blob: d445e4430e5ceeda57c581ea14f828c4a76b7864 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
Andrew Scullcdfcccc2018-10-05 20:58:37 +010011/// This file exposes an interface to building/using memory SSA to
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010012/// walk memory instructions using a use/def graph.
13///
14/// Memory SSA class builds an SSA form that links together memory access
15/// instructions such as loads, stores, atomics, and calls. Additionally, it
16/// does a trivial form of "heap versioning" Every time the memory state changes
17/// in the program, we generate a new heap version. It generates
18/// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
19///
20/// As a trivial example,
21/// define i32 @main() #0 {
22/// entry:
23/// %call = call noalias i8* @_Znwm(i64 4) #2
24/// %0 = bitcast i8* %call to i32*
25/// %call1 = call noalias i8* @_Znwm(i64 4) #2
26/// %1 = bitcast i8* %call1 to i32*
27/// store i32 5, i32* %0, align 4
28/// store i32 7, i32* %1, align 4
29/// %2 = load i32* %0, align 4
30/// %3 = load i32* %1, align 4
31/// %add = add nsw i32 %2, %3
32/// ret i32 %add
33/// }
34///
35/// Will become
36/// define i32 @main() #0 {
37/// entry:
38/// ; 1 = MemoryDef(0)
39/// %call = call noalias i8* @_Znwm(i64 4) #3
40/// %2 = bitcast i8* %call to i32*
41/// ; 2 = MemoryDef(1)
42/// %call1 = call noalias i8* @_Znwm(i64 4) #3
43/// %4 = bitcast i8* %call1 to i32*
44/// ; 3 = MemoryDef(2)
45/// store i32 5, i32* %2, align 4
46/// ; 4 = MemoryDef(3)
47/// store i32 7, i32* %4, align 4
48/// ; MemoryUse(3)
49/// %7 = load i32* %2, align 4
50/// ; MemoryUse(4)
51/// %8 = load i32* %4, align 4
52/// %add = add nsw i32 %7, %8
53/// ret i32 %add
54/// }
55///
56/// Given this form, all the stores that could ever effect the load at %8 can be
57/// gotten by using the MemoryUse associated with it, and walking from use to
58/// def until you hit the top of the function.
59///
60/// Each def also has a list of users associated with it, so you can walk from
61/// both def to users, and users to defs. Note that we disambiguate MemoryUses,
62/// but not the RHS of MemoryDefs. You can see this above at %7, which would
63/// otherwise be a MemoryUse(4). Being disambiguated means that for a given
64/// store, all the MemoryUses on its use lists are may-aliases of that store
65/// (but the MemoryDefs on its use list may not be).
66///
67/// MemoryDefs are not disambiguated because it would require multiple reaching
68/// definitions, which would require multiple phis, and multiple memoryaccesses
69/// per instruction.
70//
71//===----------------------------------------------------------------------===//
72
73#ifndef LLVM_ANALYSIS_MEMORYSSA_H
74#define LLVM_ANALYSIS_MEMORYSSA_H
75
76#include "llvm/ADT/DenseMap.h"
77#include "llvm/ADT/GraphTraits.h"
78#include "llvm/ADT/SmallPtrSet.h"
79#include "llvm/ADT/SmallVector.h"
80#include "llvm/ADT/ilist.h"
81#include "llvm/ADT/ilist_node.h"
82#include "llvm/ADT/iterator.h"
83#include "llvm/ADT/iterator_range.h"
84#include "llvm/ADT/simple_ilist.h"
85#include "llvm/Analysis/AliasAnalysis.h"
86#include "llvm/Analysis/MemoryLocation.h"
87#include "llvm/Analysis/PHITransAddr.h"
88#include "llvm/IR/BasicBlock.h"
89#include "llvm/IR/DerivedUser.h"
90#include "llvm/IR/Dominators.h"
91#include "llvm/IR/Module.h"
92#include "llvm/IR/Type.h"
93#include "llvm/IR/Use.h"
94#include "llvm/IR/User.h"
95#include "llvm/IR/Value.h"
96#include "llvm/IR/ValueHandle.h"
97#include "llvm/Pass.h"
98#include "llvm/Support/Casting.h"
99#include <algorithm>
100#include <cassert>
101#include <cstddef>
102#include <iterator>
103#include <memory>
104#include <utility>
105
106namespace llvm {
107
108class Function;
109class Instruction;
110class MemoryAccess;
111class MemorySSAWalker;
112class LLVMContext;
113class raw_ostream;
114
115namespace MSSAHelpers {
116
117struct AllAccessTag {};
118struct DefsOnlyTag {};
119
120} // end namespace MSSAHelpers
121
122enum : unsigned {
123 // Used to signify what the default invalid ID is for MemoryAccess's
124 // getID()
125 INVALID_MEMORYACCESS_ID = -1U
126};
127
128template <class T> class memoryaccess_def_iterator_base;
129using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
130using const_memoryaccess_def_iterator =
131 memoryaccess_def_iterator_base<const MemoryAccess>;
132
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100133// The base for all memory accesses. All memory accesses in a block are
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100134// linked together using an intrusive list.
