blob: a5717bae12c3f65b69d412ed699631a95f7a001c [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the LoopInfo class that is used to identify natural loops
10// and determine the loop depth of various nodes of the CFG. A natural loop
11// has exactly one entry-point, which is called the header. Note that natural
12// loops may actually be several loops that share the same header node.
13//
14// This analysis calculates the nesting structure of loops in a function. For
15// each natural loop identified, this analysis identifies natural loops
16// contained entirely within the loop and the basic blocks the make up the loop.
17//
18// It can calculate on the fly various bits of information, for example:
19//
20// * whether there is a preheader for the loop
21// * the number of back edges to the header
22// * whether or not a particular block branches out of the loop
23// * the successor blocks of the loop
24// * the loop depth
25// * etc...
26//
27// Note that this analysis specifically identifies *Loops* not cycles or SCCs
28// in the CFG. There can be strongly connected components in the CFG which
29// this analysis will not recognize and that will not be represented by a Loop
30// instance. In particular, a Loop might be inside such a non-loop SCC, or a
31// non-loop SCC might contain a sub-SCC which is a Loop.
32//
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020033// For an overview of terminology used in this API (and thus all of our loop
34// analyses or transforms), see docs/LoopTerminology.rst.
35//
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010036//===----------------------------------------------------------------------===//
37
38#ifndef LLVM_ANALYSIS_LOOPINFO_H
39#define LLVM_ANALYSIS_LOOPINFO_H
40
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/DenseSet.h"
43#include "llvm/ADT/GraphTraits.h"
44#include "llvm/ADT/SmallPtrSet.h"
45#include "llvm/ADT/SmallVector.h"
46#include "llvm/IR/CFG.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/PassManager.h"
50#include "llvm/Pass.h"
51#include "llvm/Support/Allocator.h"
52#include <algorithm>
53#include <utility>
54
55namespace llvm {
56
57class DominatorTree;
58class LoopInfo;
59class Loop;
Andrew Walbran3d2c1972020-04-07 12:24:26 +010060class InductionDescriptor;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010061class MDNode;
Andrew Walbran3d2c1972020-04-07 12:24:26 +010062class MemorySSAUpdater;
Andrew Walbran3d2c1972020-04-07 12:24:26 +010063class ScalarEvolution;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010064class raw_ostream;
65template <class N, bool IsPostDom> class DominatorTreeBase;
66template <class N, class M> class LoopInfoBase;
67template <class N, class M> class LoopBase;
68
69//===----------------------------------------------------------------------===//
70/// Instances of this class are used to represent loops that are detected in the
71/// flow graph.
72///
73template <class BlockT, class LoopT> class LoopBase {
74 LoopT *ParentLoop;
75 // Loops contained entirely within this one.
76 std::vector<LoopT *> SubLoops;
77
78 // The list of blocks in this loop. First entry is the header node.
79 std::vector<BlockT *> Blocks;
80
81 SmallPtrSet<const BlockT *, 8> DenseBlockSet;
82
83#if LLVM_ENABLE_ABI_BREAKING_CHECKS
84 /// Indicator that this loop is no longer a valid loop.
85 bool IsInvalid = false;
86#endif
87
88 LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
89 const LoopBase<BlockT, LoopT> &
90 operator=(const LoopBase<BlockT, LoopT> &) = delete;
91
92public:
93 /// Return the nesting level of this loop. An outer-most loop has depth 1,
94 /// for consistency with loop depth values used for basic blocks, where depth
95 /// 0 is used for blocks not inside any loops.
96 unsigned getLoopDepth() const {
97 assert(!isInvalid() && "Loop not in a valid state!");
98 unsigned D = 1;
99 for (const LoopT *CurLoop = ParentLoop; CurLoop;
100 CurLoop = CurLoop->ParentLoop)
101 ++D;
102 return D;
103 }
104 BlockT *getHeader() const { return getBlocks().front(); }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200105 /// Return the parent loop if it exists or nullptr for top
106 /// level loops.
107
108 /// A loop is either top-level in a function (that is, it is not
109 /// contained in any other loop) or it is entirely enclosed in
110 /// some other loop.
111 /// If a loop is top-level, it has no parent, otherwise its
112 /// parent is the innermost loop in which it is enclosed.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100113 LoopT *getParentLoop() const { return ParentLoop; }
114
115 /// This is a raw interface for bypassing addChildLoop.
116 void setParentLoop(LoopT *L) {
117 assert(!isInvalid() && "Loop not in a valid state!");
118 ParentLoop = L;
119 }
120
121 /// Return true if the specified loop is contained within in this loop.
122 bool contains(const LoopT *L) const {
123 assert(!isInvalid() && "Loop not in a valid state!");
124 if (L == this)
125 return true;
126 if (!L)
127 return false;
128 return contains(L->getParentLoop());
129 }
130
131 /// Return true if the specified basic block is in this loop.
132 bool contains(const BlockT *BB) const {
133 assert(!isInvalid() && "Loop not in a valid state!");
134 return DenseBlockSet.count(BB);
135 }
136
137 /// Return true if the specified instruction is in this loop.
138 template <class InstT> bool contains(const InstT *Inst) const {
139 return contains(Inst->getParent());
140 }
141
142 /// Return the loops contained entirely within this loop.
143 const std::vector<LoopT *> &getSubLoops() const {
144 assert(!isInvalid() && "Loop not in a valid state!");
145 return SubLoops;
146 }
147 std::vector<LoopT *> &getSubLoopsVector() {
148 assert(!isInvalid() && "Loop not in a valid state!");
149 return SubLoops;
150 }
151 typedef typename std::vector<LoopT *>::const_iterator iterator;
152 typedef
153 typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
154 iterator begin() const { return getSubLoops().begin(); }
155 iterator end() const { return getSubLoops().end(); }
156 reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
157 reverse_iterator rend() const { return getSubLoops().rend(); }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200158
159 // LoopInfo does not detect irreducible control flow, just natural
160 // loops. That is, it is possible that there is cyclic control
161 // flow within the "innermost loop" or around the "outermost
162 // loop".
163
164 /// Return true if the loop does not contain any (natural) loops.
