Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/Analysis/LoopInfo.h b/linux-x64/clang/include/llvm/Analysis/LoopInfo.h
new file mode 100644
index 0000000..28afc39
--- /dev/null
+++ b/linux-x64/clang/include/llvm/Analysis/LoopInfo.h
@@ -0,0 +1,988 @@
+//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the LoopInfo class that is used to identify natural loops
+// and determine the loop depth of various nodes of the CFG.  A natural loop
+// has exactly one entry-point, which is called the header. Note that natural
+// loops may actually be several loops that share the same header node.
+//
+// This analysis calculates the nesting structure of loops in a function.  For
+// each natural loop identified, this analysis identifies natural loops
+// contained entirely within the loop and the basic blocks the make up the loop.
+//
+// It can calculate on the fly various bits of information, for example:
+//
+//  * whether there is a preheader for the loop
+//  * the number of back edges to the header
+//  * whether or not a particular block branches out of the loop
+//  * the successor blocks of the loop
+//  * the loop depth
+//  * etc...
+//
+// Note that this analysis specifically identifies *Loops* not cycles or SCCs
+// in the CFG.  There can be strongly connected components in the CFG which
+// this analysis will not recognize and that will not be represented by a Loop
+// instance.  In particular, a Loop might be inside such a non-loop SCC, or a
+// non-loop SCC might contain a sub-SCC which is a Loop.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_LOOPINFO_H
+#define LLVM_ANALYSIS_LOOPINFO_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Allocator.h"
+#include <algorithm>
+#include <utility>
+
+namespace llvm {
+
+class DominatorTree;
+class LoopInfo;
+class Loop;
+class MDNode;
+class PHINode;
+class raw_ostream;
+template <class N, bool IsPostDom> class DominatorTreeBase;
+template <class N, class M> class LoopInfoBase;
+template <class N, class M> class LoopBase;
+
+//===----------------------------------------------------------------------===//
+/// Instances of this class are used to represent loops that are detected in the
+/// flow graph.
+///
+template <class BlockT, class LoopT> class LoopBase {
+  LoopT *ParentLoop;
+  // Loops contained entirely within this one.
+  std::vector<LoopT *> SubLoops;
+
+  // The list of blocks in this loop. First entry is the header node.
+  std::vector<BlockT *> Blocks;
+
+  SmallPtrSet<const BlockT *, 8> DenseBlockSet;
+
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+  /// Indicator that this loop is no longer a valid loop.
+  bool IsInvalid = false;
+#endif
+
+  LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
+  const LoopBase<BlockT, LoopT> &
+  operator=(const LoopBase<BlockT, LoopT> &) = delete;
+
+public:
+  /// Return the nesting level of this loop.  An outer-most loop has depth 1,
+  /// for consistency with loop depth values used for basic blocks, where depth
+  /// 0 is used for blocks not inside any loops.
+  unsigned getLoopDepth() const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    unsigned D = 1;
+    for (const LoopT *CurLoop = ParentLoop; CurLoop;
+         CurLoop = CurLoop->ParentLoop)
+      ++D;
+    return D;
+  }
+  BlockT *getHeader() const { return getBlocks().front(); }
+  LoopT *getParentLoop() const { return ParentLoop; }
+
+  /// This is a raw interface for bypassing addChildLoop.
+  void setParentLoop(LoopT *L) {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    ParentLoop = L;
+  }
+
+  /// Return true if the specified loop is contained within in this loop.
+  bool contains(const LoopT *L) const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    if (L == this)
+      return true;
+    if (!L)
+      return false;
+    return contains(L->getParentLoop());
+  }
+
+  /// Return true if the specified basic block is in this loop.
+  bool contains(const BlockT *BB) const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    return DenseBlockSet.count(BB);
+  }
+
+  /// Return true if the specified instruction is in this loop.
+  template <class InstT> bool contains(const InstT *Inst) const {
+    return contains(Inst->getParent());
+  }
+
+  /// Return the loops contained entirely within this loop.