135class MemoryAccess
136 : public DerivedUser,
137 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
138 public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
139public:
140 using AllAccessType =
141 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
142 using DefsOnlyType =
143 ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
144
145 MemoryAccess(const MemoryAccess &) = delete;
146 MemoryAccess &operator=(const MemoryAccess &) = delete;
147
148 void *operator new(size_t) = delete;
149
150 // Methods for support type inquiry through isa, cast, and
151 // dyn_cast
152 static bool classof(const Value *V) {
153 unsigned ID = V->getValueID();
154 return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
155 }
156
157 BasicBlock *getBlock() const { return Block; }
158
159 void print(raw_ostream &OS) const;
160 void dump() const;
161
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100162 /// The user iterators for a memory access
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100163 using iterator = user_iterator;
164 using const_iterator = const_user_iterator;
165
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100166 /// This iterator walks over all of the defs in a given
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100167 /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
168 /// MemoryUse/MemoryDef, this walks the defining access.
169 memoryaccess_def_iterator defs_begin();
170 const_memoryaccess_def_iterator defs_begin() const;
171 memoryaccess_def_iterator defs_end();
172 const_memoryaccess_def_iterator defs_end() const;
173
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100174 /// Get the iterators for the all access list and the defs only list
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100175 /// We default to the all access list.
176 AllAccessType::self_iterator getIterator() {
177 return this->AllAccessType::getIterator();
178 }
179 AllAccessType::const_self_iterator getIterator() const {
180 return this->AllAccessType::getIterator();
181 }
182 AllAccessType::reverse_self_iterator getReverseIterator() {
183 return this->AllAccessType::getReverseIterator();
184 }
185 AllAccessType::const_reverse_self_iterator getReverseIterator() const {
186 return this->AllAccessType::getReverseIterator();
187 }
188 DefsOnlyType::self_iterator getDefsIterator() {
189 return this->DefsOnlyType::getIterator();
190 }
191 DefsOnlyType::const_self_iterator getDefsIterator() const {
192 return this->DefsOnlyType::getIterator();
193 }
194 DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
195 return this->DefsOnlyType::getReverseIterator();
196 }
197 DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
198 return this->DefsOnlyType::getReverseIterator();
199 }
200
201protected:
202 friend class MemoryDef;
203 friend class MemoryPhi;
204 friend class MemorySSA;
205 friend class MemoryUse;
206 friend class MemoryUseOrDef;
207
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100208 /// Used by MemorySSA to change the block of a MemoryAccess when it is
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100209 /// moved.
210 void setBlock(BasicBlock *BB) { Block = BB; }
211
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100212 /// Used for debugging and tracking things about MemoryAccesses.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100213 /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
214 inline unsigned getID() const;
215
216 MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
217 BasicBlock *BB, unsigned NumOperands)
218 : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
219 Block(BB) {}
220
221 // Use deleteValue() to delete a generic MemoryAccess.
222 ~MemoryAccess() = default;
223
224private:
225 BasicBlock *Block;
226};
227
228template <>
229struct ilist_alloc_traits<MemoryAccess> {
230 static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
231};
232
233inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
234 MA.print(OS);
235 return OS;
236}
237
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100238/// Class that has the common methods + fields of memory uses/defs. It's
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100239/// a little awkward to have, but there are many cases where we want either a
240/// use or def, and there are many cases where uses are needed (defs aren't
241/// acceptable), and vice-versa.
242///
243/// This class should never be instantiated directly; make a MemoryUse or
244/// MemoryDef instead.
245class MemoryUseOrDef : public MemoryAccess {
246public:
247 void *operator new(size_t) = delete;
248
249 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
250
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100251 /// Get the instruction that this MemoryUse represents.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100252 Instruction *getMemoryInst() const { return MemoryInstruction; }
253
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100254 /// Get the access that produces the memory state used by this Use.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100255 MemoryAccess *getDefiningAccess() const { return getOperand(0); }
256
257 static bool classof(const Value *MA) {
258 return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
259 }
260
261 // Sadly, these have to be public because they are needed in some of the
262 // iterators.
263 inline bool isOptimized() const;
264 inline MemoryAccess *getOptimized() const;
265 inline void setOptimized(MemoryAccess *);
266
267 // Retrieve AliasResult type of the optimized access. Ideally this would be
268 // returned by the caching walker and may go away in the future.
269 Optional<AliasResult> getOptimizedAccessType() const {
270 return OptimizedAccessAlias;
271 }
272
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100273 /// Reset the ID of what this MemoryUse was optimized to, causing it to
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100274 /// be rewalked by the walker if necessary.
275 /// This really should only be called by tests.
276 inline void resetOptimized();
277
278protected:
279 friend class MemorySSA;
280 friend class MemorySSAUpdater;
281
282 MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
283 DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB)
284 : MemoryAccess(C, Vty, DeleteValue, BB, 1), MemoryInstruction(MI),
285 OptimizedAccessAlias(MayAlias) {
286 setDefiningAccess(DMA);
287 }
288
289 // Use deleteValue() to delete a generic MemoryUseOrDef.
