blob: b97ea2cd9aeefaabff84ce0d103a33729775f23f [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8///
9/// \file
Andrew Scullcdfcccc2018-10-05 20:58:37 +010010/// This file implements a class to represent arbitrary precision
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010011/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <string>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
Andrew Scullcdfcccc2018-10-05 20:58:37 +010033template <typename T> class Optional;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020034template <typename T> struct DenseMapInfo;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010035
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
Andrew Scullcdfcccc2018-10-05 20:58:37 +010044/// Class for arbitrary precision integers.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010045///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69///
70class LLVM_NODISCARD APInt {
71public:
72 typedef uint64_t WordType;
73
74 /// This enum is used to hold the constants we needed for APInt.
75 enum : unsigned {
76 /// Byte size of a word.
77 APINT_WORD_SIZE = sizeof(WordType),
78 /// Bits in a word.
79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
80 };
81
Andrew Scullcdfcccc2018-10-05 20:58:37 +010082 enum class Rounding {
83 DOWN,
84 TOWARD_ZERO,
85 UP,
86 };
87
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020088 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010089
90private:
91 /// This union is used to store the integer value. When the
92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 union {
94 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
95 uint64_t *pVal; ///< Used to store the >64 bits integer value.
96 } U;
97
98 unsigned BitWidth; ///< The number of bits in this APInt.
99
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200100 friend struct DenseMapInfo<APInt>;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100101
102 friend class APSInt;
103
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100104 /// Fast internal constructor
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100105 ///
106 /// This constructor is used only internally for speed of construction of
107 /// temporaries. It is unsafe for general use so it is not public.
108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109 U.pVal = val;
110 }
111
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100112 /// Determine if this APInt just has one word to store value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100113 ///
114 /// \returns true if the number of bits <= 64, false otherwise.
115 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
116
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100117 /// Determine which word a bit is in.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100118 ///
119 /// \returns the word position for the specified bit position.
120 static unsigned whichWord(unsigned bitPosition) {
121 return bitPosition / APINT_BITS_PER_WORD;
122 }
123
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100124 /// Determine which bit in a word a bit is in.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100125 ///
126 /// \returns the bit position in a word for the specified bit position
127 /// in the APInt.
128 static unsigned whichBit(unsigned bitPosition) {
129 return bitPosition % APINT_BITS_PER_WORD;
130 }
131
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100132 /// Get a single bit mask.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100133 ///
134 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
135 /// This method generates and returns a uint64_t (word) mask for a single
136 /// bit at a specific bit position. This is used to mask the bit in the
137 /// corresponding word.
138 static uint64_t maskBit(unsigned bitPosition) {
139 return 1ULL << whichBit(bitPosition);
140 }
141
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100142 /// Clear unused high order bits
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100143 ///
144 /// This method is used internally to clear the top "N" bits in the high order
145 /// word that are not used by the APInt. This is needed after the most
146 /// significant word is assigned a value to ensure that those bits are
147 /// zero'd out.
148 APInt &clearUnusedBits() {
149 // Compute how many bits are used in the final word
150 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
151
152 // Mask out the high bits.
Andrew Scull0372a572018-11-16 15:47:06 +0000153 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100154 if (isSingleWord())
155 U.VAL &= mask;
156 else
157 U.pVal[getNumWords() - 1] &= mask;
158 return *this;
159 }
160
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100161 /// Get the word corresponding to a bit position
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100162 /// \returns the corresponding word for the specified bit position.
163 uint64_t getWord(unsigned bitPosition) const {
164 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
165 }
166
167 /// Utility method to change the bit width of this APInt to new bit width,
168 /// allocating and/or deallocating as necessary. There is no guarantee on the
169 /// value of any bits upon return. Caller should populate the bits after.
170 void reallocate(unsigned NewBitWidth);
171
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100172 /// Convert a char array into an APInt
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100173 ///
174 /// \param radix 2, 8, 10, 16, or 36
175 /// Converts a string into a number. The string must be non-empty
176 /// and well-formed as a number of the given base. The bit-width
177 /// must be sufficient to hold the result.
178 ///
179 /// This is used by the constructors that take string arguments.
180 ///
181 /// StringRef::getAsInteger is superficially similar but (1) does
182 /// not assume that the string is well-formed and (2) grows the
183 /// result to hold the input.
184 void fromString(unsigned numBits, StringRef str, uint8_t radix);
185
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100186 /// An internal division function for dividing APInts.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100187 ///
188 /// This is used by the toString method to divide by the radix. It simply
189 /// provides a more convenient form of divide for internal use since KnuthDiv
190 /// has specific constraints on its inputs. If those constraints are not met
191 /// then it provides a simpler form of divide.
192 static void divide(const WordType *LHS, unsigned lhsWords,
193 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
194 WordType *Remainder);
195
196 /// out-of-line slow case for inline constructor
197 void initSlowCase(uint64_t val, bool isSigned);
198
199 /// shared code between two array constructors
200 void initFromArray(ArrayRef<uint64_t> array);
201
202 /// out-of-line slow case for inline copy constructor
203 void initSlowCase(const APInt &that);
204
205 /// out-of-line slow case for shl
206 void shlSlowCase(unsigned ShiftAmt);
207
208 /// out-of-line slow case for lshr.
209 void lshrSlowCase(unsigned ShiftAmt);
210
211 /// out-of-line slow case for ashr.
212 void ashrSlowCase(unsigned ShiftAmt);
213
214 /// out-of-line slow case for operator=
215 void AssignSlowCase(const APInt &RHS);
216
217 /// out-of-line slow case for operator==
218 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
219
220 /// out-of-line slow case for countLeadingZeros
221 unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
222
223 /// out-of-line slow case for countLeadingOnes.
224 unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
225
226 /// out-of-line slow case for countTrailingZeros.
227 unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
228
229 /// out-of-line slow case for countTrailingOnes
230 unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
231
232 /// out-of-line slow case for countPopulation
233 unsigned countPopulationSlowCase() const LLVM_READONLY;
234
235 /// out-of-line slow case for intersects.
236 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
237
238 /// out-of-line slow case for isSubsetOf.
239 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
240
241 /// out-of-line slow case for setBits.
242 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
243
244 /// out-of-line slow case for flipAllBits.
245 void flipAllBitsSlowCase();
246
247 /// out-of-line slow case for operator&=.
248 void AndAssignSlowCase(const APInt& RHS);
249
250 /// out-of-line slow case for operator|=.
251 void OrAssignSlowCase(const APInt& RHS);
252
253 /// out-of-line slow case for operator^=.
254 void XorAssignSlowCase(const APInt& RHS);
255
256 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
257 /// to, or greater than RHS.
258 int compare(const APInt &RHS) const LLVM_READONLY;
259
260 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
261 /// to, or greater than RHS.
262 int compareSigned(const APInt &RHS) const LLVM_READONLY;
263
264public:
265 /// \name Constructors
266 /// @{
267
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100268 /// Create a new APInt of numBits width, initialized as val.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100269 ///
270 /// If isSigned is true then val is treated as if it were a signed value
271 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
272 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
273 /// the range of val are zero filled).
274 ///
275 /// \param numBits the bit width of the constructed APInt
276 /// \param val the initial value of the APInt
277 /// \param isSigned how to treat signedness of val
278 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
279 : BitWidth(numBits) {
280 assert(BitWidth && "bitwidth too small");
281 if (isSingleWord()) {
282 U.VAL = val;
283 clearUnusedBits();
284 } else {
285 initSlowCase(val, isSigned);
286 }
287 }
288
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100289 /// Construct an APInt of numBits width, initialized as bigVal[].
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100290 ///
291 /// Note that bigVal.size() can be smaller or larger than the corresponding
292 /// bit width but any extraneous bits will be dropped.
293 ///
294 /// \param numBits the bit width of the constructed APInt
295 /// \param bigVal a sequence of words to form the initial value of the APInt
296 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
297
298 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
299 /// deprecated because this constructor is prone to ambiguity with the
300 /// APInt(unsigned, uint64_t, bool) constructor.
301 ///
302 /// If this overload is ever deleted, care should be taken to prevent calls
303 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
304 /// constructor.
305 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
306
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100307 /// Construct an APInt from a string representation.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100308 ///
309 /// This constructor interprets the string \p str in the given radix. The
310 /// interpretation stops when the first character that is not suitable for the
311 /// radix is encountered, or the end of the string. Acceptable radix values
312 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
313 /// string to require more bits than numBits.
314 ///
315 /// \param numBits the bit width of the constructed APInt
316 /// \param str the string to be interpreted
317 /// \param radix the radix to use for the conversion
318 APInt(unsigned numBits, StringRef str, uint8_t radix);
319
320 /// Simply makes *this a copy of that.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100321 /// Copy Constructor.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100322 APInt(const APInt &that) : BitWidth(that.BitWidth) {
323 if (isSingleWord())
324 U.VAL = that.U.VAL;
325 else
326 initSlowCase(that);
327 }
328
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100329 /// Move Constructor.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100330 APInt(APInt &&that) : BitWidth(that.BitWidth) {
331 memcpy(&U, &that.U, sizeof(U));
332 that.BitWidth = 0;
333 }
334
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100335 /// Destructor.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100336 ~APInt() {
337 if (needsCleanup())
338 delete[] U.pVal;
339 }
340
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100341 /// Default constructor that creates an uninteresting APInt
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100342 /// representing a 1-bit zero value.
