Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the LoopInfo class that is used to identify natural loops |
| 11 | // and determine the loop depth of various nodes of the CFG. A natural loop |
| 12 | // has exactly one entry-point, which is called the header. Note that natural |
| 13 | // loops may actually be several loops that share the same header node. |
| 14 | // |
| 15 | // This analysis calculates the nesting structure of loops in a function. For |
| 16 | // each natural loop identified, this analysis identifies natural loops |
| 17 | // contained entirely within the loop and the basic blocks the make up the loop. |
| 18 | // |
| 19 | // It can calculate on the fly various bits of information, for example: |
| 20 | // |
| 21 | // * whether there is a preheader for the loop |
| 22 | // * the number of back edges to the header |
| 23 | // * whether or not a particular block branches out of the loop |
| 24 | // * the successor blocks of the loop |
| 25 | // * the loop depth |
| 26 | // * etc... |
| 27 | // |
| 28 | // Note that this analysis specifically identifies *Loops* not cycles or SCCs |
| 29 | // in the CFG. There can be strongly connected components in the CFG which |
| 30 | // this analysis will not recognize and that will not be represented by a Loop |
| 31 | // instance. In particular, a Loop might be inside such a non-loop SCC, or a |
| 32 | // non-loop SCC might contain a sub-SCC which is a Loop. |
| 33 | // |
| 34 | //===----------------------------------------------------------------------===// |
| 35 | |
| 36 | #ifndef LLVM_ANALYSIS_LOOPINFO_H |
| 37 | #define LLVM_ANALYSIS_LOOPINFO_H |
| 38 | |
| 39 | #include "llvm/ADT/DenseMap.h" |
| 40 | #include "llvm/ADT/DenseSet.h" |
| 41 | #include "llvm/ADT/GraphTraits.h" |
| 42 | #include "llvm/ADT/SmallPtrSet.h" |
| 43 | #include "llvm/ADT/SmallVector.h" |
| 44 | #include "llvm/IR/CFG.h" |
| 45 | #include "llvm/IR/Instruction.h" |
| 46 | #include "llvm/IR/Instructions.h" |
| 47 | #include "llvm/IR/PassManager.h" |
| 48 | #include "llvm/Pass.h" |
| 49 | #include "llvm/Support/Allocator.h" |
| 50 | #include <algorithm> |
| 51 | #include <utility> |
| 52 | |
| 53 | namespace llvm { |
| 54 | |
| 55 | class DominatorTree; |
| 56 | class LoopInfo; |
| 57 | class Loop; |
| 58 | class MDNode; |
| 59 | class PHINode; |
| 60 | class raw_ostream; |
| 61 | template <class N, bool IsPostDom> class DominatorTreeBase; |
| 62 | template <class N, class M> class LoopInfoBase; |
| 63 | template <class N, class M> class LoopBase; |
| 64 | |
| 65 | //===----------------------------------------------------------------------===// |
| 66 | /// Instances of this class are used to represent loops that are detected in the |
| 67 | /// flow graph. |
| 68 | /// |
| 69 | template <class BlockT, class LoopT> class LoopBase { |
| 70 | LoopT *ParentLoop; |
| 71 | // Loops contained entirely within this one. |
| 72 | std::vector<LoopT *> SubLoops; |
| 73 | |
| 74 | // The list of blocks in this loop. First entry is the header node. |
| 75 | std::vector<BlockT *> Blocks; |
| 76 | |
| 77 | SmallPtrSet<const BlockT *, 8> DenseBlockSet; |
| 78 | |
| 79 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 80 | /// Indicator that this loop is no longer a valid loop. |
| 81 | bool IsInvalid = false; |
| 82 | #endif |
| 83 | |
| 84 | LoopBase(const LoopBase<BlockT, LoopT> &) = delete; |
| 85 | const LoopBase<BlockT, LoopT> & |
| 86 | operator=(const LoopBase<BlockT, LoopT> &) = delete; |
| 87 | |
| 88 | public: |
| 89 | /// Return the nesting level of this loop. An outer-most loop has depth 1, |
| 90 | /// for consistency with loop depth values used for basic blocks, where depth |
| 91 | /// 0 is used for blocks not inside any loops. |
| 92 | unsigned getLoopDepth() const { |
| 93 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 94 | unsigned D = 1; |
| 95 | for (const LoopT *CurLoop = ParentLoop; CurLoop; |
| 96 | CurLoop = CurLoop->ParentLoop) |
| 97 | ++D; |
| 98 | return D; |
| 99 | } |
| 100 | BlockT *getHeader() const { return getBlocks().front(); } |
| 101 | LoopT *getParentLoop() const { return ParentLoop; } |
| 102 | |
| 103 | /// This is a raw interface for bypassing addChildLoop. |
| 104 | void setParentLoop(LoopT *L) { |
| 105 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 106 | ParentLoop = L; |
| 107 | } |
| 108 | |
| 109 | /// Return true if the specified loop is contained within in this loop. |
| 110 | bool contains(const LoopT *L) const { |
| 111 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 112 | if (L == this) |
| 113 | return true; |
| 114 | if (!L) |
| 115 | return false; |
| 116 | return contains(L->getParentLoop()); |
| 117 | } |
| 118 | |
| 119 | /// Return true if the specified basic block is in this loop. |
| 120 | bool contains(const BlockT *BB) const { |
| 121 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 122 | return DenseBlockSet.count(BB); |
| 123 | } |
| 124 | |
| 125 | /// Return true if the specified instruction is in this loop. |
| 126 | template <class InstT> bool contains(const InstT *Inst) const { |
| 127 | return contains(Inst->getParent()); |
| 128 | } |
| 129 | |
| 130 | /// Return the loops contained entirely within this loop. |
| 131 | const std::vector<LoopT *> &getSubLoops() const { |
| 132 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 133 | return SubLoops; |
| 134 | } |
