Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/Analysis/MemorySSA.h b/linux-x64/clang/include/llvm/Analysis/MemorySSA.h
new file mode 100644
index 0000000..2899890
--- /dev/null
+++ b/linux-x64/clang/include/llvm/Analysis/MemorySSA.h
@@ -0,0 +1,1230 @@
+//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief This file exposes an interface to building/using memory SSA to
+/// walk memory instructions using a use/def graph.
+///
+/// Memory SSA class builds an SSA form that links together memory access
+/// instructions such as loads, stores, atomics, and calls. Additionally, it
+/// does a trivial form of "heap versioning" Every time the memory state changes
+/// in the program, we generate a new heap version. It generates
+/// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
+///
+/// As a trivial example,
+/// define i32 @main() #0 {
+/// entry:
+///   %call = call noalias i8* @_Znwm(i64 4) #2
+///   %0 = bitcast i8* %call to i32*
+///   %call1 = call noalias i8* @_Znwm(i64 4) #2
+///   %1 = bitcast i8* %call1 to i32*
+///   store i32 5, i32* %0, align 4
+///   store i32 7, i32* %1, align 4
+///   %2 = load i32* %0, align 4
+///   %3 = load i32* %1, align 4
+///   %add = add nsw i32 %2, %3
+///   ret i32 %add
+/// }
+///
+/// Will become
+/// define i32 @main() #0 {
+/// entry:
+///   ; 1 = MemoryDef(0)
+///   %call = call noalias i8* @_Znwm(i64 4) #3
+///   %2 = bitcast i8* %call to i32*
+///   ; 2 = MemoryDef(1)
+///   %call1 = call noalias i8* @_Znwm(i64 4) #3
+///   %4 = bitcast i8* %call1 to i32*
+///   ; 3 = MemoryDef(2)
+///   store i32 5, i32* %2, align 4
+///   ; 4 = MemoryDef(3)
+///   store i32 7, i32* %4, align 4
+///   ; MemoryUse(3)
+///   %7 = load i32* %2, align 4
+///   ; MemoryUse(4)
+///   %8 = load i32* %4, align 4
+///   %add = add nsw i32 %7, %8
+///   ret i32 %add
+/// }
+///
+/// Given this form, all the stores that could ever effect the load at %8 can be
+/// gotten by using the MemoryUse associated with it, and walking from use to
+/// def until you hit the top of the function.
+///
+/// Each def also has a list of users associated with it, so you can walk from
+/// both def to users, and users to defs. Note that we disambiguate MemoryUses,
+/// but not the RHS of MemoryDefs. You can see this above at %7, which would
+/// otherwise be a MemoryUse(4). Being disambiguated means that for a given
+/// store, all the MemoryUses on its use lists are may-aliases of that store
+/// (but the MemoryDefs on its use list may not be).
+///
+/// MemoryDefs are not disambiguated because it would require multiple reaching
+/// definitions, which would require multiple phis, and multiple memoryaccesses
+/// per instruction.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_MEMORYSSA_H
+#define LLVM_ANALYSIS_MEMORYSSA_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/ilist.h"
+#include "llvm/ADT/ilist_node.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/ADT/simple_ilist.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/PHITransAddr.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DerivedUser.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <memory>
+#include <utility>
+
+namespace llvm {
+
+class Function;
+class Instruction;
+class MemoryAccess;
+class MemorySSAWalker;
+class LLVMContext;
+class raw_ostream;
+
+namespace MSSAHelpers {
+
+struct AllAccessTag {};
+struct DefsOnlyTag {};
+
+} // end namespace MSSAHelpers
+
+enum : unsigned {
+  // Used to signify what the default invalid ID is for MemoryAccess's
+  // getID()
+  INVALID_MEMORYACCESS_ID = -1U
+};
+
+template <class T> class memoryaccess_def_iterator_base;
+using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
+using const_memoryaccess_def_iterator =
+    memoryaccess_def_iterator_base<const MemoryAccess>;
+
+// \brief The base for all memory accesses. All memory accesses in a block are
+// linked together using an intrusive list.
+class MemoryAccess
+    : public DerivedUser,
+      public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
+      public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
+public:
+  using AllAccessType =
+      ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
+  using DefsOnlyType =
+      ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
+
+  MemoryAccess(const MemoryAccess &) = delete;
+  MemoryAccess &operator=(const MemoryAccess &) = delete;
+
+  void *operator new(size_t) = delete;
+
+  // Methods for support type inquiry through isa, cast, and
+  // dyn_cast
+  static bool classof(const Value *V) {
+    unsigned ID = V->getValueID();
+    return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
+  }
+
+  BasicBlock *getBlock() const { return Block; }
+
+  void print(raw_ostream &OS) const;
+  void dump() const;
+
+  /// \brief The user iterators for a memory access
+  using iterator = user_iterator;
+  using const_iterator = const_user_iterator;
+
+  /// \brief This iterator walks over all of the defs in a given
+  /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
+  /// MemoryUse/MemoryDef, this walks the defining access.