343 ///
344 /// This is useful for object deserialization (pair this with the static
345 /// method Read).
346 explicit APInt() : BitWidth(1) { U.VAL = 0; }
347
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100348 /// Returns whether this instance allocated memory.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100349 bool needsCleanup() const { return !isSingleWord(); }
350
351 /// Used to insert APInt objects, or objects that contain APInt objects, into
352 /// FoldingSets.
353 void Profile(FoldingSetNodeID &id) const;
354
355 /// @}
356 /// \name Value Tests
357 /// @{
358
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100359 /// Determine sign of this APInt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100360 ///
361 /// This tests the high bit of this APInt to determine if it is set.
362 ///
363 /// \returns true if this APInt is negative, false otherwise
364 bool isNegative() const { return (*this)[BitWidth - 1]; }
365
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100366 /// Determine if this APInt Value is non-negative (>= 0)
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100367 ///
368 /// This tests the high bit of the APInt to determine if it is unset.
369 bool isNonNegative() const { return !isNegative(); }
370
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100371 /// Determine if sign bit of this APInt is set.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100372 ///
373 /// This tests the high bit of this APInt to determine if it is set.
374 ///
375 /// \returns true if this APInt has its sign bit set, false otherwise.
376 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100378 /// Determine if sign bit of this APInt is clear.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100379 ///
380 /// This tests the high bit of this APInt to determine if it is clear.
381 ///
382 /// \returns true if this APInt has its sign bit clear, false otherwise.
383 bool isSignBitClear() const { return !isSignBitSet(); }
384
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100385 /// Determine if this APInt Value is positive.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100386 ///
387 /// This tests if the value of this APInt is positive (> 0). Note
388 /// that 0 is not a positive value.
389 ///
390 /// \returns true if this APInt is positive.
391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200393 /// Determine if this APInt Value is non-positive (<= 0).
394 ///
395 /// \returns true if this APInt is non-positive.
396 bool isNonPositive() const { return !isStrictlyPositive(); }
397
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100398 /// Determine if all bits are set
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100399 ///
400 /// This checks to see if the value has all bits of the APInt are set or not.
401 bool isAllOnesValue() const {
402 if (isSingleWord())
Andrew Scull0372a572018-11-16 15:47:06 +0000403 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100404 return countTrailingOnesSlowCase() == BitWidth;
405 }
406
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100407 /// Determine if all bits are clear
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100408 ///
409 /// This checks to see if the value has all bits of the APInt are clear or
410 /// not.
411 bool isNullValue() const { return !*this; }
412
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100413 /// Determine if this is a value of 1.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100414 ///
415 /// This checks to see if the value of this APInt is one.
416 bool isOneValue() const {
417 if (isSingleWord())
418 return U.VAL == 1;
419 return countLeadingZerosSlowCase() == BitWidth - 1;
420 }
421
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100422 /// Determine if this is the largest unsigned value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100423 ///
424 /// This checks to see if the value of this APInt is the maximum unsigned
425 /// value for the APInt's bit width.
426 bool isMaxValue() const { return isAllOnesValue(); }
427
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100428 /// Determine if this is the largest signed value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100429 ///
430 /// This checks to see if the value of this APInt is the maximum signed
431 /// value for the APInt's bit width.
432 bool isMaxSignedValue() const {
433 if (isSingleWord())
434 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
435 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
436 }
437
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100438 /// Determine if this is the smallest unsigned value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100439 ///
440 /// This checks to see if the value of this APInt is the minimum unsigned
441 /// value for the APInt's bit width.
442 bool isMinValue() const { return isNullValue(); }
443
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100444 /// Determine if this is the smallest signed value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100445 ///
446 /// This checks to see if the value of this APInt is the minimum signed
447 /// value for the APInt's bit width.
448 bool isMinSignedValue() const {
449 if (isSingleWord())
450 return U.VAL == (WordType(1) << (BitWidth - 1));
451 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
452 }
453
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100454 /// Check if this APInt has an N-bits unsigned integer value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100455 bool isIntN(unsigned N) const {
456 assert(N && "N == 0 ???");
457 return getActiveBits() <= N;
458 }
459
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100460 /// Check if this APInt has an N-bits signed integer value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100461 bool isSignedIntN(unsigned N) const {
462 assert(N && "N == 0 ???");
463 return getMinSignedBits() <= N;
464 }
465
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100466 /// Check if this APInt's value is a power of two greater than zero.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100467 ///
468 /// \returns true if the argument APInt value is a power of two > 0.
469 bool isPowerOf2() const {
470 if (isSingleWord())
471 return isPowerOf2_64(U.VAL);
472 return countPopulationSlowCase() == 1;
473 }
474
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100475 /// Check if the APInt's value is returned by getSignMask.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100476 ///
477 /// \returns true if this is the value returned by getSignMask.
478 bool isSignMask() const { return isMinSignedValue(); }
479
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100480 /// Convert APInt to a boolean value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100481 ///
482 /// This converts the APInt to a boolean value as a test against zero.
483 bool getBoolValue() const { return !!*this; }
484
485 /// If this value is smaller than the specified limit, return it, otherwise
486 /// return the limit value. This causes the value to saturate to the limit.
487 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
488 return ugt(Limit) ? Limit : getZExtValue();
489 }
490
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100491 /// Check if the APInt consists of a repeated bit pattern.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100492 ///
493 /// e.g. 0x01010101 satisfies isSplat(8).
494 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
495 /// width without remainder.
496 bool isSplat(unsigned SplatSizeInBits) const;
497
498 /// \returns true if this APInt value is a sequence of \param numBits ones
499 /// starting at the least significant bit with the remainder zero.
500 bool isMask(unsigned numBits) const {
501 assert(numBits != 0 && "numBits must be non-zero");
502 assert(numBits <= BitWidth && "numBits out of range");
503 if (isSingleWord())
Andrew Scull0372a572018-11-16 15:47:06 +0000504 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100505 unsigned Ones = countTrailingOnesSlowCase();
506 return (numBits == Ones) &&
507 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
508 }
509
510 /// \returns true if this APInt is a non-empty sequence of ones starting at
511 /// the least significant bit with the remainder zero.
512 /// Ex. isMask(0x0000FFFFU) == true.
513 bool isMask() const {
514 if (isSingleWord())
515 return isMask_64(U.VAL);
516 unsigned Ones = countTrailingOnesSlowCase();
517 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
518 }
519
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100520 /// Return true if this APInt value contains a sequence of ones with
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100521 /// the remainder zero.
522 bool isShiftedMask() const {
523 if (isSingleWord())
524 return isShiftedMask_64(U.VAL);
525 unsigned Ones = countPopulationSlowCase();
526 unsigned LeadZ = countLeadingZerosSlowCase();
527 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
528 }
529
530 /// @}
531 /// \name Value Generators
532 /// @{
533
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100534 /// Gets maximum unsigned value of APInt for specific bit width.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100535 static APInt getMaxValue(unsigned numBits) {
536 return getAllOnesValue(numBits);
537 }
538
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100539 /// Gets maximum signed value of APInt for a specific bit width.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100540 static APInt getSignedMaxValue(unsigned numBits) {
541 APInt API = getAllOnesValue(numBits);
542 API.clearBit(numBits - 1);
543 return API;
544 }
545
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100546 /// Gets minimum unsigned value of APInt for a specific bit width.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100547 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
548
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100549 /// Gets minimum signed value of APInt for a specific bit width.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100550 static APInt getSignedMinValue(unsigned numBits) {
551 APInt API(numBits, 0);
552 API.setBit(numBits - 1);
553 return API;
554 }
555
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100556 /// Get the SignMask for a specific bit width.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100557 ///
558 /// This is just a wrapper function of getSignedMinValue(), and it helps code
559 /// readability when we want to get a SignMask.
560 static APInt getSignMask(unsigned BitWidth) {
561 return getSignedMinValue(BitWidth);
562 }
563
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100564 /// Get the all-ones value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100565 ///
566 /// \returns the all-ones value for an APInt of the specified bit-width.
567 static APInt getAllOnesValue(unsigned numBits) {
Andrew Scull0372a572018-11-16 15:47:06 +0000568 return APInt(numBits, WORDTYPE_MAX, true);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100569 }
570
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100571 /// Get the '0' value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100572 ///
573 /// \returns the '0' value for an APInt of the specified bit-width.
574 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
575
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100576 /// Compute an APInt containing numBits highbits from this APInt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100577 ///
578 /// Get an APInt with the same BitWidth as this APInt, just zero mask
579 /// the low bits and right shift to the least significant bit.
580 ///
581 /// \returns the high "numBits" bits of this APInt.
582 APInt getHiBits(unsigned numBits) const;
583
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100584 /// Compute an APInt containing numBits lowbits from this APInt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100585 ///
586 /// Get an APInt with the same BitWidth as this APInt, just zero mask
587 /// the high bits.
588 ///
589 /// \returns the low "numBits" bits of this APInt.