+  const std::vector<LoopT *> &getSubLoops() const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    return SubLoops;
+  }
+  std::vector<LoopT *> &getSubLoopsVector() {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    return SubLoops;
+  }
+  typedef typename std::vector<LoopT *>::const_iterator iterator;
+  typedef
+      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
+  iterator begin() const { return getSubLoops().begin(); }
+  iterator end() const { return getSubLoops().end(); }
+  reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
+  reverse_iterator rend() const { return getSubLoops().rend(); }
+  bool empty() const { return getSubLoops().empty(); }
+
+  /// Get a list of the basic blocks which make up this loop.
+  ArrayRef<BlockT *> getBlocks() const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    return Blocks;
+  }
+  typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
+  block_iterator block_begin() const { return getBlocks().begin(); }
+  block_iterator block_end() const { return getBlocks().end(); }
+  inline iterator_range<block_iterator> blocks() const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    return make_range(block_begin(), block_end());
+  }
+
+  /// Get the number of blocks in this loop in constant time.
+  /// Invalidate the loop, indicating that it is no longer a loop.
+  unsigned getNumBlocks() const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    return Blocks.size();
+  }
+
+  /// Return a direct, mutable handle to the blocks vector so that we can
+  /// mutate it efficiently with techniques like `std::remove`.
+  std::vector<BlockT *> &getBlocksVector() {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    return Blocks;
+  }
+  /// Return a direct, mutable handle to the blocks set so that we can
+  /// mutate it efficiently.
+  SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    return DenseBlockSet;
+  }
+
+  /// Return true if this loop is no longer valid.  The only valid use of this
+  /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
+  /// true by the destructor.  In other words, if this accessor returns true,
+  /// the caller has already triggered UB by calling this accessor; and so it
+  /// can only be called in a context where a return value of true indicates a
+  /// programmer error.
+  bool isInvalid() const {
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+    return IsInvalid;
+#else
+    return false;
+#endif
+  }
+
+  /// True if terminator in the block can branch to another block that is
+  /// outside of the current loop.
+  bool isLoopExiting(const BlockT *BB) const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    for (const auto &Succ : children<const BlockT *>(BB)) {
+      if (!contains(Succ))
+        return true;
+    }
+    return false;
+  }
+
+  /// Returns true if \p BB is a loop-latch.
+  /// A latch block is a block that contains a branch back to the header.
+  /// This function is useful when there are multiple latches in a loop
+  /// because \fn getLoopLatch will return nullptr in that case.
+  bool isLoopLatch(const BlockT *BB) const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    assert(contains(BB) && "block does not belong to the loop");
+
+    BlockT *Header = getHeader();
+    auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
+    auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
+    return std::find(PredBegin, PredEnd, BB) != PredEnd;
+  }
+
+  /// Calculate the number of back edges to the loop header.
+  unsigned getNumBackEdges() const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    unsigned NumBackEdges = 0;
+    BlockT *H = getHeader();
+
+    for (const auto Pred : children<Inverse<BlockT *>>(H))
+      if (contains(Pred))
+        ++NumBackEdges;
+
+    return NumBackEdges;
+  }
+
+  //===--------------------------------------------------------------------===//
+  // APIs for simple analysis of the loop.
+  //
+  // Note that all of these methods can fail on general loops (ie, there may not
+  // be a preheader, etc).  For best success, the loop simplification and
+  // induction variable canonicalization pass should be used to normalize loops
+  // for easy analysis.  These methods assume canonical loops.
+
+  /// Return all blocks inside the loop that have successors outside of the
+  /// loop. These are the blocks _inside of the current loop_ which branch out.
+  /// The returned list is always unique.
+  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
+
+  /// If getExitingBlocks would return exactly one block, return that block.
+  /// Otherwise return null.
+  BlockT *getExitingBlock() const;
+
+  /// Return all of the successor blocks of this loop. These are the blocks
+  /// _outside of the current loop_ which are branched to.
+  void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
+
+  /// If getExitBlocks would return exactly one block, return that block.
+  /// Otherwise return null.
+  BlockT *getExitBlock() const;
+
+  /// Edge type.
+  typedef std::pair<const BlockT *, const BlockT *> Edge;
+
+  /// Return all pairs of (_inside_block_,_outside_block_).
+  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
+
+  /// If there is a preheader for this loop, return it. A loop has a preheader
+  /// if there is only one edge to the header of the loop from outside of the
+  /// loop. If this is the case, the block branching to the header of the loop
+  /// is the preheader node.