+  memoryaccess_def_iterator defs_begin();
+  const_memoryaccess_def_iterator defs_begin() const;
+  memoryaccess_def_iterator defs_end();
+  const_memoryaccess_def_iterator defs_end() const;
+
+  /// \brief Get the iterators for the all access list and the defs only list
+  /// We default to the all access list.
+  AllAccessType::self_iterator getIterator() {
+    return this->AllAccessType::getIterator();
+  }
+  AllAccessType::const_self_iterator getIterator() const {
+    return this->AllAccessType::getIterator();
+  }
+  AllAccessType::reverse_self_iterator getReverseIterator() {
+    return this->AllAccessType::getReverseIterator();
+  }
+  AllAccessType::const_reverse_self_iterator getReverseIterator() const {
+    return this->AllAccessType::getReverseIterator();
+  }
+  DefsOnlyType::self_iterator getDefsIterator() {
+    return this->DefsOnlyType::getIterator();
+  }
+  DefsOnlyType::const_self_iterator getDefsIterator() const {
+    return this->DefsOnlyType::getIterator();
+  }
+  DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
+    return this->DefsOnlyType::getReverseIterator();
+  }
+  DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
+    return this->DefsOnlyType::getReverseIterator();
+  }
+
+protected:
+  friend class MemoryDef;
+  friend class MemoryPhi;
+  friend class MemorySSA;
+  friend class MemoryUse;
+  friend class MemoryUseOrDef;
+
+  /// \brief Used by MemorySSA to change the block of a MemoryAccess when it is
+  /// moved.
+  void setBlock(BasicBlock *BB) { Block = BB; }
+
+  /// \brief Used for debugging and tracking things about MemoryAccesses.
+  /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
+  inline unsigned getID() const;
+
+  MemoryAccess(LLVMContext &C, unsigned Vty, DeleteValueTy DeleteValue,
+               BasicBlock *BB, unsigned NumOperands)
+      : DerivedUser(Type::getVoidTy(C), Vty, nullptr, NumOperands, DeleteValue),
+        Block(BB) {}
+
+  // Use deleteValue() to delete a generic MemoryAccess.
+  ~MemoryAccess() = default;
+
+private:
+  BasicBlock *Block;
+};
+
+template <>
+struct ilist_alloc_traits<MemoryAccess> {
+  static void deleteNode(MemoryAccess *MA) { MA->deleteValue(); }
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
+  MA.print(OS);
+  return OS;
+}
+
+/// \brief Class that has the common methods + fields of memory uses/defs. It's
+/// a little awkward to have, but there are many cases where we want either a
+/// use or def, and there are many cases where uses are needed (defs aren't
+/// acceptable), and vice-versa.
+///
+/// This class should never be instantiated directly; make a MemoryUse or
+/// MemoryDef instead.
+class MemoryUseOrDef : public MemoryAccess {
+public:
+  void *operator new(size_t) = delete;
+
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
+
+  /// \brief Get the instruction that this MemoryUse represents.
+  Instruction *getMemoryInst() const { return MemoryInstruction; }
+
+  /// \brief Get the access that produces the memory state used by this Use.
+  MemoryAccess *getDefiningAccess() const { return getOperand(0); }
+
+  static bool classof(const Value *MA) {
+    return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
+  }
+
+  // Sadly, these have to be public because they are needed in some of the
+  // iterators.
+  inline bool isOptimized() const;
+  inline MemoryAccess *getOptimized() const;
+  inline void setOptimized(MemoryAccess *);
+
+  // Retrieve AliasResult type of the optimized access. Ideally this would be
+  // returned by the caching walker and may go away in the future.
+  Optional<AliasResult> getOptimizedAccessType() const {
+    return OptimizedAccessAlias;
+  }
+
+  /// \brief Reset the ID of what this MemoryUse was optimized to, causing it to
+  /// be rewalked by the walker if necessary.
+  /// This really should only be called by tests.
+  inline void resetOptimized();
+
+protected:
+  friend class MemorySSA;
+  friend class MemorySSAUpdater;
+
+  MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
+                 DeleteValueTy DeleteValue, Instruction *MI, BasicBlock *BB)
+      : MemoryAccess(C, Vty, DeleteValue, BB, 1), MemoryInstruction(MI),
+        OptimizedAccessAlias(MayAlias) {
+    setDefiningAccess(DMA);
+  }
+
+  // Use deleteValue() to delete a generic MemoryUseOrDef.