290 ~MemoryUseOrDef() = default;
291
292 void setOptimizedAccessType(Optional<AliasResult> AR) {
293 OptimizedAccessAlias = AR;
294 }
295
296 void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false,
297 Optional<AliasResult> AR = MayAlias) {
298 if (!Optimized) {
299 setOperand(0, DMA);
300 return;
301 }
302 setOptimized(DMA);
303 setOptimizedAccessType(AR);
304 }
305
306private:
307 Instruction *MemoryInstruction;
308 Optional<AliasResult> OptimizedAccessAlias;
309};
310
311template <>
312struct OperandTraits<MemoryUseOrDef>
313 : public FixedNumOperandTraits<MemoryUseOrDef, 1> {};
314DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
315
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100316/// Represents read-only accesses to memory
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100317///
318/// In particular, the set of Instructions that will be represented by
319/// MemoryUse's is exactly the set of Instructions for which
320/// AliasAnalysis::getModRefInfo returns "Ref".
321class MemoryUse final : public MemoryUseOrDef {
322public:
323 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
324
325 MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
326 : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB) {}
327
328 // allocate space for exactly one operand
329 void *operator new(size_t s) { return User::operator new(s, 1); }
330
331 static bool classof(const Value *MA) {
332 return MA->getValueID() == MemoryUseVal;
333 }
334
335 void print(raw_ostream &OS) const;
336
337 void setOptimized(MemoryAccess *DMA) {
338 OptimizedID = DMA->getID();
339 setOperand(0, DMA);
340 }
341
342 bool isOptimized() const {
343 return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
344 }
345
346 MemoryAccess *getOptimized() const {
347 return getDefiningAccess();
348 }
349
350 void resetOptimized() {
351 OptimizedID = INVALID_MEMORYACCESS_ID;
352 }
353
354protected:
355 friend class MemorySSA;
356
357private:
358 static void deleteMe(DerivedUser *Self);
359
360 unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
361};
362
363template <>
364struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
365DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
366
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100367/// Represents a read-write access to memory, whether it is a must-alias,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100368/// or a may-alias.
369///
370/// In particular, the set of Instructions that will be represented by
371/// MemoryDef's is exactly the set of Instructions for which
372/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
373/// Note that, in order to provide def-def chains, all defs also have a use
374/// associated with them. This use points to the nearest reaching
375/// MemoryDef/MemoryPhi.
376class MemoryDef final : public MemoryUseOrDef {
377public:
378 friend class MemorySSA;
379
380 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
381
382 MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
383 unsigned Ver)
384 : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB), ID(Ver) {}
385
386 // allocate space for exactly one operand
387 void *operator new(size_t s) { return User::operator new(s, 1); }
388
389 static bool classof(const Value *MA) {
390 return MA->getValueID() == MemoryDefVal;
391 }
392
393 void setOptimized(MemoryAccess *MA) {
394 Optimized = MA;
395 OptimizedID = getDefiningAccess()->getID();
396 }
397
398 MemoryAccess *getOptimized() const {
399 return cast_or_null<MemoryAccess>(Optimized);
400 }
401
402 bool isOptimized() const {
403 return getOptimized() && getDefiningAccess() &&
404 OptimizedID == getDefiningAccess()->getID();
405 }
406
407 void resetOptimized() {
408 OptimizedID = INVALID_MEMORYACCESS_ID;
409 }
410
411 void print(raw_ostream &OS) const;
412
413 unsigned getID() const { return ID; }
414
415private:
416 static void deleteMe(DerivedUser *Self);
417
418 const unsigned ID;
419 unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
420 WeakVH Optimized;
421};
422
423template <>
424struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {};
425DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
426
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100427/// Represents phi nodes for memory accesses.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100428///
429/// These have the same semantic as regular phi nodes, with the exception that
430/// only one phi will ever exist in a given basic block.
431/// Guaranteeing one phi per block means guaranteeing there is only ever one
432/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
433/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
434/// a MemoryPhi's operands.
435/// That is, given
436/// if (a) {
437/// store %a
438/// store %b
439/// }
440/// it *must* be transformed into
441/// if (a) {
442/// 1 = MemoryDef(liveOnEntry)
443/// store %a
444/// 2 = MemoryDef(1)
445/// store %b
446/// }
447/// and *not*
448/// if (a) {
449/// 1 = MemoryDef(liveOnEntry)
450/// store %a
451/// 2 = MemoryDef(liveOnEntry)
452/// store %b
453/// }
454/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
455/// end of the branch, and if there are not two phi nodes, one will be
456/// disconnected completely from the SSA graph below that point.
457/// Because MemoryUse's do not generate new definitions, they do not have this
458/// issue.
459class MemoryPhi final : public MemoryAccess {
460 // allocate space for exactly zero operands
461 void *operator new(size_t s) { return User::operator new(s); }
462
463public:
464 /// Provide fast operand accessors
465 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
466
467 MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
468 : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
469 ReservedSpace(NumPreds) {
470 allocHungoffUses(ReservedSpace);
471 }
472
473 // Block iterator interface. This provides access to the list of incoming
474 // basic blocks, which parallels the list of incoming values.