+  ///
+  /// This method returns null if there is no preheader for the loop.
+  BlockT *getLoopPreheader() const;
+
+  /// If the given loop's header has exactly one unique predecessor outside the
+  /// loop, return it. Otherwise return null.
+  ///  This is less strict that the loop "preheader" concept, which requires
+  /// the predecessor to have exactly one successor.
+  BlockT *getLoopPredecessor() const;
+
+  /// If there is a single latch block for this loop, return it.
+  /// A latch block is a block that contains a branch back to the header.
+  BlockT *getLoopLatch() const;
+
+  /// Return all loop latch blocks of this loop. A latch block is a block that
+  /// contains a branch back to the header.
+  void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    BlockT *H = getHeader();
+    for (const auto Pred : children<Inverse<BlockT *>>(H))
+      if (contains(Pred))
+        LoopLatches.push_back(Pred);
+  }
+
+  //===--------------------------------------------------------------------===//
+  // APIs for updating loop information after changing the CFG
+  //
+
+  /// This method is used by other analyses to update loop information.
+  /// NewBB is set to be a new member of the current loop.
+  /// Because of this, it is added as a member of all parent loops, and is added
+  /// to the specified LoopInfo object as being in the current basic block.  It
+  /// is not valid to replace the loop header with this method.
+  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
+
+  /// This is used when splitting loops up. It replaces the OldChild entry in
+  /// our children list with NewChild, and updates the parent pointer of
+  /// OldChild to be null and the NewChild to be this loop.
+  /// This updates the loop depth of the new child.
+  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
+
+  /// Add the specified loop to be a child of this loop.
+  /// This updates the loop depth of the new child.
+  void addChildLoop(LoopT *NewChild) {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    assert(!NewChild->ParentLoop && "NewChild already has a parent!");
+    NewChild->ParentLoop = static_cast<LoopT *>(this);
+    SubLoops.push_back(NewChild);
+  }
+
+  /// This removes the specified child from being a subloop of this loop. The
+  /// loop is not deleted, as it will presumably be inserted into another loop.
+  LoopT *removeChildLoop(iterator I) {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    assert(I != SubLoops.end() && "Cannot remove end iterator!");
+    LoopT *Child = *I;
+    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
+    SubLoops.erase(SubLoops.begin() + (I - begin()));
+    Child->ParentLoop = nullptr;
+    return Child;
+  }
+
+  /// This removes the specified child from being a subloop of this loop. The
+  /// loop is not deleted, as it will presumably be inserted into another loop.
+  LoopT *removeChildLoop(LoopT *Child) {
+    return removeChildLoop(llvm::find(*this, Child));
+  }
+
+  /// This adds a basic block directly to the basic block list.
+  /// This should only be used by transformations that create new loops.  Other
+  /// transformations should use addBasicBlockToLoop.
+  void addBlockEntry(BlockT *BB) {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    Blocks.push_back(BB);
+    DenseBlockSet.insert(BB);
+  }
+
+  /// interface to reverse Blocks[from, end of loop] in this loop
+  void reverseBlock(unsigned from) {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    std::reverse(Blocks.begin() + from, Blocks.end());
+  }
+
+  /// interface to do reserve() for Blocks
+  void reserveBlocks(unsigned size) {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    Blocks.reserve(size);
+  }
+
+  /// This method is used to move BB (which must be part of this loop) to be the
+  /// loop header of the loop (the block that dominates all others).
+  void moveToHeader(BlockT *BB) {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    if (Blocks[0] == BB)
+      return;
+    for (unsigned i = 0;; ++i) {
+      assert(i != Blocks.size() && "Loop does not contain BB!");
+      if (Blocks[i] == BB) {
+        Blocks[i] = Blocks[0];
+        Blocks[0] = BB;
+        return;
+      }
+    }
+  }
+
+  /// This removes the specified basic block from the current loop, updating the
+  /// Blocks as appropriate. This does not update the mapping in the LoopInfo
+  /// class.