+  ~MemoryUseOrDef() = default;
+
+  void setOptimizedAccessType(Optional<AliasResult> AR) {
+    OptimizedAccessAlias = AR;
+  }
+
+  void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false,
+                         Optional<AliasResult> AR = MayAlias) {
+    if (!Optimized) {
+      setOperand(0, DMA);
+      return;
+    }
+    setOptimized(DMA);
+    setOptimizedAccessType(AR);
+  }
+
+private:
+  Instruction *MemoryInstruction;
+  Optional<AliasResult> OptimizedAccessAlias;
+};
+
+template <>
+struct OperandTraits<MemoryUseOrDef>
+    : public FixedNumOperandTraits<MemoryUseOrDef, 1> {};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
+
+/// \brief Represents read-only accesses to memory
+///
+/// In particular, the set of Instructions that will be represented by
+/// MemoryUse's is exactly the set of Instructions for which
+/// AliasAnalysis::getModRefInfo returns "Ref".
+class MemoryUse final : public MemoryUseOrDef {
+public:
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
+
+  MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
+      : MemoryUseOrDef(C, DMA, MemoryUseVal, deleteMe, MI, BB) {}
+
+  // allocate space for exactly one operand
+  void *operator new(size_t s) { return User::operator new(s, 1); }
+
+  static bool classof(const Value *MA) {
+    return MA->getValueID() == MemoryUseVal;
+  }
+
+  void print(raw_ostream &OS) const;
+
+  void setOptimized(MemoryAccess *DMA) {
+    OptimizedID = DMA->getID();
+    setOperand(0, DMA);
+  }
+
+  bool isOptimized() const {
+    return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
+  }
+
+  MemoryAccess *getOptimized() const {
+    return getDefiningAccess();
+  }
+
+  void resetOptimized() {
+    OptimizedID = INVALID_MEMORYACCESS_ID;
+  }
+
+protected:
+  friend class MemorySSA;
+
+private:
+  static void deleteMe(DerivedUser *Self);
+
+  unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
+};
+
+template <>
+struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
+
+/// \brief Represents a read-write access to memory, whether it is a must-alias,
+/// or a may-alias.
+///
+/// In particular, the set of Instructions that will be represented by
+/// MemoryDef's is exactly the set of Instructions for which
+/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
+/// Note that, in order to provide def-def chains, all defs also have a use
+/// associated with them. This use points to the nearest reaching
+/// MemoryDef/MemoryPhi.
+class MemoryDef final : public MemoryUseOrDef {
+public:
+  friend class MemorySSA;
+
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
+
+  MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
+            unsigned Ver)
+      : MemoryUseOrDef(C, DMA, MemoryDefVal, deleteMe, MI, BB), ID(Ver) {}
+
+  // allocate space for exactly one operand
+  void *operator new(size_t s) { return User::operator new(s, 1); }
+
+  static bool classof(const Value *MA) {
+    return MA->getValueID() == MemoryDefVal;
+  }
+
+  void setOptimized(MemoryAccess *MA) {
+    Optimized = MA;
+    OptimizedID = getDefiningAccess()->getID();
+  }
+
+  MemoryAccess *getOptimized() const {
+    return cast_or_null<MemoryAccess>(Optimized);
+  }
+
+  bool isOptimized() const {
+    return getOptimized() && getDefiningAccess() &&
+           OptimizedID == getDefiningAccess()->getID();
+  }
+
+  void resetOptimized() {
+    OptimizedID = INVALID_MEMORYACCESS_ID;
+  }
+
+  void print(raw_ostream &OS) const;
+
+  unsigned getID() const { return ID; }
+
+private:
+  static void deleteMe(DerivedUser *Self);
+
+  const unsigned ID;
+  unsigned OptimizedID = INVALID_MEMORYACCESS_ID;
+  WeakVH Optimized;
+};
+
+template <>
+struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
+
+/// \brief Represents phi nodes for memory accesses.
+///
+/// These have the same semantic as regular phi nodes, with the exception that
+/// only one phi will ever exist in a given basic block.
+/// Guaranteeing one phi per block means guaranteeing there is only ever one
+/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
+/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
+/// a MemoryPhi's operands.
+/// That is, given
+/// if (a) {
+///   store %a
+///   store %b
+/// }
+/// it *must* be transformed into
+/// if (a) {
+///    1 = MemoryDef(liveOnEntry)
+///    store %a
+///    2 = MemoryDef(1)
+///    store %b
+/// }
+/// and *not*
+/// if (a) {
+///    1 = MemoryDef(liveOnEntry)
+///    store %a
+///    2 = MemoryDef(liveOnEntry)
+///    store %b
+/// }
+/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
+/// end of the branch, and if there are not two phi nodes, one will be
+/// disconnected completely from the SSA graph below that point.
+/// Because MemoryUse's do not generate new definitions, they do not have this
+/// issue.
+class MemoryPhi final : public MemoryAccess {
+  // allocate space for exactly zero operands
+  void *operator new(size_t s) { return User::operator new(s); }
+
+public:
+  /// Provide fast operand accessors
+  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
+
+  MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
+      : MemoryAccess(C, MemoryPhiVal, deleteMe, BB, 0), ID(Ver),
+        ReservedSpace(NumPreds) {
+    allocHungoffUses(ReservedSpace);
+  }
+
+  // Block iterator interface. This provides access to the list of incoming
+  // basic blocks, which parallels the list of incoming values.