475 using block_iterator = BasicBlock **;
476 using const_block_iterator = BasicBlock *const *;
477
478 block_iterator block_begin() {
479 auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
480 return reinterpret_cast<block_iterator>(Ref + 1);
481 }
482
483 const_block_iterator block_begin() const {
484 const auto *Ref =
485 reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
486 return reinterpret_cast<const_block_iterator>(Ref + 1);
487 }
488
489 block_iterator block_end() { return block_begin() + getNumOperands(); }
490
491 const_block_iterator block_end() const {
492 return block_begin() + getNumOperands();
493 }
494
495 iterator_range<block_iterator> blocks() {
496 return make_range(block_begin(), block_end());
497 }
498
499 iterator_range<const_block_iterator> blocks() const {
500 return make_range(block_begin(), block_end());
501 }
502
503 op_range incoming_values() { return operands(); }
504
505 const_op_range incoming_values() const { return operands(); }
506
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100507 /// Return the number of incoming edges
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100508 unsigned getNumIncomingValues() const { return getNumOperands(); }
509
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100510 /// Return incoming value number x
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100511 MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
512 void setIncomingValue(unsigned I, MemoryAccess *V) {
513 assert(V && "PHI node got a null value!");
514 setOperand(I, V);
515 }
516
517 static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
518 static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
519
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100520 /// Return incoming basic block number @p i.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100521 BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
522
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100523 /// Return incoming basic block corresponding
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100524 /// to an operand of the PHI.
525 BasicBlock *getIncomingBlock(const Use &U) const {
526 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
527 return getIncomingBlock(unsigned(&U - op_begin()));
528 }
529
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100530 /// Return incoming basic block corresponding
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100531 /// to value use iterator.
532 BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
533 return getIncomingBlock(I.getUse());
534 }
535
536 void setIncomingBlock(unsigned I, BasicBlock *BB) {
537 assert(BB && "PHI node got a null basic block!");
538 block_begin()[I] = BB;
539 }
540
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100541 /// Add an incoming value to the end of the PHI list
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100542 void addIncoming(MemoryAccess *V, BasicBlock *BB) {
543 if (getNumOperands() == ReservedSpace)
544 growOperands(); // Get more space!
545 // Initialize some new operands.
546 setNumHungOffUseOperands(getNumOperands() + 1);
547 setIncomingValue(getNumOperands() - 1, V);
548 setIncomingBlock(getNumOperands() - 1, BB);
549 }
550
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100551 /// Return the first index of the specified basic
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100552 /// block in the value list for this PHI. Returns -1 if no instance.
553 int getBasicBlockIndex(const BasicBlock *BB) const {
554 for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
555 if (block_begin()[I] == BB)
556 return I;
557 return -1;
558 }
559
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100560 MemoryAccess *getIncomingValueForBlock(const BasicBlock *BB) const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100561 int Idx = getBasicBlockIndex(BB);
562 assert(Idx >= 0 && "Invalid basic block argument!");
563 return getIncomingValue(Idx);
564 }
565
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100566 // After deleting incoming position I, the order of incoming may be changed.
567 void unorderedDeleteIncoming(unsigned I) {
568 unsigned E = getNumOperands();
569 assert(I < E && "Cannot remove out of bounds Phi entry.");
570 // MemoryPhi must have at least two incoming values, otherwise the MemoryPhi
571 // itself should be deleted.
572 assert(E >= 2 && "Cannot only remove incoming values in MemoryPhis with "
573 "at least 2 values.");
574 setIncomingValue(I, getIncomingValue(E - 1));
575 setIncomingBlock(I, block_begin()[E - 1]);
576 setOperand(E - 1, nullptr);
577 block_begin()[E - 1] = nullptr;
578 setNumHungOffUseOperands(getNumOperands() - 1);
579 }
580
581 // After deleting entries that satisfy Pred, remaining entries may have
582 // changed order.
583 template <typename Fn> void unorderedDeleteIncomingIf(Fn &&Pred) {
584 for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
585 if (Pred(getIncomingValue(I), getIncomingBlock(I))) {
586 unorderedDeleteIncoming(I);
587 E = getNumOperands();
588 --I;
589 }
590 assert(getNumOperands() >= 1 &&
591 "Cannot remove all incoming blocks in a MemoryPhi.");
592 }
593
594 // After deleting incoming block BB, the incoming blocks order may be changed.
595 void unorderedDeleteIncomingBlock(const BasicBlock *BB) {
596 unorderedDeleteIncomingIf(
597 [&](const MemoryAccess *, const BasicBlock *B) { return BB == B; });
598 }
599
600 // After deleting incoming memory access MA, the incoming accesses order may
601 // be changed.
602 void unorderedDeleteIncomingValue(const MemoryAccess *MA) {
603 unorderedDeleteIncomingIf(
604 [&](const MemoryAccess *M, const BasicBlock *) { return MA == M; });
605 }
606
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100607 static bool classof(const Value *V) {
608 return V->getValueID() == MemoryPhiVal;
609 }
610
611 void print(raw_ostream &OS) const;
612
613 unsigned getID() const { return ID; }
614
615protected:
616 friend class MemorySSA;
617
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100618 /// this is more complicated than the generic
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100619 /// User::allocHungoffUses, because we have to allocate Uses for the incoming
620 /// values and pointers to the incoming blocks, all in one allocation.
621 void allocHungoffUses(unsigned N) {
622 User::allocHungoffUses(N, /* IsPhi */ true);
623 }
624
625private:
626 // For debugging only
627 const unsigned ID;
628 unsigned ReservedSpace;
629
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100630 /// This grows the operand list in response to a push_back style of
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100631 /// operation. This grows the number of ops by 1.5 times.
632 void growOperands() {
633 unsigned E = getNumOperands();
634 // 2 op PHI nodes are VERY common, so reserve at least enough for that.