| 135 | std::vector<LoopT *> &getSubLoopsVector() { |
| 136 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 137 | return SubLoops; |
| 138 | } |
| 139 | typedef typename std::vector<LoopT *>::const_iterator iterator; |
| 140 | typedef |
| 141 | typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; |
| 142 | iterator begin() const { return getSubLoops().begin(); } |
| 143 | iterator end() const { return getSubLoops().end(); } |
| 144 | reverse_iterator rbegin() const { return getSubLoops().rbegin(); } |
| 145 | reverse_iterator rend() const { return getSubLoops().rend(); } |
| 146 | bool empty() const { return getSubLoops().empty(); } |
| 147 | |
| 148 | /// Get a list of the basic blocks which make up this loop. |
| 149 | ArrayRef<BlockT *> getBlocks() const { |
| 150 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 151 | return Blocks; |
| 152 | } |
| 153 | typedef typename ArrayRef<BlockT *>::const_iterator block_iterator; |
| 154 | block_iterator block_begin() const { return getBlocks().begin(); } |
| 155 | block_iterator block_end() const { return getBlocks().end(); } |
| 156 | inline iterator_range<block_iterator> blocks() const { |
| 157 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 158 | return make_range(block_begin(), block_end()); |
| 159 | } |
| 160 | |
| 161 | /// Get the number of blocks in this loop in constant time. |
| 162 | /// Invalidate the loop, indicating that it is no longer a loop. |
| 163 | unsigned getNumBlocks() const { |
| 164 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 165 | return Blocks.size(); |
| 166 | } |
| 167 | |
| 168 | /// Return a direct, mutable handle to the blocks vector so that we can |
| 169 | /// mutate it efficiently with techniques like `std::remove`. |
| 170 | std::vector<BlockT *> &getBlocksVector() { |
| 171 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 172 | return Blocks; |
| 173 | } |
| 174 | /// Return a direct, mutable handle to the blocks set so that we can |
| 175 | /// mutate it efficiently. |
| 176 | SmallPtrSetImpl<const BlockT *> &getBlocksSet() { |
| 177 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 178 | return DenseBlockSet; |
| 179 | } |
| 180 | |
| 181 | /// Return true if this loop is no longer valid. The only valid use of this |
| 182 | /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to |
| 183 | /// true by the destructor. In other words, if this accessor returns true, |
| 184 | /// the caller has already triggered UB by calling this accessor; and so it |
| 185 | /// can only be called in a context where a return value of true indicates a |
| 186 | /// programmer error. |
| 187 | bool isInvalid() const { |
| 188 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 189 | return IsInvalid; |
| 190 | #else |
| 191 | return false; |
| 192 | #endif |
| 193 | } |
| 194 | |
| 195 | /// True if terminator in the block can branch to another block that is |
| 196 | /// outside of the current loop. |
| 197 | bool isLoopExiting(const BlockT *BB) const { |
| 198 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 199 | for (const auto &Succ : children<const BlockT *>(BB)) { |
| 200 | if (!contains(Succ)) |
| 201 | return true; |
| 202 | } |
| 203 | return false; |
| 204 | } |
| 205 | |
| 206 | /// Returns true if \p BB is a loop-latch. |
| 207 | /// A latch block is a block that contains a branch back to the header. |
| 208 | /// This function is useful when there are multiple latches in a loop |
| 209 | /// because \fn getLoopLatch will return nullptr in that case. |
| 210 | bool isLoopLatch(const BlockT *BB) const { |
| 211 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 212 | assert(contains(BB) && "block does not belong to the loop"); |
| 213 | |
| 214 | BlockT *Header = getHeader(); |
| 215 | auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header); |
| 216 | auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header); |
| 217 | return std::find(PredBegin, PredEnd, BB) != PredEnd; |
| 218 | } |
| 219 | |
| 220 | /// Calculate the number of back edges to the loop header. |
| 221 | unsigned getNumBackEdges() const { |
| 222 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 223 | unsigned NumBackEdges = 0; |
| 224 | BlockT *H = getHeader(); |
| 225 | |
| 226 | for (const auto Pred : children<Inverse<BlockT *>>(H)) |
| 227 | if (contains(Pred)) |
| 228 | ++NumBackEdges; |
| 229 | |
| 230 | return NumBackEdges; |
| 231 | } |
| 232 | |
| 233 | //===--------------------------------------------------------------------===// |
| 234 | // APIs for simple analysis of the loop. |
| 235 | // |
| 236 | // Note that all of these methods can fail on general loops (ie, there may not |
| 237 | // be a preheader, etc). For best success, the loop simplification and |
| 238 | // induction variable canonicalization pass should be used to normalize loops |
| 239 | // for easy analysis. These methods assume canonical loops. |
| 240 | |
| 241 | /// Return all blocks inside the loop that have successors outside of the |
| 242 | /// loop. These are the blocks _inside of the current loop_ which branch out. |
| 243 | /// The returned list is always unique. |
| 244 | void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; |
| 245 | |
| 246 | /// If getExitingBlocks would return exactly one block, return that block. |
| 247 | /// Otherwise return null. |
| 248 | BlockT *getExitingBlock() const; |