+  using block_iterator = BasicBlock **;
+  using const_block_iterator = BasicBlock *const *;
+
+  block_iterator block_begin() {
+    auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
+    return reinterpret_cast<block_iterator>(Ref + 1);
+  }
+
+  const_block_iterator block_begin() const {
+    const auto *Ref =
+        reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
+    return reinterpret_cast<const_block_iterator>(Ref + 1);
+  }
+
+  block_iterator block_end() { return block_begin() + getNumOperands(); }
+
+  const_block_iterator block_end() const {
+    return block_begin() + getNumOperands();
+  }
+
+  iterator_range<block_iterator> blocks() {
+    return make_range(block_begin(), block_end());
+  }
+
+  iterator_range<const_block_iterator> blocks() const {
+    return make_range(block_begin(), block_end());
+  }
+
+  op_range incoming_values() { return operands(); }
+
+  const_op_range incoming_values() const { return operands(); }
+
+  /// \brief Return the number of incoming edges
+  unsigned getNumIncomingValues() const { return getNumOperands(); }
+
+  /// \brief Return incoming value number x
+  MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
+  void setIncomingValue(unsigned I, MemoryAccess *V) {
+    assert(V && "PHI node got a null value!");
+    setOperand(I, V);
+  }
+
+  static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
+  static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
+
+  /// \brief Return incoming basic block number @p i.
+  BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
+
+  /// \brief Return incoming basic block corresponding
+  /// to an operand of the PHI.
+  BasicBlock *getIncomingBlock(const Use &U) const {
+    assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
+    return getIncomingBlock(unsigned(&U - op_begin()));
+  }
+
+  /// \brief Return incoming basic block corresponding
+  /// to value use iterator.
+  BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
+    return getIncomingBlock(I.getUse());
+  }
+
+  void setIncomingBlock(unsigned I, BasicBlock *BB) {
+    assert(BB && "PHI node got a null basic block!");
+    block_begin()[I] = BB;
+  }
+
+  /// \brief Add an incoming value to the end of the PHI list
+  void addIncoming(MemoryAccess *V, BasicBlock *BB) {
+    if (getNumOperands() == ReservedSpace)
+      growOperands(); // Get more space!
+    // Initialize some new operands.
+    setNumHungOffUseOperands(getNumOperands() + 1);
+    setIncomingValue(getNumOperands() - 1, V);
+    setIncomingBlock(getNumOperands() - 1, BB);
+  }
+
+  /// \brief Return the first index of the specified basic
+  /// block in the value list for this PHI.  Returns -1 if no instance.
+  int getBasicBlockIndex(const BasicBlock *BB) const {
+    for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
+      if (block_begin()[I] == BB)
+        return I;
+    return -1;
+  }
+
+  Value *getIncomingValueForBlock(const BasicBlock *BB) const {
+    int Idx = getBasicBlockIndex(BB);
+    assert(Idx >= 0 && "Invalid basic block argument!");
+    return getIncomingValue(Idx);
+  }
+
+  static bool classof(const Value *V) {
+    return V->getValueID() == MemoryPhiVal;
+  }
+
+  void print(raw_ostream &OS) const;
+
+  unsigned getID() const { return ID; }
+
+protected:
+  friend class MemorySSA;
+
+  /// \brief this is more complicated than the generic
+  /// User::allocHungoffUses, because we have to allocate Uses for the incoming
+  /// values and pointers to the incoming blocks, all in one allocation.
+  void allocHungoffUses(unsigned N) {
+    User::allocHungoffUses(N, /* IsPhi */ true);
+  }
+
+private:
+  // For debugging only
+  const unsigned ID;
+  unsigned ReservedSpace;
+
+  /// \brief This grows the operand list in response to a push_back style of
+  /// operation.  This grows the number of ops by 1.5 times.
+  void growOperands() {
+    unsigned E = getNumOperands();
+    // 2 op PHI nodes are VERY common, so reserve at least enough for that.
+    ReservedSpace = std::max(E + E / 2, 2u);
+    growHungoffUses(ReservedSpace, /* IsPhi */ true);
+  }
+
+  static void deleteMe(DerivedUser *Self);
+};
+
+inline unsigned MemoryAccess::getID() const {
+  assert((isa<MemoryDef>(this) || isa<MemoryPhi>(this)) &&
+         "only memory defs and phis have ids");
+  if (const auto *MD = dyn_cast<MemoryDef>(this))
+    return MD->getID();
+  return cast<MemoryPhi>(this)->getID();
+}
+
+inline bool MemoryUseOrDef::isOptimized() const {
+  if (const auto *MD = dyn_cast<MemoryDef>(this))
+    return MD->isOptimized();
+  return cast<MemoryUse>(this)->isOptimized();
+}
+
+inline MemoryAccess *MemoryUseOrDef::getOptimized() const {
+  if (const auto *MD = dyn_cast<MemoryDef>(this))
+    return MD->getOptimized();
+  return cast<MemoryUse>(this)->getOptimized();
+}
+
+inline void MemoryUseOrDef::setOptimized(MemoryAccess *MA) {
+  if (auto *MD = dyn_cast<MemoryDef>(this))
+    MD->setOptimized(MA);
+  else
+    cast<MemoryUse>(this)->setOptimized(MA);
+}
+
+inline void MemoryUseOrDef::resetOptimized() {
+  if (auto *MD = dyn_cast<MemoryDef>(this))
+    MD->resetOptimized();
+  else
+    cast<MemoryUse>(this)->resetOptimized();
+}
+
+template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
+
+/// \brief Encapsulates MemorySSA, including all data associated with memory
+/// accesses.
