Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/ADT/APInt.h b/linux-x64/clang/include/llvm/ADT/APInt.h
new file mode 100644
index 0000000..118c62e
--- /dev/null
+++ b/linux-x64/clang/include/llvm/ADT/APInt.h
@@ -0,0 +1,2156 @@
+//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file implements a class to represent arbitrary precision
+/// integral constant values and operations on them.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_APINT_H
+#define LLVM_ADT_APINT_H
+
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+#include <climits>
+#include <cstring>
+#include <string>
+
+namespace llvm {
+class FoldingSetNodeID;
+class StringRef;
+class hash_code;
+class raw_ostream;
+
+template <typename T> class SmallVectorImpl;
+template <typename T> class ArrayRef;
+
+class APInt;
+
+inline APInt operator-(APInt);
+
+//===----------------------------------------------------------------------===//
+//                              APInt Class
+//===----------------------------------------------------------------------===//
+
+/// \brief Class for arbitrary precision integers.
+///
+/// APInt is a functional replacement for common case unsigned integer type like
+/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
+/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
+/// than 64-bits of precision. APInt provides a variety of arithmetic operators
+/// and methods to manipulate integer values of any bit-width. It supports both
+/// the typical integer arithmetic and comparison operations as well as bitwise
+/// manipulation.
+///
+/// The class has several invariants worth noting:
+///   * All bit, byte, and word positions are zero-based.
+///   * Once the bit width is set, it doesn't change except by the Truncate,
+///     SignExtend, or ZeroExtend operations.
+///   * All binary operators must be on APInt instances of the same bit width.
+///     Attempting to use these operators on instances with different bit
+///     widths will yield an assertion.
+///   * The value is stored canonically as an unsigned value. For operations
+///     where it makes a difference, there are both signed and unsigned variants
+///     of the operation. For example, sdiv and udiv. However, because the bit
+///     widths must be the same, operations such as Mul and Add produce the same
+///     results regardless of whether the values are interpreted as signed or
+///     not.
+///   * In general, the class tries to follow the style of computation that LLVM
+///     uses in its IR. This simplifies its use for LLVM.
+///
+class LLVM_NODISCARD APInt {
+public:
+  typedef uint64_t WordType;
+
+  /// This enum is used to hold the constants we needed for APInt.
+  enum : unsigned {
+    /// Byte size of a word.
+    APINT_WORD_SIZE = sizeof(WordType),
+    /// Bits in a word.
+    APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
+  };
+
+  static const WordType WORD_MAX = ~WordType(0);
+
+private:
+  /// This union is used to store the integer value. When the
+  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
+  union {
+    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
+    uint64_t *pVal; ///< Used to store the >64 bits integer value.
+  } U;
+
+  unsigned BitWidth; ///< The number of bits in this APInt.
+
+  friend struct DenseMapAPIntKeyInfo;
+
+  friend class APSInt;
+
+  /// \brief Fast internal constructor
+  ///
+  /// This constructor is used only internally for speed of construction of
+  /// temporaries. It is unsafe for general use so it is not public.
+  APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
+    U.pVal = val;
+  }
+
+  /// \brief Determine if this APInt just has one word to store value.
+  ///
+  /// \returns true if the number of bits <= 64, false otherwise.
+  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
+
+  /// \brief Determine which word a bit is in.
+  ///
+  /// \returns the word position for the specified bit position.
+  static unsigned whichWord(unsigned bitPosition) {
+    return bitPosition / APINT_BITS_PER_WORD;
+  }
+
+  /// \brief Determine which bit in a word a bit is in.
+  ///
+  /// \returns the bit position in a word for the specified bit position
+  /// in the APInt.
+  static unsigned whichBit(unsigned bitPosition) {
+    return bitPosition % APINT_BITS_PER_WORD;
+  }
+
+  /// \brief Get a single bit mask.
+  ///
+  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
+  /// This method generates and returns a uint64_t (word) mask for a single
+  /// bit at a specific bit position. This is used to mask the bit in the
+  /// corresponding word.
+  static uint64_t maskBit(unsigned bitPosition) {
+    return 1ULL << whichBit(bitPosition);
+  }
+
+  /// \brief Clear unused high order bits
+  ///
+  /// This method is used internally to clear the top "N" bits in the high order
+  /// word that are not used by the APInt. This is needed after the most
+  /// significant word is assigned a value to ensure that those bits are
+  /// zero'd out.
+  APInt &clearUnusedBits() {
+    // Compute how many bits are used in the final word
+    unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
+
+    // Mask out the high bits.
+    uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
+    if (isSingleWord())
+      U.VAL &= mask;
+    else
+      U.pVal[getNumWords() - 1] &= mask;
+    return *this;
+  }
+
+  /// \brief Get the word corresponding to a bit position
+  /// \returns the corresponding word for the specified bit position.
+  uint64_t getWord(unsigned bitPosition) const {
+    return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
+  }
+
+  /// Utility method to change the bit width of this APInt to new bit width,
+  /// allocating and/or deallocating as necessary. There is no guarantee on the
+  /// value of any bits upon return. Caller should populate the bits after.
+  void reallocate(unsigned NewBitWidth);
+
+  /// \brief Convert a char array into an APInt
+  ///
+  /// \param radix 2, 8, 10, 16, or 36
+  /// Converts a string into a number.  The string must be non-empty
+  /// and well-formed as a number of the given base. The bit-width
+  /// must be sufficient to hold the result.
+  ///
+  /// This is used by the constructors that take string arguments.
+  ///
+  /// StringRef::getAsInteger is superficially similar but (1) does
+  /// not assume that the string is well-formed and (2) grows the
+  /// result to hold the input.
+  void fromString(unsigned numBits, StringRef str, uint8_t radix);
+
+  /// \brief An internal division function for dividing APInts.
+  ///
+  /// This is used by the toString method to divide by the radix. It simply
+  /// provides a more convenient form of divide for internal use since KnuthDiv
+  /// has specific constraints on its inputs. If those constraints are not met
+  /// then it provides a simpler form of divide.
+  static void divide(const WordType *LHS, unsigned lhsWords,
+                     const WordType *RHS, unsigned rhsWords, WordType *Quotient,
+                     WordType *Remainder);
+
+  /// out-of-line slow case for inline constructor
+  void initSlowCase(uint64_t val, bool isSigned);
+
+  /// shared code between two array constructors
+  void initFromArray(ArrayRef<uint64_t> array);
+
+  /// out-of-line slow case for inline copy constructor
+  void initSlowCase(const APInt &that);
+
+  /// out-of-line slow case for shl
+  void shlSlowCase(unsigned ShiftAmt);
+
+  /// out-of-line slow case for lshr.
+  void lshrSlowCase(unsigned ShiftAmt);
+
+  /// out-of-line slow case for ashr.
+  void ashrSlowCase(unsigned ShiftAmt);
+
+  /// out-of-line slow case for operator=
+  void AssignSlowCase(const APInt &RHS);
+
+  /// out-of-line slow case for operator==
+  bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
+
+  /// out-of-line slow case for countLeadingZeros
+  unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
+
+  /// out-of-line slow case for countLeadingOnes.
+  unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
+
+  /// out-of-line slow case for countTrailingZeros.
+  unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
+
+  /// out-of-line slow case for countTrailingOnes
+  unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
+
+  /// out-of-line slow case for countPopulation
+  unsigned countPopulationSlowCase() const LLVM_READONLY;
+
+  /// out-of-line slow case for intersects.
+  bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
+
+  /// out-of-line slow case for isSubsetOf.
+  bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
+
+  /// out-of-line slow case for setBits.
+  void setBitsSlowCase(unsigned loBit, unsigned hiBit);
+
+  /// out-of-line slow case for flipAllBits.
+  void flipAllBitsSlowCase();
+
+  /// out-of-line slow case for operator&=.
+  void AndAssignSlowCase(const APInt& RHS);
+
+  /// out-of-line slow case for operator|=.
+  void OrAssignSlowCase(const APInt& RHS);
+
+  /// out-of-line slow case for operator^=.
+  void XorAssignSlowCase(const APInt& RHS);
+
+  /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
+  /// to, or greater than RHS.
+  int compare(const APInt &RHS) const LLVM_READONLY;
+
+  /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
+  /// to, or greater than RHS.
+  int compareSigned(const APInt &RHS) const LLVM_READONLY;
+
+public:
+  /// \name Constructors
+  /// @{
+
+  /// \brief Create a new APInt of numBits width, initialized as val.
+  ///
+  /// If isSigned is true then val is treated as if it were a signed value
+  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
+  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
+  /// the range of val are zero filled).