635 ReservedSpace = std::max(E + E / 2, 2u);
636 growHungoffUses(ReservedSpace, /* IsPhi */ true);
637 }
638
639 static void deleteMe(DerivedUser *Self);
640};
641
642inline unsigned MemoryAccess::getID() const {
643 assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
644 "only memory defs and phis have ids");
645 if (const auto *MD = dyn_cast<MemoryDef>(this))
646 return MD->getID();
647 return cast<MemoryPhi>(this)->getID();
648}
649
650inline bool MemoryUseOrDef::isOptimized() const {
651 if (const auto *MD = dyn_cast<MemoryDef>(this))
652 return MD->isOptimized();
653 return cast<MemoryUse>(this)->isOptimized();
654}
655
656inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
657 if (const auto *MD = dyn_cast<MemoryDef>(this))
658 return MD->getOptimized();
659 return cast<MemoryUse>(this)->getOptimized();
660}
661
662inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
663 if (auto *MD = dyn_cast<MemoryDef>(this))
664 MD->setOptimized(MA);
665 else
666 cast<MemoryUse>(this)->setOptimized(MA);
667}
668
669inline void MemoryUseOrDef::resetOptimized() {
670 if (auto *MD = dyn_cast<MemoryDef>(this))
671 MD->resetOptimized();
672 else
673 cast<MemoryUse>(this)->resetOptimized();
674}
675
676template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
677DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
678
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100679/// Encapsulates MemorySSA, including all data associated with memory
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100680/// accesses.
681class MemorySSA {
682public:
683 MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
684 ~MemorySSA();
685
686 MemorySSAWalker *getWalker();
687
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100688 /// Given a memory Mod/Ref'ing instruction, get the MemorySSA
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100689 /// access associated with it. If passed a basic block gets the memory phi
690 /// node that exists for that block, if there is one. Otherwise, this will get
691 /// a MemoryUseOrDef.
692 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
693 MemoryPhi *getMemoryAccess(const BasicBlock *BB) const;
694
695 void dump() const;
696 void print(raw_ostream &) const;
697
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100698 /// Return true if \p MA represents the live on entry value
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100699 ///
700 /// Loads and stores from pointer arguments and other global values may be
701 /// defined by memory operations that do not occur in the current function, so
702 /// they may be live on entry to the function. MemorySSA represents such
703 /// memory state by the live on entry definition, which is guaranteed to occur
704 /// before any other memory access in the function.
705 inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
706 return MA == LiveOnEntryDef.get();
707 }
708
709 inline MemoryAccess *getLiveOnEntryDef() const {
710 return LiveOnEntryDef.get();
711 }
712
713 // Sadly, iplists, by default, owns and deletes pointers added to the
714 // list. It's not currently possible to have two iplists for the same type,
715 // where one owns the pointers, and one does not. This is because the traits
716 // are per-type, not per-tag. If this ever changes, we should make the
717 // DefList an iplist.
718 using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
719 using DefsList =
720 simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
721
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100722 /// Return the list of MemoryAccess's for a given basic block.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100723 ///
724 /// This list is not modifiable by the user.
725 const AccessList *getBlockAccesses(const BasicBlock *BB) const {
726 return getWritableBlockAccesses(BB);
727 }
728
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100729 /// Return the list of MemoryDef's and MemoryPhi's for a given basic
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100730 /// block.
731 ///
732 /// This list is not modifiable by the user.
733 const DefsList *getBlockDefs(const BasicBlock *BB) const {
734 return getWritableBlockDefs(BB);
735 }
736
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100737 /// Given two memory accesses in the same basic block, determine
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100738 /// whether MemoryAccess \p A dominates MemoryAccess \p B.
739 bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
740
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100741 /// Given two memory accesses in potentially different blocks,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100742 /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
743 bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
744
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100745 /// Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100746 /// dominates Use \p B.
747 bool dominates(const MemoryAccess *A, const Use &B) const;
748
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100749 /// Verify that MemorySSA is self consistent (IE definitions dominate
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100750 /// all uses, uses appear in the right places). This is used by unit tests.
751 void verifyMemorySSA() const;
752
753 /// Used in various insertion functions to specify whether we are talking
754 /// about the beginning or end of a block.
755 enum InsertionPlace { Beginning, End };
756
757protected:
758 // Used by Memory SSA annotater, dumpers, and wrapper pass
759 friend class MemorySSAAnnotatedWriter;
760 friend class MemorySSAPrinterLegacyPass;
761 friend class MemorySSAUpdater;
762
763 void verifyDefUses(Function &F) const;
764 void verifyDomination(Function &F) const;
765 void verifyOrdering(Function &F) const;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100766 void verifyDominationNumbers(const Function &F) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100767
768 // This is used by the use optimizer and updater.
769 AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
770 auto It = PerBlockAccesses.find(BB);
771 return It == PerBlockAccesses.end() ? nullptr : It->second.get();
772 }
773
774 // This is used by the use optimizer and updater.
775 DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
776 auto It = PerBlockDefs.find(BB);
777 return It == PerBlockDefs.end() ? nullptr : It->second.get();
778 }
779
780 // These is used by the updater to perform various internal MemorySSA
781 // machinsations. They do not always leave the IR in a correct state, and
782 // relies on the updater to fixup what it breaks, so it is not public.
