode(NodeRef N) { return N; } |
| 1114 | static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); } |
| 1115 | static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); } |
| 1116 | }; |
| 1117 | |
| 1118 | template <> struct GraphTraits<Inverse<MemoryAccess *>> { |
| 1119 | using NodeRef = MemoryAccess *; |
| 1120 | using ChildIteratorType = MemoryAccess::iterator; |
| 1121 | |
| 1122 | static NodeRef getEntryNode(NodeRef N) { return N; } |
| 1123 | static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); } |
| 1124 | static ChildIteratorType child_end(NodeRef N) { return N->user_end(); } |
| 1125 | }; |
| 1126 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 1127 | /// Provide an iterator that walks defs, giving both the memory access, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1128 | /// and the current pointer location, updating the pointer location as it |
| 1129 | /// changes due to phi node translation. |
| 1130 | /// |
| 1131 | /// This iterator, while somewhat specialized, is what most clients actually |
| 1132 | /// want when walking upwards through MemorySSA def chains. It takes a pair of |
| 1133 | /// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the |
| 1134 | /// memory location through phi nodes for the user. |
| 1135 | class upward_defs_iterator |
| 1136 | : public iterator_facade_base<upward_defs_iterator, |
| 1137 | std::forward_iterator_tag, |
| 1138 | const MemoryAccessPair> { |
| 1139 | using BaseT = upward_defs_iterator::iterator_facade_base; |
| 1140 | |
| 1141 | public: |
| 1142 | upward_defs_iterator(const MemoryAccessPair &Info) |
| 1143 | : DefIterator(Info.first), Location(Info.second), |
| 1144 | OriginalAccess(Info.first) { |
| 1145 | CurrentPair.first = nullptr; |
| 1146 | |
| 1147 | WalkingPhi = Info.first && isa<MemoryPhi>(Info.first); |
| 1148 | fillInCurrentPair(); |
| 1149 | } |
| 1150 | |
| 1151 | upward_defs_iterator() { CurrentPair.first = nullptr; } |
| 1152 | |
| 1153 | bool operator==(const upward_defs_iterator &Other) const { |
| 1154 | return DefIterator == Other.DefIterator; |
| 1155 | } |
| 1156 | |
| 1157 | BaseT::iterator::reference operator*() const { |
| 1158 | assert(DefIterator != OriginalAccess->defs_end() && |
| 1159 | "Tried to access past the end of our iterator"); |
| 1160 | return CurrentPair; |
| 1161 | } |
| 1162 | |
| 1163 | using BaseT::operator++; |
| 1164 | upward_defs_iterator &operator++() { |
| 1165 | assert(DefIterator != OriginalAccess->defs_end() && |
| 1166 | "Tried to access past the end of the iterator"); |
| 1167 | ++DefIterator; |
| 1168 | if (DefIterator != OriginalAccess->defs_end()) |
| 1169 | fillInCurrentPair(); |
| 1170 | return *this; |
| 1171 | } |
| 1172 | |
| 1173 | BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); } |
| 1174 | |
| 1175 | private: |
| 1176 | void fillInCurrentPair() { |
| 1177 | CurrentPair.first = *DefIterator; |
| 1178 | if (WalkingPhi && Location.Ptr) { |
| 1179 | PHITransAddr Translator( |
| 1180 | const_cast<Value *>(Location.Ptr), |
| 1181 | OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr); |
| 1182 | if (!Translator.PHITranslateValue(OriginalAccess->getBlock(), |
| 1183 | DefIterator.getPhiArgBlock(), nullptr, |
| 1184 | false)) |
| 1185 | if (Translator.getAddr() != Location.Ptr) { |
| 1186 | CurrentPair.second = Location.getWithNewPtr(Translator.getAddr()); |
| 1187 | return; |
| 1188 | } |
| 1189 | } |
| 1190 | CurrentPair.second = Location; |
| 1191 | } |
| 1192 | |
| 1193 | MemoryAccessPair CurrentPair; |
| 1194 | memoryaccess_def_iterator DefIterator; |
| 1195 | MemoryLocation Location; |
| 1196 | MemoryAccess *OriginalAccess = nullptr; |
| 1197 | bool WalkingPhi = false; |
| 1198 | }; |
| 1199 | |
| 1200 | inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) { |
| 1201 | return upward_defs_iterator(Pair); |
| 1202 | } |
| 1203 | |
| 1204 | inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); } |
| 1205 | |
| 1206 | inline iterator_range<upward_defs_iterator> |
| 1207 | upward_defs(const MemoryAccessPair &Pair) { |
| 1208 | return make_range(upward_defs_begin(Pair), upward_defs_end()); |
| 1209 | } |
| 1210 | |
| 1211 | /// Walks the defining accesses of MemoryDefs. Stops after we hit something that |
| 1212 | /// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when |
| 1213 | /// comparing against a null def_chain_iterator, this will compare equal only |
| 1214 | /// after walking said Phi/liveOnEntry. |
| 1215 | /// |
| 1216 | /// The UseOptimizedChain flag specifies whether to walk the clobbering |
| 1217 | /// access chain, or all the accesses. |
| 1218 | /// |
| 1219 | /// Normally, MemoryDef are all just def/use linked together, so a def_chain on |
| 1220 | /// a MemoryDef will walk all MemoryDefs above it in the program until it hits |
| 1221 | /// a phi node. The optimized chain walks the clobbering access of a store. |
| 1222 | /// So if you are just trying to find, given a store, what the next |
| 1223 | /// thing that would clobber the same memory is, you want the optimized chain. |
| 1224 | template <class T, bool UseOptimizedChain = false> |
| 1225 | struct def_chain_iterator |
| 1226 | : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>, |
| 1227 | std::forward_iterator_tag, MemoryAccess *> { |
| 1228 | def_chain_iterator() : MA(nullptr) {} |
| 1229 | def_chain_iterator(T MA) : MA(MA) {} |
| 1230 | |
| 1231 | T operator*() const { return MA; } |
| 1232 | |
| 1233 | def_chain_iterator &operator++() { |
| 1234 | // N.B. liveOnEntry has a null defining access. |
| 1235 | if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) { |
| 1236 | if (UseOptimizedChain && MUD->isOptimized()) |
| 1237 | MA = MUD->getOptimized(); |
| 1238 | else |
| 1239 | MA = MUD->getDefiningAccess(); |
| 1240 | } else { |
| 1241 | MA = nullptr; |
| 1242 | } |
| 1243 | |
| 1244 | return *this; |
| 1245 | } |
| 1246 | |
| 1247 | bool operator==(const def_chain_iterator &O) const { return MA == O.MA; } |
| 1248 | |
| 1249 | private: |
| 1250 | T MA; |
| 1251 | }; |
| 1252 | |
| 1253 | template <class T> |
| 1254 | inline iterator_range<def_chain_iterator<T>> |
| 1255 | def_chain(T MA, MemoryAccess *UpTo = nullptr) { |
| 1256 | #ifdef EXPENSIVE_CHECKS |
| 1257 | assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) && |
| 1258 | "UpTo isn't in the def chain!"); |
| 1259 | #endif |
| 1260 | return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo)); |
| 1261 | } |
| 1262 | |
| 1263 | template <class T> |
| 1264 | inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) { |
| 1265 | return make_range(def_chain_iterator<T, true>(MA), |
| 1266 | def_chain_iterator<T, true>(nullptr)); |
| 1267 | } |
| 1268 | |
| 1269 | } // end namespace llvm |
| 1270 | |
| 1271 | #endif // LLVM_ANALYSIS_MEMORYSSA_H |