+  ///
+  /// \param numBits the bit width of the constructed APInt
+  /// \param val the initial value of the APInt
+  /// \param isSigned how to treat signedness of val
+  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
+      : BitWidth(numBits) {
+    assert(BitWidth && "bitwidth too small");
+    if (isSingleWord()) {
+      U.VAL = val;
+      clearUnusedBits();
+    } else {
+      initSlowCase(val, isSigned);
+    }
+  }
+
+  /// \brief Construct an APInt of numBits width, initialized as bigVal[].
+  ///
+  /// Note that bigVal.size() can be smaller or larger than the corresponding
+  /// bit width but any extraneous bits will be dropped.
+  ///
+  /// \param numBits the bit width of the constructed APInt
+  /// \param bigVal a sequence of words to form the initial value of the APInt
+  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
+
+  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
+  /// deprecated because this constructor is prone to ambiguity with the
+  /// APInt(unsigned, uint64_t, bool) constructor.
+  ///
+  /// If this overload is ever deleted, care should be taken to prevent calls
+  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
+  /// constructor.
+  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
+
+  /// \brief Construct an APInt from a string representation.
+  ///
+  /// This constructor interprets the string \p str in the given radix. The
+  /// interpretation stops when the first character that is not suitable for the
+  /// radix is encountered, or the end of the string. Acceptable radix values
+  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
+  /// string to require more bits than numBits.
+  ///
+  /// \param numBits the bit width of the constructed APInt
+  /// \param str the string to be interpreted
+  /// \param radix the radix to use for the conversion
+  APInt(unsigned numBits, StringRef str, uint8_t radix);
+
+  /// Simply makes *this a copy of that.
+  /// @brief Copy Constructor.
+  APInt(const APInt &that) : BitWidth(that.BitWidth) {
+    if (isSingleWord())
+      U.VAL = that.U.VAL;
+    else
+      initSlowCase(that);
+  }
+
+  /// \brief Move Constructor.
+  APInt(APInt &&that) : BitWidth(that.BitWidth) {
+    memcpy(&U, &that.U, sizeof(U));
+    that.BitWidth = 0;
+  }
+
+  /// \brief Destructor.
+  ~APInt() {
+    if (needsCleanup())
+      delete[] U.pVal;
+  }
+
+  /// \brief Default constructor that creates an uninteresting APInt
+  /// representing a 1-bit zero value.
+  ///
+  /// This is useful for object deserialization (pair this with the static
+  ///  method Read).
+  explicit APInt() : BitWidth(1) { U.VAL = 0; }
+
+  /// \brief Returns whether this instance allocated memory.
+  bool needsCleanup() const { return !isSingleWord(); }
+
+  /// Used to insert APInt objects, or objects that contain APInt objects, into
+  ///  FoldingSets.
+  void Profile(FoldingSetNodeID &id) const;
+
+  /// @}
+  /// \name Value Tests
+  /// @{
+
+  /// \brief Determine sign of this APInt.
+  ///
+  /// This tests the high bit of this APInt to determine if it is set.
+  ///
+  /// \returns true if this APInt is negative, false otherwise
+  bool isNegative() const { return (*this)[BitWidth - 1]; }
+
+  /// \brief Determine if this APInt Value is non-negative (>= 0)
+  ///
+  /// This tests the high bit of the APInt to determine if it is unset.
+  bool isNonNegative() const { return !isNegative(); }
+
+  /// \brief Determine if sign bit of this APInt is set.
+  ///
+  /// This tests the high bit of this APInt to determine if it is set.
+  ///
+  /// \returns true if this APInt has its sign bit set, false otherwise.
+  bool isSignBitSet() const { return (*this)[BitWidth-1]; }
+
+  /// \brief Determine if sign bit of this APInt is clear.
+  ///
+  /// This tests the high bit of this APInt to determine if it is clear.
+  ///
+  /// \returns true if this APInt has its sign bit clear, false otherwise.
+  bool isSignBitClear() const { return !isSignBitSet(); }
+
+  /// \brief Determine if this APInt Value is positive.
+  ///
+  /// This tests if the value of this APInt is positive (> 0). Note
+  /// that 0 is not a positive value.
+  ///
+  /// \returns true if this APInt is positive.
+  bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
+
+  /// \brief Determine if all bits are set
+  ///
+  /// This checks to see if the value has all bits of the APInt are set or not.
+  bool isAllOnesValue() const {
+    if (isSingleWord())
+      return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
+    return countTrailingOnesSlowCase() == BitWidth;
+  }
+
+  /// \brief Determine if all bits are clear
+  ///
+  /// This checks to see if the value has all bits of the APInt are clear or
+  /// not.
+  bool isNullValue() const { return !*this; }
+
+  /// \brief Determine if this is a value of 1.
+  ///
+  /// This checks to see if the value of this APInt is one.
+  bool isOneValue() const {
+    if (isSingleWord())
+      return U.VAL == 1;
+    return countLeadingZerosSlowCase() == BitWidth - 1;
+  }
+
+  /// \brief Determine if this is the largest unsigned value.
+  ///
+  /// This checks to see if the value of this APInt is the maximum unsigned
+  /// value for the APInt's bit width.
+  bool isMaxValue() const { return isAllOnesValue(); }
+
+  /// \brief Determine if this is the largest signed value.
+  ///
+  /// This checks to see if the value of this APInt is the maximum signed
+  /// value for the APInt's bit width.
+  bool isMaxSignedValue() const {
+    if (isSingleWord())
+      return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
+    return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
+  }
+
+  /// \brief Determine if this is the smallest unsigned value.
+  ///
+  /// This checks to see if the value of this APInt is the minimum unsigned
+  /// value for the APInt's bit width.
+  bool isMinValue() const { return isNullValue(); }
+
+  /// \brief Determine if this is the smallest signed value.
+  ///
+  /// This checks to see if the value of this APInt is the minimum signed
+  /// value for the APInt's bit width.
+  bool isMinSignedValue() const {
+    if (isSingleWord())
+      return U.VAL == (WordType(1) << (BitWidth - 1));
+    return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
+  }
+
+  /// \brief Check if this APInt has an N-bits unsigned integer value.
+  bool isIntN(unsigned N) const {
+    assert(N && "N == 0 ???");
+    return getActiveBits() <= N;
+  }
+
+  /// \brief Check if this APInt has an N-bits signed integer value.
+  bool isSignedIntN(unsigned N) const {
+    assert(N && "N == 0 ???");
+    return getMinSignedBits() <= N;
+  }
+
+  /// \brief Check if this APInt's value is a power of two greater than zero.
+  ///
+  /// \returns true if the argument APInt value is a power of two > 0.
+  bool isPowerOf2() const {
+    if (isSingleWord())
+      return isPowerOf2_64(U.VAL);
+    return countPopulationSlowCase() == 1;
+  }
+
+  /// \brief Check if the APInt's value is returned by getSignMask.
+  ///
+  /// \returns true if this is the value returned by getSignMask.
+  bool isSignMask() const { return isMinSignedValue(); }
+
+  /// \brief Convert APInt to a boolean value.
+  ///
+  /// This converts the APInt to a boolean value as a test against zero.
+  bool getBoolValue() const { return !!*this; }
+
+  /// If this value is smaller than the specified limit, return it, otherwise
+  /// return the limit value.  This causes the value to saturate to the limit.
+  uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
+    return ugt(Limit) ? Limit : getZExtValue();
+  }
+
+  /// \brief Check if the APInt consists of a repeated bit pattern.
+  ///
+  /// e.g. 0x01010101 satisfies isSplat(8).
+  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
+  /// width without remainder.
+  bool isSplat(unsigned SplatSizeInBits) const;
+
+  /// \returns true if this APInt value is a sequence of \param numBits ones
+  /// starting at the least significant bit with the remainder zero.
+  bool isMask(unsigned numBits) const {
+    assert(numBits != 0 && "numBits must be non-zero");
+    assert(numBits <= BitWidth && "numBits out of range");
+    if (isSingleWord())
+      return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
+    unsigned Ones = countTrailingOnesSlowCase();
+    return (numBits == Ones) &&
+           ((Ones + countLeadingZerosSlowCase()) == BitWidth);
+  }
+
+  /// \returns true if this APInt is a non-empty sequence of ones starting at
+  /// the least significant bit with the remainder zero.
+  /// Ex. isMask(0x0000FFFFU) == true.
+  bool isMask() const {
+    if (isSingleWord())
+      return isMask_64(U.VAL);
+    unsigned Ones = countTrailingOnesSlowCase();
+    return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
+  }
+
+  /// \brief Return true if this APInt value contains a sequence of ones with
+  /// the remainder zero.