+  void removeBlockFromLoop(BlockT *BB) {
+    assert(!isInvalid() && "Loop not in a valid state!");
+    auto I = find(Blocks, BB);
+    assert(I != Blocks.end() && "N is not in this list!");
+    Blocks.erase(I);
+
+    DenseBlockSet.erase(BB);
+  }
+
+  /// Verify loop structure
+  void verifyLoop() const;
+
+  /// Verify loop structure of this loop and all nested loops.
+  void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
+
+  /// Print loop with all the BBs inside it.
+  void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const;
+
+protected:
+  friend class LoopInfoBase<BlockT, LoopT>;
+
+  /// This creates an empty loop.
+  LoopBase() : ParentLoop(nullptr) {}
+
+  explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
+    Blocks.push_back(BB);
+    DenseBlockSet.insert(BB);
+  }
+
+  // Since loop passes like SCEV are allowed to key analysis results off of
+  // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
+  // This means loop passes should not be `delete` ing `Loop` objects directly
+  // (and risk a later `Loop` allocation re-using the address of a previous one)
+  // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
+  // pointer till the end of the lifetime of the `LoopInfo` object.
+  //
+  // To make it easier to follow this rule, we mark the destructor as
+  // non-public.
+  ~LoopBase() {
+    for (auto *SubLoop : SubLoops)
+      SubLoop->~LoopT();
+
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+    IsInvalid = true;
+#endif
+    SubLoops.clear();
+    Blocks.clear();
+    DenseBlockSet.clear();
+    ParentLoop = nullptr;
+  }
+};
+
+template <class BlockT, class LoopT>
+raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
+  Loop.print(OS);
+  return OS;
+}
+
+// Implementation in LoopInfoImpl.h
+extern template class LoopBase<BasicBlock, Loop>;
+
+/// Represents a single loop in the control flow graph.  Note that not all SCCs
+/// in the CFG are necessarily loops.
+class Loop : public LoopBase<BasicBlock, Loop> {
+public:
+  /// \brief A range representing the start and end location of a loop.
+  class LocRange {
+    DebugLoc Start;
+    DebugLoc End;
+
+  public:
+    LocRange() {}
+    LocRange(DebugLoc Start) : Start(std::move(Start)), End(std::move(Start)) {}
+    LocRange(DebugLoc Start, DebugLoc End)
+        : Start(std::move(Start)), End(std::move(End)) {}
+
+    const DebugLoc &getStart() const { return Start; }
+    const DebugLoc &getEnd() const { return End; }
+
+    /// \brief Check for null.
+    ///
+    explicit operator bool() const { return Start && End; }
+  };
+
+  /// Return true if the specified value is loop invariant.
+  bool isLoopInvariant(const Value *V) const;
+
+  /// Return true if all the operands of the specified instruction are loop
+  /// invariant.
+  bool hasLoopInvariantOperands(const Instruction *I) const;
+
+  /// If the given value is an instruction inside of the loop and it can be
+  /// hoisted, do so to make it trivially loop-invariant.
+  /// Return true if the value after any hoisting is loop invariant. This
+  /// function can be used as a slightly more aggressive replacement for
+  /// isLoopInvariant.
+  ///
+  /// If InsertPt is specified, it is the point to hoist instructions to.
+  /// If null, the terminator of the loop preheader is used.
+  bool makeLoopInvariant(Value *V, bool &Changed,
+                         Instruction *InsertPt = nullptr) const;
+
+  /// If the given instruction is inside of the loop and it can be hoisted, do
+  /// so to make it trivially loop-invariant.
+  /// Return true if the instruction after any hoisting is loop invariant. This
+  /// function can be used as a slightly more aggressive replacement for
+  /// isLoopInvariant.
+  ///
+  /// If InsertPt is specified, it is the point to hoist instructions to.
+  /// If null, the terminator of the loop preheader is used.
+  ///
+  bool makeLoopInvariant(Instruction *I, bool &Changed,
+                         Instruction *InsertPt = nullptr) const;
+
+  /// Check to see if the loop has a canonical induction variable: an integer
+  /// recurrence that starts at 0 and increments by one each time through the
+  /// loop. If so, return the phi node that corresponds to it.
+  ///
+  /// The IndVarSimplify pass transforms loops to have a canonical induction
+  /// variable.