590 APInt getLoBits(unsigned numBits) const;
591
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100592 /// Return an APInt with exactly one bit set in the result.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100593 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
594 APInt Res(numBits, 0);
595 Res.setBit(BitNo);
596 return Res;
597 }
598
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100599 /// Get a value with a block of bits set.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100600 ///
601 /// Constructs an APInt value that has a contiguous range of bits set. The
602 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
603 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200604 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
605 /// \p hiBit.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100606 ///
607 /// \param numBits the intended bit width of the result
608 /// \param loBit the index of the lowest bit set.
609 /// \param hiBit the index of the highest bit set.
610 ///
611 /// \returns An APInt value with the requested bits set.
612 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200613 assert(loBit <= hiBit && "loBit greater than hiBit");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100614 APInt Res(numBits, 0);
615 Res.setBits(loBit, hiBit);
616 return Res;
617 }
618
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200619 /// Wrap version of getBitsSet.
620 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
621 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
622 /// with parameters (32, 28, 4), you would get 0xF000000F.
623 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
624 /// set.
625 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
626 unsigned hiBit) {
627 APInt Res(numBits, 0);
628 Res.setBitsWithWrap(loBit, hiBit);
629 return Res;
630 }
631
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100632 /// Get a value with upper bits starting at loBit set.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100633 ///
634 /// Constructs an APInt value that has a contiguous range of bits set. The
635 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
636 /// bits will be zero. For example, with parameters(32, 12) you would get
637 /// 0xFFFFF000.
638 ///
639 /// \param numBits the intended bit width of the result
640 /// \param loBit the index of the lowest bit to set.
641 ///
642 /// \returns An APInt value with the requested bits set.
643 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
644 APInt Res(numBits, 0);
645 Res.setBitsFrom(loBit);
646 return Res;
647 }
648
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100649 /// Get a value with high bits set
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100650 ///
651 /// Constructs an APInt value that has the top hiBitsSet bits set.
652 ///
653 /// \param numBits the bitwidth of the result
654 /// \param hiBitsSet the number of high-order bits set in the result.
655 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
656 APInt Res(numBits, 0);
657 Res.setHighBits(hiBitsSet);
658 return Res;
659 }
660
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100661 /// Get a value with low bits set
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100662 ///
663 /// Constructs an APInt value that has the bottom loBitsSet bits set.
664 ///
665 /// \param numBits the bitwidth of the result
666 /// \param loBitsSet the number of low-order bits set in the result.
667 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
668 APInt Res(numBits, 0);
669 Res.setLowBits(loBitsSet);
670 return Res;
671 }
672
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100673 /// Return a value containing V broadcasted over NewLen bits.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100674 static APInt getSplat(unsigned NewLen, const APInt &V);
675
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100676 /// Determine if two APInts have the same value, after zero-extending
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100677 /// one of them (if needed!) to ensure that the bit-widths match.
678 static bool isSameValue(const APInt &I1, const APInt &I2) {
679 if (I1.getBitWidth() == I2.getBitWidth())
680 return I1 == I2;
681
682 if (I1.getBitWidth() > I2.getBitWidth())
683 return I1 == I2.zext(I1.getBitWidth());
684
685 return I1.zext(I2.getBitWidth()) == I2;
686 }
687
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100688 /// Overload to compute a hash_code for an APInt value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100689 friend hash_code hash_value(const APInt &Arg);
690
691 /// This function returns a pointer to the internal storage of the APInt.
692 /// This is useful for writing out the APInt in binary form without any
693 /// conversions.
694 const uint64_t *getRawData() const {
695 if (isSingleWord())
696 return &U.VAL;
697 return &U.pVal[0];
698 }
699
700 /// @}
701 /// \name Unary Operators
702 /// @{
703
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100704 /// Postfix increment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100705 ///
706 /// Increments *this by 1.
707 ///
708 /// \returns a new APInt value representing the original value of *this.
709 const APInt operator++(int) {
710 APInt API(*this);
711 ++(*this);
712 return API;
713 }
714
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100715 /// Prefix increment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100716 ///
717 /// \returns *this incremented by one
718 APInt &operator++();
719
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100720 /// Postfix decrement operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100721 ///
722 /// Decrements *this by 1.
723 ///
724 /// \returns a new APInt value representing the original value of *this.
725 const APInt operator--(int) {
726 APInt API(*this);
727 --(*this);
728 return API;
729 }
730
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100731 /// Prefix decrement operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100732 ///
733 /// \returns *this decremented by one.
734 APInt &operator--();
735
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100736 /// Logical negation operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100737 ///
738 /// Performs logical negation operation on this APInt.
739 ///
740 /// \returns true if *this is zero, false otherwise.
741 bool operator!() const {
742 if (isSingleWord())
743 return U.VAL == 0;
744 return countLeadingZerosSlowCase() == BitWidth;
745 }
746
747 /// @}
748 /// \name Assignment Operators
749 /// @{
750
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100751 /// Copy assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100752 ///
753 /// \returns *this after assignment of RHS.
754 APInt &operator=(const APInt &RHS) {
755 // If the bitwidths are the same, we can avoid mucking with memory
756 if (isSingleWord() && RHS.isSingleWord()) {
757 U.VAL = RHS.U.VAL;
758 BitWidth = RHS.BitWidth;
759 return clearUnusedBits();
760 }
761
762 AssignSlowCase(RHS);
763 return *this;
764 }
765
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100766 /// Move assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100767 APInt &operator=(APInt &&that) {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200768#ifdef EXPENSIVE_CHECKS
769 // Some std::shuffle implementations still do self-assignment.
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100770 if (this == &that)
771 return *this;
772#endif
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100773 assert(this != &that && "Self-move not supported");
774 if (!isSingleWord())
775 delete[] U.pVal;
776
777 // Use memcpy so that type based alias analysis sees both VAL and pVal
778 // as modified.
779 memcpy(&U, &that.U, sizeof(U));
780
781 BitWidth = that.BitWidth;
782 that.BitWidth = 0;
783
784 return *this;
785 }
786
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100787 /// Assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100788 ///
789 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
790 /// the bit width, the excess bits are truncated. If the bit width is larger
791 /// than 64, the value is zero filled in the unspecified high order bits.
792 ///
793 /// \returns *this after assignment of RHS value.
794 APInt &operator=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL = RHS;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200797 return clearUnusedBits();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100798 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200799 U.pVal[0] = RHS;
800 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100801 return *this;
802 }
803
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100804 /// Bitwise AND assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100805 ///
806 /// Performs a bitwise AND operation on this APInt and RHS. The result is
807 /// assigned to *this.
808 ///
809 /// \returns *this after ANDing with RHS.
810 APInt &operator&=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
812 if (isSingleWord())
813 U.VAL &= RHS.U.VAL;
814 else
815 AndAssignSlowCase(RHS);
816 return *this;
817 }
818
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100819 /// Bitwise AND assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100820 ///
821 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator&=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL &= RHS;
827 return *this;
828 }
829 U.pVal[0] &= RHS;
830 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
831 return *this;
832 }
833
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100834 /// Bitwise OR assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100835 ///
836 /// Performs a bitwise OR operation on this APInt and RHS. The result is
837 /// assigned *this;
838 ///
839 /// \returns *this after ORing with RHS.
840 APInt &operator|=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
842 if (isSingleWord())
843 U.VAL |= RHS.U.VAL;
844 else
845 OrAssignSlowCase(RHS);
846 return *this;
847 }
848
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100849 /// Bitwise OR assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100850 ///
851 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator|=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL |= RHS;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200857 return clearUnusedBits();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100858 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200859 U.pVal[0] |= RHS;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100860 return *this;
861 }
862
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100863 /// Bitwise XOR assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100864 ///
865 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
866 /// assigned to *this.
867 ///
868 /// \returns *this after XORing with RHS.
869 APInt &operator^=(const APInt &RHS) {
870 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
871 if (isSingleWord())
872 U.VAL ^= RHS.U.VAL;
873 else
874 XorAssignSlowCase(RHS);
875 return *this;
876 }
877
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100878 /// Bitwise XOR assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100879 ///
880 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
881 /// logically zero-extended or truncated to match the bit-width of
882 /// the LHS.
883 APInt &operator^=(uint64_t RHS) {
884 if (isSingleWord()) {
885 U.VAL ^= RHS;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200886 return clearUnusedBits();
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100887 }
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200888 U.pVal[0] ^= RHS;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100889 return *this;
890 }
891
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100892 /// Multiplication assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100893 ///
894 /// Multiplies this APInt by RHS and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator*=(const APInt &RHS);
898 APInt &operator*=(uint64_t RHS);
899
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100900 /// Addition assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100901 ///
902 /// Adds RHS to *this and assigns the result to *this.
903 ///
904 /// \returns *this
905 APInt &operator+=(const APInt &RHS);
906 APInt &operator+=(uint64_t RHS);
907
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100908 /// Subtraction assignment operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100909 ///
910 /// Subtracts RHS from *this and assigns the result to *this.
911 ///
912 /// \returns *this
913 APInt &operator-=(const APInt &RHS);
914 APInt &operator-=(uint64_t RHS);
915
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100916 /// Left-shift assignment function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100917 ///
918 /// Shifts *this left by shiftAmt and assigns the result to *this.