+  bool isShiftedMask() const {
+    if (isSingleWord())
+      return isShiftedMask_64(U.VAL);
+    unsigned Ones = countPopulationSlowCase();
+    unsigned LeadZ = countLeadingZerosSlowCase();
+    return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
+  }
+
+  /// @}
+  /// \name Value Generators
+  /// @{
+
+  /// \brief Gets maximum unsigned value of APInt for specific bit width.
+  static APInt getMaxValue(unsigned numBits) {
+    return getAllOnesValue(numBits);
+  }
+
+  /// \brief Gets maximum signed value of APInt for a specific bit width.
+  static APInt getSignedMaxValue(unsigned numBits) {
+    APInt API = getAllOnesValue(numBits);
+    API.clearBit(numBits - 1);
+    return API;
+  }
+
+  /// \brief Gets minimum unsigned value of APInt for a specific bit width.
+  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
+
+  /// \brief Gets minimum signed value of APInt for a specific bit width.
+  static APInt getSignedMinValue(unsigned numBits) {
+    APInt API(numBits, 0);
+    API.setBit(numBits - 1);
+    return API;
+  }
+
+  /// \brief Get the SignMask for a specific bit width.
+  ///
+  /// This is just a wrapper function of getSignedMinValue(), and it helps code
+  /// readability when we want to get a SignMask.
+  static APInt getSignMask(unsigned BitWidth) {
+    return getSignedMinValue(BitWidth);
+  }
+
+  /// \brief Get the all-ones value.
+  ///
+  /// \returns the all-ones value for an APInt of the specified bit-width.
+  static APInt getAllOnesValue(unsigned numBits) {
+    return APInt(numBits, WORD_MAX, true);
+  }
+
+  /// \brief Get the '0' value.
+  ///
+  /// \returns the '0' value for an APInt of the specified bit-width.
+  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
+
+  /// \brief Compute an APInt containing numBits highbits from this APInt.
+  ///
+  /// Get an APInt with the same BitWidth as this APInt, just zero mask
+  /// the low bits and right shift to the least significant bit.
+  ///
+  /// \returns the high "numBits" bits of this APInt.
+  APInt getHiBits(unsigned numBits) const;
+
+  /// \brief Compute an APInt containing numBits lowbits from this APInt.
+  ///
+  /// Get an APInt with the same BitWidth as this APInt, just zero mask
+  /// the high bits.
+  ///
+  /// \returns the low "numBits" bits of this APInt.
+  APInt getLoBits(unsigned numBits) const;
+
+  /// \brief Return an APInt with exactly one bit set in the result.
+  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
+    APInt Res(numBits, 0);
+    Res.setBit(BitNo);
+    return Res;
+  }
+
+  /// \brief Get a value with a block of bits set.
+  ///
+  /// Constructs an APInt value that has a contiguous range of bits set. The
+  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
+  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
+  /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
+  /// example, with parameters (32, 28, 4), you would get 0xF000000F.
+  ///
+  /// \param numBits the intended bit width of the result
+  /// \param loBit the index of the lowest bit set.
+  /// \param hiBit the index of the highest bit set.
+  ///
+  /// \returns An APInt value with the requested bits set.
+  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
+    APInt Res(numBits, 0);
+    Res.setBits(loBit, hiBit);
+    return Res;
+  }
+
+  /// \brief Get a value with upper bits starting at loBit set.
+  ///
+  /// Constructs an APInt value that has a contiguous range of bits set. The
+  /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
+  /// bits will be zero. For example, with parameters(32, 12) you would get
+  /// 0xFFFFF000.
+  ///
+  /// \param numBits the intended bit width of the result
+  /// \param loBit the index of the lowest bit to set.
+  ///
+  /// \returns An APInt value with the requested bits set.
+  static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
+    APInt Res(numBits, 0);
+    Res.setBitsFrom(loBit);
+    return Res;
+  }
+
+  /// \brief Get a value with high bits set
+  ///
+  /// Constructs an APInt value that has the top hiBitsSet bits set.
+  ///
+  /// \param numBits the bitwidth of the result
+  /// \param hiBitsSet the number of high-order bits set in the result.
+  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
+    APInt Res(numBits, 0);
+    Res.setHighBits(hiBitsSet);
+    return Res;
+  }
+
+  /// \brief Get a value with low bits set
+  ///
+  /// Constructs an APInt value that has the bottom loBitsSet bits set.
+  ///
+  /// \param numBits the bitwidth of the result
+  /// \param loBitsSet the number of low-order bits set in the result.
+  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
+    APInt Res(numBits, 0);
+    Res.setLowBits(loBitsSet);
+    return Res;
+  }
+
+  /// \brief Return a value containing V broadcasted over NewLen bits.
+  static APInt getSplat(unsigned NewLen, const APInt &V);
+
+  /// \brief Determine if two APInts have the same value, after zero-extending
+  /// one of them (if needed!) to ensure that the bit-widths match.
+  static bool isSameValue(const APInt &I1, const APInt &I2) {
+    if (I1.getBitWidth() == I2.getBitWidth())
+      return I1 == I2;
+
+    if (I1.getBitWidth() > I2.getBitWidth())
+      return I1 == I2.zext(I1.getBitWidth());
+
+    return I1.zext(I2.getBitWidth()) == I2;
+  }
+
+  /// \brief Overload to compute a hash_code for an APInt value.
+  friend hash_code hash_value(const APInt &Arg);
+
+  /// This function returns a pointer to the internal storage of the APInt.
+  /// This is useful for writing out the APInt in binary form without any
+  /// conversions.
+  const uint64_t *getRawData() const {
+    if (isSingleWord())
+      return &U.VAL;
+    return &U.pVal[0];
+  }
+
+  /// @}
+  /// \name Unary Operators
+  /// @{
+
+  /// \brief Postfix increment operator.
+  ///
+  /// Increments *this by 1.
+  ///
+  /// \returns a new APInt value representing the original value of *this.
+  const APInt operator++(int) {
+    APInt API(*this);
+    ++(*this);
+    return API;
+  }
+
+  /// \brief Prefix increment operator.
+  ///
+  /// \returns *this incremented by one
+  APInt &operator++();
+
+  /// \brief Postfix decrement operator.
+  ///
+  /// Decrements *this by 1.
+  ///
+  /// \returns a new APInt value representing the original value of *this.
+  const APInt operator--(int) {
+    APInt API(*this);
+    --(*this);
+    return API;
+  }
+
+  /// \brief Prefix decrement operator.
+  ///
+  /// \returns *this decremented by one.
+  APInt &operator--();
+
+  /// \brief Logical negation operator.
+  ///
+  /// Performs logical negation operation on this APInt.
+  ///
+  /// \returns true if *this is zero, false otherwise.
+  bool operator!() const {
+    if (isSingleWord())
+      return U.VAL == 0;
+    return countLeadingZerosSlowCase() == BitWidth;
+  }
+
+  /// @}
+  /// \name Assignment Operators
+  /// @{
+
+  /// \brief Copy assignment operator.
+  ///
+  /// \returns *this after assignment of RHS.
+  APInt &operator=(const APInt &RHS) {
+    // If the bitwidths are the same, we can avoid mucking with memory
+    if (isSingleWord() && RHS.isSingleWord()) {
+      U.VAL = RHS.U.VAL;
+      BitWidth = RHS.BitWidth;
+      return clearUnusedBits();
+    }
+
+    AssignSlowCase(RHS);
+    return *this;
+  }
+
+  /// @brief Move assignment operator.
+  APInt &operator=(APInt &&that) {
+    assert(this != &that && "Self-move not supported");
+    if (!isSingleWord())
+      delete[] U.pVal;
+
+    // Use memcpy so that type based alias analysis sees both VAL and pVal
+    // as modified.
+    memcpy(&U, &that.U, sizeof(U));
+
+    BitWidth = that.BitWidth;
+    that.BitWidth = 0;
+
+    return *this;
+  }
+
+  /// \brief Assignment operator.
+  ///
+  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
+  /// the bit width, the excess bits are truncated. If the bit width is larger
+  /// than 64, the value is zero filled in the unspecified high order bits.
+  ///
+  /// \returns *this after assignment of RHS value.
+  APInt &operator=(uint64_t RHS) {
+    if (isSingleWord()) {
+      U.VAL = RHS;
+      clearUnusedBits();
+    } else {
+      U.pVal[0] = RHS;
+      memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
+    }
+    return *this;
+  }
+
+  /// \brief Bitwise AND assignment operator.
+  ///
+  /// Performs a bitwise AND operation on this APInt and RHS. The result is
+  /// assigned to *this.
+  ///
+  /// \returns *this after ANDing with RHS.
+  APInt &operator&=(const APInt &RHS) {
+    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+    if (isSingleWord())
+      U.VAL &= RHS.U.VAL;
+    else
+      AndAssignSlowCase(RHS);
+    return *this;
+  }
+
+  /// \brief Bitwise AND assignment operator.