165 bool isInnermost() const { return getSubLoops().empty(); }
166 /// Return true if the loop does not have a parent (natural) loop
167 // (i.e. it is outermost, which is the same as top-level).
168 bool isOutermost() const { return getParentLoop() == nullptr; }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100169
170 /// Get a list of the basic blocks which make up this loop.
171 ArrayRef<BlockT *> getBlocks() const {
172 assert(!isInvalid() && "Loop not in a valid state!");
173 return Blocks;
174 }
175 typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
176 block_iterator block_begin() const { return getBlocks().begin(); }
177 block_iterator block_end() const { return getBlocks().end(); }
178 inline iterator_range<block_iterator> blocks() const {
179 assert(!isInvalid() && "Loop not in a valid state!");
180 return make_range(block_begin(), block_end());
181 }
182
183 /// Get the number of blocks in this loop in constant time.
184 /// Invalidate the loop, indicating that it is no longer a loop.
185 unsigned getNumBlocks() const {
186 assert(!isInvalid() && "Loop not in a valid state!");
187 return Blocks.size();
188 }
189
190 /// Return a direct, mutable handle to the blocks vector so that we can
191 /// mutate it efficiently with techniques like `std::remove`.
192 std::vector<BlockT *> &getBlocksVector() {
193 assert(!isInvalid() && "Loop not in a valid state!");
194 return Blocks;
195 }
196 /// Return a direct, mutable handle to the blocks set so that we can
197 /// mutate it efficiently.
198 SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
199 assert(!isInvalid() && "Loop not in a valid state!");
200 return DenseBlockSet;
201 }
202
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100203 /// Return a direct, immutable handle to the blocks set.
204 const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
205 assert(!isInvalid() && "Loop not in a valid state!");
206 return DenseBlockSet;
207 }
208
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100209 /// Return true if this loop is no longer valid. The only valid use of this
210 /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
211 /// true by the destructor. In other words, if this accessor returns true,
212 /// the caller has already triggered UB by calling this accessor; and so it
213 /// can only be called in a context where a return value of true indicates a
214 /// programmer error.
215 bool isInvalid() const {
216#if LLVM_ENABLE_ABI_BREAKING_CHECKS
217 return IsInvalid;
218#else
219 return false;
220#endif
221 }
222
223 /// True if terminator in the block can branch to another block that is
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100224 /// outside of the current loop. \p BB must be inside the loop.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100225 bool isLoopExiting(const BlockT *BB) const {
226 assert(!isInvalid() && "Loop not in a valid state!");
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100227 assert(contains(BB) && "Exiting block must be part of the loop");
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200228 for (const auto *Succ : children<const BlockT *>(BB)) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100229 if (!contains(Succ))
230 return true;
231 }
232 return false;
233 }
234
235 /// Returns true if \p BB is a loop-latch.
236 /// A latch block is a block that contains a branch back to the header.
237 /// This function is useful when there are multiple latches in a loop
238 /// because \fn getLoopLatch will return nullptr in that case.
239 bool isLoopLatch(const BlockT *BB) const {
240 assert(!isInvalid() && "Loop not in a valid state!");
241 assert(contains(BB) && "block does not belong to the loop");
242
243 BlockT *Header = getHeader();
244 auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
245 auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
246 return std::find(PredBegin, PredEnd, BB) != PredEnd;
247 }
248
249 /// Calculate the number of back edges to the loop header.
250 unsigned getNumBackEdges() const {
251 assert(!isInvalid() && "Loop not in a valid state!");
252 unsigned NumBackEdges = 0;
253 BlockT *H = getHeader();
254
255 for (const auto Pred : children<Inverse<BlockT *>>(H))
256 if (contains(Pred))
257 ++NumBackEdges;
258
259 return NumBackEdges;
260 }
261
262 //===--------------------------------------------------------------------===//
263 // APIs for simple analysis of the loop.
264 //
265 // Note that all of these methods can fail on general loops (ie, there may not
266 // be a preheader, etc). For best success, the loop simplification and
267 // induction variable canonicalization pass should be used to normalize loops
268 // for easy analysis. These methods assume canonical loops.
269
270 /// Return all blocks inside the loop that have successors outside of the
271 /// loop. These are the blocks _inside of the current loop_ which branch out.
272 /// The returned list is always unique.
273 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
274
275 /// If getExitingBlocks would return exactly one block, return that block.
276 /// Otherwise return null.
277 BlockT *getExitingBlock() const;
278
279 /// Return all of the successor blocks of this loop. These are the blocks
280 /// _outside of the current loop_ which are branched to.
281 void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
282
283 /// If getExitBlocks would return exactly one block, return that block.
284 /// Otherwise return null.
285 BlockT *getExitBlock() const;
286
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100287 /// Return true if no exit block for the loop has a predecessor that is
288 /// outside the loop.
289 bool hasDedicatedExits() const;
290
291 /// Return all unique successor blocks of this loop.
292 /// These are the blocks _outside of the current loop_ which are branched to.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100293 void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
294
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200295 /// Return all unique successor blocks of this loop except successors from
296 /// Latch block are not considered. If the exit comes from Latch has also
297 /// non Latch predecessor in a loop it will be added to ExitBlocks.
298 /// These are the blocks _outside of the current loop_ which are branched to.
299 void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
300
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100301 /// If getUniqueExitBlocks would return exactly one block, return that block.
302 /// Otherwise return null.
303 BlockT *getUniqueExitBlock() const;
304
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200305 /// Return true if this loop does not have any exit blocks.
306 bool hasNoExitBlocks() const;
307
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100308 /// Edge type.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100309 typedef std::pair<BlockT *, BlockT *> Edge;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100310
311 /// Return all pairs of (_inside_block_,_outside_block_).
312 void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
313
314 /// If there is a preheader for this loop, return it. A loop has a preheader
315 /// if there is only one edge to the header of the loop from outside of the
316 /// loop. If this is the case, the block branching to the header of the loop
317 /// is the preheader node.
318 ///
319 /// This method returns null if there is no preheader for the loop.
320 BlockT *getLoopPreheader() const;
321
322 /// If the given loop's header has exactly one unique predecessor outside the
323 /// loop, return it. Otherwise return null.
324 /// This is less strict that the loop "preheader" concept, which requires
325 /// the predecessor to have exactly one successor.