| 249 | |
| 250 | /// Return all of the successor blocks of this loop. These are the blocks |
| 251 | /// _outside of the current loop_ which are branched to. |
| 252 | void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; |
| 253 | |
| 254 | /// If getExitBlocks would return exactly one block, return that block. |
| 255 | /// Otherwise return null. |
| 256 | BlockT *getExitBlock() const; |
| 257 | |
| 258 | /// Edge type. |
| 259 | typedef std::pair<const BlockT *, const BlockT *> Edge; |
| 260 | |
| 261 | /// Return all pairs of (_inside_block_,_outside_block_). |
| 262 | void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; |
| 263 | |
| 264 | /// If there is a preheader for this loop, return it. A loop has a preheader |
| 265 | /// if there is only one edge to the header of the loop from outside of the |
| 266 | /// loop. If this is the case, the block branching to the header of the loop |
| 267 | /// is the preheader node. |
| 268 | /// |
| 269 | /// This method returns null if there is no preheader for the loop. |
| 270 | BlockT *getLoopPreheader() const; |
| 271 | |
| 272 | /// If the given loop's header has exactly one unique predecessor outside the |
| 273 | /// loop, return it. Otherwise return null. |
| 274 | /// This is less strict that the loop "preheader" concept, which requires |
| 275 | /// the predecessor to have exactly one successor. |
| 276 | BlockT *getLoopPredecessor() const; |
| 277 | |
| 278 | /// If there is a single latch block for this loop, return it. |
| 279 | /// A latch block is a block that contains a branch back to the header. |
| 280 | BlockT *getLoopLatch() const; |
| 281 | |
| 282 | /// Return all loop latch blocks of this loop. A latch block is a block that |
| 283 | /// contains a branch back to the header. |
| 284 | void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { |
| 285 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 286 | BlockT *H = getHeader(); |
| 287 | for (const auto Pred : children<Inverse<BlockT *>>(H)) |
| 288 | if (contains(Pred)) |
| 289 | LoopLatches.push_back(Pred); |
| 290 | } |
| 291 | |
| 292 | //===--------------------------------------------------------------------===// |
| 293 | // APIs for updating loop information after changing the CFG |
| 294 | // |
| 295 | |
| 296 | /// This method is used by other analyses to update loop information. |
| 297 | /// NewBB is set to be a new member of the current loop. |
| 298 | /// Because of this, it is added as a member of all parent loops, and is added |
| 299 | /// to the specified LoopInfo object as being in the current basic block. It |
| 300 | /// is not valid to replace the loop header with this method. |
| 301 | void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); |
| 302 | |
| 303 | /// This is used when splitting loops up. It replaces the OldChild entry in |
| 304 | /// our children list with NewChild, and updates the parent pointer of |
| 305 | /// OldChild to be null and the NewChild to be this loop. |
| 306 | /// This updates the loop depth of the new child. |
| 307 | void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); |
| 308 | |
| 309 | /// Add the specified loop to be a child of this loop. |
| 310 | /// This updates the loop depth of the new child. |
| 311 | void addChildLoop(LoopT *NewChild) { |
| 312 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 313 | assert(!NewChild->ParentLoop && "NewChild already has a parent!"); |
| 314 | NewChild->ParentLoop = static_cast<LoopT *>(this); |
| 315 | SubLoops.push_back(NewChild); |
| 316 | } |
| 317 | |
| 318 | /// This removes the specified child from being a subloop of this loop. The |
| 319 | /// loop is not deleted, as it will presumably be inserted into another loop. |
| 320 | LoopT *removeChildLoop(iterator I) { |
| 321 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 322 | assert(I != SubLoops.end() && "Cannot remove end iterator!"); |
| 323 | LoopT *Child = *I; |
| 324 | assert(Child->ParentLoop == this && "Child is not a child of this loop!"); |
| 325 | SubLoops.erase(SubLoops.begin() + (I - begin())); |
| 326 | Child->ParentLoop = nullptr; |
| 327 | return Child; |
| 328 | } |
| 329 | |
| 330 | /// This removes the specified child from being a subloop of this loop. The |
| 331 | /// loop is not deleted, as it will presumably be inserted into another loop. |
| 332 | LoopT *removeChildLoop(LoopT *Child) { |
| 333 | return removeChildLoop(llvm::find(*this, Child)); |
| 334 | } |
| 335 | |
| 336 | /// This adds a basic block directly to the basic block list. |
| 337 | /// This should only be used by transformations that create new loops. Other |
| 338 | /// transformations should use addBasicBlockToLoop. |
| 339 | void addBlockEntry(BlockT *BB) { |
| 340 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 341 | Blocks.push_back(BB); |
| 342 | DenseBlockSet.insert(BB); |
| 343 | } |
| 344 | |
| 345 | /// interface to reverse Blocks[from, end of loop] in this loop |
| 346 | void reverseBlock(unsigned from) { |
| 347 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 348 | std::reverse(Blocks.begin() + from, Blocks.end()); |
| 349 | } |
| 350 | |
| 351 | /// interface to do reserve() for Blocks |
| 352 | void reserveBlocks(unsigned size) { |
| 353 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 354 | Blocks.reserve(size); |
| 355 | } |
| 356 | |