+  ///
+  /// Performs a bitwise AND operation on this APInt and RHS. RHS is
+  /// logically zero-extended or truncated to match the bit-width of
+  /// the LHS.
+  APInt &operator&=(uint64_t RHS) {
+    if (isSingleWord()) {
+      U.VAL &= RHS;
+      return *this;
+    }
+    U.pVal[0] &= RHS;
+    memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
+    return *this;
+  }
+
+  /// \brief Bitwise OR assignment operator.
+  ///
+  /// Performs a bitwise OR operation on this APInt and RHS. The result is
+  /// assigned *this;
+  ///
+  /// \returns *this after ORing with RHS.
+  APInt &operator|=(const APInt &RHS) {
+    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+    if (isSingleWord())
+      U.VAL |= RHS.U.VAL;
+    else
+      OrAssignSlowCase(RHS);
+    return *this;
+  }
+
+  /// \brief Bitwise OR assignment operator.
+  ///
+  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
+  /// logically zero-extended or truncated to match the bit-width of
+  /// the LHS.
+  APInt &operator|=(uint64_t RHS) {
+    if (isSingleWord()) {
+      U.VAL |= RHS;
+      clearUnusedBits();
+    } else {
+      U.pVal[0] |= RHS;
+    }
+    return *this;
+  }
+
+  /// \brief Bitwise XOR assignment operator.
+  ///
+  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
+  /// assigned to *this.
+  ///
+  /// \returns *this after XORing with RHS.
+  APInt &operator^=(const APInt &RHS) {
+    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+    if (isSingleWord())
+      U.VAL ^= RHS.U.VAL;
+    else
+      XorAssignSlowCase(RHS);
+    return *this;
+  }
+
+  /// \brief Bitwise XOR assignment operator.
+  ///
+  /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
+  /// logically zero-extended or truncated to match the bit-width of
+  /// the LHS.
+  APInt &operator^=(uint64_t RHS) {
+    if (isSingleWord()) {
+      U.VAL ^= RHS;
+      clearUnusedBits();
+    } else {
+      U.pVal[0] ^= RHS;
+    }
+    return *this;
+  }
+
+  /// \brief Multiplication assignment operator.
+  ///
+  /// Multiplies this APInt by RHS and assigns the result to *this.
+  ///
+  /// \returns *this
+  APInt &operator*=(const APInt &RHS);
+  APInt &operator*=(uint64_t RHS);
+
+  /// \brief Addition assignment operator.
+  ///
+  /// Adds RHS to *this and assigns the result to *this.
+  ///
+  /// \returns *this
+  APInt &operator+=(const APInt &RHS);
+  APInt &operator+=(uint64_t RHS);
+
+  /// \brief Subtraction assignment operator.
+  ///
+  /// Subtracts RHS from *this and assigns the result to *this.
+  ///
+  /// \returns *this
+  APInt &operator-=(const APInt &RHS);
+  APInt &operator-=(uint64_t RHS);
+
+  /// \brief Left-shift assignment function.
+  ///
+  /// Shifts *this left by shiftAmt and assigns the result to *this.
+  ///
+  /// \returns *this after shifting left by ShiftAmt
+  APInt &operator<<=(unsigned ShiftAmt) {
+    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
+    if (isSingleWord()) {
+      if (ShiftAmt == BitWidth)
+        U.VAL = 0;
+      else
+        U.VAL <<= ShiftAmt;
+      return clearUnusedBits();
+    }
+    shlSlowCase(ShiftAmt);
+    return *this;
+  }
+
+  /// \brief Left-shift assignment function.
+  ///
+  /// Shifts *this left by shiftAmt and assigns the result to *this.
+  ///
+  /// \returns *this after shifting left by ShiftAmt
+  APInt &operator<<=(const APInt &ShiftAmt);
+
+  /// @}
+  /// \name Binary Operators
+  /// @{
+
+  /// \brief Multiplication operator.
+  ///
+  /// Multiplies this APInt by RHS and returns the result.
+  APInt operator*(const APInt &RHS) const;
+
+  /// \brief Left logical shift operator.
+  ///
+  /// Shifts this APInt left by \p Bits and returns the result.
+  APInt operator<<(unsigned Bits) const { return shl(Bits); }
+
+  /// \brief Left logical shift operator.
+  ///
+  /// Shifts this APInt left by \p Bits and returns the result.
+  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
+
+  /// \brief Arithmetic right-shift function.
+  ///
+  /// Arithmetic right-shift this APInt by shiftAmt.
+  APInt ashr(unsigned ShiftAmt) const {
+    APInt R(*this);
+    R.ashrInPlace(ShiftAmt);
+    return R;
+  }
+
+  /// Arithmetic right-shift this APInt by ShiftAmt in place.
+  void ashrInPlace(unsigned ShiftAmt) {
+    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
+    if (isSingleWord()) {
+      int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
+      if (ShiftAmt == BitWidth)
+        U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
+      else
+        U.VAL = SExtVAL >> ShiftAmt;
+      clearUnusedBits();
+      return;
+    }
+    ashrSlowCase(ShiftAmt);
+  }
+
+  /// \brief Logical right-shift function.
+  ///
+  /// Logical right-shift this APInt by shiftAmt.
+  APInt lshr(unsigned shiftAmt) const {
+    APInt R(*this);
+    R.lshrInPlace(shiftAmt);
+    return R;
+  }
+
+  /// Logical right-shift this APInt by ShiftAmt in place.
+  void lshrInPlace(unsigned ShiftAmt) {
+    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
+    if (isSingleWord()) {
+      if (ShiftAmt == BitWidth)
+        U.VAL = 0;
+      else
+        U.VAL >>= ShiftAmt;
+      return;
+    }
+    lshrSlowCase(ShiftAmt);
+  }
+
+  /// \brief Left-shift function.
+  ///
+  /// Left-shift this APInt by shiftAmt.
+  APInt shl(unsigned shiftAmt) const {
+    APInt R(*this);
+    R <<= shiftAmt;
+    return R;
+  }
+
+  /// \brief Rotate left by rotateAmt.
+  APInt rotl(unsigned rotateAmt) const;
+
+  /// \brief Rotate right by rotateAmt.
+  APInt rotr(unsigned rotateAmt) const;
+
+  /// \brief Arithmetic right-shift function.
+  ///
+  /// Arithmetic right-shift this APInt by shiftAmt.
+  APInt ashr(const APInt &ShiftAmt) const {
+    APInt R(*this);
+    R.ashrInPlace(ShiftAmt);
+    return R;
+  }
+
+  /// Arithmetic right-shift this APInt by shiftAmt in place.
+  void ashrInPlace(const APInt &shiftAmt);
+
+  /// \brief Logical right-shift function.
+  ///
+  /// Logical right-shift this APInt by shiftAmt.
+  APInt lshr(const APInt &ShiftAmt) const {
+    APInt R(*this);
+    R.lshrInPlace(ShiftAmt);
+    return R;
+  }
+
+  /// Logical right-shift this APInt by ShiftAmt in place.
+  void lshrInPlace(const APInt &ShiftAmt);
+
+  /// \brief Left-shift function.
+  ///
+  /// Left-shift this APInt by shiftAmt.
+  APInt shl(const APInt &ShiftAmt) const {
+    APInt R(*this);
+    R <<= ShiftAmt;
+    return R;
+  }
+
+  /// \brief Rotate left by rotateAmt.
+  APInt rotl(const APInt &rotateAmt) const;
+
+  /// \brief Rotate right by rotateAmt.
+  APInt rotr(const APInt &rotateAmt) const;
+
+  /// \brief Unsigned division operation.
+  ///
+  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
+  /// RHS are treated as unsigned quantities for purposes of this division.
+  ///
+  /// \returns a new APInt value containing the division result
+  APInt udiv(const APInt &RHS) const;
+  APInt udiv(uint64_t RHS) const;
+
+  /// \brief Signed division function for APInt.
+  ///
+  /// Signed divide this APInt by APInt RHS.
+  APInt sdiv(const APInt &RHS) const;
+  APInt sdiv(int64_t RHS) const;
+
+  /// \brief Unsigned remainder operation.
+  ///
+  /// Perform an unsigned remainder operation on this APInt with RHS being the
+  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
+  /// of this operation. Note that this is a true remainder operation and not a
+  /// modulo operation because the sign follows the sign of the dividend which
+  /// is *this.
+  ///
+  /// \returns a new APInt value containing the remainder result
+  APInt urem(const APInt &RHS) const;
+  uint64_t urem(uint64_t RHS) const;
+
+  /// \brief Function for signed remainder operation.
+  ///
+  /// Signed remainder operation on APInt.