326 BlockT *getLoopPredecessor() const;
327
328 /// If there is a single latch block for this loop, return it.
329 /// A latch block is a block that contains a branch back to the header.
330 BlockT *getLoopLatch() const;
331
332 /// Return all loop latch blocks of this loop. A latch block is a block that
333 /// contains a branch back to the header.
334 void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
335 assert(!isInvalid() && "Loop not in a valid state!");
336 BlockT *H = getHeader();
337 for (const auto Pred : children<Inverse<BlockT *>>(H))
338 if (contains(Pred))
339 LoopLatches.push_back(Pred);
340 }
341
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100342 /// Return all inner loops in the loop nest rooted by the loop in preorder,
343 /// with siblings in forward program order.
344 template <class Type>
345 static void getInnerLoopsInPreorder(const LoopT &L,
346 SmallVectorImpl<Type> &PreOrderLoops) {
347 SmallVector<LoopT *, 4> PreOrderWorklist;
348 PreOrderWorklist.append(L.rbegin(), L.rend());
349
350 while (!PreOrderWorklist.empty()) {
351 LoopT *L = PreOrderWorklist.pop_back_val();
352 // Sub-loops are stored in forward program order, but will process the
353 // worklist backwards so append them in reverse order.
354 PreOrderWorklist.append(L->rbegin(), L->rend());
355 PreOrderLoops.push_back(L);
356 }
357 }
358
359 /// Return all loops in the loop nest rooted by the loop in preorder, with
360 /// siblings in forward program order.
361 SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
362 SmallVector<const LoopT *, 4> PreOrderLoops;
363 const LoopT *CurLoop = static_cast<const LoopT *>(this);
364 PreOrderLoops.push_back(CurLoop);
365 getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
366 return PreOrderLoops;
367 }
368 SmallVector<LoopT *, 4> getLoopsInPreorder() {
369 SmallVector<LoopT *, 4> PreOrderLoops;
370 LoopT *CurLoop = static_cast<LoopT *>(this);
371 PreOrderLoops.push_back(CurLoop);
372 getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
373 return PreOrderLoops;
374 }
375
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100376 //===--------------------------------------------------------------------===//
377 // APIs for updating loop information after changing the CFG
378 //
379
380 /// This method is used by other analyses to update loop information.
381 /// NewBB is set to be a new member of the current loop.
382 /// Because of this, it is added as a member of all parent loops, and is added
383 /// to the specified LoopInfo object as being in the current basic block. It
384 /// is not valid to replace the loop header with this method.
385 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
386
387 /// This is used when splitting loops up. It replaces the OldChild entry in
388 /// our children list with NewChild, and updates the parent pointer of
389 /// OldChild to be null and the NewChild to be this loop.
390 /// This updates the loop depth of the new child.
391 void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
392
393 /// Add the specified loop to be a child of this loop.
394 /// This updates the loop depth of the new child.
395 void addChildLoop(LoopT *NewChild) {
396 assert(!isInvalid() && "Loop not in a valid state!");
397 assert(!NewChild->ParentLoop && "NewChild already has a parent!");
398 NewChild->ParentLoop = static_cast<LoopT *>(this);
399 SubLoops.push_back(NewChild);
400 }
401
402 /// This removes the specified child from being a subloop of this loop. The
403 /// loop is not deleted, as it will presumably be inserted into another loop.
404 LoopT *removeChildLoop(iterator I) {
405 assert(!isInvalid() && "Loop not in a valid state!");
406 assert(I != SubLoops.end() && "Cannot remove end iterator!");
407 LoopT *Child = *I;
408 assert(Child->ParentLoop == this && "Child is not a child of this loop!");
409 SubLoops.erase(SubLoops.begin() + (I - begin()));
410 Child->ParentLoop = nullptr;
411 return Child;
412 }
413
414 /// This removes the specified child from being a subloop of this loop. The
415 /// loop is not deleted, as it will presumably be inserted into another loop.
416 LoopT *removeChildLoop(LoopT *Child) {
417 return removeChildLoop(llvm::find(*this, Child));
418 }
419
420 /// This adds a basic block directly to the basic block list.
421 /// This should only be used by transformations that create new loops. Other
422 /// transformations should use addBasicBlockToLoop.
423 void addBlockEntry(BlockT *BB) {
424 assert(!isInvalid() && "Loop not in a valid state!");
425 Blocks.push_back(BB);
426 DenseBlockSet.insert(BB);
427 }
428
429 /// interface to reverse Blocks[from, end of loop] in this loop
430 void reverseBlock(unsigned from) {
431 assert(!isInvalid() && "Loop not in a valid state!");
432 std::reverse(Blocks.begin() + from, Blocks.end());
433 }
434
435 /// interface to do reserve() for Blocks
436 void reserveBlocks(unsigned size) {
437 assert(!isInvalid() && "Loop not in a valid state!");
438 Blocks.reserve(size);
439 }
440
441 /// This method is used to move BB (which must be part of this loop) to be the
442 /// loop header of the loop (the block that dominates all others).
443 void moveToHeader(BlockT *BB) {
444 assert(!isInvalid() && "Loop not in a valid state!");
445 if (Blocks[0] == BB)
446 return;
447 for (unsigned i = 0;; ++i) {
448 assert(i != Blocks.size() && "Loop does not contain BB!");
449 if (Blocks[i] == BB) {
450 Blocks[i] = Blocks[0];
451 Blocks[0] = BB;
452 return;
453 }
454 }
455 }
456
457 /// This removes the specified basic block from the current loop, updating the
458 /// Blocks as appropriate. This does not update the mapping in the LoopInfo
459 /// class.
460 void removeBlockFromLoop(BlockT *BB) {
461 assert(!isInvalid() && "Loop not in a valid state!");
462 auto I = find(Blocks, BB);
463 assert(I != Blocks.end() && "N is not in this list!");
464 Blocks.erase(I);
465
466 DenseBlockSet.erase(BB);
467 }
468
469 /// Verify loop structure
470 void verifyLoop() const;
471
472 /// Verify loop structure of this loop and all nested loops.
473 void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
474
Andrew Walbran16937d02019-10-22 13:54:20 +0100475 /// Returns true if the loop is annotated parallel.