919 ///
920 /// \returns *this after shifting left by ShiftAmt
921 APInt &operator<<=(unsigned ShiftAmt) {
922 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
923 if (isSingleWord()) {
924 if (ShiftAmt == BitWidth)
925 U.VAL = 0;
926 else
927 U.VAL <<= ShiftAmt;
928 return clearUnusedBits();
929 }
930 shlSlowCase(ShiftAmt);
931 return *this;
932 }
933
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100934 /// Left-shift assignment function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100935 ///
936 /// Shifts *this left by shiftAmt and assigns the result to *this.
937 ///
938 /// \returns *this after shifting left by ShiftAmt
939 APInt &operator<<=(const APInt &ShiftAmt);
940
941 /// @}
942 /// \name Binary Operators
943 /// @{
944
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100945 /// Multiplication operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100946 ///
947 /// Multiplies this APInt by RHS and returns the result.
948 APInt operator*(const APInt &RHS) const;
949
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100950 /// Left logical shift operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100951 ///
952 /// Shifts this APInt left by \p Bits and returns the result.
953 APInt operator<<(unsigned Bits) const { return shl(Bits); }
954
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100955 /// Left logical shift operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100956 ///
957 /// Shifts this APInt left by \p Bits and returns the result.
958 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100960 /// Arithmetic right-shift function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100961 ///
962 /// Arithmetic right-shift this APInt by shiftAmt.
963 APInt ashr(unsigned ShiftAmt) const {
964 APInt R(*this);
965 R.ashrInPlace(ShiftAmt);
966 return R;
967 }
968
969 /// Arithmetic right-shift this APInt by ShiftAmt in place.
970 void ashrInPlace(unsigned ShiftAmt) {
971 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
972 if (isSingleWord()) {
973 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974 if (ShiftAmt == BitWidth)
975 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976 else
977 U.VAL = SExtVAL >> ShiftAmt;
978 clearUnusedBits();
979 return;
980 }
981 ashrSlowCase(ShiftAmt);
982 }
983
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100984 /// Logical right-shift function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100985 ///
986 /// Logical right-shift this APInt by shiftAmt.
987 APInt lshr(unsigned shiftAmt) const {
988 APInt R(*this);
989 R.lshrInPlace(shiftAmt);
990 return R;
991 }
992
993 /// Logical right-shift this APInt by ShiftAmt in place.
994 void lshrInPlace(unsigned ShiftAmt) {
995 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
996 if (isSingleWord()) {
997 if (ShiftAmt == BitWidth)
998 U.VAL = 0;
999 else
1000 U.VAL >>= ShiftAmt;
1001 return;
1002 }
1003 lshrSlowCase(ShiftAmt);
1004 }
1005
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001006 /// Left-shift function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001007 ///
1008 /// Left-shift this APInt by shiftAmt.
1009 APInt shl(unsigned shiftAmt) const {
1010 APInt R(*this);
1011 R <<= shiftAmt;
1012 return R;
1013 }
1014
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001015 /// Rotate left by rotateAmt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001016 APInt rotl(unsigned rotateAmt) const;
1017
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001018 /// Rotate right by rotateAmt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001019 APInt rotr(unsigned rotateAmt) const;
1020
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001021 /// Arithmetic right-shift function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001022 ///
1023 /// Arithmetic right-shift this APInt by shiftAmt.
1024 APInt ashr(const APInt &ShiftAmt) const {
1025 APInt R(*this);
1026 R.ashrInPlace(ShiftAmt);
1027 return R;
1028 }
1029
1030 /// Arithmetic right-shift this APInt by shiftAmt in place.
1031 void ashrInPlace(const APInt &shiftAmt);
1032
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001033 /// Logical right-shift function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001034 ///
1035 /// Logical right-shift this APInt by shiftAmt.
1036 APInt lshr(const APInt &ShiftAmt) const {
1037 APInt R(*this);
1038 R.lshrInPlace(ShiftAmt);
1039 return R;
1040 }
1041
1042 /// Logical right-shift this APInt by ShiftAmt in place.
1043 void lshrInPlace(const APInt &ShiftAmt);
1044
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001045 /// Left-shift function.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001046 ///
1047 /// Left-shift this APInt by shiftAmt.
1048 APInt shl(const APInt &ShiftAmt) const {
1049 APInt R(*this);
1050 R <<= ShiftAmt;
1051 return R;
1052 }
1053
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001054 /// Rotate left by rotateAmt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001055 APInt rotl(const APInt &rotateAmt) const;
1056
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001057 /// Rotate right by rotateAmt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001058 APInt rotr(const APInt &rotateAmt) const;
1059
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001060 /// Unsigned division operation.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001061 ///
1062 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063 /// RHS are treated as unsigned quantities for purposes of this division.
1064 ///
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001065 /// \returns a new APInt value containing the division result, rounded towards
1066 /// zero.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001067 APInt udiv(const APInt &RHS) const;
1068 APInt udiv(uint64_t RHS) const;
1069
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001070 /// Signed division function for APInt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001071 ///
1072 /// Signed divide this APInt by APInt RHS.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001073 ///
1074 /// The result is rounded towards zero.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001075 APInt sdiv(const APInt &RHS) const;
1076 APInt sdiv(int64_t RHS) const;
1077
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001078 /// Unsigned remainder operation.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001079 ///
1080 /// Perform an unsigned remainder operation on this APInt with RHS being the
1081 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082 /// of this operation. Note that this is a true remainder operation and not a
1083 /// modulo operation because the sign follows the sign of the dividend which
1084 /// is *this.
1085 ///
1086 /// \returns a new APInt value containing the remainder result
1087 APInt urem(const APInt &RHS) const;
1088 uint64_t urem(uint64_t RHS) const;
1089
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001090 /// Function for signed remainder operation.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001091 ///
1092 /// Signed remainder operation on APInt.
1093 APInt srem(const APInt &RHS) const;
1094 int64_t srem(int64_t RHS) const;
1095
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001096 /// Dual division/remainder interface.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001097 ///
1098 /// Sometimes it is convenient to divide two APInt values and obtain both the
1099 /// quotient and remainder. This function does both operations in the same
1100 /// computation making it a little more efficient. The pair of input arguments
1101 /// may overlap with the pair of output arguments. It is safe to call
1102 /// udivrem(X, Y, X, Y), for example.
1103 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104 APInt &Remainder);
1105 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106 uint64_t &Remainder);
1107
1108 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109 APInt &Remainder);
1110 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111 int64_t &Remainder);
1112
1113 // Operations that return overflow indicators.
1114 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123
Andrew Walbran16937d02019-10-22 13:54:20 +01001124 // Operations that saturate
1125 APInt sadd_sat(const APInt &RHS) const;
1126 APInt uadd_sat(const APInt &RHS) const;
1127 APInt ssub_sat(const APInt &RHS) const;
1128 APInt usub_sat(const APInt &RHS) const;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001129 APInt smul_sat(const APInt &RHS) const;
1130 APInt umul_sat(const APInt &RHS) const;
1131 APInt sshl_sat(const APInt &RHS) const;
1132 APInt ushl_sat(const APInt &RHS) const;
Andrew Walbran16937d02019-10-22 13:54:20 +01001133
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001134 /// Array-indexing support.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001135 ///
1136 /// \returns the bit value at bitPosition
1137 bool operator[](unsigned bitPosition) const {
1138 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1139 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140 }
1141
1142 /// @}
1143 /// \name Comparison Operators
1144 /// @{
1145
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001146 /// Equality operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001147 ///
1148 /// Compares this APInt with RHS for the validity of the equality
1149 /// relationship.
1150 bool operator==(const APInt &RHS) const {
1151 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1152 if (isSingleWord())
1153 return U.VAL == RHS.U.VAL;
1154 return EqualSlowCase(RHS);
1155 }
1156
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001157 /// Equality operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the equality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this == Val
1163 bool operator==(uint64_t Val) const {
1164 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165 }
1166
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001167 /// Equality comparison.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001168 ///
1169 /// Compares this APInt with RHS for the validity of the equality
1170 /// relationship.
1171 ///
1172 /// \returns true if *this == Val
1173 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1174
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001175 /// Inequality operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001176 ///
1177 /// Compares this APInt with RHS for the validity of the inequality
1178 /// relationship.
1179 ///
1180 /// \returns true if *this != Val
1181 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001183 /// Inequality operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001184 ///
1185 /// Compares this APInt with a uint64_t for the validity of the inequality
1186 /// relationship.
1187 ///
1188 /// \returns true if *this != Val
1189 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001191 /// Inequality comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001192 ///
1193 /// Compares this APInt with RHS for the validity of the inequality
1194 /// relationship.
1195 ///
1196 /// \returns true if *this != Val
1197 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001199 /// Unsigned less than comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001200 ///
1201 /// Regards both *this and RHS as unsigned quantities and compares them for
1202 /// the validity of the less-than relationship.
1203 ///
1204 /// \returns true if *this < RHS when both are considered unsigned.