+  APInt srem(const APInt &RHS) const;
+  int64_t srem(int64_t RHS) const;
+
+  /// \brief Dual division/remainder interface.
+  ///
+  /// Sometimes it is convenient to divide two APInt values and obtain both the
+  /// quotient and remainder. This function does both operations in the same
+  /// computation making it a little more efficient. The pair of input arguments
+  /// may overlap with the pair of output arguments. It is safe to call
+  /// udivrem(X, Y, X, Y), for example.
+  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
+                      APInt &Remainder);
+  static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
+                      uint64_t &Remainder);
+
+  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
+                      APInt &Remainder);
+  static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
+                      int64_t &Remainder);
+
+  // Operations that return overflow indicators.
+  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
+  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
+  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
+  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
+  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
+  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
+  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
+  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
+  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
+
+  /// \brief Array-indexing support.
+  ///
+  /// \returns the bit value at bitPosition
+  bool operator[](unsigned bitPosition) const {
+    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
+    return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
+  }
+
+  /// @}
+  /// \name Comparison Operators
+  /// @{
+
+  /// \brief Equality operator.
+  ///
+  /// Compares this APInt with RHS for the validity of the equality
+  /// relationship.
+  bool operator==(const APInt &RHS) const {
+    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
+    if (isSingleWord())
+      return U.VAL == RHS.U.VAL;
+    return EqualSlowCase(RHS);
+  }
+
+  /// \brief Equality operator.
+  ///
+  /// Compares this APInt with a uint64_t for the validity of the equality
+  /// relationship.
+  ///
+  /// \returns true if *this == Val
+  bool operator==(uint64_t Val) const {
+    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
+  }
+
+  /// \brief Equality comparison.
+  ///
+  /// Compares this APInt with RHS for the validity of the equality
+  /// relationship.
+  ///
+  /// \returns true if *this == Val
+  bool eq(const APInt &RHS) const { return (*this) == RHS; }
+
+  /// \brief Inequality operator.
+  ///
+  /// Compares this APInt with RHS for the validity of the inequality
+  /// relationship.
+  ///
+  /// \returns true if *this != Val
+  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
+
+  /// \brief Inequality operator.
+  ///
+  /// Compares this APInt with a uint64_t for the validity of the inequality
+  /// relationship.
+  ///
+  /// \returns true if *this != Val
+  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
+
+  /// \brief Inequality comparison
+  ///
+  /// Compares this APInt with RHS for the validity of the inequality
+  /// relationship.
+  ///
+  /// \returns true if *this != Val
+  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
+
+  /// \brief Unsigned less than comparison
+  ///
+  /// Regards both *this and RHS as unsigned quantities and compares them for
+  /// the validity of the less-than relationship.
+  ///
+  /// \returns true if *this < RHS when both are considered unsigned.
+  bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
+
+  /// \brief Unsigned less than comparison
+  ///
+  /// Regards both *this as an unsigned quantity and compares it with RHS for
+  /// the validity of the less-than relationship.
+  ///
+  /// \returns true if *this < RHS when considered unsigned.
+  bool ult(uint64_t RHS) const {
+    // Only need to check active bits if not a single word.
+    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
+  }
+
+  /// \brief Signed less than comparison
+  ///
+  /// Regards both *this and RHS as signed quantities and compares them for
+  /// validity of the less-than relationship.
+  ///
+  /// \returns true if *this < RHS when both are considered signed.
+  bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
+
+  /// \brief Signed less than comparison
+  ///
+  /// Regards both *this as a signed quantity and compares it with RHS for
+  /// the validity of the less-than relationship.
+  ///
+  /// \returns true if *this < RHS when considered signed.
+  bool slt(int64_t RHS) const {
+    return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
+                                                        : getSExtValue() < RHS;
+  }
+
+  /// \brief Unsigned less or equal comparison
+  ///
+  /// Regards both *this and RHS as unsigned quantities and compares them for
+  /// validity of the less-or-equal relationship.
+  ///
+  /// \returns true if *this <= RHS when both are considered unsigned.
+  bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
+
+  /// \brief Unsigned less or equal comparison
+  ///
+  /// Regards both *this as an unsigned quantity and compares it with RHS for
+  /// the validity of the less-or-equal relationship.
+  ///
+  /// \returns true if *this <= RHS when considered unsigned.
+  bool ule(uint64_t RHS) const { return !ugt(RHS); }
+
+  /// \brief Signed less or equal comparison
+  ///
+  /// Regards both *this and RHS as signed quantities and compares them for
+  /// validity of the less-or-equal relationship.
+  ///
+  /// \returns true if *this <= RHS when both are considered signed.
+  bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
+
+  /// \brief Signed less or equal comparison
+  ///
+  /// Regards both *this as a signed quantity and compares it with RHS for the
+  /// validity of the less-or-equal relationship.
+  ///
+  /// \returns true if *this <= RHS when considered signed.
+  bool sle(uint64_t RHS) const { return !sgt(RHS); }
+
+  /// \brief Unsigned greather than comparison
+  ///
+  /// Regards both *this and RHS as unsigned quantities and compares them for
+  /// the validity of the greater-than relationship.
+  ///
+  /// \returns true if *this > RHS when both are considered unsigned.
+  bool ugt(const APInt &RHS) const { return !ule(RHS); }
+
+  /// \brief Unsigned greater than comparison
+  ///
+  /// Regards both *this as an unsigned quantity and compares it with RHS for
+  /// the validity of the greater-than relationship.
+  ///
+  /// \returns true if *this > RHS when considered unsigned.
+  bool ugt(uint64_t RHS) const {
+    // Only need to check active bits if not a single word.
+    return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
+  }
+
+  /// \brief Signed greather than comparison
+  ///
+  /// Regards both *this and RHS as signed quantities and compares them for the
+  /// validity of the greater-than relationship.
+  ///
+  /// \returns true if *this > RHS when both are considered signed.
+  bool sgt(const APInt &RHS) const { return !sle(RHS); }
+
+  /// \brief Signed greater than comparison
+  ///
+  /// Regards both *this as a signed quantity and compares it with RHS for
+  /// the validity of the greater-than relationship.
+  ///
+  /// \returns true if *this > RHS when considered signed.
+  bool sgt(int64_t RHS) const {
+    return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
+                                                        : getSExtValue() > RHS;
+  }
+
+  /// \brief Unsigned greater or equal comparison
+  ///
+  /// Regards both *this and RHS as unsigned quantities and compares them for
+  /// validity of the greater-or-equal relationship.
+  ///
+  /// \returns true if *this >= RHS when both are considered unsigned.
+  bool uge(const APInt &RHS) const { return !ult(RHS); }
+
+  /// \brief Unsigned greater or equal comparison
+  ///
+  /// Regards both *this as an unsigned quantity and compares it with RHS for
+  /// the validity of the greater-or-equal relationship.
+  ///
+  /// \returns true if *this >= RHS when considered unsigned.
+  bool uge(uint64_t RHS) const { return !ult(RHS); }
+
+  /// \brief Signed greater or equal comparison
+  ///
+  /// Regards both *this and RHS as signed quantities and compares them for
+  /// validity of the greater-or-equal relationship.
+  ///
+  /// \returns true if *this >= RHS when both are considered signed.
+  bool sge(const APInt &RHS) const { return !slt(RHS); }
+
+  /// \brief Signed greater or equal comparison
+  ///
+  /// Regards both *this as a signed quantity and compares it with RHS for
+  /// the validity of the greater-or-equal relationship.
+  ///
+  /// \returns true if *this >= RHS when considered signed.
+  bool sge(int64_t RHS) const { return !slt(RHS); }
+
+  /// This operation tests if there are any pairs of corresponding bits
+  /// between this APInt and RHS that are both set.
+  bool intersects(const APInt &RHS) const {
+    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+    if (isSingleWord())
+      return (U.VAL & RHS.U.VAL) != 0;
+    return intersectsSlowCase(RHS);
+  }
+
+  /// This operation checks that all bits set in this APInt are also set in RHS.
+  bool isSubsetOf(const APInt &RHS) const {
+    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+    if (isSingleWord())
+      return (U.VAL & ~RHS.U.VAL) == 0;
+    return isSubsetOfSlowCase(RHS);
+  }
+
+  /// @}
+  /// \name Resizing Operators
+  /// @{
+
+  /// \brief Truncate to new width.
+  ///
+  /// Truncate the APInt to a specified width. It is an error to specify a width
+  /// that is greater than or equal to the current width.
+  APInt trunc(unsigned width) const;
+
+  /// \brief Sign extend to a new width.
+  ///
+  /// This operation sign extends the APInt to a new width. If the high order
+  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
+  /// It is an error to specify a width that is less than or equal to the
+  /// current width.