| 357 | /// This method is used to move BB (which must be part of this loop) to be the |
| 358 | /// loop header of the loop (the block that dominates all others). |
| 359 | void moveToHeader(BlockT *BB) { |
| 360 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 361 | if (Blocks[0] == BB) |
| 362 | return; |
| 363 | for (unsigned i = 0;; ++i) { |
| 364 | assert(i != Blocks.size() && "Loop does not contain BB!"); |
| 365 | if (Blocks[i] == BB) { |
| 366 | Blocks[i] = Blocks[0]; |
| 367 | Blocks[0] = BB; |
| 368 | return; |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | /// This removes the specified basic block from the current loop, updating the |
| 374 | /// Blocks as appropriate. This does not update the mapping in the LoopInfo |
| 375 | /// class. |
| 376 | void removeBlockFromLoop(BlockT *BB) { |
| 377 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 378 | auto I = find(Blocks, BB); |
| 379 | assert(I != Blocks.end() && "N is not in this list!"); |
| 380 | Blocks.erase(I); |
| 381 | |
| 382 | DenseBlockSet.erase(BB); |
| 383 | } |
| 384 | |
| 385 | /// Verify loop structure |
| 386 | void verifyLoop() const; |
| 387 | |
| 388 | /// Verify loop structure of this loop and all nested loops. |
| 389 | void verifyLoopNest(DenseSet<const LoopT *> *Loops) const; |
| 390 | |
| 391 | /// Print loop with all the BBs inside it. |
| 392 | void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const; |
| 393 | |
| 394 | protected: |
| 395 | friend class LoopInfoBase<BlockT, LoopT>; |
| 396 | |
| 397 | /// This creates an empty loop. |
| 398 | LoopBase() : ParentLoop(nullptr) {} |
| 399 | |
| 400 | explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { |
| 401 | Blocks.push_back(BB); |
| 402 | DenseBlockSet.insert(BB); |
| 403 | } |
| 404 | |
| 405 | // Since loop passes like SCEV are allowed to key analysis results off of |
| 406 | // `Loop` pointers, we cannot re-use pointers within a loop pass manager. |
| 407 | // This means loop passes should not be `delete` ing `Loop` objects directly |
| 408 | // (and risk a later `Loop` allocation re-using the address of a previous one) |
| 409 | // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop` |
| 410 | // pointer till the end of the lifetime of the `LoopInfo` object. |
| 411 | // |
| 412 | // To make it easier to follow this rule, we mark the destructor as |
| 413 | // non-public. |
| 414 | ~LoopBase() { |
| 415 | for (auto *SubLoop : SubLoops) |
| 416 | SubLoop->~LoopT(); |
| 417 | |
| 418 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| 419 | IsInvalid = true; |
| 420 | #endif |
| 421 | SubLoops.clear(); |
| 422 | Blocks.clear(); |
| 423 | DenseBlockSet.clear(); |
| 424 | ParentLoop = nullptr; |
| 425 | } |
| 426 | }; |
| 427 | |
| 428 | template <class BlockT, class LoopT> |
| 429 | raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { |
| 430 | Loop.print(OS); |
| 431 | return OS; |
| 432 | } |
| 433 | |
| 434 | // Implementation in LoopInfoImpl.h |
| 435 | extern template class LoopBase<BasicBlock, Loop>; |
| 436 | |
| 437 | /// Represents a single loop in the control flow graph. Note that not all SCCs |
| 438 | /// in the CFG are necessarily loops. |
| 439 | class Loop : public LoopBase<BasicBlock, Loop> { |
| 440 | public: |
| 441 | /// \brief A range representing the start and end location of a loop. |
| 442 | class LocRange { |
| 443 | DebugLoc Start; |
| 444 | DebugLoc End; |
| 445 | |
| 446 | public: |
| 447 | LocRange() {} |
| 448 | LocRange(DebugLoc Start) : Start(std::move(Start)), End(std::move(Start)) {} |
| 449 | LocRange(DebugLoc Start, DebugLoc End) |
| 450 | : Start(std::move(Start)), End(std::move(End)) {} |
| 451 | |
| 452 | const DebugLoc &getStart() const { return Start; } |
| 453 | const DebugLoc &getEnd() const { return End; } |
| 454 | |
| 455 | /// \brief Check for null. |
| 456 | /// |
| 457 | explicit operator bool() const { return Start && End; } |
| 458 | }; |
| 459 | |
| 460 | /// Return true if the specified value is loop invariant. |
| 461 | bool isLoopInvariant(const Value *V) const; |
| 462 | |
| 463 | /// Return true if all the operands of the specified instruction are loop |
| 464 | /// invariant. |
| 465 | bool hasLoopInvariantOperands(const Instruction *I) const; |
| 466 | |
| 467 | /// If the given value is an instruction inside of the loop and it can be |
| 468 | /// hoisted, do so to make it trivially loop-invariant. |
| 469 | /// Return true if the value after any hoisting is loop invariant. This |
| 470 | /// function can be used as a slightly more aggressive replacement for |
| 471 | /// isLoopInvariant. |
| 472 | /// |
| 473 | /// If InsertPt is specified, it is the point to hoist instructions to. |
| 474 | /// If null, the terminator of the loop preheader is used. |
| 475 | bool makeLoopInvariant(Value *V, bool &Changed, |
| 476 | Instruction *InsertPt = nullptr) const; |
| 477 | |
| 478 | /// If the given instruction is inside of the loop and it can be hoisted, do |
| 479 | /// so to make it trivially loop-invariant. |
| 480 | /// Return true if the instruction after any hoisting is loop invariant. This |
| 481 | /// function can be used as a slightly more aggressive replacement for |
| 482 | /// isLoopInvariant. |
| 483 | /// |
| 484 | /// If InsertPt is specified, it is the point to hoist instructions to. |
| 485 | /// If null, the terminator of the loop preheader is used. |
