Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// |
| 10 | /// \file |
| 11 | /// \brief This file implements a class to represent arbitrary precision |
| 12 | /// integral constant values and operations on them. |
| 13 | /// |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #ifndef LLVM_ADT_APINT_H |
| 17 | #define LLVM_ADT_APINT_H |
| 18 | |
| 19 | #include "llvm/Support/Compiler.h" |
| 20 | #include "llvm/Support/MathExtras.h" |
| 21 | #include <cassert> |
| 22 | #include <climits> |
| 23 | #include <cstring> |
| 24 | #include <string> |
| 25 | |
| 26 | namespace llvm { |
| 27 | class FoldingSetNodeID; |
| 28 | class StringRef; |
| 29 | class hash_code; |
| 30 | class raw_ostream; |
| 31 | |
| 32 | template <typename T> class SmallVectorImpl; |
| 33 | template <typename T> class ArrayRef; |
| 34 | |
| 35 | class APInt; |
| 36 | |
| 37 | inline APInt operator-(APInt); |
| 38 | |
| 39 | //===----------------------------------------------------------------------===// |
| 40 | // APInt Class |
| 41 | //===----------------------------------------------------------------------===// |
| 42 | |
| 43 | /// \brief Class for arbitrary precision integers. |
| 44 | /// |
| 45 | /// APInt is a functional replacement for common case unsigned integer type like |
| 46 | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
| 47 | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
| 48 | /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
| 49 | /// and methods to manipulate integer values of any bit-width. It supports both |
| 50 | /// the typical integer arithmetic and comparison operations as well as bitwise |
| 51 | /// manipulation. |
| 52 | /// |
| 53 | /// The class has several invariants worth noting: |
| 54 | /// * All bit, byte, and word positions are zero-based. |
| 55 | /// * Once the bit width is set, it doesn't change except by the Truncate, |
| 56 | /// SignExtend, or ZeroExtend operations. |
| 57 | /// * All binary operators must be on APInt instances of the same bit width. |
| 58 | /// Attempting to use these operators on instances with different bit |
| 59 | /// widths will yield an assertion. |
| 60 | /// * The value is stored canonically as an unsigned value. For operations |
| 61 | /// where it makes a difference, there are both signed and unsigned variants |
| 62 | /// of the operation. For example, sdiv and udiv. However, because the bit |
| 63 | /// widths must be the same, operations such as Mul and Add produce the same |
| 64 | /// results regardless of whether the values are interpreted as signed or |
| 65 | /// not. |
| 66 | /// * In general, the class tries to follow the style of computation that LLVM |
| 67 | /// uses in its IR. This simplifies its use for LLVM. |
| 68 | /// |
| 69 | class LLVM_NODISCARD APInt { |
| 70 | public: |
| 71 | typedef uint64_t WordType; |
| 72 | |
| 73 | /// This enum is used to hold the constants we needed for APInt. |
| 74 | enum : unsigned { |
| 75 | /// Byte size of a word. |
| 76 | APINT_WORD_SIZE = sizeof(WordType), |
| 77 | /// Bits in a word. |
| 78 | APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT |
| 79 | }; |
| 80 | |
| 81 | static const WordType WORD_MAX = ~WordType(0); |
| 82 | |
| 83 | private: |
| 84 | /// This union is used to store the integer value. When the |
| 85 | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
| 86 | union { |
| 87 | uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
| 88 | uint64_t *pVal; ///< Used to store the >64 bits integer value. |
| 89 | } U; |
| 90 | |
| 91 | unsigned BitWidth; ///< The number of bits in this APInt. |
| 92 | |
| 93 | friend struct DenseMapAPIntKeyInfo; |
| 94 | |
| 95 | friend class APSInt; |
| 96 | |
| 97 | /// \brief Fast internal constructor |
| 98 | /// |
| 99 | /// This constructor is used only internally for speed of construction of |
| 100 | /// temporaries. It is unsafe for general use so it is not public. |
| 101 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { |
| 102 | U.pVal = val; |
| 103 | } |
| 104 | |
| 105 | /// \brief Determine if this APInt just has one word to store value. |