476 ///
477 /// Derived classes can override this method using static template
478 /// polymorphism.
479 bool isAnnotatedParallel() const { return false; }
480
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100481 /// Print loop with all the BBs inside it.
482 void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const;
483
484protected:
485 friend class LoopInfoBase<BlockT, LoopT>;
486
487 /// This creates an empty loop.
488 LoopBase() : ParentLoop(nullptr) {}
489
490 explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
491 Blocks.push_back(BB);
492 DenseBlockSet.insert(BB);
493 }
494
495 // Since loop passes like SCEV are allowed to key analysis results off of
496 // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
497 // This means loop passes should not be `delete` ing `Loop` objects directly
498 // (and risk a later `Loop` allocation re-using the address of a previous one)
499 // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
500 // pointer till the end of the lifetime of the `LoopInfo` object.
501 //
502 // To make it easier to follow this rule, we mark the destructor as
503 // non-public.
504 ~LoopBase() {
505 for (auto *SubLoop : SubLoops)
506 SubLoop->~LoopT();
507
508#if LLVM_ENABLE_ABI_BREAKING_CHECKS
509 IsInvalid = true;
510#endif
511 SubLoops.clear();
512 Blocks.clear();
513 DenseBlockSet.clear();
514 ParentLoop = nullptr;
515 }
516};
517
518template <class BlockT, class LoopT>
519raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
520 Loop.print(OS);
521 return OS;
522}
523
524// Implementation in LoopInfoImpl.h
525extern template class LoopBase<BasicBlock, Loop>;
526
527/// Represents a single loop in the control flow graph. Note that not all SCCs
528/// in the CFG are necessarily loops.
529class Loop : public LoopBase<BasicBlock, Loop> {
530public:
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100531 /// A range representing the start and end location of a loop.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100532 class LocRange {
533 DebugLoc Start;
534 DebugLoc End;
535
536 public:
537 LocRange() {}
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100538 LocRange(DebugLoc Start) : Start(Start), End(Start) {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100539 LocRange(DebugLoc Start, DebugLoc End)
540 : Start(std::move(Start)), End(std::move(End)) {}
541
542 const DebugLoc &getStart() const { return Start; }
543 const DebugLoc &getEnd() const { return End; }
544
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100545 /// Check for null.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100546 ///
547 explicit operator bool() const { return Start && End; }
548 };
549
550 /// Return true if the specified value is loop invariant.
551 bool isLoopInvariant(const Value *V) const;
552
553 /// Return true if all the operands of the specified instruction are loop
554 /// invariant.
555 bool hasLoopInvariantOperands(const Instruction *I) const;
556
557 /// If the given value is an instruction inside of the loop and it can be
558 /// hoisted, do so to make it trivially loop-invariant.
559 /// Return true if the value after any hoisting is loop invariant. This
560 /// function can be used as a slightly more aggressive replacement for
561 /// isLoopInvariant.
562 ///
563 /// If InsertPt is specified, it is the point to hoist instructions to.
564 /// If null, the terminator of the loop preheader is used.
565 bool makeLoopInvariant(Value *V, bool &Changed,
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100566 Instruction *InsertPt = nullptr,
567 MemorySSAUpdater *MSSAU = nullptr) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100568
569 /// If the given instruction is inside of the loop and it can be hoisted, do
570 /// so to make it trivially loop-invariant.
571 /// Return true if the instruction after any hoisting is loop invariant. This
572 /// function can be used as a slightly more aggressive replacement for
573 /// isLoopInvariant.
574 ///
575 /// If InsertPt is specified, it is the point to hoist instructions to.
576 /// If null, the terminator of the loop preheader is used.
577 ///
578 bool makeLoopInvariant(Instruction *I, bool &Changed,
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100579 Instruction *InsertPt = nullptr,
580 MemorySSAUpdater *MSSAU = nullptr) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100581
582 /// Check to see if the loop has a canonical induction variable: an integer
583 /// recurrence that starts at 0 and increments by one each time through the
584 /// loop. If so, return the phi node that corresponds to it.
585 ///
586 /// The IndVarSimplify pass transforms loops to have a canonical induction
587 /// variable.
588 ///
589 PHINode *getCanonicalInductionVariable() const;
590
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100591 /// Obtain the unique incoming and back edge. Return false if they are
592 /// non-unique or the loop is dead; otherwise, return true.
593 bool getIncomingAndBackEdge(BasicBlock *&Incoming,
594 BasicBlock *&Backedge) const;
595
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200596 /// Below are some utilities to get the loop guard, loop bounds and induction
597 /// variable, and to check if a given phinode is an auxiliary induction
598 /// variable, if the loop is guarded, and if the loop is canonical.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100599 ///
600 /// Here is an example:
601 /// \code
602 /// for (int i = lb; i < ub; i+=step)
603 /// <loop body>
604 /// --- pseudo LLVMIR ---
605 /// beforeloop:
606 /// guardcmp = (lb < ub)
607 /// if (guardcmp) goto preheader; else goto afterloop
608 /// preheader:
609 /// loop:
610 /// i_1 = phi[{lb, preheader}, {i_2, latch}]
611 /// <loop body>
612 /// i_2 = i_1 + step
613 /// latch:
614 /// cmp = (i_2 < ub)
615 /// if (cmp) goto loop
616 /// exit:
617 /// afterloop:
618 /// \endcode
619 ///
620 /// - getBounds
621 /// - getInitialIVValue --> lb
622 /// - getStepInst --> i_2 = i_1 + step
623 /// - getStepValue --> step
624 /// - getFinalIVValue --> ub
625 /// - getCanonicalPredicate --> '<'
626 /// - getDirection --> Increasing
627 ///
628 /// - getInductionVariable --> i_1
629 /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200630 /// - getLoopGuardBranch()
631 /// --> `if (guardcmp) goto preheader; else goto afterloop`
632 /// - isGuarded() --> true
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100633 /// - isCanonical --> false
634 struct LoopBounds {
635 /// Return the LoopBounds object if
636 /// - the given \p IndVar is an induction variable
637 /// - the initial value of the induction variable can be found
638 /// - the step instruction of the induction variable can be found
639 /// - the final value of the induction variable can be found
640 ///
641 /// Else None.