| 486 | /// |
| 487 | bool makeLoopInvariant(Instruction *I, bool &Changed, |
| 488 | Instruction *InsertPt = nullptr) const; |
| 489 | |
| 490 | /// Check to see if the loop has a canonical induction variable: an integer |
| 491 | /// recurrence that starts at 0 and increments by one each time through the |
| 492 | /// loop. If so, return the phi node that corresponds to it. |
| 493 | /// |
| 494 | /// The IndVarSimplify pass transforms loops to have a canonical induction |
| 495 | /// variable. |
| 496 | /// |
| 497 | PHINode *getCanonicalInductionVariable() const; |
| 498 | |
| 499 | /// Return true if the Loop is in LCSSA form. |
| 500 | bool isLCSSAForm(DominatorTree &DT) const; |
| 501 | |
| 502 | /// Return true if this Loop and all inner subloops are in LCSSA form. |
| 503 | bool isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const; |
| 504 | |
| 505 | /// Return true if the Loop is in the form that the LoopSimplify form |
| 506 | /// transforms loops to, which is sometimes called normal form. |
| 507 | bool isLoopSimplifyForm() const; |
| 508 | |
| 509 | /// Return true if the loop body is safe to clone in practice. |
| 510 | bool isSafeToClone() const; |
| 511 | |
| 512 | /// Returns true if the loop is annotated parallel. |
| 513 | /// |
| 514 | /// A parallel loop can be assumed to not contain any dependencies between |
| 515 | /// iterations by the compiler. That is, any loop-carried dependency checking |
| 516 | /// can be skipped completely when parallelizing the loop on the target |
| 517 | /// machine. Thus, if the parallel loop information originates from the |
| 518 | /// programmer, e.g. via the OpenMP parallel for pragma, it is the |
| 519 | /// programmer's responsibility to ensure there are no loop-carried |
| 520 | /// dependencies. The final execution order of the instructions across |
| 521 | /// iterations is not guaranteed, thus, the end result might or might not |
| 522 | /// implement actual concurrent execution of instructions across multiple |
| 523 | /// iterations. |
| 524 | bool isAnnotatedParallel() const; |
| 525 | |
| 526 | /// Return the llvm.loop loop id metadata node for this loop if it is present. |
| 527 | /// |
| 528 | /// If this loop contains the same llvm.loop metadata on each branch to the |
| 529 | /// header then the node is returned. If any latch instruction does not |
| 530 | /// contain llvm.loop or or if multiple latches contain different nodes then |
| 531 | /// 0 is returned. |
| 532 | MDNode *getLoopID() const; |
| 533 | /// Set the llvm.loop loop id metadata for this loop. |
| 534 | /// |
| 535 | /// The LoopID metadata node will be added to each terminator instruction in |
| 536 | /// the loop that branches to the loop header. |
| 537 | /// |
| 538 | /// The LoopID metadata node should have one or more operands and the first |
| 539 | /// operand should be the node itself. |
| 540 | void setLoopID(MDNode *LoopID) const; |
| 541 | |
| 542 | /// Add llvm.loop.unroll.disable to this loop's loop id metadata. |
| 543 | /// |
| 544 | /// Remove existing unroll metadata and add unroll disable metadata to |
| 545 | /// indicate the loop has already been unrolled. This prevents a loop |
| 546 | /// from being unrolled more than is directed by a pragma if the loop |
| 547 | /// unrolling pass is run more than once (which it generally is). |
| 548 | void setLoopAlreadyUnrolled(); |
| 549 | |
| 550 | /// Return true if no exit block for the loop has a predecessor that is |
| 551 | /// outside the loop. |
| 552 | bool hasDedicatedExits() const; |
| 553 | |
| 554 | /// Return all unique successor blocks of this loop. |
| 555 | /// These are the blocks _outside of the current loop_ which are branched to. |
| 556 | /// This assumes that loop exits are in canonical form, i.e. all exits are |
| 557 | /// dedicated exits. |
| 558 | void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const; |
| 559 | |
| 560 | /// If getUniqueExitBlocks would return exactly one block, return that block. |
| 561 | /// Otherwise return null. |
| 562 | BasicBlock *getUniqueExitBlock() const; |
| 563 | |
| 564 | void dump() const; |
| 565 | void dumpVerbose() const; |
| 566 | |
| 567 | /// Return the debug location of the start of this loop. |
| 568 | /// This looks for a BB terminating instruction with a known debug |
| 569 | /// location by looking at the preheader and header blocks. If it |
| 570 | /// cannot find a terminating instruction with location information, |
| 571 | /// it returns an unknown location. |
| 572 | DebugLoc getStartLoc() const; |
| 573 | |
| 574 | /// Return the source code span of the loop. |
| 575 | LocRange getLocRange() const; |
| 576 | |
| 577 | StringRef getName() const { |
| 578 | if (BasicBlock *Header = getHeader()) |
| 579 | if (Header->hasName()) |
| 580 | return Header->getName(); |
| 581 | return "<unnamed loop>"; |
| 582 | } |
| 583 | |
| 584 | private: |
| 585 | Loop() = default; |
| 586 | |
| 587 | friend class LoopInfoBase<BasicBlock, Loop>; |
| 588 | friend class LoopBase<BasicBlock, Loop>; |
| 589 | explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} |
| 590 | ~Loop() = default; |
| 591 | }; |
| 592 | |
| 593 | //===----------------------------------------------------------------------===// |
| 594 | /// This class builds and contains all of the top-level loop |
| 595 | /// structures in the specified function. |