+  ///
+  PHINode *getCanonicalInductionVariable() const;
+
+  /// Return true if the Loop is in LCSSA form.
+  bool isLCSSAForm(DominatorTree &DT) const;
+
+  /// Return true if this Loop and all inner subloops are in LCSSA form.
+  bool isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const;
+
+  /// Return true if the Loop is in the form that the LoopSimplify form
+  /// transforms loops to, which is sometimes called normal form.
+  bool isLoopSimplifyForm() const;
+
+  /// Return true if the loop body is safe to clone in practice.
+  bool isSafeToClone() const;
+
+  /// Returns true if the loop is annotated parallel.
+  ///
+  /// A parallel loop can be assumed to not contain any dependencies between
+  /// iterations by the compiler. That is, any loop-carried dependency checking
+  /// can be skipped completely when parallelizing the loop on the target
+  /// machine. Thus, if the parallel loop information originates from the
+  /// programmer, e.g. via the OpenMP parallel for pragma, it is the
+  /// programmer's responsibility to ensure there are no loop-carried
+  /// dependencies. The final execution order of the instructions across
+  /// iterations is not guaranteed, thus, the end result might or might not
+  /// implement actual concurrent execution of instructions across multiple
+  /// iterations.
+  bool isAnnotatedParallel() const;
+
+  /// Return the llvm.loop loop id metadata node for this loop if it is present.
+  ///
+  /// If this loop contains the same llvm.loop metadata on each branch to the
+  /// header then the node is returned. If any latch instruction does not
+  /// contain llvm.loop or or if multiple latches contain different nodes then
+  /// 0 is returned.
+  MDNode *getLoopID() const;
+  /// Set the llvm.loop loop id metadata for this loop.
+  ///
+  /// The LoopID metadata node will be added to each terminator instruction in
+  /// the loop that branches to the loop header.
+  ///
+  /// The LoopID metadata node should have one or more operands and the first
+  /// operand should be the node itself.
+  void setLoopID(MDNode *LoopID) const;
+
+  /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
+  ///
+  /// Remove existing unroll metadata and add unroll disable metadata to
+  /// indicate the loop has already been unrolled.  This prevents a loop
+  /// from being unrolled more than is directed by a pragma if the loop
+  /// unrolling pass is run more than once (which it generally is).
+  void setLoopAlreadyUnrolled();
+
+  /// Return true if no exit block for the loop has a predecessor that is
+  /// outside the loop.
+  bool hasDedicatedExits() const;
+
+  /// Return all unique successor blocks of this loop.
+  /// These are the blocks _outside of the current loop_ which are branched to.
+  /// This assumes that loop exits are in canonical form, i.e. all exits are
+  /// dedicated exits.
+  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
+
+  /// If getUniqueExitBlocks would return exactly one block, return that block.
+  /// Otherwise return null.
+  BasicBlock *getUniqueExitBlock() const;
+
+  void dump() const;
+  void dumpVerbose() const;
+
+  /// Return the debug location of the start of this loop.
+  /// This looks for a BB terminating instruction with a known debug
+  /// location by looking at the preheader and header blocks. If it
+  /// cannot find a terminating instruction with location information,
+  /// it returns an unknown location.
+  DebugLoc getStartLoc() const;
+
+  /// Return the source code span of the loop.
+  LocRange getLocRange() const;
+
+  StringRef getName() const {
+    if (BasicBlock *Header = getHeader())
+      if (Header->hasName())
+        return Header->getName();
+    return "<unnamed loop>";
+  }
+
+private:
+  Loop() = default;
+
+  friend class LoopInfoBase<BasicBlock, Loop>;
+  friend class LoopBase<BasicBlock, Loop>;
+  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
+  ~Loop() = default;
+};
+
+//===----------------------------------------------------------------------===//
+/// This class builds and contains all of the top-level loop
+/// structures in the specified function.