642 static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar,
643 ScalarEvolution &SE);
644
645 /// Get the initial value of the loop induction variable.
646 Value &getInitialIVValue() const { return InitialIVValue; }
647
648 /// Get the instruction that updates the loop induction variable.
649 Instruction &getStepInst() const { return StepInst; }
650
651 /// Get the step that the loop induction variable gets updated by in each
652 /// loop iteration. Return nullptr if not found.
653 Value *getStepValue() const { return StepValue; }
654
655 /// Get the final value of the loop induction variable.
656 Value &getFinalIVValue() const { return FinalIVValue; }
657
658 /// Return the canonical predicate for the latch compare instruction, if
659 /// able to be calcuated. Else BAD_ICMP_PREDICATE.
660 ///
661 /// A predicate is considered as canonical if requirements below are all
662 /// satisfied:
663 /// 1. The first successor of the latch branch is the loop header
664 /// If not, inverse the predicate.
665 /// 2. One of the operands of the latch comparison is StepInst
666 /// If not, and
667 /// - if the current calcuated predicate is not ne or eq, flip the
668 /// predicate.
669 /// - else if the loop is increasing, return slt
670 /// (notice that it is safe to change from ne or eq to sign compare)
671 /// - else if the loop is decreasing, return sgt
672 /// (notice that it is safe to change from ne or eq to sign compare)
673 ///
674 /// Here is an example when both (1) and (2) are not satisfied:
675 /// \code
676 /// loop.header:
677 /// %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
678 /// %inc = add %iv, %step
679 /// %cmp = slt %iv, %finaliv
680 /// br %cmp, %loop.exit, %loop.header
681 /// loop.exit:
682 /// \endcode
683 /// - The second successor of the latch branch is the loop header instead
684 /// of the first successor (slt -> sge)
685 /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
686 /// instead of the StepInst (%inc) (sge -> sgt)
687 ///
688 /// The predicate would be sgt if both (1) and (2) are satisfied.
689 /// getCanonicalPredicate() returns sgt for this example.
690 /// Note: The IR is not changed.
691 ICmpInst::Predicate getCanonicalPredicate() const;
692
693 /// An enum for the direction of the loop
694 /// - for (int i = 0; i < ub; ++i) --> Increasing
695 /// - for (int i = ub; i > 0; --i) --> Descresing
696 /// - for (int i = x; i != y; i+=z) --> Unknown
697 enum class Direction { Increasing, Decreasing, Unknown };
698
699 /// Get the direction of the loop.
700 Direction getDirection() const;
701
702 private:
703 LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
704 ScalarEvolution &SE)
705 : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
706 FinalIVValue(F), SE(SE) {}
707
708 const Loop &L;
709
710 // The initial value of the loop induction variable
711 Value &InitialIVValue;
712
713 // The instruction that updates the loop induction variable
714 Instruction &StepInst;
715
716 // The value that the loop induction variable gets updated by in each loop
717 // iteration
718 Value *StepValue;
719
720 // The final value of the loop induction variable
721 Value &FinalIVValue;
722
723 ScalarEvolution &SE;
724 };
725
726 /// Return the struct LoopBounds collected if all struct members are found,
727 /// else None.
728 Optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
729
730 /// Return the loop induction variable if found, else return nullptr.
731 /// An instruction is considered as the loop induction variable if
732 /// - it is an induction variable of the loop; and
733 /// - it is used to determine the condition of the branch in the loop latch
734 ///
735 /// Note: the induction variable doesn't need to be canonical, i.e. starts at
736 /// zero and increments by one each time through the loop (but it can be).
737 PHINode *getInductionVariable(ScalarEvolution &SE) const;
738
739 /// Get the loop induction descriptor for the loop induction variable. Return
740 /// true if the loop induction variable is found.
741 bool getInductionDescriptor(ScalarEvolution &SE,
742 InductionDescriptor &IndDesc) const;
743
744 /// Return true if the given PHINode \p AuxIndVar is
745 /// - in the loop header
746 /// - not used outside of the loop
747 /// - incremented by a loop invariant step for each loop iteration
748 /// - step instruction opcode should be add or sub
749 /// Note: auxiliary induction variable is not required to be used in the
750 /// conditional branch in the loop latch. (but it can be)
751 bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
752 ScalarEvolution &SE) const;
753
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200754 /// Return the loop guard branch, if it exists.
755 ///
756 /// This currently only works on simplified loop, as it requires a preheader
757 /// and a latch to identify the guard. It will work on loops of the form:
758 /// \code
759 /// GuardBB:
760 /// br cond1, Preheader, ExitSucc <== GuardBranch
761 /// Preheader:
762 /// br Header
763 /// Header:
764 /// ...
765 /// br Latch
766 /// Latch:
767 /// br cond2, Header, ExitBlock
768 /// ExitBlock:
769 /// br ExitSucc
770 /// ExitSucc:
771 /// \endcode
772 BranchInst *getLoopGuardBranch() const;
773
774 /// Return true iff the loop is
775 /// - in simplify rotated form, and
776 /// - guarded by a loop guard branch.
777 bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
778
779 /// Return true if the loop is in rotated form.
780 ///
781 /// This does not check if the loop was rotated by loop rotation, instead it
782 /// only checks if the loop is in rotated form (has a valid latch that exists
783 /// the loop).
784 bool isRotatedForm() const {
785 assert(!isInvalid() && "Loop not in a valid state!");
786 BasicBlock *Latch = getLoopLatch();
787 return Latch && isLoopExiting(Latch);
788 }
789
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100790 /// Return true if the loop induction variable starts at zero and increments
791 /// by one each time through the loop.
792 bool isCanonical(ScalarEvolution &SE) const;
793
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100794 /// Return true if the Loop is in LCSSA form.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200795 bool isLCSSAForm(const DominatorTree &DT) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100796
797 /// Return true if this Loop and all inner subloops are in LCSSA form.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200798 bool isRecursivelyLCSSAForm(const DominatorTree &DT,
799 const LoopInfo &LI) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100800
801 /// Return true if the Loop is in the form that the LoopSimplify form
802 /// transforms loops to, which is sometimes called normal form.