1205 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1206
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001207 /// Unsigned less than comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001208 ///
1209 /// Regards both *this as an unsigned quantity and compares it with RHS for
1210 /// the validity of the less-than relationship.
1211 ///
1212 /// \returns true if *this < RHS when considered unsigned.
1213 bool ult(uint64_t RHS) const {
1214 // Only need to check active bits if not a single word.
1215 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216 }
1217
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001218 /// Signed less than comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001219 ///
1220 /// Regards both *this and RHS as signed quantities and compares them for
1221 /// validity of the less-than relationship.
1222 ///
1223 /// \returns true if *this < RHS when both are considered signed.
1224 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001226 /// Signed less than comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001227 ///
1228 /// Regards both *this as a signed quantity and compares it with RHS for
1229 /// the validity of the less-than relationship.
1230 ///
1231 /// \returns true if *this < RHS when considered signed.
1232 bool slt(int64_t RHS) const {
1233 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234 : getSExtValue() < RHS;
1235 }
1236
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001237 /// Unsigned less or equal comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001238 ///
1239 /// Regards both *this and RHS as unsigned quantities and compares them for
1240 /// validity of the less-or-equal relationship.
1241 ///
1242 /// \returns true if *this <= RHS when both are considered unsigned.
1243 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001245 /// Unsigned less or equal comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001246 ///
1247 /// Regards both *this as an unsigned quantity and compares it with RHS for
1248 /// the validity of the less-or-equal relationship.
1249 ///
1250 /// \returns true if *this <= RHS when considered unsigned.
1251 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001253 /// Signed less or equal comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001254 ///
1255 /// Regards both *this and RHS as signed quantities and compares them for
1256 /// validity of the less-or-equal relationship.
1257 ///
1258 /// \returns true if *this <= RHS when both are considered signed.
1259 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001261 /// Signed less or equal comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001262 ///
1263 /// Regards both *this as a signed quantity and compares it with RHS for the
1264 /// validity of the less-or-equal relationship.
1265 ///
1266 /// \returns true if *this <= RHS when considered signed.
1267 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001269 /// Unsigned greater than comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001270 ///
1271 /// Regards both *this and RHS as unsigned quantities and compares them for
1272 /// the validity of the greater-than relationship.
1273 ///
1274 /// \returns true if *this > RHS when both are considered unsigned.
1275 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001277 /// Unsigned greater than comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001278 ///
1279 /// Regards both *this as an unsigned quantity and compares it with RHS for
1280 /// the validity of the greater-than relationship.
1281 ///
1282 /// \returns true if *this > RHS when considered unsigned.
1283 bool ugt(uint64_t RHS) const {
1284 // Only need to check active bits if not a single word.
1285 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286 }
1287
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001288 /// Signed greater than comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001289 ///
1290 /// Regards both *this and RHS as signed quantities and compares them for the
1291 /// validity of the greater-than relationship.
1292 ///
1293 /// \returns true if *this > RHS when both are considered signed.
1294 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001296 /// Signed greater than comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001297 ///
1298 /// Regards both *this as a signed quantity and compares it with RHS for
1299 /// the validity of the greater-than relationship.
1300 ///
1301 /// \returns true if *this > RHS when considered signed.
1302 bool sgt(int64_t RHS) const {
1303 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304 : getSExtValue() > RHS;
1305 }
1306
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001307 /// Unsigned greater or equal comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001308 ///
1309 /// Regards both *this and RHS as unsigned quantities and compares them for
1310 /// validity of the greater-or-equal relationship.
1311 ///
1312 /// \returns true if *this >= RHS when both are considered unsigned.
1313 bool uge(const APInt &RHS) const { return !ult(RHS); }
1314
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001315 /// Unsigned greater or equal comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001316 ///
1317 /// Regards both *this as an unsigned quantity and compares it with RHS for
1318 /// the validity of the greater-or-equal relationship.
1319 ///
1320 /// \returns true if *this >= RHS when considered unsigned.
1321 bool uge(uint64_t RHS) const { return !ult(RHS); }
1322
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001323 /// Signed greater or equal comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001324 ///
1325 /// Regards both *this and RHS as signed quantities and compares them for
1326 /// validity of the greater-or-equal relationship.
1327 ///
1328 /// \returns true if *this >= RHS when both are considered signed.
1329 bool sge(const APInt &RHS) const { return !slt(RHS); }
1330
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001331 /// Signed greater or equal comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001332 ///
1333 /// Regards both *this as a signed quantity and compares it with RHS for
1334 /// the validity of the greater-or-equal relationship.
1335 ///
1336 /// \returns true if *this >= RHS when considered signed.
1337 bool sge(int64_t RHS) const { return !slt(RHS); }
1338
1339 /// This operation tests if there are any pairs of corresponding bits
1340 /// between this APInt and RHS that are both set.
1341 bool intersects(const APInt &RHS) const {
1342 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1343 if (isSingleWord())
1344 return (U.VAL & RHS.U.VAL) != 0;
1345 return intersectsSlowCase(RHS);
1346 }
1347
1348 /// This operation checks that all bits set in this APInt are also set in RHS.
1349 bool isSubsetOf(const APInt &RHS) const {
1350 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1351 if (isSingleWord())
1352 return (U.VAL & ~RHS.U.VAL) == 0;
1353 return isSubsetOfSlowCase(RHS);
1354 }
1355
1356 /// @}
1357 /// \name Resizing Operators
1358 /// @{
1359
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001360 /// Truncate to new width.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001361 ///
1362 /// Truncate the APInt to a specified width. It is an error to specify a width
1363 /// that is greater than or equal to the current width.
1364 APInt trunc(unsigned width) const;
1365
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001366 /// Truncate to new width with unsigned saturation.
1367 ///
1368 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369 /// the new bitwidth, then return truncated APInt. Else, return max value.
1370 APInt truncUSat(unsigned width) const;
1371
1372 /// Truncate to new width with signed saturation.
1373 ///
1374 /// If this APInt, treated as signed integer, can be losslessly truncated to
1375 /// the new bitwidth, then return truncated APInt. Else, return either
1376 /// signed min value if the APInt was negative, or signed max value.
1377 APInt truncSSat(unsigned width) const;
1378
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001379 /// Sign extend to a new width.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001380 ///
1381 /// This operation sign extends the APInt to a new width. If the high order
1382 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383 /// It is an error to specify a width that is less than or equal to the
1384 /// current width.
1385 APInt sext(unsigned width) const;
1386
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001387 /// Zero extend to a new width.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001388 ///
1389 /// This operation zero extends the APInt to a new width. The high order bits
1390 /// are filled with 0 bits. It is an error to specify a width that is less
1391 /// than or equal to the current width.
1392 APInt zext(unsigned width) const;
1393
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001394 /// Sign extend or truncate to width
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001395 ///
1396 /// Make this APInt have the bit width given by \p width. The value is sign
1397 /// extended, truncated, or left alone to make it that width.
1398 APInt sextOrTrunc(unsigned width) const;
1399
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001400 /// Zero extend or truncate to width
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001401 ///
1402 /// Make this APInt have the bit width given by \p width. The value is zero
1403 /// extended, truncated, or left alone to make it that width.
1404 APInt zextOrTrunc(unsigned width) const;
1405
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001406 /// Truncate to width
1407 ///
1408 /// Make this APInt have the bit width given by \p width. The value is
1409 /// truncated or left alone to make it that width.
1410 APInt truncOrSelf(unsigned width) const;
1411
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001412 /// Sign extend or truncate to width
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001413 ///
1414 /// Make this APInt have the bit width given by \p width. The value is sign
1415 /// extended, or left alone to make it that width.
1416 APInt sextOrSelf(unsigned width) const;
1417
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001418 /// Zero extend or truncate to width
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001419 ///
1420 /// Make this APInt have the bit width given by \p width. The value is zero
1421 /// extended, or left alone to make it that width.
1422 APInt zextOrSelf(unsigned width) const;
1423
1424 /// @}
1425 /// \name Bit Manipulation Operators
1426 /// @{
1427
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001428 /// Set every bit to 1.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001429 void setAllBits() {
1430 if (isSingleWord())
Andrew Scull0372a572018-11-16 15:47:06 +00001431 U.VAL = WORDTYPE_MAX;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001432 else
1433 // Set all the bits in all the words.
1434 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1435 // Clear the unused ones
1436 clearUnusedBits();
1437 }
1438
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001439 /// Set a given bit to 1.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001440 ///
1441 /// Set the given bit to 1 whose position is given as "bitPosition".
1442 void setBit(unsigned BitPosition) {
Andrew Walbran16937d02019-10-22 13:54:20 +01001443 assert(BitPosition < BitWidth && "BitPosition out of range");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001444 WordType Mask = maskBit(BitPosition);
1445 if (isSingleWord())
1446 U.VAL |= Mask;
1447 else
1448 U.pVal[whichWord(BitPosition)] |= Mask;
1449 }
1450
1451 /// Set the sign bit to 1.
1452 void setSignBit() {
1453 setBit(BitWidth - 1);
1454 }
1455
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001456 /// Set a given bit to a given value.