+  APInt sext(unsigned width) const;
+
+  /// \brief Zero extend to a new width.
+  ///
+  /// This operation zero extends the APInt to a new width. The high order bits
+  /// are filled with 0 bits.  It is an error to specify a width that is less
+  /// than or equal to the current width.
+  APInt zext(unsigned width) const;
+
+  /// \brief Sign extend or truncate to width
+  ///
+  /// Make this APInt have the bit width given by \p width. The value is sign
+  /// extended, truncated, or left alone to make it that width.
+  APInt sextOrTrunc(unsigned width) const;
+
+  /// \brief Zero extend or truncate to width
+  ///
+  /// Make this APInt have the bit width given by \p width. The value is zero
+  /// extended, truncated, or left alone to make it that width.
+  APInt zextOrTrunc(unsigned width) const;
+
+  /// \brief Sign extend or truncate to width
+  ///
+  /// Make this APInt have the bit width given by \p width. The value is sign
+  /// extended, or left alone to make it that width.
+  APInt sextOrSelf(unsigned width) const;
+
+  /// \brief Zero extend or truncate to width
+  ///
+  /// Make this APInt have the bit width given by \p width. The value is zero
+  /// extended, or left alone to make it that width.
+  APInt zextOrSelf(unsigned width) const;
+
+  /// @}
+  /// \name Bit Manipulation Operators
+  /// @{
+
+  /// \brief Set every bit to 1.
+  void setAllBits() {
+    if (isSingleWord())
+      U.VAL = WORD_MAX;
+    else
+      // Set all the bits in all the words.
+      memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
+    // Clear the unused ones
+    clearUnusedBits();
+  }
+
+  /// \brief Set a given bit to 1.
+  ///
+  /// Set the given bit to 1 whose position is given as "bitPosition".
+  void setBit(unsigned BitPosition) {
+    assert(BitPosition <= BitWidth && "BitPosition out of range");
+    WordType Mask = maskBit(BitPosition);
+    if (isSingleWord())
+      U.VAL |= Mask;
+    else
+      U.pVal[whichWord(BitPosition)] |= Mask;
+  }
+
+  /// Set the sign bit to 1.
+  void setSignBit() {
+    setBit(BitWidth - 1);
+  }
+
+  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
+  void setBits(unsigned loBit, unsigned hiBit) {
+    assert(hiBit <= BitWidth && "hiBit out of range");
+    assert(loBit <= BitWidth && "loBit out of range");
+    assert(loBit <= hiBit && "loBit greater than hiBit");
+    if (loBit == hiBit)
+      return;
+    if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
+      uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
+      mask <<= loBit;
+      if (isSingleWord())
+        U.VAL |= mask;
+      else
+        U.pVal[0] |= mask;
+    } else {
+      setBitsSlowCase(loBit, hiBit);
+    }
+  }
+
+  /// Set the top bits starting from loBit.
+  void setBitsFrom(unsigned loBit) {
+    return setBits(loBit, BitWidth);
+  }
+
+  /// Set the bottom loBits bits.
+  void setLowBits(unsigned loBits) {
+    return setBits(0, loBits);
+  }
+
+  /// Set the top hiBits bits.
+  void setHighBits(unsigned hiBits) {
+    return setBits(BitWidth - hiBits, BitWidth);
+  }
+
+  /// \brief Set every bit to 0.
+  void clearAllBits() {
+    if (isSingleWord())
+      U.VAL = 0;
+    else
+      memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
+  }
+
+  /// \brief Set a given bit to 0.
+  ///
+  /// Set the given bit to 0 whose position is given as "bitPosition".
+  void clearBit(unsigned BitPosition) {
+    assert(BitPosition <= BitWidth && "BitPosition out of range");
+    WordType Mask = ~maskBit(BitPosition);
+    if (isSingleWord())
+      U.VAL &= Mask;
+    else
+      U.pVal[whichWord(BitPosition)] &= Mask;
+  }
+
+  /// Set the sign bit to 0.
+  void clearSignBit() {
+    clearBit(BitWidth - 1);
+  }
+
+  /// \brief Toggle every bit to its opposite value.
+  void flipAllBits() {
+    if (isSingleWord()) {
+      U.VAL ^= WORD_MAX;
+      clearUnusedBits();
+    } else {
+      flipAllBitsSlowCase();
+    }
+  }
+
+  /// \brief Toggles a given bit to its opposite value.
+  ///
+  /// Toggle a given bit to its opposite value whose position is given
+  /// as "bitPosition".
+  void flipBit(unsigned bitPosition);
+
+  /// Negate this APInt in place.
+  void negate() {
+    flipAllBits();
+    ++(*this);
+  }
+
+  /// Insert the bits from a smaller APInt starting at bitPosition.
+  void insertBits(const APInt &SubBits, unsigned bitPosition);
+
+  /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
+  APInt extractBits(unsigned numBits, unsigned bitPosition) const;
+
+  /// @}
+  /// \name Value Characterization Functions
+  /// @{
+
+  /// \brief Return the number of bits in the APInt.
+  unsigned getBitWidth() const { return BitWidth; }
+
+  /// \brief Get the number of words.
+  ///
+  /// Here one word's bitwidth equals to that of uint64_t.
+  ///
+  /// \returns the number of words to hold the integer value of this APInt.
+  unsigned getNumWords() const { return getNumWords(BitWidth); }
+
+  /// \brief Get the number of words.
+  ///
+  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
+  ///
+  /// \returns the number of words to hold the integer value with a given bit
+  /// width.
+  static unsigned getNumWords(unsigned BitWidth) {
+    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
+  }
+
+  /// \brief Compute the number of active bits in the value
+  ///
+  /// This function returns the number of active bits which is defined as the
+  /// bit width minus the number of leading zeros. This is used in several
+  /// computations to see how "wide" the value is.
+  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
+
+  /// \brief Compute the number of active words in the value of this APInt.
+  ///
+  /// This is used in conjunction with getActiveData to extract the raw value of
+  /// the APInt.
+  unsigned getActiveWords() const {
+    unsigned numActiveBits = getActiveBits();
+    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
+  }
+
+  /// \brief Get the minimum bit size for this signed APInt
+  ///
+  /// Computes the minimum bit width for this APInt while considering it to be a
+  /// signed (and probably negative) value. If the value is not negative, this
+  /// function returns the same value as getActiveBits()+1. Otherwise, it
+  /// returns the smallest bit width that will retain the negative value. For
+  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
+  /// for -1, this function will always return 1.
+  unsigned getMinSignedBits() const {
+    if (isNegative())
+      return BitWidth - countLeadingOnes() + 1;
+    return getActiveBits() + 1;
+  }
+
+  /// \brief Get zero extended value
+  ///
+  /// This method attempts to return the value of this APInt as a zero extended
+  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
+  /// uint64_t. Otherwise an assertion will result.
+  uint64_t getZExtValue() const {
+    if (isSingleWord())
+      return U.VAL;
+    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
+    return U.pVal[0];
+  }
+
+  /// \brief Get sign extended value
+  ///
+  /// This method attempts to return the value of this APInt as a sign extended
+  /// int64_t. The bit width must be <= 64 or the value must fit within an
+  /// int64_t. Otherwise an assertion will result.
+  int64_t getSExtValue() const {
+    if (isSingleWord())
+      return SignExtend64(U.VAL, BitWidth);
+    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
+    return int64_t(U.pVal[0]);
+  }
+
+  /// \brief Get bits required for string value.
+  ///
+  /// This method determines how many bits are required to hold the APInt
+  /// equivalent of the string given by \p str.
+  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
+
+  /// \brief The APInt version of the countLeadingZeros functions in
+  ///   MathExtras.h.
+  ///
+  /// It counts the number of zeros from the most significant bit to the first
+  /// one bit.
+  ///
+  /// \returns BitWidth if the value is zero, otherwise returns the number of
+  ///   zeros from the most significant bit to the first one bits.
+  unsigned countLeadingZeros() const {
+    if (isSingleWord()) {
+      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
+      return llvm::countLeadingZeros(U.VAL) - unusedBits;
+    }
+    return countLeadingZerosSlowCase();
+  }
+
+  /// \brief Count the number of leading one bits.
+  ///
+  /// This function is an APInt version of the countLeadingOnes
+  /// functions in MathExtras.h. It counts the number of ones from the most
+  /// significant bit to the first zero bit.
+  ///
+  /// \returns 0 if the high order bit is not set, otherwise returns the number
+  /// of 1 bits from the most significant to the least
+  unsigned countLeadingOnes() const {
+    if (isSingleWord())
+      return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
+    return countLeadingOnesSlowCase();
+  }
+
+  /// Computes the number of leading bits of this APInt that are equal to its
+  /// sign bit.