+class MemorySSA {
+public:
+  MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
+  ~MemorySSA();
+
+  MemorySSAWalker *getWalker();
+
+  /// \brief Given a memory Mod/Ref'ing instruction, get the MemorySSA
+  /// access associated with it. If passed a basic block gets the memory phi
+  /// node that exists for that block, if there is one. Otherwise, this will get
+  /// a MemoryUseOrDef.
+  MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
+  MemoryPhi *getMemoryAccess(const BasicBlock *BB) const;
+
+  void dump() const;
+  void print(raw_ostream &) const;
+
+  /// \brief Return true if \p MA represents the live on entry value
+  ///
+  /// Loads and stores from pointer arguments and other global values may be
+  /// defined by memory operations that do not occur in the current function, so
+  /// they may be live on entry to the function. MemorySSA represents such
+  /// memory state by the live on entry definition, which is guaranteed to occur
+  /// before any other memory access in the function.
+  inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
+    return MA == LiveOnEntryDef.get();
+  }
+
+  inline MemoryAccess *getLiveOnEntryDef() const {
+    return LiveOnEntryDef.get();
+  }
+
+  // Sadly, iplists, by default, owns and deletes pointers added to the
+  // list. It's not currently possible to have two iplists for the same type,
+  // where one owns the pointers, and one does not. This is because the traits
+  // are per-type, not per-tag.  If this ever changes, we should make the
+  // DefList an iplist.
+  using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
+  using DefsList =
+      simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
+
+  /// \brief Return the list of MemoryAccess's for a given basic block.
+  ///
+  /// This list is not modifiable by the user.
+  const AccessList *getBlockAccesses(const BasicBlock *BB) const {
+    return getWritableBlockAccesses(BB);
+  }
+
+  /// \brief Return the list of MemoryDef's and MemoryPhi's for a given basic
+  /// block.
+  ///
+  /// This list is not modifiable by the user.
+  const DefsList *getBlockDefs(const BasicBlock *BB) const {
+    return getWritableBlockDefs(BB);
+  }
+
+  /// \brief Given two memory accesses in the same basic block, determine
+  /// whether MemoryAccess \p A dominates MemoryAccess \p B.
+  bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
+
+  /// \brief Given two memory accesses in potentially different blocks,
+  /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
+  bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
+
+  /// \brief Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
+  /// dominates Use \p B.
+  bool dominates(const MemoryAccess *A, const Use &B) const;
+
+  /// \brief Verify that MemorySSA is self consistent (IE definitions dominate
+  /// all uses, uses appear in the right places).  This is used by unit tests.
+  void verifyMemorySSA() const;
+
+  /// Used in various insertion functions to specify whether we are talking
+  /// about the beginning or end of a block.
+  enum InsertionPlace { Beginning, End };
+
+protected:
+  // Used by Memory SSA annotater, dumpers, and wrapper pass
+  friend class MemorySSAAnnotatedWriter;
+  friend class MemorySSAPrinterLegacyPass;
+  friend class MemorySSAUpdater;
+
+  void verifyDefUses(Function &F) const;
+  void verifyDomination(Function &F) const;
+  void verifyOrdering(Function &F) const;
+
+  // This is used by the use optimizer and updater.
+  AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
+    auto It = PerBlockAccesses.find(BB);
+    return It == PerBlockAccesses.end() ? nullptr : It->second.get();
+  }
+
+  // This is used by the use optimizer and updater.
+  DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
+    auto It = PerBlockDefs.find(BB);
+    return It == PerBlockDefs.end() ? nullptr : It->second.get();
+  }
+
+  // These is used by the updater to perform various internal MemorySSA
+  // machinsations.  They do not always leave the IR in a correct state, and
+  // relies on the updater to fixup what it breaks, so it is not public.
+
+  void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
+  void moveTo(MemoryUseOrDef *What, BasicBlock *BB, InsertionPlace Point);
+
+  // Rename the dominator tree branch rooted at BB.