783
784 void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100785 void moveTo(MemoryAccess *What, BasicBlock *BB, InsertionPlace Point);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100786
787 // Rename the dominator tree branch rooted at BB.
788 void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
789 SmallPtrSetImpl<BasicBlock *> &Visited) {
790 renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
791 }
792
793 void removeFromLookups(MemoryAccess *);
794 void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
795 void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
796 InsertionPlace);
797 void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
798 AccessList::iterator);
799 MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
800
801private:
802 class CachingWalker;
803 class OptimizeUses;
804
805 CachingWalker *getWalkerImpl();
806 void buildMemorySSA();
807 void optimizeUses();
808
809 void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
810
811 using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
812 using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
813
814 void
815 determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
816 void markUnreachableAsLiveOnEntry(BasicBlock *BB);
817 bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
818 MemoryPhi *createMemoryPhi(BasicBlock *BB);
819 MemoryUseOrDef *createNewAccess(Instruction *);
820 MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100821 void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100822 MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
823 void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
824 void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
825 SmallPtrSetImpl<BasicBlock *> &Visited,
826 bool SkipVisited = false, bool RenameAllUses = false);
827 AccessList *getOrCreateAccessList(const BasicBlock *);
828 DefsList *getOrCreateDefsList(const BasicBlock *);
829 void renumberBlock(const BasicBlock *) const;
830 AliasAnalysis *AA;
831 DominatorTree *DT;
832 Function &F;
833
834 // Memory SSA mappings
835 DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
836
837 // These two mappings contain the main block to access/def mappings for
838 // MemorySSA. The list contained in PerBlockAccesses really owns all the
839 // MemoryAccesses.
840 // Both maps maintain the invariant that if a block is found in them, the
841 // corresponding list is not empty, and if a block is not found in them, the
842 // corresponding list is empty.
843 AccessMap PerBlockAccesses;
844 DefsMap PerBlockDefs;
845 std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
846
847 // Domination mappings
848 // Note that the numbering is local to a block, even though the map is
849 // global.
850 mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
851 mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
852
853 // Memory SSA building info
854 std::unique_ptr<CachingWalker> Walker;
855 unsigned NextID;
856};
857
858// Internal MemorySSA utils, for use by MemorySSA classes and walkers
859class MemorySSAUtil {
860protected:
861 friend class GVNHoist;
862 friend class MemorySSAWalker;
863
864 // This function should not be used by new passes.
865 static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
866 AliasAnalysis &AA);
867};
868
869// This pass does eager building and then printing of MemorySSA. It is used by
870// the tests to be able to build, dump, and verify Memory SSA.
871class MemorySSAPrinterLegacyPass : public FunctionPass {
872public:
873 MemorySSAPrinterLegacyPass();
874
875 bool runOnFunction(Function &) override;
876 void getAnalysisUsage(AnalysisUsage &AU) const override;
877
878 static char ID;
879};
880
881/// An analysis that produces \c MemorySSA for a function.
882///
883class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
884 friend AnalysisInfoMixin<MemorySSAAnalysis>;
885
886 static AnalysisKey Key;
887
888public:
889 // Wrap MemorySSA result to ensure address stability of internal MemorySSA
890 // pointers after construction. Use a wrapper class instead of plain
891 // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
892 struct Result {
893 Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
894
895 MemorySSA &getMSSA() { return *MSSA.get(); }
896
897 std::unique_ptr<MemorySSA> MSSA;
898 };
899
900 Result run(Function &F, FunctionAnalysisManager &AM);
901};
902
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100903/// Printer pass for \c MemorySSA.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100904class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
905 raw_ostream &OS;
906
907public:
908 explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
909
910 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
911};
912
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100913/// Verifier pass for \c MemorySSA.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100914struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
915 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
916};
917
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100918/// Legacy analysis pass which computes \c MemorySSA.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100919class MemorySSAWrapperPass : public FunctionPass {
920public:
921 MemorySSAWrapperPass();
922
923 static char ID;
924
925 bool runOnFunction(Function &) override;
926 void releaseMemory() override;
927 MemorySSA &getMSSA() { return *MSSA; }
928 const MemorySSA &getMSSA() const { return *MSSA; }
929
930 void getAnalysisUsage(AnalysisUsage &AU) const override;
931
932 void verifyAnalysis() const override;
933 void print(raw_ostream &OS, const Module *M = nullptr) const override;
934
935private:
936 std::unique_ptr<MemorySSA> MSSA;
937};
938
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100939/// This is the generic walker interface for walkers of MemorySSA.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100940/// Walkers are used to be able to further disambiguate the def-use chains
941/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
942/// you.
943/// In particular, while the def-use chains provide basic information, and are
944/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
945/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
946/// information. In particular, they may want to use SCEV info to further
947/// disambiguate memory accesses, or they may want the nearest dominating
948/// may-aliasing MemoryDef for a call or a store. This API enables a
949/// standardized interface to getting and using that info.
950class MemorySSAWalker {
951public:
952 MemorySSAWalker(MemorySSA *);
953 virtual ~MemorySSAWalker() = default;
954
955 using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
956
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100957 /// Given a memory Mod/Ref/ModRef'ing instruction, calling this
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100958 /// will give you the nearest dominating MemoryAccess that Mod's the location
959 /// the instruction accesses (by skipping any def which AA can prove does not
960 /// alias the location(s) accessed by the instruction given).