| 596 | /// |
| 597 | |
| 598 | template <class BlockT, class LoopT> class LoopInfoBase { |
| 599 | // BBMap - Mapping of basic blocks to the inner most loop they occur in |
| 600 | DenseMap<const BlockT *, LoopT *> BBMap; |
| 601 | std::vector<LoopT *> TopLevelLoops; |
| 602 | BumpPtrAllocator LoopAllocator; |
| 603 | |
| 604 | friend class LoopBase<BlockT, LoopT>; |
| 605 | friend class LoopInfo; |
| 606 | |
| 607 | void operator=(const LoopInfoBase &) = delete; |
| 608 | LoopInfoBase(const LoopInfoBase &) = delete; |
| 609 | |
| 610 | public: |
| 611 | LoopInfoBase() {} |
| 612 | ~LoopInfoBase() { releaseMemory(); } |
| 613 | |
| 614 | LoopInfoBase(LoopInfoBase &&Arg) |
| 615 | : BBMap(std::move(Arg.BBMap)), |
| 616 | TopLevelLoops(std::move(Arg.TopLevelLoops)), |
| 617 | LoopAllocator(std::move(Arg.LoopAllocator)) { |
| 618 | // We have to clear the arguments top level loops as we've taken ownership. |
| 619 | Arg.TopLevelLoops.clear(); |
| 620 | } |
| 621 | LoopInfoBase &operator=(LoopInfoBase &&RHS) { |
| 622 | BBMap = std::move(RHS.BBMap); |
| 623 | |
| 624 | for (auto *L : TopLevelLoops) |
| 625 | L->~LoopT(); |
| 626 | |
| 627 | TopLevelLoops = std::move(RHS.TopLevelLoops); |
| 628 | LoopAllocator = std::move(RHS.LoopAllocator); |
| 629 | RHS.TopLevelLoops.clear(); |
| 630 | return *this; |
| 631 | } |
| 632 | |
| 633 | void releaseMemory() { |
| 634 | BBMap.clear(); |
| 635 | |
| 636 | for (auto *L : TopLevelLoops) |
| 637 | L->~LoopT(); |
| 638 | TopLevelLoops.clear(); |
| 639 | LoopAllocator.Reset(); |
| 640 | } |
| 641 | |
| 642 | template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) { |
| 643 | LoopT *Storage = LoopAllocator.Allocate<LoopT>(); |
| 644 | return new (Storage) LoopT(std::forward<ArgsTy>(Args)...); |
| 645 | } |
| 646 | |
| 647 | /// iterator/begin/end - The interface to the top-level loops in the current |
| 648 | /// function. |
| 649 | /// |
| 650 | typedef typename std::vector<LoopT *>::const_iterator iterator; |
| 651 | typedef |
| 652 | typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; |
| 653 | iterator begin() const { return TopLevelLoops.begin(); } |
| 654 | iterator end() const { return TopLevelLoops.end(); } |
| 655 | reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } |
| 656 | reverse_iterator rend() const { return TopLevelLoops.rend(); } |
| 657 | bool empty() const { return TopLevelLoops.empty(); } |
| 658 | |
| 659 | /// Return all of the loops in the function in preorder across the loop |
| 660 | /// nests, with siblings in forward program order. |
| 661 | /// |
| 662 | /// Note that because loops form a forest of trees, preorder is equivalent to |
| 663 | /// reverse postorder. |
| 664 | SmallVector<LoopT *, 4> getLoopsInPreorder(); |
| 665 | |
| 666 | /// Return all of the loops in the function in preorder across the loop |
| 667 | /// nests, with siblings in *reverse* program order. |
| 668 | /// |
| 669 | /// Note that because loops form a forest of trees, preorder is equivalent to |
| 670 | /// reverse postorder. |
| 671 | /// |
| 672 | /// Also note that this is *not* a reverse preorder. Only the siblings are in |
| 673 | /// reverse program order. |
| 674 | SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder(); |
| 675 | |
| 676 | /// Return the inner most loop that BB lives in. If a basic block is in no |
| 677 | /// loop (for example the entry node), null is returned. |
| 678 | LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } |
| 679 | |
| 680 | /// Same as getLoopFor. |
| 681 | const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); } |
| 682 | |
| 683 | /// Return the loop nesting level of the specified block. A depth of 0 means |
| 684 | /// the block is not inside any loop. |
| 685 | unsigned getLoopDepth(const BlockT *BB) const { |
| 686 | const LoopT *L = getLoopFor(BB); |
| 687 | return L ? L->getLoopDepth() : 0; |
| 688 | } |
| 689 | |
| 690 | // True if the block is a loop header node |
| 691 | bool isLoopHeader(const BlockT *BB) const { |
| 692 | const LoopT *L = getLoopFor(BB); |
| 693 | return L && L->getHeader() == BB; |
| 694 | } |
| 695 | |
| 696 | /// This removes the specified top-level loop from this loop info object. |
| 697 | /// The loop is not deleted, as it will presumably be inserted into |
| 698 | /// another loop. |
| 699 | LoopT *removeLoop(iterator I) { |
| 700 | assert(I != end() && "Cannot remove end iterator!"); |
| 701 | LoopT *L = *I; |
| 702 | assert(!L->getParentLoop() && "Not a top-level loop!"); |
| 703 | TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin())); |
| 704 | return L; |
| 705 | } |
| 706 | |
| 707 | /// Change the top-level loop that contains BB to the specified loop. |
| 708 | /// This should be used by transformations that restructure the loop hierarchy |
| 709 | /// tree. |
| 710 | void changeLoopFor(BlockT *BB, LoopT *L) { |
| 711 | if (!L) { |
| 712 | BBMap.erase(BB); |
| 713 | return; |
| 714 | } |
| 715 | BBMap[BB] = L; |
| 716 | } |
| 717 | |
| 718 | /// Replace the specified loop in the top-level loops list with the indicated |
| 719 | /// loop. |
| 720 | void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { |
| 721 | auto I = find(TopLevelLoops, OldLoop); |
| 722 | assert(I != TopLevelLoops.end() && "Old loop not at top level!"); |
| 723 | *I = NewLoop; |
| 724 | assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && |
| 725 | "Loops already embedded into a subloop!"); |
| 726 | } |
| 727 | |
| 728 | /// This adds the specified loop to the collection of top-level loops. |
| 729 | void addTopLevelLoop(LoopT *New) { |
| 730 | assert(!New->getParentLoop() && "Loop already in subloop!"); |
| 731 | TopLevelLoops.push_back(New); |
| 732 | } |
| 733 | |
| 734 | /// This method completely removes BB from all data structures, |
| 735 | /// including all of the Loop objects it is nested in and our mapping from |
| 736 | /// BasicBlocks to loops. |
| 737 | void removeBlock(BlockT *BB) { |
| 738 | auto I = BBMap.find(BB); |
| 739 | if (I != BBMap.end()) { |
| 740 | for (LoopT *L = I->second; L; L = L->getParentLoop()) |
| 741 | L->removeBlockFromLoop(BB); |
| 742 | |
| 743 | BBMap.erase(I); |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | // Internals |
| 748 | |
| 749 | static bool isNotAlreadyContainedIn(const LoopT *SubLoop, |
| 750 | const LoopT *ParentLoop) { |
| 751 | if (!SubLoop) |
| 752 | return true; |
| 753 | if (SubLoop == ParentLoop) |
| 754 | return false; |
| 755 | return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); |
| 756 | } |
| 757 | |
| 758 | /// Create the loop forest using a stable algorithm. |
| 759 | void analyze(const DominatorTreeBase<BlockT, false> &DomTree); |
| 760 | |
| 761 | // Debugging |
| 762 | void print(raw_ostream &OS) const; |
| 763 | |
| 764 | void verify(const DominatorTreeBase<BlockT, false> &DomTree) const; |
| 765 | |
| 766 | /// Destroy a loop that has been removed from the `LoopInfo` nest. |
| 767 | /// |
| 768 | /// This runs the destructor of the loop object making it invalid to |
| 769 | /// reference afterward. The memory is retained so that the *pointer* to the |
| 770 | /// loop remains valid. |
| 771 | /// |
| 772 | /// The caller is responsible for removing this loop from the loop nest and |
| 773 | /// otherwise disconnecting it from the broader `LoopInfo` data structures. |
| 774 | /// Callers that don't naturally handle this themselves should probably call |
| 775 | /// `erase' instead. |
| 776 | void destroy(LoopT *L) { |
| 777 | L->~LoopT(); |
| 778 | |
| 779 | // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons |
| 780 | // \c L, but the pointer remains valid for non-dereferencing uses. |
| 781 | LoopAllocator.Deallocate(L); |
| 782 | } |
| 783 | }; |
| 784 | |
| 785 | // Implementation in LoopInfoImpl.h |
| 786 | extern template class LoopInfoBase<BasicBlock, Loop>; |
| 787 | |
| 788 | class LoopInfo : public LoopInfoBase<BasicBlock, Loop> { |
| 789 | typedef LoopInfoBase<BasicBlock, Loop> BaseT; |
| 790 | |
| 791 | friend class LoopBase<BasicBlock, Loop>; |
| 792 | |
| 793 | void operator=(const LoopInfo &) = delete; |
| 794 | LoopInfo(const LoopInfo &) = delete; |
| 795 | |
| 796 | public: |
| 797 | LoopInfo() {} |
| 798 | explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree); |
| 799 | |
| 800 | LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {} |
| 801 | LoopInfo &operator=(LoopInfo &&RHS) { |
| 802 | BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); |
| 803 | return *this; |
| 804 | } |
| 805 | |
| 806 | /// Handle invalidation explicitly. |
| 807 | bool invalidate(Function &F, const PreservedAnalyses &PA, |
| 808 | FunctionAnalysisManager::Invalidator &); |
| 809 | |
| 810 | // Most of the public interface is provided via LoopInfoBase. |
| 811 | |
| 812 | /// Update LoopInfo after removing the last backedge from a loop. This updates |
| 813 | /// the loop forest and parent loops for each block so that \c L is no longer |
| 814 | /// referenced, but does not actually delete \c L immediately. The pointer |
| 815 | /// will remain valid until this LoopInfo's memory is released. |
| 816 | void erase(Loop *L); |
| 817 | |
| 818 | /// Returns true if replacing From with To everywhere is guaranteed to |
| 819 | /// preserve LCSSA form. |
| 820 | bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { |
| 821 | // Preserving LCSSA form is only problematic if the replacing value is an |
| 822 | // instruction. |
| 823 | Instruction *I = dyn_cast<Instruction>(To); |
| 824 | if (!I) |
| 825 | return true; |
| 826 | // If both instructions are defined in the same basic block then replacement |
| 827 | // cannot break LCSSA form. |
| 828 | if (I->getParent() == From->getParent()) |
| 829 | return true; |
| 830 | // If the instruction is not defined in a loop then it can safely replace |
| 831 | // anything. |
| 832 | Loop *ToLoop = getLoopFor(I->getParent()); |
| 833 | if (!ToLoop) |
| 834 | return true; |
| 835 | // If the replacing instruction is defined in the same loop as the original |
| 836 | // instruction, or in a loop that contains it as an inner loop, then using |
| 837 | // it as a replacement will not break LCSSA form. |
| 838 | return ToLoop->contains(getLoopFor(From->getParent())); |
| 839 | } |
| 840 | |
| 841 | /// Checks if moving a specific instruction can break LCSSA in any loop. |
| 842 | /// |
| 843 | /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, |
| 844 | /// assuming that the function containing \p Inst and \p NewLoc is currently |
| 845 | /// in LCSSA form. |
| 846 | bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { |
| 847 | assert(Inst->getFunction() == NewLoc->getFunction() && |
| 848 | "Can't reason about IPO!"); |
| 849 | |
| 850 | auto *OldBB = Inst->getParent(); |