| 106 | /// |
| 107 | /// \returns true if the number of bits <= 64, false otherwise. |
| 108 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
| 109 | |
| 110 | /// \brief Determine which word a bit is in. |
| 111 | /// |
| 112 | /// \returns the word position for the specified bit position. |
| 113 | static unsigned whichWord(unsigned bitPosition) { |
| 114 | return bitPosition / APINT_BITS_PER_WORD; |
| 115 | } |
| 116 | |
| 117 | /// \brief Determine which bit in a word a bit is in. |
| 118 | /// |
| 119 | /// \returns the bit position in a word for the specified bit position |
| 120 | /// in the APInt. |
| 121 | static unsigned whichBit(unsigned bitPosition) { |
| 122 | return bitPosition % APINT_BITS_PER_WORD; |
| 123 | } |
| 124 | |
| 125 | /// \brief Get a single bit mask. |
| 126 | /// |
| 127 | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
| 128 | /// This method generates and returns a uint64_t (word) mask for a single |
| 129 | /// bit at a specific bit position. This is used to mask the bit in the |
| 130 | /// corresponding word. |
| 131 | static uint64_t maskBit(unsigned bitPosition) { |
| 132 | return 1ULL << whichBit(bitPosition); |
| 133 | } |
| 134 | |
| 135 | /// \brief Clear unused high order bits |
| 136 | /// |
| 137 | /// This method is used internally to clear the top "N" bits in the high order |
| 138 | /// word that are not used by the APInt. This is needed after the most |
| 139 | /// significant word is assigned a value to ensure that those bits are |
| 140 | /// zero'd out. |
| 141 | APInt &clearUnusedBits() { |
| 142 | // Compute how many bits are used in the final word |
| 143 | unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; |
| 144 | |
| 145 | // Mask out the high bits. |
| 146 | uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits); |
| 147 | if (isSingleWord()) |
| 148 | U.VAL &= mask; |
| 149 | else |
| 150 | U.pVal[getNumWords() - 1] &= mask; |
| 151 | return *this; |
| 152 | } |
| 153 | |
| 154 | /// \brief Get the word corresponding to a bit position |
| 155 | /// \returns the corresponding word for the specified bit position. |
| 156 | uint64_t getWord(unsigned bitPosition) const { |
| 157 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
| 158 | } |
| 159 | |
| 160 | /// Utility method to change the bit width of this APInt to new bit width, |
| 161 | /// allocating and/or deallocating as necessary. There is no guarantee on the |
| 162 | /// value of any bits upon return. Caller should populate the bits after. |
| 163 | void reallocate(unsigned NewBitWidth); |
| 164 | |
| 165 | /// \brief Convert a char array into an APInt |
| 166 | /// |
| 167 | /// \param radix 2, 8, 10, 16, or 36 |
| 168 | /// Converts a string into a number. The string must be non-empty |
| 169 | /// and well-formed as a number of the given base. The bit-width |
| 170 | /// must be sufficient to hold the result. |
| 171 | /// |
| 172 | /// This is used by the constructors that take string arguments. |
| 173 | /// |
| 174 | /// StringRef::getAsInteger is superficially similar but (1) does |
| 175 | /// not assume that the string is well-formed and (2) grows the |
| 176 | /// result to hold the input. |
| 177 | void fromString(unsigned numBits, StringRef str, uint8_t radix); |
| 178 | |
| 179 | /// \brief An internal division function for dividing APInts. |
| 180 | /// |
| 181 | /// This is used by the toString method to divide by the radix. It simply |
| 182 | /// provides a more convenient form of divide for internal use since KnuthDiv |
| 183 | /// has specific constraints on its inputs. If those constraints are not met |
| 184 | /// then it provides a simpler form of divide. |
| 185 | static void divide(const WordType *LHS, unsigned lhsWords, |
| 186 | const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
| 187 | WordType *Remainder); |
| 188 | |
| 189 | /// out-of-line slow case for inline constructor |
| 190 | void initSlowCase(uint64_t val, bool isSigned); |
| 191 | |
| 192 | /// shared code between two array constructors |