+  void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
+                  SmallPtrSetImpl<BasicBlock *> &Visited) {
+    renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
+  }
+
+  void removeFromLookups(MemoryAccess *);
+  void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
+  void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
+                               InsertionPlace);
+  void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
+                             AccessList::iterator);
+  MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
+
+private:
+  class CachingWalker;
+  class OptimizeUses;
+
+  CachingWalker *getWalkerImpl();
+  void buildMemorySSA();
+  void optimizeUses();
+
+  void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
+
+  using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
+  using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
+
+  void
+  determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
+  void markUnreachableAsLiveOnEntry(BasicBlock *BB);
+  bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
+  MemoryPhi *createMemoryPhi(BasicBlock *BB);
+  MemoryUseOrDef *createNewAccess(Instruction *);
+  MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
+  void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &,
+                     const DenseMap<const BasicBlock *, unsigned int> &);
+  MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
+  void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
+  void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
+                  SmallPtrSetImpl<BasicBlock *> &Visited,
+                  bool SkipVisited = false, bool RenameAllUses = false);
+  AccessList *getOrCreateAccessList(const BasicBlock *);
+  DefsList *getOrCreateDefsList(const BasicBlock *);
+  void renumberBlock(const BasicBlock *) const;
+  AliasAnalysis *AA;
+  DominatorTree *DT;
+  Function &F;
+
+  // Memory SSA mappings
+  DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
+
+  // These two mappings contain the main block to access/def mappings for
+  // MemorySSA. The list contained in PerBlockAccesses really owns all the
+  // MemoryAccesses.
+  // Both maps maintain the invariant that if a block is found in them, the
+  // corresponding list is not empty, and if a block is not found in them, the
+  // corresponding list is empty.
+  AccessMap PerBlockAccesses;
+  DefsMap PerBlockDefs;
+  std::unique_ptr<MemoryAccess, ValueDeleter> LiveOnEntryDef;
+
+  // Domination mappings
+  // Note that the numbering is local to a block, even though the map is
+  // global.
+  mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
+  mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
+
+  // Memory SSA building info
+  std::unique_ptr<CachingWalker> Walker;
+  unsigned NextID;
+};
+
+// Internal MemorySSA utils, for use by MemorySSA classes and walkers
+class MemorySSAUtil {
+protected:
+  friend class GVNHoist;
+  friend class MemorySSAWalker;
+
+  // This function should not be used by new passes.
+  static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
+                                  AliasAnalysis &AA);
+};
+
+// This pass does eager building and then printing of MemorySSA. It is used by
+// the tests to be able to build, dump, and verify Memory SSA.
+class MemorySSAPrinterLegacyPass : public FunctionPass {
+public:
+  MemorySSAPrinterLegacyPass();
+
+  bool runOnFunction(Function &) override;
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+  static char ID;
+};
+
+/// An analysis that produces \c MemorySSA for a function.
+///
+class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
+  friend AnalysisInfoMixin<MemorySSAAnalysis>;
+
+  static AnalysisKey Key;
+
+public:
+  // Wrap MemorySSA result to ensure address stability of internal MemorySSA
+  // pointers after construction.  Use a wrapper class instead of plain
+  // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
+  struct Result {
+    Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
+
+    MemorySSA &getMSSA() { return *MSSA.get(); }
+
+    std::unique_ptr<MemorySSA> MSSA;
+  };
+
+  Result run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// \brief Printer pass for \c MemorySSA.
+class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
+  raw_ostream &OS;
+
+public:
+  explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
+
+  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// \brief Verifier pass for \c MemorySSA.
+struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
+  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// \brief Legacy analysis pass which computes \c MemorySSA.
+class MemorySSAWrapperPass : public FunctionPass {
+public:
+  MemorySSAWrapperPass();
+
+  static char ID;
+
+  bool runOnFunction(Function &) override;
+  void releaseMemory() override;
+  MemorySSA &getMSSA() { return *MSSA; }
+  const MemorySSA &getMSSA() const { return *MSSA; }
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+  void verifyAnalysis() const override;
+  void print(raw_ostream &OS, const Module *M = nullptr) const override;
+
+private:
+  std::unique_ptr<MemorySSA> MSSA;
+};
+
+/// \brief This is the generic walker interface for walkers of MemorySSA.
+/// Walkers are used to be able to further disambiguate the def-use chains
+/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
+/// you.
+/// In particular, while the def-use chains provide basic information, and are
+/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
+/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
+/// information. In particular, they may want to use SCEV info to further
+/// disambiguate memory accesses, or they may want the nearest dominating
+/// may-aliasing MemoryDef for a call or a store. This API enables a
+/// standardized interface to getting and using that info.
+class MemorySSAWalker {
+public:
+  MemorySSAWalker(MemorySSA *);
+  virtual ~MemorySSAWalker() = default;
+
+  using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
+
+  /// \brief Given a memory Mod/Ref/ModRef'ing instruction, calling this
+  /// will give you the nearest dominating MemoryAccess that Mod's the location
+  /// the instruction accesses (by skipping any def which AA can prove does not
+  /// alias the location(s) accessed by the instruction given).