1457 void setBitVal(unsigned BitPosition, bool BitValue) {
1458 if (BitValue)
1459 setBit(BitPosition);
1460 else
1461 clearBit(BitPosition);
1462 }
1463
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001464 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001465 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1466 /// setBits when \p loBit < \p hiBit.
1467 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1468 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1469 assert(hiBit <= BitWidth && "hiBit out of range");
1470 assert(loBit <= BitWidth && "loBit out of range");
1471 if (loBit < hiBit) {
1472 setBits(loBit, hiBit);
1473 return;
1474 }
1475 setLowBits(hiBit);
1476 setHighBits(BitWidth - loBit);
1477 }
1478
1479 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1480 /// This function handles case when \p loBit <= \p hiBit.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001481 void setBits(unsigned loBit, unsigned hiBit) {
1482 assert(hiBit <= BitWidth && "hiBit out of range");
1483 assert(loBit <= BitWidth && "loBit out of range");
1484 assert(loBit <= hiBit && "loBit greater than hiBit");
1485 if (loBit == hiBit)
1486 return;
1487 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
Andrew Scull0372a572018-11-16 15:47:06 +00001488 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001489 mask <<= loBit;
1490 if (isSingleWord())
1491 U.VAL |= mask;
1492 else
1493 U.pVal[0] |= mask;
1494 } else {
1495 setBitsSlowCase(loBit, hiBit);
1496 }
1497 }
1498
1499 /// Set the top bits starting from loBit.
1500 void setBitsFrom(unsigned loBit) {
1501 return setBits(loBit, BitWidth);
1502 }
1503
1504 /// Set the bottom loBits bits.
1505 void setLowBits(unsigned loBits) {
1506 return setBits(0, loBits);
1507 }
1508
1509 /// Set the top hiBits bits.
1510 void setHighBits(unsigned hiBits) {
1511 return setBits(BitWidth - hiBits, BitWidth);
1512 }
1513
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001514 /// Set every bit to 0.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001515 void clearAllBits() {
1516 if (isSingleWord())
1517 U.VAL = 0;
1518 else
1519 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1520 }
1521
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001522 /// Set a given bit to 0.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001523 ///
1524 /// Set the given bit to 0 whose position is given as "bitPosition".
1525 void clearBit(unsigned BitPosition) {
Andrew Walbran16937d02019-10-22 13:54:20 +01001526 assert(BitPosition < BitWidth && "BitPosition out of range");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001527 WordType Mask = ~maskBit(BitPosition);
1528 if (isSingleWord())
1529 U.VAL &= Mask;
1530 else
1531 U.pVal[whichWord(BitPosition)] &= Mask;
1532 }
1533
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001534 /// Set bottom loBits bits to 0.
1535 void clearLowBits(unsigned loBits) {
1536 assert(loBits <= BitWidth && "More bits than bitwidth");
1537 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1538 *this &= Keep;
1539 }
1540
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001541 /// Set the sign bit to 0.
1542 void clearSignBit() {
1543 clearBit(BitWidth - 1);
1544 }
1545
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001546 /// Toggle every bit to its opposite value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001547 void flipAllBits() {
1548 if (isSingleWord()) {
Andrew Scull0372a572018-11-16 15:47:06 +00001549 U.VAL ^= WORDTYPE_MAX;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001550 clearUnusedBits();
1551 } else {
1552 flipAllBitsSlowCase();
1553 }
1554 }
1555
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001556 /// Toggles a given bit to its opposite value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001557 ///
1558 /// Toggle a given bit to its opposite value whose position is given
1559 /// as "bitPosition".
1560 void flipBit(unsigned bitPosition);
1561
1562 /// Negate this APInt in place.
1563 void negate() {
1564 flipAllBits();
1565 ++(*this);
1566 }
1567
1568 /// Insert the bits from a smaller APInt starting at bitPosition.
1569 void insertBits(const APInt &SubBits, unsigned bitPosition);
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001570 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001571
1572 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1573 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001574 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001575
1576 /// @}
1577 /// \name Value Characterization Functions
1578 /// @{
1579
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001580 /// Return the number of bits in the APInt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001581 unsigned getBitWidth() const { return BitWidth; }
1582
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001583 /// Get the number of words.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001584 ///
1585 /// Here one word's bitwidth equals to that of uint64_t.
1586 ///
1587 /// \returns the number of words to hold the integer value of this APInt.
1588 unsigned getNumWords() const { return getNumWords(BitWidth); }
1589
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001590 /// Get the number of words.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001591 ///
1592 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1593 ///
1594 /// \returns the number of words to hold the integer value with a given bit
1595 /// width.
1596 static unsigned getNumWords(unsigned BitWidth) {
1597 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1598 }
1599
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001600 /// Compute the number of active bits in the value
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001601 ///
1602 /// This function returns the number of active bits which is defined as the
1603 /// bit width minus the number of leading zeros. This is used in several
1604 /// computations to see how "wide" the value is.
1605 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1606
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001607 /// Compute the number of active words in the value of this APInt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001608 ///
1609 /// This is used in conjunction with getActiveData to extract the raw value of
1610 /// the APInt.
1611 unsigned getActiveWords() const {
1612 unsigned numActiveBits = getActiveBits();
1613 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1614 }
1615
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001616 /// Get the minimum bit size for this signed APInt
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001617 ///
1618 /// Computes the minimum bit width for this APInt while considering it to be a
1619 /// signed (and probably negative) value. If the value is not negative, this
1620 /// function returns the same value as getActiveBits()+1. Otherwise, it
1621 /// returns the smallest bit width that will retain the negative value. For
1622 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1623 /// for -1, this function will always return 1.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001624 unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001625
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001626 /// Get zero extended value
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001627 ///
1628 /// This method attempts to return the value of this APInt as a zero extended
1629 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1630 /// uint64_t. Otherwise an assertion will result.
1631 uint64_t getZExtValue() const {
1632 if (isSingleWord())
1633 return U.VAL;
1634 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1635 return U.pVal[0];
1636 }
1637
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001638 /// Get sign extended value
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001639 ///
1640 /// This method attempts to return the value of this APInt as a sign extended
1641 /// int64_t. The bit width must be <= 64 or the value must fit within an
1642 /// int64_t. Otherwise an assertion will result.
1643 int64_t getSExtValue() const {
1644 if (isSingleWord())
1645 return SignExtend64(U.VAL, BitWidth);
1646 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1647 return int64_t(U.pVal[0]);
1648 }
1649
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001650 /// Get bits required for string value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001651 ///
1652 /// This method determines how many bits are required to hold the APInt
1653 /// equivalent of the string given by \p str.
1654 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1655
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001656 /// The APInt version of the countLeadingZeros functions in
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001657 /// MathExtras.h.
1658 ///
1659 /// It counts the number of zeros from the most significant bit to the first
1660 /// one bit.
1661 ///
1662 /// \returns BitWidth if the value is zero, otherwise returns the number of
1663 /// zeros from the most significant bit to the first one bits.
1664 unsigned countLeadingZeros() const {
1665 if (isSingleWord()) {
1666 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1667 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1668 }
1669 return countLeadingZerosSlowCase();
1670 }
1671
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001672 /// Count the number of leading one bits.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001673 ///
1674 /// This function is an APInt version of the countLeadingOnes
1675 /// functions in MathExtras.h. It counts the number of ones from the most
1676 /// significant bit to the first zero bit.
1677 ///
1678 /// \returns 0 if the high order bit is not set, otherwise returns the number
1679 /// of 1 bits from the most significant to the least
1680 unsigned countLeadingOnes() const {
1681 if (isSingleWord())
1682 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1683 return countLeadingOnesSlowCase();
1684 }
1685
1686 /// Computes the number of leading bits of this APInt that are equal to its
1687 /// sign bit.
1688 unsigned getNumSignBits() const {
1689 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1690 }
1691
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001692 /// Count the number of trailing zero bits.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001693 ///
1694 /// This function is an APInt version of the countTrailingZeros
1695 /// functions in MathExtras.h. It counts the number of zeros from the least
1696 /// significant bit to the first set bit.
1697 ///
1698 /// \returns BitWidth if the value is zero, otherwise returns the number of
1699 /// zeros from the least significant bit to the first one bit.
1700 unsigned countTrailingZeros() const {
1701 if (isSingleWord())
1702 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1703 return countTrailingZerosSlowCase();
1704 }
1705
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001706 /// Count the number of trailing one bits.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001707 ///
1708 /// This function is an APInt version of the countTrailingOnes
1709 /// functions in MathExtras.h. It counts the number of ones from the least
1710 /// significant bit to the first zero bit.
1711 ///
1712 /// \returns BitWidth if the value is all ones, otherwise returns the number
1713 /// of ones from the least significant bit to the first zero bit.
1714 unsigned countTrailingOnes() const {
1715 if (isSingleWord())
1716 return llvm::countTrailingOnes(U.VAL);
1717 return countTrailingOnesSlowCase();
1718 }
1719
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001720 /// Count the number of bits set.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001721 ///
1722 /// This function is an APInt version of the countPopulation functions
1723 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1724 ///
1725 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1726 unsigned countPopulation() const {
1727 if (isSingleWord())
1728 return llvm::countPopulation(U.VAL);
1729 return countPopulationSlowCase();
1730 }
1731
1732 /// @}
1733 /// \name Conversion Functions
1734 /// @{
1735 void print(raw_ostream &OS, bool isSigned) const;
1736
1737 /// Converts an APInt to a string and append it to Str. Str is commonly a
1738 /// SmallString.