| 193 | void initFromArray(ArrayRef<uint64_t> array); |
| 194 | |
| 195 | /// out-of-line slow case for inline copy constructor |
| 196 | void initSlowCase(const APInt &that); |
| 197 | |
| 198 | /// out-of-line slow case for shl |
| 199 | void shlSlowCase(unsigned ShiftAmt); |
| 200 | |
| 201 | /// out-of-line slow case for lshr. |
| 202 | void lshrSlowCase(unsigned ShiftAmt); |
| 203 | |
| 204 | /// out-of-line slow case for ashr. |
| 205 | void ashrSlowCase(unsigned ShiftAmt); |
| 206 | |
| 207 | /// out-of-line slow case for operator= |
| 208 | void AssignSlowCase(const APInt &RHS); |
| 209 | |
| 210 | /// out-of-line slow case for operator== |
| 211 | bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY; |
| 212 | |
| 213 | /// out-of-line slow case for countLeadingZeros |
| 214 | unsigned countLeadingZerosSlowCase() const LLVM_READONLY; |
| 215 | |
| 216 | /// out-of-line slow case for countLeadingOnes. |
| 217 | unsigned countLeadingOnesSlowCase() const LLVM_READONLY; |
| 218 | |
| 219 | /// out-of-line slow case for countTrailingZeros. |
| 220 | unsigned countTrailingZerosSlowCase() const LLVM_READONLY; |
| 221 | |
| 222 | /// out-of-line slow case for countTrailingOnes |
| 223 | unsigned countTrailingOnesSlowCase() const LLVM_READONLY; |
| 224 | |
| 225 | /// out-of-line slow case for countPopulation |
| 226 | unsigned countPopulationSlowCase() const LLVM_READONLY; |
| 227 | |
| 228 | /// out-of-line slow case for intersects. |
| 229 | bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; |
| 230 | |
| 231 | /// out-of-line slow case for isSubsetOf. |
| 232 | bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; |
| 233 | |
| 234 | /// out-of-line slow case for setBits. |
| 235 | void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
| 236 | |
| 237 | /// out-of-line slow case for flipAllBits. |
| 238 | void flipAllBitsSlowCase(); |
| 239 | |
| 240 | /// out-of-line slow case for operator&=. |
| 241 | void AndAssignSlowCase(const APInt& RHS); |
| 242 | |
| 243 | /// out-of-line slow case for operator|=. |
| 244 | void OrAssignSlowCase(const APInt& RHS); |
| 245 | |
| 246 | /// out-of-line slow case for operator^=. |
| 247 | void XorAssignSlowCase(const APInt& RHS); |
| 248 | |
| 249 | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
| 250 | /// to, or greater than RHS. |
| 251 | int compare(const APInt &RHS) const LLVM_READONLY; |
| 252 | |
| 253 | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
| 254 | /// to, or greater than RHS. |
| 255 | int compareSigned(const APInt &RHS) const LLVM_READONLY; |
| 256 | |
| 257 | public: |
| 258 | /// \name Constructors |
| 259 | /// @{ |
| 260 | |
| 261 | /// \brief Create a new APInt of numBits width, initialized as val. |
| 262 | /// |
| 263 | /// If isSigned is true then val is treated as if it were a signed value |
| 264 | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
| 265 | /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
| 266 | /// the range of val are zero filled). |
| 267 | /// |
| 268 | /// \param numBits the bit width of the constructed APInt |
| 269 | /// \param val the initial value of the APInt |
| 270 | /// \param isSigned how to treat signedness of val |
| 271 | APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
| 272 | : BitWidth(numBits) { |
| 273 | assert(BitWidth && "bitwidth too small"); |
| 274 | if (isSingleWord()) { |
| 275 | U.VAL = val; |
| 276 | clearUnusedBits(); |
| 277 | } else { |
| 278 | initSlowCase(val, isSigned); |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | /// \brief Construct an APInt of numBits width, initialized as bigVal[]. |
| 283 | /// |
| 284 | /// Note that bigVal.size() can be smaller or larger than the corresponding |
| 285 | /// bit width but any extraneous bits will be dropped. |
| 286 | /// |
| 287 | /// \param numBits the bit width of the constructed APInt |
| 288 | /// \param bigVal a sequence of words to form the initial value of the APInt |
| 289 | APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
| 290 | |