+  ///
+  /// Note that this will return a single access, and it must dominate the
+  /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
+  /// this will return the MemoryPhi, not the operand. This means that
+  /// given:
+  /// if (a) {
+  ///   1 = MemoryDef(liveOnEntry)
+  ///   store %a
+  /// } else {
+  ///   2 = MemoryDef(liveOnEntry)
+  ///   store %b
+  /// }
+  /// 3 = MemoryPhi(2, 1)
+  /// MemoryUse(3)
+  /// load %a
+  ///
+  /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
+  /// in the if (a) branch.
+  MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
+    MemoryAccess *MA = MSSA->getMemoryAccess(I);
+    assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
+    return getClobberingMemoryAccess(MA);
+  }
+
+  /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
+  /// but takes a MemoryAccess instead of an Instruction.
+  virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
+
+  /// \brief Given a potentially clobbering memory access and a new location,
+  /// calling this will give you the nearest dominating clobbering MemoryAccess
+  /// (by skipping non-aliasing def links).
+  ///
+  /// This version of the function is mainly used to disambiguate phi translated
+  /// pointers, where the value of a pointer may have changed from the initial
+  /// memory access. Note that this expects to be handed either a MemoryUse,
+  /// or an already potentially clobbering access. Unlike the above API, if
+  /// given a MemoryDef that clobbers the pointer as the starting access, it
+  /// will return that MemoryDef, whereas the above would return the clobber
+  /// starting from the use side of  the memory def.
+  virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
+                                                  const MemoryLocation &) = 0;
+
+  /// \brief Given a memory access, invalidate anything this walker knows about
+  /// that access.
+  /// This API is used by walkers that store information to perform basic cache
+  /// invalidation.  This will be called by MemorySSA at appropriate times for
+  /// the walker it uses or returns.
+  virtual void invalidateInfo(MemoryAccess *) {}
+
+  virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); }
+
+protected:
+  friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
+                          // constructor.
+  MemorySSA *MSSA;
+};
+
+/// \brief A MemorySSAWalker that does no alias queries, or anything else. It
+/// simply returns the links as they were constructed by the builder.
+class DoNothingMemorySSAWalker final : public MemorySSAWalker {
+public:
+  // Keep the overrides below from hiding the Instruction overload of
+  // getClobberingMemoryAccess.
+  using MemorySSAWalker::getClobberingMemoryAccess;
+
+  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
+  MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
+                                          const MemoryLocation &) override;
+};
+
+using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
+using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
+
+/// \brief Iterator base class used to implement const and non-const iterators
+/// over the defining accesses of a MemoryAccess.
+template <class T>
+class memoryaccess_def_iterator_base
+    : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
+                                  std::forward_iterator_tag, T, ptrdiff_t, T *,
+                                  T *> {
+  using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
+
+public:
+  memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
+  memoryaccess_def_iterator_base() = default;
+
+  bool operator==(const memoryaccess_def_iterator_base &Other) const {
+    return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
+  }
+
+  // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
+  // block from the operand in constant time (In a PHINode, the uselist has
+  // both, so it's just subtraction). We provide it as part of the
+  // iterator to avoid callers having to linear walk to get the block.
+  // If the operation becomes constant time on MemoryPHI's, this bit of
+  // abstraction breaking should be removed.
+  BasicBlock *getPhiArgBlock() const {
+    MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
+    assert(MP && "Tried to get phi arg block when not iterating over a PHI");
+    return MP->getIncomingBlock(ArgNo);
+  }
+
+  typename BaseT::iterator::pointer operator*() const {
+    assert(Access && "Tried to access past the end of our iterator");
+    // Go to the first argument for phis, and the defining access for everything
+    // else.
+    if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
+      return MP->getIncomingValue(ArgNo);
+    return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
+  }
+
+  using BaseT::operator++;
+  memoryaccess_def_iterator &operator++() {
+    assert(Access && "Hit end of iterator");
+    if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
+      if (++ArgNo >= MP->getNumIncomingValues()) {
+        ArgNo = 0;
+        Access = nullptr;
+      }
+    } else {
+      Access = nullptr;
+    }
+    return *this;
+  }
+
+private:
+  T *Access = nullptr;
+  unsigned ArgNo = 0;
+};
+
+inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
+  return memoryaccess_def_iterator(this);
+}
+
+inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
+  return const_memoryaccess_def_iterator(this);
+}
+
+inline memoryaccess_def_iterator MemoryAccess::defs_end() {
+  return memoryaccess_def_iterator();
+}
+
+inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
+  return const_memoryaccess_def_iterator();
+}
+
+/// \brief GraphTraits for a MemoryAccess, which walks defs in the normal case,
+/// and uses in the inverse case.