1739 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1740 bool formatAsCLiteral = false) const;
1741
1742 /// Considers the APInt to be unsigned and converts it into a string in the
1743 /// radix given. The radix can be 2, 8, 10 16, or 36.
1744 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1745 toString(Str, Radix, false, false);
1746 }
1747
1748 /// Considers the APInt to be signed and converts it into a string in the
1749 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1750 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1751 toString(Str, Radix, true, false);
1752 }
1753
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001754 /// Return the APInt as a std::string.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001755 ///
1756 /// Note that this is an inefficient method. It is better to pass in a
1757 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1758 /// for the string.
1759 std::string toString(unsigned Radix, bool Signed) const;
1760
1761 /// \returns a byte-swapped representation of this APInt Value.
1762 APInt byteSwap() const;
1763
1764 /// \returns the value with the bit representation reversed of this APInt
1765 /// Value.
1766 APInt reverseBits() const;
1767
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001768 /// Converts this APInt to a double value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001769 double roundToDouble(bool isSigned) const;
1770
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001771 /// Converts this unsigned APInt to a double value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001772 double roundToDouble() const { return roundToDouble(false); }
1773
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001774 /// Converts this signed APInt to a double value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001775 double signedRoundToDouble() const { return roundToDouble(true); }
1776
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001777 /// Converts APInt bits to a double
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001778 ///
1779 /// The conversion does not do a translation from integer to double, it just
1780 /// re-interprets the bits as a double. Note that it is valid to do this on
1781 /// any bit width. Exactly 64 bits will be translated.
1782 double bitsToDouble() const {
1783 return BitsToDouble(getWord(0));
1784 }
1785
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001786 /// Converts APInt bits to a float
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001787 ///
1788 /// The conversion does not do a translation from integer to float, it just
1789 /// re-interprets the bits as a float. Note that it is valid to do this on
1790 /// any bit width. Exactly 32 bits will be translated.
1791 float bitsToFloat() const {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001792 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001793 }
1794
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001795 /// Converts a double to APInt bits.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001796 ///
1797 /// The conversion does not do a translation from double to integer, it just
1798 /// re-interprets the bits of the double.
1799 static APInt doubleToBits(double V) {
1800 return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1801 }
1802
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001803 /// Converts a float to APInt bits.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001804 ///
1805 /// The conversion does not do a translation from float to integer, it just
1806 /// re-interprets the bits of the float.
1807 static APInt floatToBits(float V) {
1808 return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1809 }
1810
1811 /// @}
1812 /// \name Mathematics Operations
1813 /// @{
1814
1815 /// \returns the floor log base 2 of this APInt.
1816 unsigned logBase2() const { return getActiveBits() - 1; }
1817
1818 /// \returns the ceil log base 2 of this APInt.
1819 unsigned ceilLogBase2() const {
1820 APInt temp(*this);
1821 --temp;
1822 return temp.getActiveBits();
1823 }
1824
1825 /// \returns the nearest log base 2 of this APInt. Ties round up.
1826 ///
1827 /// NOTE: When we have a BitWidth of 1, we define:
1828 ///
1829 /// log2(0) = UINT32_MAX
1830 /// log2(1) = 0
1831 ///
1832 /// to get around any mathematical concerns resulting from
1833 /// referencing 2 in a space where 2 does no exist.
1834 unsigned nearestLogBase2() const {
1835 // Special case when we have a bitwidth of 1. If VAL is 1, then we
Andrew Scull0372a572018-11-16 15:47:06 +00001836 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001837 // UINT32_MAX.
1838 if (BitWidth == 1)
1839 return U.VAL - 1;
1840
1841 // Handle the zero case.
1842 if (isNullValue())
1843 return UINT32_MAX;
1844
1845 // The non-zero case is handled by computing:
1846 //
1847 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1848 //
1849 // where x[i] is referring to the value of the ith bit of x.
1850 unsigned lg = logBase2();
1851 return lg + unsigned((*this)[lg - 1]);
1852 }
1853
1854 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1855 /// otherwise
1856 int32_t exactLogBase2() const {
1857 if (!isPowerOf2())
1858 return -1;
1859 return logBase2();
1860 }
1861
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001862 /// Compute the square root
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001863 APInt sqrt() const;
1864
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001865 /// Get the absolute value;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001866 ///
1867 /// If *this is < 0 then return -(*this), otherwise *this;
1868 APInt abs() const {
1869 if (isNegative())
1870 return -(*this);
1871 return *this;
1872 }
1873
1874 /// \returns the multiplicative inverse for a given modulo.
1875 APInt multiplicativeInverse(const APInt &modulo) const;
1876
1877 /// @}
1878 /// \name Support for division by constant
1879 /// @{
1880
1881 /// Calculate the magic number for signed division by a constant.
1882 struct ms;
1883 ms magic() const;
1884
1885 /// Calculate the magic number for unsigned division by a constant.
1886 struct mu;
1887 mu magicu(unsigned LeadingZeros = 0) const;
1888
1889 /// @}
1890 /// \name Building-block Operations for APInt and APFloat
1891 /// @{
1892
1893 // These building block operations operate on a representation of arbitrary
1894 // precision, two's-complement, bignum integer values. They should be
1895 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1896 // generally a pointer to the base of an array of integer parts, representing
1897 // an unsigned bignum, and a count of how many parts there are.
1898
1899 /// Sets the least significant part of a bignum to the input value, and zeroes
1900 /// out higher parts.
1901 static void tcSet(WordType *, WordType, unsigned);
1902
1903 /// Assign one bignum to another.
1904 static void tcAssign(WordType *, const WordType *, unsigned);
1905
1906 /// Returns true if a bignum is zero, false otherwise.
1907 static bool tcIsZero(const WordType *, unsigned);
1908
1909 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1910 static int tcExtractBit(const WordType *, unsigned bit);
1911
1912 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1913 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1914 /// significant bit of DST. All high bits above srcBITS in DST are
1915 /// zero-filled.
1916 static void tcExtract(WordType *, unsigned dstCount,
1917 const WordType *, unsigned srcBits,
1918 unsigned srcLSB);
1919
1920 /// Set the given bit of a bignum. Zero-based.
1921 static void tcSetBit(WordType *, unsigned bit);
1922
1923 /// Clear the given bit of a bignum. Zero-based.
1924 static void tcClearBit(WordType *, unsigned bit);
1925
1926 /// Returns the bit number of the least or most significant set bit of a
1927 /// number. If the input number has no bits set -1U is returned.
1928 static unsigned tcLSB(const WordType *, unsigned n);
1929 static unsigned tcMSB(const WordType *parts, unsigned n);
1930
1931 /// Negate a bignum in-place.
1932 static void tcNegate(WordType *, unsigned);
1933
1934 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1935 static WordType tcAdd(WordType *, const WordType *,
1936 WordType carry, unsigned);
1937 /// DST += RHS. Returns the carry flag.
1938 static WordType tcAddPart(WordType *, WordType, unsigned);
1939
1940 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1941 static WordType tcSubtract(WordType *, const WordType *,
1942 WordType carry, unsigned);
1943 /// DST -= RHS. Returns the carry flag.
1944 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1945
1946 /// DST += SRC * MULTIPLIER + PART if add is true
1947 /// DST = SRC * MULTIPLIER + PART if add is false
1948 ///
1949 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1950 /// start at the same point, i.e. DST == SRC.
1951 ///
1952 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1953 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1954 /// result, and if all of the omitted higher parts were zero return zero,
1955 /// otherwise overflow occurred and return one.
1956 static int tcMultiplyPart(WordType *dst, const WordType *src,
1957 WordType multiplier, WordType carry,
1958 unsigned srcParts, unsigned dstParts,
1959 bool add);
1960
1961 /// DST = LHS * RHS, where DST has the same width as the operands and is
1962 /// filled with the least significant parts of the result. Returns one if
1963 /// overflow occurred, otherwise zero. DST must be disjoint from both
1964 /// operands.
1965 static int tcMultiply(WordType *, const WordType *, const WordType *,
1966 unsigned);
1967
1968 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1969 /// operands. No overflow occurs. DST must be disjoint from both operands.
1970 static void tcFullMultiply(WordType *, const WordType *,
1971 const WordType *, unsigned, unsigned);
1972
1973 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1974 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1975 /// REMAINDER to the remainder, return zero. i.e.
1976 ///
1977 /// OLD_LHS = RHS * LHS + REMAINDER
1978 ///
1979 /// SCRATCH is a bignum of the same size as the operands and result for use by
1980 /// the routine; its contents need not be initialized and are destroyed. LHS,
1981 /// REMAINDER and SCRATCH must be distinct.
1982 static int tcDivide(WordType *lhs, const WordType *rhs,
1983 WordType *remainder, WordType *scratch,
1984 unsigned parts);
1985
1986 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1987 /// restrictions on Count.
1988 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1989
1990 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1991 /// restrictions on Count.
1992 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1993
1994 /// The obvious AND, OR and XOR and complement operations.