| 291 | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
| 292 | /// deprecated because this constructor is prone to ambiguity with the |
| 293 | /// APInt(unsigned, uint64_t, bool) constructor. |
| 294 | /// |
| 295 | /// If this overload is ever deleted, care should be taken to prevent calls |
| 296 | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
| 297 | /// constructor. |
| 298 | APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
| 299 | |
| 300 | /// \brief Construct an APInt from a string representation. |
| 301 | /// |
| 302 | /// This constructor interprets the string \p str in the given radix. The |
| 303 | /// interpretation stops when the first character that is not suitable for the |
| 304 | /// radix is encountered, or the end of the string. Acceptable radix values |
| 305 | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
| 306 | /// string to require more bits than numBits. |
| 307 | /// |
| 308 | /// \param numBits the bit width of the constructed APInt |
| 309 | /// \param str the string to be interpreted |
| 310 | /// \param radix the radix to use for the conversion |
| 311 | APInt(unsigned numBits, StringRef str, uint8_t radix); |
| 312 | |
| 313 | /// Simply makes *this a copy of that. |
| 314 | /// @brief Copy Constructor. |
| 315 | APInt(const APInt &that) : BitWidth(that.BitWidth) { |
| 316 | if (isSingleWord()) |
| 317 | U.VAL = that.U.VAL; |
| 318 | else |
| 319 | initSlowCase(that); |
| 320 | } |
| 321 | |
| 322 | /// \brief Move Constructor. |
| 323 | APInt(APInt &&that) : BitWidth(that.BitWidth) { |
| 324 | memcpy(&U, &that.U, sizeof(U)); |
| 325 | that.BitWidth = 0; |
| 326 | } |
| 327 | |
| 328 | /// \brief Destructor. |
| 329 | ~APInt() { |
| 330 | if (needsCleanup()) |
| 331 | delete[] U.pVal; |
| 332 | } |
| 333 | |
| 334 | /// \brief Default constructor that creates an uninteresting APInt |
| 335 | /// representing a 1-bit zero value. |
| 336 | /// |
| 337 | /// This is useful for object deserialization (pair this with the static |
| 338 | /// method Read). |
| 339 | explicit APInt() : BitWidth(1) { U.VAL = 0; } |
| 340 | |
| 341 | /// \brief Returns whether this instance allocated memory. |
| 342 | bool needsCleanup() const { return !isSingleWord(); } |
| 343 | |
| 344 | /// Used to insert APInt objects, or objects that contain APInt objects, into |
| 345 | /// FoldingSets. |
| 346 | void Profile(FoldingSetNodeID &id) const; |
| 347 | |
| 348 | /// @} |
| 349 | /// \name Value Tests |
| 350 | /// @{ |
| 351 | |
| 352 | /// \brief Determine sign of this APInt. |
| 353 | /// |
| 354 | /// This tests the high bit of this APInt to determine if it is set. |
| 355 | /// |
| 356 | /// \returns true if this APInt is negative, false otherwise |
| 357 | bool isNegative() const { return (*this)[BitWidth - 1]; } |
| 358 | |
| 359 | /// \brief Determine if this APInt Value is non-negative (>= 0) |
| 360 | /// |
| 361 | /// This tests the high bit of the APInt to determine if it is unset. |
| 362 | bool isNonNegative() const { return !isNegative(); } |
| 363 | |
| 364 | /// \brief Determine if sign bit of this APInt is set. |
| 365 | /// |
| 366 | /// This tests the high bit of this APInt to determine if it is set. |
| 367 | /// |
| 368 | /// \returns true if this APInt has its sign bit set, false otherwise. |
| 369 | bool isSignBitSet() const { return (*this)[BitWidth-1]; } |
| 370 | |
| 371 | /// \brief Determine if sign bit of this APInt is clear. |
| 372 | /// |
| 373 | /// This tests the high bit of this APInt to determine if it is clear. |
| 374 | /// |
| 375 | /// \returns true if this APInt has its sign bit clear, false otherwise. |
| 376 | bool isSignBitClear() const { return !isSignBitSet(); } |
| 377 | |
| 378 | /// \brief Determine if this APInt Value is positive. |
| 379 | /// |
| 380 | /// This tests if the value of this APInt is positive (> 0). Note |
| 381 | /// that 0 is not a positive value. |
| 382 | /// |
| 383 | /// \returns true if this APInt is positive. |
| 384 | bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } |
| 385 | |
| 386 | /// \brief Determine if all bits are set |