+  unsigned getNumSignBits() const {
+    return isNegative() ? countLeadingOnes() : countLeadingZeros();
+  }
+
+  /// \brief Count the number of trailing zero bits.
+  ///
+  /// This function is an APInt version of the countTrailingZeros
+  /// functions in MathExtras.h. It counts the number of zeros from the least
+  /// significant bit to the first set bit.
+  ///
+  /// \returns BitWidth if the value is zero, otherwise returns the number of
+  /// zeros from the least significant bit to the first one bit.
+  unsigned countTrailingZeros() const {
+    if (isSingleWord())
+      return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
+    return countTrailingZerosSlowCase();
+  }
+
+  /// \brief Count the number of trailing one bits.
+  ///
+  /// This function is an APInt version of the countTrailingOnes
+  /// functions in MathExtras.h. It counts the number of ones from the least
+  /// significant bit to the first zero bit.
+  ///
+  /// \returns BitWidth if the value is all ones, otherwise returns the number
+  /// of ones from the least significant bit to the first zero bit.
+  unsigned countTrailingOnes() const {
+    if (isSingleWord())
+      return llvm::countTrailingOnes(U.VAL);
+    return countTrailingOnesSlowCase();
+  }
+
+  /// \brief Count the number of bits set.
+  ///
+  /// This function is an APInt version of the countPopulation functions
+  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
+  ///
+  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
+  unsigned countPopulation() const {
+    if (isSingleWord())
+      return llvm::countPopulation(U.VAL);
+    return countPopulationSlowCase();
+  }
+
+  /// @}
+  /// \name Conversion Functions
+  /// @{
+  void print(raw_ostream &OS, bool isSigned) const;
+
+  /// Converts an APInt to a string and append it to Str.  Str is commonly a
+  /// SmallString.
+  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
+                bool formatAsCLiteral = false) const;
+
+  /// Considers the APInt to be unsigned and converts it into a string in the
+  /// radix given. The radix can be 2, 8, 10 16, or 36.
+  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
+    toString(Str, Radix, false, false);
+  }
+
+  /// Considers the APInt to be signed and converts it into a string in the
+  /// radix given. The radix can be 2, 8, 10, 16, or 36.
+  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
+    toString(Str, Radix, true, false);
+  }
+
+  /// \brief Return the APInt as a std::string.
+  ///
+  /// Note that this is an inefficient method.  It is better to pass in a
+  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
+  /// for the string.
+  std::string toString(unsigned Radix, bool Signed) const;
+
+  /// \returns a byte-swapped representation of this APInt Value.
+  APInt byteSwap() const;
+
+  /// \returns the value with the bit representation reversed of this APInt
+  /// Value.
+  APInt reverseBits() const;
+
+  /// \brief Converts this APInt to a double value.
+  double roundToDouble(bool isSigned) const;
+
+  /// \brief Converts this unsigned APInt to a double value.
+  double roundToDouble() const { return roundToDouble(false); }
+
+  /// \brief Converts this signed APInt to a double value.
+  double signedRoundToDouble() const { return roundToDouble(true); }
+
+  /// \brief Converts APInt bits to a double
+  ///
+  /// The conversion does not do a translation from integer to double, it just
+  /// re-interprets the bits as a double. Note that it is valid to do this on
+  /// any bit width. Exactly 64 bits will be translated.
+  double bitsToDouble() const {
+    return BitsToDouble(getWord(0));
+  }
+
+  /// \brief Converts APInt bits to a double
+  ///
+  /// The conversion does not do a translation from integer to float, it just
+  /// re-interprets the bits as a float. Note that it is valid to do this on
+  /// any bit width. Exactly 32 bits will be translated.
+  float bitsToFloat() const {
+    return BitsToFloat(getWord(0));
+  }
+
+  /// \brief Converts a double to APInt bits.
+  ///
+  /// The conversion does not do a translation from double to integer, it just
+  /// re-interprets the bits of the double.
+  static APInt doubleToBits(double V) {
+    return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
+  }
+
+  /// \brief Converts a float to APInt bits.
+  ///
+  /// The conversion does not do a translation from float to integer, it just
+  /// re-interprets the bits of the float.
+  static APInt floatToBits(float V) {
+    return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
+  }
+
+  /// @}
+  /// \name Mathematics Operations
+  /// @{
+
+  /// \returns the floor log base 2 of this APInt.
+  unsigned logBase2() const { return getActiveBits() -  1; }
+
+  /// \returns the ceil log base 2 of this APInt.
+  unsigned ceilLogBase2() const {
+    APInt temp(*this);
+    --temp;
+    return temp.getActiveBits();
+  }
+
+  /// \returns the nearest log base 2 of this APInt. Ties round up.
+  ///
+  /// NOTE: When we have a BitWidth of 1, we define:
+  ///
+  ///   log2(0) = UINT32_MAX
+  ///   log2(1) = 0
+  ///
+  /// to get around any mathematical concerns resulting from
+  /// referencing 2 in a space where 2 does no exist.
+  unsigned nearestLogBase2() const {
+    // Special case when we have a bitwidth of 1. If VAL is 1, then we
+    // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
+    // UINT32_MAX.
+    if (BitWidth == 1)
+      return U.VAL - 1;
+
+    // Handle the zero case.
+    if (isNullValue())
+      return UINT32_MAX;
+
+    // The non-zero case is handled by computing:
+    //
+    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
+    //
+    // where x[i] is referring to the value of the ith bit of x.
+    unsigned lg = logBase2();
+    return lg + unsigned((*this)[lg - 1]);
+  }
+
+  /// \returns the log base 2 of this APInt if its an exact power of two, -1
+  /// otherwise
+  int32_t exactLogBase2() const {
+    if (!isPowerOf2())
+      return -1;
+    return logBase2();
+  }
+
+  /// \brief Compute the square root
+  APInt sqrt() const;
+
+  /// \brief Get the absolute value;
+  ///
+  /// If *this is < 0 then return -(*this), otherwise *this;
+  APInt abs() const {
+    if (isNegative())
+      return -(*this);
+    return *this;
+  }
+
+  /// \returns the multiplicative inverse for a given modulo.
+  APInt multiplicativeInverse(const APInt &modulo) const;
+
+  /// @}
+  /// \name Support for division by constant
+  /// @{
+
+  /// Calculate the magic number for signed division by a constant.
+  struct ms;
+  ms magic() const;
+
+  /// Calculate the magic number for unsigned division by a constant.
+  struct mu;
+  mu magicu(unsigned LeadingZeros = 0) const;
+
+  /// @}
+  /// \name Building-block Operations for APInt and APFloat
+  /// @{
+
+  // These building block operations operate on a representation of arbitrary
+  // precision, two's-complement, bignum integer values. They should be
+  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
+  // generally a pointer to the base of an array of integer parts, representing
+  // an unsigned bignum, and a count of how many parts there are.
+
+  /// Sets the least significant part of a bignum to the input value, and zeroes
+  /// out higher parts.
+  static void tcSet(WordType *, WordType, unsigned);
+
+  /// Assign one bignum to another.
+  static void tcAssign(WordType *, const WordType *, unsigned);
+
+  /// Returns true if a bignum is zero, false otherwise.
+  static bool tcIsZero(const WordType *, unsigned);
+
+  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
+  static int tcExtractBit(const WordType *, unsigned bit);
+
+  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
+  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
+  /// significant bit of DST.  All high bits above srcBITS in DST are
+  /// zero-filled.
+  static void tcExtract(WordType *, unsigned dstCount,
+                        const WordType *, unsigned srcBits,
+                        unsigned srcLSB);
+
+  /// Set the given bit of a bignum.  Zero-based.
+  static void tcSetBit(WordType *, unsigned bit);
+
+  /// Clear the given bit of a bignum.  Zero-based.
+  static void tcClearBit(WordType *, unsigned bit);
+
+  /// Returns the bit number of the least or most significant set bit of a
+  /// number.  If the input number has no bits set -1U is returned.
+  static unsigned tcLSB(const WordType *, unsigned n);
+  static unsigned tcMSB(const WordType *parts, unsigned n);
+
+  /// Negate a bignum in-place.
+  static void tcNegate(WordType *, unsigned);
+
+  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
+  static WordType tcAdd(WordType *, const WordType *,
+                        WordType carry, unsigned);
+  /// DST += RHS.  Returns the carry flag.
+  static WordType tcAddPart(WordType *, WordType, unsigned);
+
+  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
+  static WordType tcSubtract(WordType *, const WordType *,
+                             WordType carry, unsigned);
+  /// DST -= RHS.  Returns the carry flag.