+template <> struct GraphTraits<MemoryAccess *> {
+  using NodeRef = MemoryAccess *;
+  using ChildIteratorType = memoryaccess_def_iterator;
+
+  static NodeRef getEntryNode(NodeRef N) { return N; }
+  static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
+  static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
+};
+
+template <> struct GraphTraits<Inverse<MemoryAccess *>> {
+  using NodeRef = MemoryAccess *;
+  using ChildIteratorType = MemoryAccess::iterator;
+
+  static NodeRef getEntryNode(NodeRef N) { return N; }
+  static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
+  static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
+};
+
+/// \brief Provide an iterator that walks defs, giving both the memory access,
+/// and the current pointer location, updating the pointer location as it
+/// changes due to phi node translation.
+///
+/// This iterator, while somewhat specialized, is what most clients actually
+/// want when walking upwards through MemorySSA def chains. It takes a pair of
+/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
+/// memory location through phi nodes for the user.
+class upward_defs_iterator
+    : public iterator_facade_base<upward_defs_iterator,
+                                  std::forward_iterator_tag,
+                                  const MemoryAccessPair> {
+  using BaseT = upward_defs_iterator::iterator_facade_base;
+
+public:
+  upward_defs_iterator(const MemoryAccessPair &Info)
+      : DefIterator(Info.first), Location(Info.second),
+        OriginalAccess(Info.first) {
+    CurrentPair.first = nullptr;
+
+    WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
+    fillInCurrentPair();
+  }
+
+  upward_defs_iterator() { CurrentPair.first = nullptr; }
+
+  bool operator==(const upward_defs_iterator &Other) const {
+    return DefIterator == Other.DefIterator;
+  }
+
+  BaseT::iterator::reference operator*() const {
+    assert(DefIterator != OriginalAccess->defs_end() &&
+           "Tried to access past the end of our iterator");
+    return CurrentPair;
+  }
+
+  using BaseT::operator++;
+  upward_defs_iterator &operator++() {
+    assert(DefIterator != OriginalAccess->defs_end() &&
+           "Tried to access past the end of the iterator");
+    ++DefIterator;
+    if (DefIterator != OriginalAccess->defs_end())
+      fillInCurrentPair();
+    return *this;
+  }
+
+  BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
+
+private:
+  void fillInCurrentPair() {
+    CurrentPair.first = *DefIterator;
+    if (WalkingPhi && Location.Ptr) {
+      PHITransAddr Translator(
+          const_cast<Value *>(Location.Ptr),
+          OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
+      if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
+                                        DefIterator.getPhiArgBlock(), nullptr,
+                                        false))
+        if (Translator.getAddr() != Location.Ptr) {
+          CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
+          return;
+        }
+    }
+    CurrentPair.second = Location;
+  }
+
+  MemoryAccessPair CurrentPair;
+  memoryaccess_def_iterator DefIterator;
+  MemoryLocation Location;
+  MemoryAccess *OriginalAccess = nullptr;
+  bool WalkingPhi = false;
+};
+
+inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
+  return upward_defs_iterator(Pair);
+}
+
+inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
+
+inline iterator_range<upward_defs_iterator>
+upward_defs(const MemoryAccessPair &Pair) {
+  return make_range(upward_defs_begin(Pair), upward_defs_end());
+}
+
+/// Walks the defining accesses of MemoryDefs. Stops after we hit something that
+/// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
+/// comparing against a null def_chain_iterator, this will compare equal only
+/// after walking said Phi/liveOnEntry.
+///
+/// The UseOptimizedChain flag specifies whether to walk the clobbering
+/// access chain, or all the accesses.
+///
+/// Normally, MemoryDef are all just def/use linked together, so a def_chain on
+/// a MemoryDef will walk all MemoryDefs above it in the program until it hits
+/// a phi node.  The optimized chain walks the clobbering access of a store.
+/// So if you are just trying to find, given a store, what the next
+/// thing that would clobber the same memory is, you want the optimized chain.
+template <class T, bool UseOptimizedChain = false>
+struct def_chain_iterator
+    : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
+                                  std::forward_iterator_tag, MemoryAccess *> {
+  def_chain_iterator() : MA(nullptr) {}
+  def_chain_iterator(T MA) : MA(MA) {}
+
+  T operator*() const { return MA; }
+
+  def_chain_iterator &operator++() {
+    // N.B. liveOnEntry has a null defining access.
+    if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
+      if (UseOptimizedChain && MUD->isOptimized())
+        MA = MUD->getOptimized();
+      else
+        MA = MUD->getDefiningAccess();
+    } else {
+      MA = nullptr;
+    }
+
+    return *this;
+  }
+
+  bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
+
+private:
+  T MA;
+};
+
+template <class T>
+inline iterator_range<def_chain_iterator<T>>
+def_chain(T MA, MemoryAccess *UpTo = nullptr) {
+#ifdef EXPENSIVE_CHECKS
+  assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
+         "UpTo isn't in the def chain!");
+#endif
+  return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
+}
+
+template <class T>
+inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
+  return make_range(def_chain_iterator<T, true>(MA),
+                    def_chain_iterator<T, true>(nullptr));
+}
+
+} // end namespace llvm
+
+#endif // LLVM_ANALYSIS_MEMORYSSA_H