961 ///
962 /// Note that this will return a single access, and it must dominate the
963 /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
964 /// this will return the MemoryPhi, not the operand. This means that
965 /// given:
966 /// if (a) {
967 /// 1 = MemoryDef(liveOnEntry)
968 /// store %a
969 /// } else {
970 /// 2 = MemoryDef(liveOnEntry)
971 /// store %b
972 /// }
973 /// 3 = MemoryPhi(2, 1)
974 /// MemoryUse(3)
975 /// load %a
976 ///
977 /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
978 /// in the if (a) branch.
979 MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
980 MemoryAccess *MA = MSSA->getMemoryAccess(I);
981 assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
982 return getClobberingMemoryAccess(MA);
983 }
984
985 /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
986 /// but takes a MemoryAccess instead of an Instruction.
987 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
988
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100989 /// Given a potentially clobbering memory access and a new location,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100990 /// calling this will give you the nearest dominating clobbering MemoryAccess
991 /// (by skipping non-aliasing def links).
992 ///
993 /// This version of the function is mainly used to disambiguate phi translated
994 /// pointers, where the value of a pointer may have changed from the initial
995 /// memory access. Note that this expects to be handed either a MemoryUse,
996 /// or an already potentially clobbering access. Unlike the above API, if
997 /// given a MemoryDef that clobbers the pointer as the starting access, it
998 /// will return that MemoryDef, whereas the above would return the clobber
999 /// starting from the use side of the memory def.
1000 virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1001 const MemoryLocation &) = 0;
1002
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001003 /// Given a memory access, invalidate anything this walker knows about
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001004 /// that access.
1005 /// This API is used by walkers that store information to perform basic cache
1006 /// invalidation. This will be called by MemorySSA at appropriate times for
1007 /// the walker it uses or returns.
1008 virtual void invalidateInfo(MemoryAccess *) {}
1009
1010 virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); }
1011
1012protected:
1013 friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
1014 // constructor.
1015 MemorySSA *MSSA;
1016};
1017
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001018/// A MemorySSAWalker that does no alias queries, or anything else. It
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001019/// simply returns the links as they were constructed by the builder.
1020class DoNothingMemorySSAWalker final : public MemorySSAWalker {
1021public:
1022 // Keep the overrides below from hiding the Instruction overload of
1023 // getClobberingMemoryAccess.
1024 using MemorySSAWalker::getClobberingMemoryAccess;
1025
1026 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
1027 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
1028 const MemoryLocation &) override;
1029};
1030
1031using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
1032using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
1033
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001034/// Iterator base class used to implement const and non-const iterators
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001035/// over the defining accesses of a MemoryAccess.
1036template <class T>
1037class memoryaccess_def_iterator_base
1038 : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
1039 std::forward_iterator_tag, T, ptrdiff_t, T *,
1040 T *> {
1041 using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
1042
1043public:
1044 memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
1045 memoryaccess_def_iterator_base() = default;
1046
1047 bool operator==(const memoryaccess_def_iterator_base &Other) const {
1048 return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
1049 }
1050
1051 // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
1052 // block from the operand in constant time (In a PHINode, the uselist has
1053 // both, so it's just subtraction). We provide it as part of the
1054 // iterator to avoid callers having to linear walk to get the block.
1055 // If the operation becomes constant time on MemoryPHI's, this bit of
1056 // abstraction breaking should be removed.
1057 BasicBlock *getPhiArgBlock() const {
1058 MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
1059 assert(MP && "Tried to get phi arg block when not iterating over a PHI");
1060 return MP->getIncomingBlock(ArgNo);
1061 }
1062
1063 typename BaseT::iterator::pointer operator*() const {
1064 assert(Access && "Tried to access past the end of our iterator");
1065 // Go to the first argument for phis, and the defining access for everything
1066 // else.
1067 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
1068 return MP->getIncomingValue(ArgNo);
1069 return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
1070 }
1071
1072 using BaseT::operator++;
1073 memoryaccess_def_iterator &operator++() {
1074 assert(Access && "Hit end of iterator");
1075 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
1076 if (++ArgNo >= MP->getNumIncomingValues()) {
1077 ArgNo = 0;
1078 Access = nullptr;
1079 }
1080 } else {
1081 Access = nullptr;
1082 }
1083 return *this;
1084 }
1085
1086private:
1087 T *Access = nullptr;
1088 unsigned ArgNo = 0;
1089};
1090
1091inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
1092 return memoryaccess_def_iterator(this);
1093}
1094
1095inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
1096 return const_memoryaccess_def_iterator(this);
1097}
1098
1099inline memoryaccess_def_iterator MemoryAccess::defs_end() {
1100 return memoryaccess_def_iterator();
1101}
1102
1103inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
1104 return const_memoryaccess_def_iterator();
1105}
1106
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001107/// GraphTraits for a MemoryAccess, which walks defs in the normal case,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001108/// and uses in the inverse case.