+  static WordType tcSubtractPart(WordType *, WordType, unsigned);
+
+  /// DST += SRC * MULTIPLIER + PART   if add is true
+  /// DST  = SRC * MULTIPLIER + PART   if add is false
+  ///
+  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
+  /// start at the same point, i.e. DST == SRC.
+  ///
+  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
+  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
+  /// result, and if all of the omitted higher parts were zero return zero,
+  /// otherwise overflow occurred and return one.
+  static int tcMultiplyPart(WordType *dst, const WordType *src,
+                            WordType multiplier, WordType carry,
+                            unsigned srcParts, unsigned dstParts,
+                            bool add);
+
+  /// DST = LHS * RHS, where DST has the same width as the operands and is
+  /// filled with the least significant parts of the result.  Returns one if
+  /// overflow occurred, otherwise zero.  DST must be disjoint from both
+  /// operands.
+  static int tcMultiply(WordType *, const WordType *, const WordType *,
+                        unsigned);
+
+  /// DST = LHS * RHS, where DST has width the sum of the widths of the
+  /// operands. No overflow occurs. DST must be disjoint from both operands.
+  static void tcFullMultiply(WordType *, const WordType *,
+                             const WordType *, unsigned, unsigned);
+
+  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
+  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
+  /// REMAINDER to the remainder, return zero.  i.e.
+  ///
+  ///  OLD_LHS = RHS * LHS + REMAINDER
+  ///
+  /// SCRATCH is a bignum of the same size as the operands and result for use by
+  /// the routine; its contents need not be initialized and are destroyed.  LHS,
+  /// REMAINDER and SCRATCH must be distinct.
+  static int tcDivide(WordType *lhs, const WordType *rhs,
+                      WordType *remainder, WordType *scratch,
+                      unsigned parts);
+
+  /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
+  /// restrictions on Count.
+  static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
+
+  /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
+  /// restrictions on Count.
+  static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
+
+  /// The obvious AND, OR and XOR and complement operations.
+  static void tcAnd(WordType *, const WordType *, unsigned);
+  static void tcOr(WordType *, const WordType *, unsigned);
+  static void tcXor(WordType *, const WordType *, unsigned);
+  static void tcComplement(WordType *, unsigned);
+
+  /// Comparison (unsigned) of two bignums.
+  static int tcCompare(const WordType *, const WordType *, unsigned);
+
+  /// Increment a bignum in-place.  Return the carry flag.
+  static WordType tcIncrement(WordType *dst, unsigned parts) {
+    return tcAddPart(dst, 1, parts);
+  }
+
+  /// Decrement a bignum in-place.  Return the borrow flag.
+  static WordType tcDecrement(WordType *dst, unsigned parts) {
+    return tcSubtractPart(dst, 1, parts);
+  }
+
+  /// Set the least significant BITS and clear the rest.
+  static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
+
+  /// \brief debug method
+  void dump() const;
+
+  /// @}
+};
+
+/// Magic data for optimising signed division by a constant.
+struct APInt::ms {
+  APInt m;    ///< magic number
+  unsigned s; ///< shift amount
+};
+
+/// Magic data for optimising unsigned division by a constant.
+struct APInt::mu {
+  APInt m;    ///< magic number
+  bool a;     ///< add indicator
+  unsigned s; ///< shift amount
+};
+
+inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
+
+inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
+
+/// \brief Unary bitwise complement operator.
+///
+/// \returns an APInt that is the bitwise complement of \p v.
+inline APInt operator~(APInt v) {
+  v.flipAllBits();
+  return v;
+}
+
+inline APInt operator&(APInt a, const APInt &b) {
+  a &= b;
+  return a;
+}
+
+inline APInt operator&(const APInt &a, APInt &&b) {
+  b &= a;
+  return std::move(b);
+}
+
+inline APInt operator&(APInt a, uint64_t RHS) {
+  a &= RHS;
+  return a;
+}
+
+inline APInt operator&(uint64_t LHS, APInt b) {
+  b &= LHS;
+  return b;
+}
+
+inline APInt operator|(APInt a, const APInt &b) {
+  a |= b;
+  return a;
+}
+
+inline APInt operator|(const APInt &a, APInt &&b) {
+  b |= a;
+  return std::move(b);
+}
+
+inline APInt operator|(APInt a, uint64_t RHS) {
+  a |= RHS;
+  return a;
+}
+
+inline APInt operator|(uint64_t LHS, APInt b) {
+  b |= LHS;
+  return b;
+}
+
+inline APInt operator^(APInt a, const APInt &b) {
+  a ^= b;
+  return a;
+}
+
+inline APInt operator^(const APInt &a, APInt &&b) {
+  b ^= a;
+  return std::move(b);
+}
+
+inline APInt operator^(APInt a, uint64_t RHS) {
+  a ^= RHS;
+  return a;
+}
+
+inline APInt operator^(uint64_t LHS, APInt b) {
+  b ^= LHS;
+  return b;
+}
+
+inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
+  I.print(OS, true);
+  return OS;
+}
+
+inline APInt operator-(APInt v) {
+  v.negate();
+  return v;
+}
+
+inline APInt operator+(APInt a, const APInt &b) {
+  a += b;
+  return a;
+}
+
+inline APInt operator+(const APInt &a, APInt &&b) {
+  b += a;
+  return std::move(b);
+}
+
+inline APInt operator+(APInt a, uint64_t RHS) {
+  a += RHS;
+  return a;
+}
+
+inline APInt operator+(uint64_t LHS, APInt b) {
+  b += LHS;
+  return b;
+}
+
+inline APInt operator-(APInt a, const APInt &b) {
+  a -= b;
+  return a;
+}
+
+inline APInt operator-(const APInt &a, APInt &&b) {
+  b.negate();
+  b += a;
+  return std::move(b);
+}
+
+inline APInt operator-(APInt a, uint64_t RHS) {
+  a -= RHS;
+  return a;
+}
+
+inline APInt operator-(uint64_t LHS, APInt b) {
+  b.negate();
+  b += LHS;
+  return b;
+}
+
+inline APInt operator*(APInt a, uint64_t RHS) {
+  a *= RHS;
+  return a;
+}
+
+inline APInt operator*(uint64_t LHS, APInt b) {
+  b *= LHS;
+  return b;
+}
+
+
+namespace APIntOps {
+
+/// \brief Determine the smaller of two APInts considered to be signed.
+inline const APInt &smin(const APInt &A, const APInt &B) {
+  return A.slt(B) ? A : B;
+}
+
+/// \brief Determine the larger of two APInts considered to be signed.
+inline const APInt &smax(const APInt &A, const APInt &B) {
+  return A.sgt(B) ? A : B;
+}
+
+/// \brief Determine the smaller of two APInts considered to be signed.
+inline const APInt &umin(const APInt &A, const APInt &B) {
+  return A.ult(B) ? A : B;
+}
+
+/// \brief Determine the larger of two APInts considered to be unsigned.
+inline const APInt &umax(const APInt &A, const APInt &B) {
+  return A.ugt(B) ? A : B;
+}
+
+/// \brief Compute GCD of two unsigned APInt values.
+///
+/// This function returns the greatest common divisor of the two APInt values
+/// using Stein's algorithm.
+///
+/// \returns the greatest common divisor of A and B.
+APInt GreatestCommonDivisor(APInt A, APInt B);
+
+/// \brief Converts the given APInt to a double value.
+///
+/// Treats the APInt as an unsigned value for conversion purposes.
+inline double RoundAPIntToDouble(const APInt &APIVal) {
+  return APIVal.roundToDouble();
+}
+
+/// \brief Converts the given APInt to a double value.
+///
+/// Treats the APInt as a signed value for conversion purposes.
+inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
+  return APIVal.signedRoundToDouble();
+}
+
+/// \brief Converts the given APInt to a float vlalue.
+inline float RoundAPIntToFloat(const APInt &APIVal) {
+  return float(RoundAPIntToDouble(APIVal));
+}
+
+/// \brief Converts the given APInt to a float value.
+///
+/// Treast the APInt as a signed value for conversion purposes.
+inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
+  return float(APIVal.signedRoundToDouble());
+}
+
+/// \brief Converts the given double value into a APInt.
+///
+/// This function convert a double value to an APInt value.
+APInt RoundDoubleToAPInt(double Double, unsigned width);
+
+/// \brief Converts a float value into a APInt.
+///
+/// Converts a float value into an APInt value.
+inline APInt RoundFloatToAPInt(float Float, unsigned width) {
+  return RoundDoubleToAPInt(double(Float), width);
+}
+
+} // End of APIntOps namespace
+
+// See friend declaration above. This additional declaration is required in
+// order to compile LLVM with IBM xlC compiler.
+hash_code hash_value(const APInt &Arg);
+} // End of llvm namespace
+
+#endif