+///
+
+template <class BlockT, class LoopT> class LoopInfoBase {
+  // BBMap - Mapping of basic blocks to the inner most loop they occur in
+  DenseMap<const BlockT *, LoopT *> BBMap;
+  std::vector<LoopT *> TopLevelLoops;
+  BumpPtrAllocator LoopAllocator;
+
+  friend class LoopBase<BlockT, LoopT>;
+  friend class LoopInfo;
+
+  void operator=(const LoopInfoBase &) = delete;
+  LoopInfoBase(const LoopInfoBase &) = delete;
+
+public:
+  LoopInfoBase() {}
+  ~LoopInfoBase() { releaseMemory(); }
+
+  LoopInfoBase(LoopInfoBase &&Arg)
+      : BBMap(std::move(Arg.BBMap)),
+        TopLevelLoops(std::move(Arg.TopLevelLoops)),
+        LoopAllocator(std::move(Arg.LoopAllocator)) {
+    // We have to clear the arguments top level loops as we've taken ownership.
+    Arg.TopLevelLoops.clear();
+  }
+  LoopInfoBase &operator=(LoopInfoBase &&RHS) {
+    BBMap = std::move(RHS.BBMap);
+
+    for (auto *L : TopLevelLoops)
+      L->~LoopT();
+
+    TopLevelLoops = std::move(RHS.TopLevelLoops);
+    LoopAllocator = std::move(RHS.LoopAllocator);
+    RHS.TopLevelLoops.clear();
+    return *this;
+  }
+
+  void releaseMemory() {
+    BBMap.clear();
+
+    for (auto *L : TopLevelLoops)
+      L->~LoopT();
+    TopLevelLoops.clear();
+    LoopAllocator.Reset();
+  }
+
+  template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
+    LoopT *Storage = LoopAllocator.Allocate<LoopT>();
+    return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
+  }
+
+  /// iterator/begin/end - The interface to the top-level loops in the current
+  /// function.
+  ///
+  typedef typename std::vector<LoopT *>::const_iterator iterator;
+  typedef
+      typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
+  iterator begin() const { return TopLevelLoops.begin(); }
+  iterator end() const { return TopLevelLoops.end(); }
+  reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
+  reverse_iterator rend() const { return TopLevelLoops.rend(); }
+  bool empty() const { return TopLevelLoops.empty(); }
+
+  /// Return all of the loops in the function in preorder across the loop
+  /// nests, with siblings in forward program order.
+  ///
+  /// Note that because loops form a forest of trees, preorder is equivalent to
+  /// reverse postorder.
+  SmallVector<LoopT *, 4> getLoopsInPreorder();
+
+  /// Return all of the loops in the function in preorder across the loop
+  /// nests, with siblings in *reverse* program order.
+  ///
+  /// Note that because loops form a forest of trees, preorder is equivalent to
+  /// reverse postorder.
+  ///
+  /// Also note that this is *not* a reverse preorder. Only the siblings are in
+  /// reverse program order.
+  SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
+
+  /// Return the inner most loop that BB lives in. If a basic block is in no
+  /// loop (for example the entry node), null is returned.
+  LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
+
+  /// Same as getLoopFor.
+  const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
+
+  /// Return the loop nesting level of the specified block. A depth of 0 means
+  /// the block is not inside any loop.
+  unsigned getLoopDepth(const BlockT *BB) const {
+    const LoopT *L = getLoopFor(BB);
+    return L ? L->getLoopDepth() : 0;
+  }
+
+  // True if the block is a loop header node
+  bool isLoopHeader(const BlockT *BB) const {
+    const LoopT *L = getLoopFor(BB);
+    return L && L->getHeader() == BB;
+  }
+
+  /// This removes the specified top-level loop from this loop info object.
+  /// The loop is not deleted, as it will presumably be inserted into
+  /// another loop.
+  LoopT *removeLoop(iterator I) {
+    assert(I != end() && "Cannot remove end iterator!");
+    LoopT *L = *I;
+    assert(!L->getParentLoop() && "Not a top-level loop!");
+    TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
+    return L;
+  }
+
+  /// Change the top-level loop that contains BB to the specified loop.
+  /// This should be used by transformations that restructure the loop hierarchy
+  /// tree.
+  void changeLoopFor(BlockT *BB, LoopT *L) {
+    if (!L) {
+      BBMap.erase(BB);
+      return;
+    }
+    BBMap[BB] = L;
+  }
+
+  /// Replace the specified loop in the top-level loops list with the indicated
+  /// loop.