| 851 | auto *NewBB = NewLoc->getParent(); |
| 852 | |
| 853 | // Movement within the same loop does not break LCSSA (the equality check is |
| 854 | // to avoid doing a hashtable lookup in case of intra-block movement). |
| 855 | if (OldBB == NewBB) |
| 856 | return true; |
| 857 | |
| 858 | auto *OldLoop = getLoopFor(OldBB); |
| 859 | auto *NewLoop = getLoopFor(NewBB); |
| 860 | |
| 861 | if (OldLoop == NewLoop) |
| 862 | return true; |
| 863 | |
| 864 | // Check if Outer contains Inner; with the null loop counting as the |
| 865 | // "outermost" loop. |
| 866 | auto Contains = [](const Loop *Outer, const Loop *Inner) { |
| 867 | return !Outer || Outer->contains(Inner); |
| 868 | }; |
| 869 | |
| 870 | // To check that the movement of Inst to before NewLoc does not break LCSSA, |
| 871 | // we need to check two sets of uses for possible LCSSA violations at |
| 872 | // NewLoc: the users of NewInst, and the operands of NewInst. |
| 873 | |
| 874 | // If we know we're hoisting Inst out of an inner loop to an outer loop, |
| 875 | // then the uses *of* Inst don't need to be checked. |
| 876 | |
| 877 | if (!Contains(NewLoop, OldLoop)) { |
| 878 | for (Use &U : Inst->uses()) { |
| 879 | auto *UI = cast<Instruction>(U.getUser()); |
| 880 | auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U) |
| 881 | : UI->getParent(); |
| 882 | if (UBB != NewBB && getLoopFor(UBB) != NewLoop) |
| 883 | return false; |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | // If we know we're sinking Inst from an outer loop into an inner loop, then |
| 888 | // the *operands* of Inst don't need to be checked. |
| 889 | |
| 890 | if (!Contains(OldLoop, NewLoop)) { |
| 891 | // See below on why we can't handle phi nodes here. |
| 892 | if (isa<PHINode>(Inst)) |
| 893 | return false; |
| 894 | |
| 895 | for (Use &U : Inst->operands()) { |
| 896 | auto *DefI = dyn_cast<Instruction>(U.get()); |
| 897 | if (!DefI) |
| 898 | return false; |
| 899 | |
| 900 | // This would need adjustment if we allow Inst to be a phi node -- the |
| 901 | // new use block won't simply be NewBB. |
| 902 | |
| 903 | auto *DefBlock = DefI->getParent(); |
| 904 | if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) |
| 905 | return false; |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | return true; |
| 910 | } |
| 911 | }; |
| 912 | |
| 913 | // Allow clients to walk the list of nested loops... |
| 914 | template <> struct GraphTraits<const Loop *> { |
| 915 | typedef const Loop *NodeRef; |
| 916 | typedef LoopInfo::iterator ChildIteratorType; |
| 917 | |
| 918 | static NodeRef getEntryNode(const Loop *L) { return L; } |
| 919 | static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } |
| 920 | static ChildIteratorType child_end(NodeRef N) { return N->end(); } |
| 921 | }; |
| 922 | |
| 923 | template <> struct GraphTraits<Loop *> { |
| 924 | typedef Loop *NodeRef; |
| 925 | typedef LoopInfo::iterator ChildIteratorType; |
| 926 | |
| 927 | static NodeRef getEntryNode(Loop *L) { return L; } |
| 928 | static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } |
| 929 | static ChildIteratorType child_end(NodeRef N) { return N->end(); } |
| 930 | }; |
| 931 | |
| 932 | /// \brief Analysis pass that exposes the \c LoopInfo for a function. |
| 933 | class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> { |
| 934 | friend AnalysisInfoMixin<LoopAnalysis>; |
| 935 | static AnalysisKey Key; |
| 936 | |
| 937 | public: |
| 938 | typedef LoopInfo Result; |
| 939 | |
| 940 | LoopInfo run(Function &F, FunctionAnalysisManager &AM); |
| 941 | }; |
| 942 | |
| 943 | /// \brief Printer pass for the \c LoopAnalysis results. |
| 944 | class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> { |
| 945 | raw_ostream &OS; |
| 946 | |
| 947 | public: |
| 948 | explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} |
| 949 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
| 950 | }; |
| 951 | |
| 952 | /// \brief Verifier pass for the \c LoopAnalysis results. |
| 953 | struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> { |
| 954 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
| 955 | }; |
| 956 | |
| 957 | /// \brief The legacy pass manager's analysis pass to compute loop information. |
| 958 | class LoopInfoWrapperPass : public FunctionPass { |
| 959 | LoopInfo LI; |
| 960 | |
| 961 | public: |
| 962 | static char ID; // Pass identification, replacement for typeid |
| 963 | |
| 964 | LoopInfoWrapperPass() : FunctionPass(ID) { |
| 965 | initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 966 | } |
| 967 | |
| 968 | LoopInfo &getLoopInfo() { return LI; } |
| 969 | const LoopInfo &getLoopInfo() const { return LI; } |
| 970 | |
| 971 | /// \brief Calculate the natural loop information for a given function. |
| 972 | bool runOnFunction(Function &F) override; |
| 973 | |
| 974 | void verifyAnalysis() const override; |
| 975 | |
| 976 | void releaseMemory() override { LI.releaseMemory(); } |
| 977 | |
| 978 | void print(raw_ostream &O, const Module *M = nullptr) const override; |
| 979 | |
| 980 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 981 | }; |
| 982 | |
| 983 | /// Function to print a loop's contents as LLVM's text IR assembly. |
| 984 | void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = ""); |
| 985 | |
| 986 | } // End llvm namespace |
| 987 | |
| 988 | #endif |