1109template <> struct GraphTraits<MemoryAccess *> {
1110 using NodeRef = MemoryAccess *;
1111 using ChildIteratorType = memoryaccess_def_iterator;
1112
1113 static NodeRef getEntryNode(NodeRef N) { return N; }
1114 static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
1115 static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
1116};
1117
1118template <> struct GraphTraits<Inverse<MemoryAccess *>> {
1119 using NodeRef = MemoryAccess *;
1120 using ChildIteratorType = MemoryAccess::iterator;
1121
1122 static NodeRef getEntryNode(NodeRef N) { return N; }
1123 static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
1124 static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
1125};
1126
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001127/// Provide an iterator that walks defs, giving both the memory access,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001128/// and the current pointer location, updating the pointer location as it
1129/// changes due to phi node translation.
1130///
1131/// This iterator, while somewhat specialized, is what most clients actually
1132/// want when walking upwards through MemorySSA def chains. It takes a pair of
1133/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
1134/// memory location through phi nodes for the user.
1135class upward_defs_iterator
1136 : public iterator_facade_base<upward_defs_iterator,
1137 std::forward_iterator_tag,
1138 const MemoryAccessPair> {
1139 using BaseT = upward_defs_iterator::iterator_facade_base;
1140
1141public:
1142 upward_defs_iterator(const MemoryAccessPair &Info)
1143 : DefIterator(Info.first), Location(Info.second),
1144 OriginalAccess(Info.first) {
1145 CurrentPair.first = nullptr;
1146
1147 WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
1148 fillInCurrentPair();
1149 }
1150
1151 upward_defs_iterator() { CurrentPair.first = nullptr; }
1152
1153 bool operator==(const upward_defs_iterator &Other) const {
1154 return DefIterator == Other.DefIterator;
1155 }
1156
1157 BaseT::iterator::reference operator*() const {
1158 assert(DefIterator != OriginalAccess->defs_end() &&
1159 "Tried to access past the end of our iterator");
1160 return CurrentPair;
1161 }
1162
1163 using BaseT::operator++;
1164 upward_defs_iterator &operator++() {
1165 assert(DefIterator != OriginalAccess->defs_end() &&
1166 "Tried to access past the end of the iterator");
1167 ++DefIterator;
1168 if (DefIterator != OriginalAccess->defs_end())
1169 fillInCurrentPair();
1170 return *this;
1171 }
1172
1173 BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
1174
1175private:
1176 void fillInCurrentPair() {
1177 CurrentPair.first = *DefIterator;
1178 if (WalkingPhi && Location.Ptr) {
1179 PHITransAddr Translator(
1180 const_cast<Value *>(Location.Ptr),
1181 OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
1182 if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
1183 DefIterator.getPhiArgBlock(), nullptr,
1184 false))
1185 if (Translator.getAddr() != Location.Ptr) {
1186 CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
1187 return;
1188 }
1189 }
1190 CurrentPair.second = Location;
1191 }
1192
1193 MemoryAccessPair CurrentPair;
1194 memoryaccess_def_iterator DefIterator;
1195 MemoryLocation Location;
1196 MemoryAccess *OriginalAccess = nullptr;
1197 bool WalkingPhi = false;
1198};
1199
1200inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
1201 return upward_defs_iterator(Pair);
1202}
1203
1204inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
1205
1206inline iterator_range<upward_defs_iterator>
1207upward_defs(const MemoryAccessPair &Pair) {
1208 return make_range(upward_defs_begin(Pair), upward_defs_end());
1209}
1210
1211/// Walks the defining accesses of MemoryDefs. Stops after we hit something that
1212/// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
1213/// comparing against a null def_chain_iterator, this will compare equal only
1214/// after walking said Phi/liveOnEntry.
1215///
1216/// The UseOptimizedChain flag specifies whether to walk the clobbering
1217/// access chain, or all the accesses.
1218///
1219/// Normally, MemoryDef are all just def/use linked together, so a def_chain on
1220/// a MemoryDef will walk all MemoryDefs above it in the program until it hits
1221/// a phi node. The optimized chain walks the clobbering access of a store.
1222/// So if you are just trying to find, given a store, what the next
1223/// thing that would clobber the same memory is, you want the optimized chain.
1224template <class T, bool UseOptimizedChain = false>
1225struct def_chain_iterator
1226 : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
1227 std::forward_iterator_tag, MemoryAccess *> {
1228 def_chain_iterator() : MA(nullptr) {}
1229 def_chain_iterator(T MA) : MA(MA) {}
1230
1231 T operator*() const { return MA; }
1232
1233 def_chain_iterator &operator++() {
1234 // N.B. liveOnEntry has a null defining access.
1235 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
1236 if (UseOptimizedChain && MUD->isOptimized())
1237 MA = MUD->getOptimized();
1238 else
1239 MA = MUD->getDefiningAccess();
1240 } else {
1241 MA = nullptr;
1242 }
1243
1244 return *this;
1245 }
1246
1247 bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
1248
1249private:
1250 T MA;
1251};
1252
1253template <class T>
1254inline iterator_range<def_chain_iterator<T>>
1255def_chain(T MA, MemoryAccess *UpTo = nullptr) {
1256#ifdef EXPENSIVE_CHECKS
1257 assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
1258 "UpTo isn't in the def chain!");
1259#endif
1260 return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
1261}
1262
1263template <class T>
1264inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
1265 return make_range(def_chain_iterator<T, true>(MA),
1266 def_chain_iterator<T, true>(nullptr));
1267}
1268
1269} // end namespace llvm
1270
1271#endif // LLVM_ANALYSIS_MEMORYSSA_H