803 bool isLoopSimplifyForm() const;
804
805 /// Return true if the loop body is safe to clone in practice.
806 bool isSafeToClone() const;
807
808 /// Returns true if the loop is annotated parallel.
809 ///
810 /// A parallel loop can be assumed to not contain any dependencies between
811 /// iterations by the compiler. That is, any loop-carried dependency checking
812 /// can be skipped completely when parallelizing the loop on the target
813 /// machine. Thus, if the parallel loop information originates from the
814 /// programmer, e.g. via the OpenMP parallel for pragma, it is the
815 /// programmer's responsibility to ensure there are no loop-carried
816 /// dependencies. The final execution order of the instructions across
817 /// iterations is not guaranteed, thus, the end result might or might not
818 /// implement actual concurrent execution of instructions across multiple
819 /// iterations.
820 bool isAnnotatedParallel() const;
821
822 /// Return the llvm.loop loop id metadata node for this loop if it is present.
823 ///
824 /// If this loop contains the same llvm.loop metadata on each branch to the
825 /// header then the node is returned. If any latch instruction does not
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100826 /// contain llvm.loop or if multiple latches contain different nodes then
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100827 /// 0 is returned.
828 MDNode *getLoopID() const;
829 /// Set the llvm.loop loop id metadata for this loop.
830 ///
831 /// The LoopID metadata node will be added to each terminator instruction in
832 /// the loop that branches to the loop header.
833 ///
834 /// The LoopID metadata node should have one or more operands and the first
835 /// operand should be the node itself.
836 void setLoopID(MDNode *LoopID) const;
837
838 /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
839 ///
840 /// Remove existing unroll metadata and add unroll disable metadata to
841 /// indicate the loop has already been unrolled. This prevents a loop
842 /// from being unrolled more than is directed by a pragma if the loop
843 /// unrolling pass is run more than once (which it generally is).
844 void setLoopAlreadyUnrolled();
845
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200846 /// Add llvm.loop.mustprogress to this loop's loop id metadata.
847 void setLoopMustProgress();
848
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100849 void dump() const;
850 void dumpVerbose() const;
851
852 /// Return the debug location of the start of this loop.
853 /// This looks for a BB terminating instruction with a known debug
854 /// location by looking at the preheader and header blocks. If it
855 /// cannot find a terminating instruction with location information,
856 /// it returns an unknown location.
857 DebugLoc getStartLoc() const;
858
859 /// Return the source code span of the loop.
860 LocRange getLocRange() const;
861
862 StringRef getName() const {
863 if (BasicBlock *Header = getHeader())
864 if (Header->hasName())
865 return Header->getName();
866 return "<unnamed loop>";
867 }
868
869private:
870 Loop() = default;
871
872 friend class LoopInfoBase<BasicBlock, Loop>;
873 friend class LoopBase<BasicBlock, Loop>;
874 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
875 ~Loop() = default;
876};
877
878//===----------------------------------------------------------------------===//
879/// This class builds and contains all of the top-level loop
880/// structures in the specified function.
881///
882
883template <class BlockT, class LoopT> class LoopInfoBase {
884 // BBMap - Mapping of basic blocks to the inner most loop they occur in
885 DenseMap<const BlockT *, LoopT *> BBMap;
886 std::vector<LoopT *> TopLevelLoops;
887 BumpPtrAllocator LoopAllocator;
888
889 friend class LoopBase<BlockT, LoopT>;
890 friend class LoopInfo;
891
892 void operator=(const LoopInfoBase &) = delete;
893 LoopInfoBase(const LoopInfoBase &) = delete;
894
895public:
896 LoopInfoBase() {}
897 ~LoopInfoBase() { releaseMemory(); }
898
899 LoopInfoBase(LoopInfoBase &&Arg)
900 : BBMap(std::move(Arg.BBMap)),
901 TopLevelLoops(std::move(Arg.TopLevelLoops)),
902 LoopAllocator(std::move(Arg.LoopAllocator)) {
903 // We have to clear the arguments top level loops as we've taken ownership.
904 Arg.TopLevelLoops.clear();
905 }
906 LoopInfoBase &operator=(LoopInfoBase &&RHS) {
907 BBMap = std::move(RHS.BBMap);
908
909 for (auto *L : TopLevelLoops)
910 L->~LoopT();
911
912 TopLevelLoops = std::move(RHS.TopLevelLoops);
913 LoopAllocator = std::move(RHS.LoopAllocator);
914 RHS.TopLevelLoops.clear();
915 return *this;
916 }
917
918 void releaseMemory() {
919 BBMap.clear();
920
921 for (auto *L : TopLevelLoops)
922 L->~LoopT();
923 TopLevelLoops.clear();
924 LoopAllocator.Reset();
925 }
926
927 template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
928 LoopT *Storage = LoopAllocator.Allocate<LoopT>();
929 return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
930 }
931
932 /// iterator/begin/end - The interface to the top-level loops in the current
933 /// function.
934 ///
935 typedef typename std::vector<LoopT *>::const_iterator iterator;
936 typedef
937 typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
938 iterator begin() const { return TopLevelLoops.begin(); }
939 iterator end() const { return TopLevelLoops.end(); }
940 reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
941 reverse_iterator rend() const { return TopLevelLoops.rend(); }
942 bool empty() const { return TopLevelLoops.empty(); }
943
944 /// Return all of the loops in the function in preorder across the loop
945 /// nests, with siblings in forward program order.
946 ///
947 /// Note that because loops form a forest of trees, preorder is equivalent to
948 /// reverse postorder.
949 SmallVector<LoopT *, 4> getLoopsInPreorder();
950
951 /// Return all of the loops in the function in preorder across the loop
952 /// nests, with siblings in *reverse* program order.
953 ///
954 /// Note that because loops form a forest of trees, preorder is equivalent to
955 /// reverse postorder.
956 ///
957 /// Also note that this is *not* a reverse preorder. Only the siblings are in
958 /// reverse program order.
959 SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
960
961 /// Return the inner most loop that BB lives in. If a basic block is in no
962 /// loop (for example the entry node), null is returned.
963 LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
964
965 /// Same as getLoopFor.