+  void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
+    auto I = find(TopLevelLoops, OldLoop);
+    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
+    *I = NewLoop;
+    assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
+           "Loops already embedded into a subloop!");
+  }
+
+  /// This adds the specified loop to the collection of top-level loops.
+  void addTopLevelLoop(LoopT *New) {
+    assert(!New->getParentLoop() && "Loop already in subloop!");
+    TopLevelLoops.push_back(New);
+  }
+
+  /// This method completely removes BB from all data structures,
+  /// including all of the Loop objects it is nested in and our mapping from
+  /// BasicBlocks to loops.
+  void removeBlock(BlockT *BB) {
+    auto I = BBMap.find(BB);
+    if (I != BBMap.end()) {
+      for (LoopT *L = I->second; L; L = L->getParentLoop())
+        L->removeBlockFromLoop(BB);
+
+      BBMap.erase(I);
+    }
+  }
+
+  // Internals
+
+  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
+                                      const LoopT *ParentLoop) {
+    if (!SubLoop)
+      return true;
+    if (SubLoop == ParentLoop)
+      return false;
+    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
+  }
+
+  /// Create the loop forest using a stable algorithm.
+  void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
+
+  // Debugging
+  void print(raw_ostream &OS) const;
+
+  void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
+
+  /// Destroy a loop that has been removed from the `LoopInfo` nest.
+  ///
+  /// This runs the destructor of the loop object making it invalid to
+  /// reference afterward. The memory is retained so that the *pointer* to the
+  /// loop remains valid.
+  ///
+  /// The caller is responsible for removing this loop from the loop nest and
+  /// otherwise disconnecting it from the broader `LoopInfo` data structures.
+  /// Callers that don't naturally handle this themselves should probably call
+  /// `erase' instead.
+  void destroy(LoopT *L) {
+    L->~LoopT();
+
+    // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
+    // \c L, but the pointer remains valid for non-dereferencing uses.
+    LoopAllocator.Deallocate(L);
+  }
+};
+
+// Implementation in LoopInfoImpl.h
+extern template class LoopInfoBase<BasicBlock, Loop>;
+
+class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
+  typedef LoopInfoBase<BasicBlock, Loop> BaseT;
+
+  friend class LoopBase<BasicBlock, Loop>;
+
+  void operator=(const LoopInfo &) = delete;
+  LoopInfo(const LoopInfo &) = delete;
+
+public:
+  LoopInfo() {}
+  explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
+
+  LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
+  LoopInfo &operator=(LoopInfo &&RHS) {
+    BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
+    return *this;
+  }
+
+  /// Handle invalidation explicitly.
+  bool invalidate(Function &F, const PreservedAnalyses &PA,
+                  FunctionAnalysisManager::Invalidator &);
+
+  // Most of the public interface is provided via LoopInfoBase.
+
+  /// Update LoopInfo after removing the last backedge from a loop. This updates
+  /// the loop forest and parent loops for each block so that \c L is no longer
+  /// referenced, but does not actually delete \c L immediately. The pointer
+  /// will remain valid until this LoopInfo's memory is released.
+  void erase(Loop *L);
+
+  /// Returns true if replacing From with To everywhere is guaranteed to
+  /// preserve LCSSA form.
+  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
+    // Preserving LCSSA form is only problematic if the replacing value is an
+    // instruction.
+    Instruction *I = dyn_cast<Instruction>(To);
+    if (!I)
+      return true;
+    // If both instructions are defined in the same basic block then replacement
+    // cannot break LCSSA form.
+    if (I->getParent() == From->getParent())
+      return true;
+    // If the instruction is not defined in a loop then it can safely replace
+    // anything.
+    Loop *ToLoop = getLoopFor(I->getParent());
+    if (!ToLoop)
+      return true;
+    // If the replacing instruction is defined in the same loop as the original
+    // instruction, or in a loop that contains it as an inner loop, then using
+    // it as a replacement will not break LCSSA form.
+    return ToLoop->contains(getLoopFor(From->getParent()));
+  }
+
+  /// Checks if moving a specific instruction can break LCSSA in any loop.
+  ///
+  /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
+  /// assuming that the function containing \p Inst and \p NewLoc is currently
+  /// in LCSSA form.