| 387 | /// |
| 388 | /// This checks to see if the value has all bits of the APInt are set or not. |
| 389 | bool isAllOnesValue() const { |
| 390 | if (isSingleWord()) |
| 391 | return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
| 392 | return countTrailingOnesSlowCase() == BitWidth; |
| 393 | } |
| 394 | |
| 395 | /// \brief Determine if all bits are clear |
| 396 | /// |
| 397 | /// This checks to see if the value has all bits of the APInt are clear or |
| 398 | /// not. |
| 399 | bool isNullValue() const { return !*this; } |
| 400 | |
| 401 | /// \brief Determine if this is a value of 1. |
| 402 | /// |
| 403 | /// This checks to see if the value of this APInt is one. |
| 404 | bool isOneValue() const { |
| 405 | if (isSingleWord()) |
| 406 | return U.VAL == 1; |
| 407 | return countLeadingZerosSlowCase() == BitWidth - 1; |
| 408 | } |
| 409 | |
| 410 | /// \brief Determine if this is the largest unsigned value. |
| 411 | /// |
| 412 | /// This checks to see if the value of this APInt is the maximum unsigned |
| 413 | /// value for the APInt's bit width. |
| 414 | bool isMaxValue() const { return isAllOnesValue(); } |
| 415 | |
| 416 | /// \brief Determine if this is the largest signed value. |
| 417 | /// |
| 418 | /// This checks to see if the value of this APInt is the maximum signed |
| 419 | /// value for the APInt's bit width. |
| 420 | bool isMaxSignedValue() const { |
| 421 | if (isSingleWord()) |
| 422 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
| 423 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
| 424 | } |
| 425 | |
| 426 | /// \brief Determine if this is the smallest unsigned value. |
| 427 | /// |
| 428 | /// This checks to see if the value of this APInt is the minimum unsigned |
| 429 | /// value for the APInt's bit width. |
| 430 | bool isMinValue() const { return isNullValue(); } |
| 431 | |
| 432 | /// \brief Determine if this is the smallest signed value. |
| 433 | /// |
| 434 | /// This checks to see if the value of this APInt is the minimum signed |
| 435 | /// value for the APInt's bit width. |
| 436 | bool isMinSignedValue() const { |
| 437 | if (isSingleWord()) |
| 438 | return U.VAL == (WordType(1) << (BitWidth - 1)); |
| 439 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
| 440 | } |
| 441 | |
| 442 | /// \brief Check if this APInt has an N-bits unsigned integer value. |
| 443 | bool isIntN(unsigned N) const { |
| 444 | assert(N && "N == 0 ???"); |
| 445 | return getActiveBits() <= N; |
| 446 | } |
| 447 | |
| 448 | /// \brief Check if this APInt has an N-bits signed integer value. |
| 449 | bool isSignedIntN(unsigned N) const { |
| 450 | assert(N && "N == 0 ???"); |
| 451 | return getMinSignedBits() <= N; |
| 452 | } |
| 453 | |
| 454 | /// \brief Check if this APInt's value is a power of two greater than zero. |
| 455 | /// |
| 456 | /// \returns true if the argument APInt value is a power of two > 0. |
| 457 | bool isPowerOf2() const { |
| 458 | if (isSingleWord()) |
| 459 | return isPowerOf2_64(U.VAL); |
| 460 | return countPopulationSlowCase() == 1; |
| 461 | } |
| 462 | |
| 463 | /// \brief Check if the APInt's value is returned by getSignMask. |
| 464 | /// |
| 465 | /// \returns true if this is the value returned by getSignMask. |
| 466 | bool isSignMask() const { return isMinSignedValue(); } |
| 467 | |
| 468 | /// \brief Convert APInt to a boolean value. |
| 469 | /// |
| 470 | /// This converts the APInt to a boolean value as a test against zero. |
| 471 | bool getBoolValue() const { return !!*this; } |
| 472 | |
| 473 | /// If this value is smaller than the specified limit, return it, otherwise |
| 474 | /// return the limit value. This causes the value to saturate to the limit. |
| 475 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { |
| 476 | return ugt(Limit) ? Limit : getZExtValue(); |
| 477 | } |
| 478 | |
| 479 | /// \brief Check if the APInt consists of a repeated bit pattern. |
| 480 | /// |
| 481 | /// e.g. 0x01010101 satisfies isSplat(8). |
| 482 | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