966 const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
967
968 /// Return the loop nesting level of the specified block. A depth of 0 means
969 /// the block is not inside any loop.
970 unsigned getLoopDepth(const BlockT *BB) const {
971 const LoopT *L = getLoopFor(BB);
972 return L ? L->getLoopDepth() : 0;
973 }
974
975 // True if the block is a loop header node
976 bool isLoopHeader(const BlockT *BB) const {
977 const LoopT *L = getLoopFor(BB);
978 return L && L->getHeader() == BB;
979 }
980
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200981 /// Return the top-level loops.
982 const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
983
984 /// Return the top-level loops.
985 std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
986
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100987 /// This removes the specified top-level loop from this loop info object.
988 /// The loop is not deleted, as it will presumably be inserted into
989 /// another loop.
990 LoopT *removeLoop(iterator I) {
991 assert(I != end() && "Cannot remove end iterator!");
992 LoopT *L = *I;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200993 assert(L->isOutermost() && "Not a top-level loop!");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100994 TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
995 return L;
996 }
997
998 /// Change the top-level loop that contains BB to the specified loop.
999 /// This should be used by transformations that restructure the loop hierarchy
1000 /// tree.
1001 void changeLoopFor(BlockT *BB, LoopT *L) {
1002 if (!L) {
1003 BBMap.erase(BB);
1004 return;
1005 }
1006 BBMap[BB] = L;
1007 }
1008
1009 /// Replace the specified loop in the top-level loops list with the indicated
1010 /// loop.
1011 void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
1012 auto I = find(TopLevelLoops, OldLoop);
1013 assert(I != TopLevelLoops.end() && "Old loop not at top level!");
1014 *I = NewLoop;
1015 assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
1016 "Loops already embedded into a subloop!");
1017 }
1018
1019 /// This adds the specified loop to the collection of top-level loops.
1020 void addTopLevelLoop(LoopT *New) {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001021 assert(New->isOutermost() && "Loop already in subloop!");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001022 TopLevelLoops.push_back(New);
1023 }
1024
1025 /// This method completely removes BB from all data structures,
1026 /// including all of the Loop objects it is nested in and our mapping from
1027 /// BasicBlocks to loops.
1028 void removeBlock(BlockT *BB) {
1029 auto I = BBMap.find(BB);
1030 if (I != BBMap.end()) {
1031 for (LoopT *L = I->second; L; L = L->getParentLoop())
1032 L->removeBlockFromLoop(BB);
1033
1034 BBMap.erase(I);
1035 }
1036 }
1037
1038 // Internals
1039
1040 static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
1041 const LoopT *ParentLoop) {
1042 if (!SubLoop)
1043 return true;
1044 if (SubLoop == ParentLoop)
1045 return false;
1046 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
1047 }
1048
1049 /// Create the loop forest using a stable algorithm.
1050 void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
1051
1052 // Debugging
1053 void print(raw_ostream &OS) const;
1054
1055 void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
1056
1057 /// Destroy a loop that has been removed from the `LoopInfo` nest.
1058 ///
1059 /// This runs the destructor of the loop object making it invalid to
1060 /// reference afterward. The memory is retained so that the *pointer* to the
1061 /// loop remains valid.
1062 ///
1063 /// The caller is responsible for removing this loop from the loop nest and
1064 /// otherwise disconnecting it from the broader `LoopInfo` data structures.
1065 /// Callers that don't naturally handle this themselves should probably call
1066 /// `erase' instead.
1067 void destroy(LoopT *L) {
1068 L->~LoopT();
1069
1070 // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
1071 // \c L, but the pointer remains valid for non-dereferencing uses.
1072 LoopAllocator.Deallocate(L);
1073 }
1074};
1075
1076// Implementation in LoopInfoImpl.h
1077extern template class LoopInfoBase<BasicBlock, Loop>;
1078
1079class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
1080 typedef LoopInfoBase<BasicBlock, Loop> BaseT;
1081
1082 friend class LoopBase<BasicBlock, Loop>;
1083
1084 void operator=(const LoopInfo &) = delete;
1085 LoopInfo(const LoopInfo &) = delete;
1086
1087public:
1088 LoopInfo() {}
1089 explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
1090
1091 LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
1092 LoopInfo &operator=(LoopInfo &&RHS) {
1093 BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
1094 return *this;
1095 }
1096
1097 /// Handle invalidation explicitly.
1098 bool invalidate(Function &F, const PreservedAnalyses &PA,
1099 FunctionAnalysisManager::Invalidator &);
1100
1101 // Most of the public interface is provided via LoopInfoBase.
1102
1103 /// Update LoopInfo after removing the last backedge from a loop. This updates
1104 /// the loop forest and parent loops for each block so that \c L is no longer
1105 /// referenced, but does not actually delete \c L immediately. The pointer
1106 /// will remain valid until this LoopInfo's memory is released.
1107 void erase(Loop *L);
1108
1109 /// Returns true if replacing From with To everywhere is guaranteed to
1110 /// preserve LCSSA form.
1111 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1112 // Preserving LCSSA form is only problematic if the replacing value is an
1113 // instruction.
1114 Instruction *I = dyn_cast<Instruction>(To);
1115 if (!I)
1116 return true;
1117 // If both instructions are defined in the same basic block then replacement
1118 // cannot break LCSSA form.
1119 if (I->getParent() == From->getParent())
1120 return true;
1121 // If the instruction is not defined in a loop then it can safely replace
1122 // anything.
1123 Loop *ToLoop = getLoopFor(I->getParent());
1124 if (!ToLoop)
1125 return true;
1126 // If the replacing instruction is defined in the same loop as the original
1127 // instruction, or in a loop that contains it as an inner loop, then using
1128 // it as a replacement will not break LCSSA form.
1129 return ToLoop->contains(getLoopFor(From->getParent()));
1130 }
1131
1132 /// Checks if moving a specific instruction can break LCSSA in any loop.
1133 ///
1134 /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
1135 /// assuming that the function containing \p Inst and \p NewLoc is currently
1136 /// in LCSSA form.