+  bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
+    assert(Inst->getFunction() == NewLoc->getFunction() &&
+           "Can't reason about IPO!");
+
+    auto *OldBB = Inst->getParent();
+    auto *NewBB = NewLoc->getParent();
+
+    // Movement within the same loop does not break LCSSA (the equality check is
+    // to avoid doing a hashtable lookup in case of intra-block movement).
+    if (OldBB == NewBB)
+      return true;
+
+    auto *OldLoop = getLoopFor(OldBB);
+    auto *NewLoop = getLoopFor(NewBB);
+
+    if (OldLoop == NewLoop)
+      return true;
+
+    // Check if Outer contains Inner; with the null loop counting as the
+    // "outermost" loop.
+    auto Contains = [](const Loop *Outer, const Loop *Inner) {
+      return !Outer || Outer->contains(Inner);
+    };
+
+    // To check that the movement of Inst to before NewLoc does not break LCSSA,
+    // we need to check two sets of uses for possible LCSSA violations at
+    // NewLoc: the users of NewInst, and the operands of NewInst.
+
+    // If we know we're hoisting Inst out of an inner loop to an outer loop,
+    // then the uses *of* Inst don't need to be checked.
+
+    if (!Contains(NewLoop, OldLoop)) {
+      for (Use &U : Inst->uses()) {
+        auto *UI = cast<Instruction>(U.getUser());
+        auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
+                                     : UI->getParent();
+        if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
+          return false;
+      }
+    }
+
+    // If we know we're sinking Inst from an outer loop into an inner loop, then
+    // the *operands* of Inst don't need to be checked.
+
+    if (!Contains(OldLoop, NewLoop)) {
+      // See below on why we can't handle phi nodes here.
+      if (isa<PHINode>(Inst))
+        return false;
+
+      for (Use &U : Inst->operands()) {
+        auto *DefI = dyn_cast<Instruction>(U.get());
+        if (!DefI)
+          return false;
+
+        // This would need adjustment if we allow Inst to be a phi node -- the
+        // new use block won't simply be NewBB.
+
+        auto *DefBlock = DefI->getParent();
+        if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
+          return false;
+      }
+    }
+
+    return true;
+  }
+};
+
+// Allow clients to walk the list of nested loops...
+template <> struct GraphTraits<const Loop *> {
+  typedef const Loop *NodeRef;
+  typedef LoopInfo::iterator ChildIteratorType;
+
+  static NodeRef getEntryNode(const Loop *L) { return L; }
+  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
+  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
+};
+
+template <> struct GraphTraits<Loop *> {
+  typedef Loop *NodeRef;
+  typedef LoopInfo::iterator ChildIteratorType;
+
+  static NodeRef getEntryNode(Loop *L) { return L; }
+  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
+  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
+};
+
+/// \brief Analysis pass that exposes the \c LoopInfo for a function.
+class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
+  friend AnalysisInfoMixin<LoopAnalysis>;
+  static AnalysisKey Key;
+
+public:
+  typedef LoopInfo Result;
+
+  LoopInfo run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// \brief Printer pass for the \c LoopAnalysis results.
+class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
+  raw_ostream &OS;
+
+public:
+  explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
+  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// \brief Verifier pass for the \c LoopAnalysis results.
+struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
+  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// \brief The legacy pass manager's analysis pass to compute loop information.
+class LoopInfoWrapperPass : public FunctionPass {
+  LoopInfo LI;
+
+public:
+  static char ID; // Pass identification, replacement for typeid
+
+  LoopInfoWrapperPass() : FunctionPass(ID) {
+    initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
+  }
+
+  LoopInfo &getLoopInfo() { return LI; }
+  const LoopInfo &getLoopInfo() const { return LI; }
+
+  /// \brief Calculate the natural loop information for a given function.
+  bool runOnFunction(Function &F) override;
+
+  void verifyAnalysis() const override;
+
+  void releaseMemory() override { LI.releaseMemory(); }
+
+  void print(raw_ostream &O, const Module *M = nullptr) const override;
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
+};
+
+/// Function to print a loop's contents as LLVM's text IR assembly.
+void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
+
+} // End llvm namespace
+
+#endif