| 483 | /// width without remainder. |
| 484 | bool isSplat(unsigned SplatSizeInBits) const; |
| 485 | |
| 486 | /// \returns true if this APInt value is a sequence of \param numBits ones |
| 487 | /// starting at the least significant bit with the remainder zero. |
| 488 | bool isMask(unsigned numBits) const { |
| 489 | assert(numBits != 0 && "numBits must be non-zero"); |
| 490 | assert(numBits <= BitWidth && "numBits out of range"); |
| 491 | if (isSingleWord()) |
| 492 | return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits)); |
| 493 | unsigned Ones = countTrailingOnesSlowCase(); |
| 494 | return (numBits == Ones) && |
| 495 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
| 496 | } |
| 497 | |
| 498 | /// \returns true if this APInt is a non-empty sequence of ones starting at |
| 499 | /// the least significant bit with the remainder zero. |
| 500 | /// Ex. isMask(0x0000FFFFU) == true. |
| 501 | bool isMask() const { |
| 502 | if (isSingleWord()) |
| 503 | return isMask_64(U.VAL); |
| 504 | unsigned Ones = countTrailingOnesSlowCase(); |
| 505 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
| 506 | } |
| 507 | |
| 508 | /// \brief Return true if this APInt value contains a sequence of ones with |
| 509 | /// the remainder zero. |
| 510 | bool isShiftedMask() const { |
| 511 | if (isSingleWord()) |
| 512 | return isShiftedMask_64(U.VAL); |
| 513 | unsigned Ones = countPopulationSlowCase(); |
| 514 | unsigned LeadZ = countLeadingZerosSlowCase(); |
| 515 | return (Ones + LeadZ + countTrailingZeros()) == BitWidth; |
| 516 | } |
| 517 | |
| 518 | /// @} |
| 519 | /// \name Value Generators |
| 520 | /// @{ |
| 521 | |
| 522 | /// \brief Gets maximum unsigned value of APInt for specific bit width. |
| 523 | static APInt getMaxValue(unsigned numBits) { |
| 524 | return getAllOnesValue(numBits); |
| 525 | } |
| 526 | |
| 527 | /// \brief Gets maximum signed value of APInt for a specific bit width. |
| 528 | static APInt getSignedMaxValue(unsigned numBits) { |
| 529 | APInt API = getAllOnesValue(numBits); |
| 530 | API.clearBit(numBits - 1); |
| 531 | return API; |
| 532 | } |
| 533 | |
| 534 | /// \brief Gets minimum unsigned value of APInt for a specific bit width. |
| 535 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
| 536 | |
| 537 | /// \brief Gets minimum signed value of APInt for a specific bit width. |
| 538 | static APInt getSignedMinValue(unsigned numBits) { |
| 539 | APInt API(numBits, 0); |
| 540 | API.setBit(numBits - 1); |
| 541 | return API; |
| 542 | } |
| 543 | |
| 544 | /// \brief Get the SignMask for a specific bit width. |
| 545 | /// |
| 546 | /// This is just a wrapper function of getSignedMinValue(), and it helps code |
| 547 | /// readability when we want to get a SignMask. |
| 548 | static APInt getSignMask(unsigned BitWidth) { |
| 549 | return getSignedMinValue(BitWidth); |
| 550 | } |
| 551 | |
| 552 | /// \brief Get the all-ones value. |
| 553 | /// |
| 554 | /// \returns the all-ones value for an APInt of the specified bit-width. |
| 555 | static APInt getAllOnesValue(unsigned numBits) { |
| 556 | return APInt(numBits, WORD_MAX, true); |
| 557 | } |
| 558 | |
| 559 | /// \brief Get the '0' value. |
| 560 | /// |
| 561 | /// \returns the '0' value for an APInt of the specified bit-width. |
| 562 | static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } |
| 563 | |
| 564 | /// \brief Compute an APInt containing numBits highbits from this APInt. |
| 565 | /// |
| 566 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
| 567 | /// the low bits and right shift to the least significant bit. |
| 568 | /// |
| 569 | /// \returns the high "numBits" bits of this APInt. |
| 570 | APInt getHiBits(unsigned numBits) const; |
| 571 | |
| 572 | /// \brief Compute an APInt containing numBits lowbits from this APInt. |
| 573 | /// |
| 574 | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
| 575 | /// the high bits. |
| 576 | /// |
| 577 | /// \returns the low "numBits" bits of this APInt. |
| 578 | APInt getLoBits(unsigned numBits) const; |
| 579 | |