1137 bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
1138 assert(Inst->getFunction() == NewLoc->getFunction() &&
1139 "Can't reason about IPO!");
1140
1141 auto *OldBB = Inst->getParent();
1142 auto *NewBB = NewLoc->getParent();
1143
1144 // Movement within the same loop does not break LCSSA (the equality check is
1145 // to avoid doing a hashtable lookup in case of intra-block movement).
1146 if (OldBB == NewBB)
1147 return true;
1148
1149 auto *OldLoop = getLoopFor(OldBB);
1150 auto *NewLoop = getLoopFor(NewBB);
1151
1152 if (OldLoop == NewLoop)
1153 return true;
1154
1155 // Check if Outer contains Inner; with the null loop counting as the
1156 // "outermost" loop.
1157 auto Contains = [](const Loop *Outer, const Loop *Inner) {
1158 return !Outer || Outer->contains(Inner);
1159 };
1160
1161 // To check that the movement of Inst to before NewLoc does not break LCSSA,
1162 // we need to check two sets of uses for possible LCSSA violations at
1163 // NewLoc: the users of NewInst, and the operands of NewInst.
1164
1165 // If we know we're hoisting Inst out of an inner loop to an outer loop,
1166 // then the uses *of* Inst don't need to be checked.
1167
1168 if (!Contains(NewLoop, OldLoop)) {
1169 for (Use &U : Inst->uses()) {
1170 auto *UI = cast<Instruction>(U.getUser());
1171 auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
1172 : UI->getParent();
1173 if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
1174 return false;
1175 }
1176 }
1177
1178 // If we know we're sinking Inst from an outer loop into an inner loop, then
1179 // the *operands* of Inst don't need to be checked.
1180
1181 if (!Contains(OldLoop, NewLoop)) {
1182 // See below on why we can't handle phi nodes here.
1183 if (isa<PHINode>(Inst))
1184 return false;
1185
1186 for (Use &U : Inst->operands()) {
1187 auto *DefI = dyn_cast<Instruction>(U.get());
1188 if (!DefI)
1189 return false;
1190
1191 // This would need adjustment if we allow Inst to be a phi node -- the
1192 // new use block won't simply be NewBB.
1193
1194 auto *DefBlock = DefI->getParent();
1195 if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
1196 return false;
1197 }
1198 }
1199
1200 return true;
1201 }
1202};
1203
1204// Allow clients to walk the list of nested loops...
1205template <> struct GraphTraits<const Loop *> {
1206 typedef const Loop *NodeRef;
1207 typedef LoopInfo::iterator ChildIteratorType;
1208
1209 static NodeRef getEntryNode(const Loop *L) { return L; }
1210 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1211 static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1212};
1213
1214template <> struct GraphTraits<Loop *> {
1215 typedef Loop *NodeRef;
1216 typedef LoopInfo::iterator ChildIteratorType;
1217
1218 static NodeRef getEntryNode(Loop *L) { return L; }
1219 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1220 static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1221};
1222
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001223/// Analysis pass that exposes the \c LoopInfo for a function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001224class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
1225 friend AnalysisInfoMixin<LoopAnalysis>;
1226 static AnalysisKey Key;
1227
1228public:
1229 typedef LoopInfo Result;
1230
1231 LoopInfo run(Function &F, FunctionAnalysisManager &AM);
1232};
1233
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001234/// Printer pass for the \c LoopAnalysis results.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001235class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
1236 raw_ostream &OS;
1237
1238public:
1239 explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
1240 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1241};
1242
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001243/// Verifier pass for the \c LoopAnalysis results.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001244struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
1245 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1246};
1247
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001248/// The legacy pass manager's analysis pass to compute loop information.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001249class LoopInfoWrapperPass : public FunctionPass {
1250 LoopInfo LI;
1251
1252public:
1253 static char ID; // Pass identification, replacement for typeid
1254
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001255 LoopInfoWrapperPass();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001256
1257 LoopInfo &getLoopInfo() { return LI; }
1258 const LoopInfo &getLoopInfo() const { return LI; }
1259
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001260 /// Calculate the natural loop information for a given function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001261 bool runOnFunction(Function &F) override;
1262
1263 void verifyAnalysis() const override;
1264
1265 void releaseMemory() override { LI.releaseMemory(); }
1266
1267 void print(raw_ostream &O, const Module *M = nullptr) const override;
1268
1269 void getAnalysisUsage(AnalysisUsage &AU) const override;
1270};
1271
1272/// Function to print a loop's contents as LLVM's text IR assembly.
1273void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
1274
Andrew Walbran16937d02019-10-22 13:54:20 +01001275/// Find and return the loop attribute node for the attribute @p Name in
1276/// @p LoopID. Return nullptr if there is no such attribute.
1277MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
1278
1279/// Find string metadata for a loop.
1280///
1281/// Returns the MDNode where the first operand is the metadata's name. The
1282/// following operands are the metadata's values. If no metadata with @p Name is
1283/// found, return nullptr.
1284MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
1285
1286/// Return whether an MDNode might represent an access group.
1287///
1288/// Access group metadata nodes have to be distinct and empty. Being
1289/// always-empty ensures that it never needs to be changed (which -- because
1290/// MDNodes are designed immutable -- would require creating a new MDNode). Note
1291/// that this is not a sufficient condition: not every distinct and empty NDNode
1292/// is representing an access group.
1293bool isValidAsAccessGroup(MDNode *AccGroup);
1294
1295/// Create a new LoopID after the loop has been transformed.
1296///
1297/// This can be used when no follow-up loop attributes are defined
1298/// (llvm::makeFollowupLoopID returning None) to stop transformations to be
1299/// applied again.
1300///
1301/// @param Context The LLVMContext in which to create the new LoopID.
1302/// @param OrigLoopID The original LoopID; can be nullptr if the original
1303/// loop has no LoopID.
1304/// @param RemovePrefixes Remove all loop attributes that have these prefixes.
1305/// Use to remove metadata of the transformation that has
1306/// been applied.
1307/// @param AddAttrs Add these loop attributes to the new LoopID.
1308///
1309/// @return A new LoopID that can be applied using Loop::setLoopID().
1310llvm::MDNode *
1311makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
1312 llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
1313 llvm::ArrayRef<llvm::MDNode *> AddAttrs);
1314
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001315} // End llvm namespace
1316
1317#endif