1995 static void tcAnd(WordType *, const WordType *, unsigned);
1996 static void tcOr(WordType *, const WordType *, unsigned);
1997 static void tcXor(WordType *, const WordType *, unsigned);
1998 static void tcComplement(WordType *, unsigned);
1999
2000 /// Comparison (unsigned) of two bignums.
2001 static int tcCompare(const WordType *, const WordType *, unsigned);
2002
2003 /// Increment a bignum in-place. Return the carry flag.
2004 static WordType tcIncrement(WordType *dst, unsigned parts) {
2005 return tcAddPart(dst, 1, parts);
2006 }
2007
2008 /// Decrement a bignum in-place. Return the borrow flag.
2009 static WordType tcDecrement(WordType *dst, unsigned parts) {
2010 return tcSubtractPart(dst, 1, parts);
2011 }
2012
2013 /// Set the least significant BITS and clear the rest.
2014 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2015
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002016 /// debug method
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002017 void dump() const;
2018
2019 /// @}
2020};
2021
2022/// Magic data for optimising signed division by a constant.
2023struct APInt::ms {
2024 APInt m; ///< magic number
2025 unsigned s; ///< shift amount
2026};
2027
2028/// Magic data for optimising unsigned division by a constant.
2029struct APInt::mu {
2030 APInt m; ///< magic number
2031 bool a; ///< add indicator
2032 unsigned s; ///< shift amount
2033};
2034
2035inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2036
2037inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2038
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002039/// Unary bitwise complement operator.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002040///
2041/// \returns an APInt that is the bitwise complement of \p v.
2042inline APInt operator~(APInt v) {
2043 v.flipAllBits();
2044 return v;
2045}
2046
2047inline APInt operator&(APInt a, const APInt &b) {
2048 a &= b;
2049 return a;
2050}
2051
2052inline APInt operator&(const APInt &a, APInt &&b) {
2053 b &= a;
2054 return std::move(b);
2055}
2056
2057inline APInt operator&(APInt a, uint64_t RHS) {
2058 a &= RHS;
2059 return a;
2060}
2061
2062inline APInt operator&(uint64_t LHS, APInt b) {
2063 b &= LHS;
2064 return b;
2065}
2066
2067inline APInt operator|(APInt a, const APInt &b) {
2068 a |= b;
2069 return a;
2070}
2071
2072inline APInt operator|(const APInt &a, APInt &&b) {
2073 b |= a;
2074 return std::move(b);
2075}
2076
2077inline APInt operator|(APInt a, uint64_t RHS) {
2078 a |= RHS;
2079 return a;
2080}
2081
2082inline APInt operator|(uint64_t LHS, APInt b) {
2083 b |= LHS;
2084 return b;
2085}
2086
2087inline APInt operator^(APInt a, const APInt &b) {
2088 a ^= b;
2089 return a;
2090}
2091
2092inline APInt operator^(const APInt &a, APInt &&b) {
2093 b ^= a;
2094 return std::move(b);
2095}
2096
2097inline APInt operator^(APInt a, uint64_t RHS) {
2098 a ^= RHS;
2099 return a;
2100}
2101
2102inline APInt operator^(uint64_t LHS, APInt b) {
2103 b ^= LHS;
2104 return b;
2105}
2106
2107inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2108 I.print(OS, true);
2109 return OS;
2110}
2111
2112inline APInt operator-(APInt v) {
2113 v.negate();
2114 return v;
2115}
2116
2117inline APInt operator+(APInt a, const APInt &b) {
2118 a += b;
2119 return a;
2120}
2121
2122inline APInt operator+(const APInt &a, APInt &&b) {
2123 b += a;
2124 return std::move(b);
2125}
2126
2127inline APInt operator+(APInt a, uint64_t RHS) {
2128 a += RHS;
2129 return a;
2130}
2131
2132inline APInt operator+(uint64_t LHS, APInt b) {
2133 b += LHS;
2134 return b;
2135}
2136
2137inline APInt operator-(APInt a, const APInt &b) {
2138 a -= b;
2139 return a;
2140}
2141
2142inline APInt operator-(const APInt &a, APInt &&b) {
2143 b.negate();
2144 b += a;
2145 return std::move(b);
2146}
2147
2148inline APInt operator-(APInt a, uint64_t RHS) {
2149 a -= RHS;
2150 return a;
2151}
2152
2153inline APInt operator-(uint64_t LHS, APInt b) {
2154 b.negate();
2155 b += LHS;
2156 return b;
2157}
2158
2159inline APInt operator*(APInt a, uint64_t RHS) {
2160 a *= RHS;
2161 return a;
2162}
2163
2164inline APInt operator*(uint64_t LHS, APInt b) {
2165 b *= LHS;
2166 return b;
2167}
2168
2169
2170namespace APIntOps {
2171
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002172/// Determine the smaller of two APInts considered to be signed.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002173inline const APInt &smin(const APInt &A, const APInt &B) {
2174 return A.slt(B) ? A : B;
2175}
2176
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002177/// Determine the larger of two APInts considered to be signed.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002178inline const APInt &smax(const APInt &A, const APInt &B) {
2179 return A.sgt(B) ? A : B;
2180}
2181
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002182/// Determine the smaller of two APInts considered to be signed.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002183inline const APInt &umin(const APInt &A, const APInt &B) {
2184 return A.ult(B) ? A : B;
2185}
2186
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002187/// Determine the larger of two APInts considered to be unsigned.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002188inline const APInt &umax(const APInt &A, const APInt &B) {
2189 return A.ugt(B) ? A : B;
2190}
2191
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002192/// Compute GCD of two unsigned APInt values.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002193///
2194/// This function returns the greatest common divisor of the two APInt values
2195/// using Stein's algorithm.
2196///
2197/// \returns the greatest common divisor of A and B.
2198APInt GreatestCommonDivisor(APInt A, APInt B);
2199
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002200/// Converts the given APInt to a double value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002201///
2202/// Treats the APInt as an unsigned value for conversion purposes.
2203inline double RoundAPIntToDouble(const APInt &APIVal) {
2204 return APIVal.roundToDouble();
2205}
2206
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002207/// Converts the given APInt to a double value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002208///
2209/// Treats the APInt as a signed value for conversion purposes.
2210inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2211 return APIVal.signedRoundToDouble();
2212}
2213
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002214/// Converts the given APInt to a float vlalue.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002215inline float RoundAPIntToFloat(const APInt &APIVal) {
2216 return float(RoundAPIntToDouble(APIVal));
2217}
2218
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002219/// Converts the given APInt to a float value.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002220///
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002221/// Treats the APInt as a signed value for conversion purposes.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002222inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2223 return float(APIVal.signedRoundToDouble());
2224}
2225
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002226/// Converts the given double value into a APInt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002227///
2228/// This function convert a double value to an APInt value.
2229APInt RoundDoubleToAPInt(double Double, unsigned width);
2230
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002231/// Converts a float value into a APInt.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002232///
2233/// Converts a float value into an APInt value.
2234inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2235 return RoundDoubleToAPInt(double(Float), width);
2236}
2237
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002238/// Return A unsign-divided by B, rounded by the given rounding mode.
2239APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2240
2241/// Return A sign-divided by B, rounded by the given rounding mode.
2242APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2243
2244/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2245/// (e.g. 32 for i32).
2246/// This function finds the smallest number n, such that
2247/// (a) n >= 0 and q(n) = 0, or
2248/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2249/// integers, belong to two different intervals [Rk, Rk+R),
2250/// where R = 2^BW, and k is an integer.
2251/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2252/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2253/// subtraction (treated as addition of negated numbers) would always
2254/// count as an overflow, but here we want to allow values to decrease
2255/// and increase as long as they are within the same interval.
2256/// Specifically, adding of two negative numbers should not cause an
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002257/// overflow (as long as the magnitude does not exceed the bit width).
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002258/// On the other hand, given a positive number, adding a negative
2259/// number to it can give a negative result, which would cause the
2260/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2261/// treated as a special case of an overflow.
2262///
2263/// This function returns None if after finding k that minimizes the
2264/// positive solution to q(n) = kR, both solutions are contained between
2265/// two consecutive integers.
2266///
2267/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2268/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2269/// virtue of *signed* overflow. This function will *not* find such an n,
2270/// however it may find a value of n satisfying the inequalities due to
2271/// an *unsigned* overflow (if the values are treated as unsigned).
2272/// To find a solution for a signed overflow, treat it as a problem of
2273/// finding an unsigned overflow with a range with of BW-1.
2274///
2275/// The returned value may have a different bit width from the input
2276/// coefficients.
2277Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2278 unsigned RangeWidth);
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002279
2280/// Compare two values, and if they are different, return the position of the
2281/// most significant bit that is different in the values.
2282Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2283 const APInt &B);
2284
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002285} // End of APIntOps namespace
2286
2287// See friend declaration above. This additional declaration is required in
2288// order to compile LLVM with IBM xlC compiler.
2289hash_code hash_value(const APInt &Arg);
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002290
2291/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2292/// with the integer held in IntVal.
2293void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2294
2295/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2296/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02002297void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002298
2299} // namespace llvm
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002300
2301#endif