| 580 | /// \brief Return an APInt with exactly one bit set in the result. |
| 581 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
| 582 | APInt Res(numBits, 0); |
| 583 | Res.setBit(BitNo); |
| 584 | return Res; |
| 585 | } |
| 586 | |
| 587 | /// \brief Get a value with a block of bits set. |
| 588 | /// |
| 589 | /// Constructs an APInt value that has a contiguous range of bits set. The |
| 590 | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
| 591 | /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
| 592 | /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For |
| 593 | /// example, with parameters (32, 28, 4), you would get 0xF000000F. |
| 594 | /// |
| 595 | /// \param numBits the intended bit width of the result |
| 596 | /// \param loBit the index of the lowest bit set. |
| 597 | /// \param hiBit the index of the highest bit set. |
| 598 | /// |
| 599 | /// \returns An APInt value with the requested bits set. |
| 600 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
| 601 | APInt Res(numBits, 0); |
| 602 | Res.setBits(loBit, hiBit); |
| 603 | return Res; |
| 604 | } |
| 605 | |
| 606 | /// \brief Get a value with upper bits starting at loBit set. |
| 607 | /// |
| 608 | /// Constructs an APInt value that has a contiguous range of bits set. The |
| 609 | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
| 610 | /// bits will be zero. For example, with parameters(32, 12) you would get |
| 611 | /// 0xFFFFF000. |
| 612 | /// |
| 613 | /// \param numBits the intended bit width of the result |
| 614 | /// \param loBit the index of the lowest bit to set. |
| 615 | /// |
| 616 | /// \returns An APInt value with the requested bits set. |
| 617 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
| 618 | APInt Res(numBits, 0); |
| 619 | Res.setBitsFrom(loBit); |
| 620 | return Res; |
| 621 | } |
| 622 | |
| 623 | /// \brief Get a value with high bits set |
| 624 | /// |
| 625 | /// Constructs an APInt value that has the top hiBitsSet bits set. |
| 626 | /// |
| 627 | /// \param numBits the bitwidth of the result |
| 628 | /// \param hiBitsSet the number of high-order bits set in the result. |
| 629 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
| 630 | APInt Res(numBits, 0); |
| 631 | Res.setHighBits(hiBitsSet); |
| 632 | return Res; |
| 633 | } |
| 634 | |
| 635 | /// \brief Get a value with low bits set |
| 636 | /// |
| 637 | /// Constructs an APInt value that has the bottom loBitsSet bits set. |
| 638 | /// |
| 639 | /// \param numBits the bitwidth of the result |
| 640 | /// \param loBitsSet the number of low-order bits set in the result. |
| 641 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
| 642 | APInt Res(numBits, 0); |
| 643 | Res.setLowBits(loBitsSet); |
| 644 | return Res; |
| 645 | } |
| 646 | |
| 647 | /// \brief Return a value containing V broadcasted over NewLen bits. |
| 648 | static APInt getSplat(unsigned NewLen, const APInt &V); |
| 649 | |
| 650 | /// \brief Determine if two APInts have the same value, after zero-extending |
| 651 | /// one of them (if needed!) to ensure that the bit-widths match. |
| 652 | static bool isSameValue(const APInt &I1, const APInt &I2) { |
| 653 | if (I1.getBitWidth() == I2.getBitWidth()) |
| 654 | return I1 == I2; |
| 655 | |
| 656 | if (I1.getBitWidth() > I2.getBitWidth()) |
| 657 | return I1 == I2.zext(I1.getBitWidth()); |
| 658 | |
| 659 | return I1.zext(I2.getBitWidth()) == I2; |
| 660 | } |
| 661 | |
| 662 | /// \brief Overload to compute a hash_code for an APInt value. |
| 663 | friend hash_code hash_value(const APInt &Arg); |
| 664 | |
| 665 | /// This function returns a pointer to the internal storage of the APInt. |
| 666 | /// This is useful for writing out the APInt in binary form without any |
| 667 | /// conversions. |
| 668 | const uint64_t *getRawData() const { |
| 669 | if (isSingleWord()) |
| 670 | return &U.VAL; |
| 671 | return &U.pVal[0]; |
| 672 | } |
| 673 | |
| 674 | /// @} |
| 675 | /// \name Unary Operators |
| 676 | /// @{ |
| 677 | |
| 678 | /// \brief Postfix increment operator. |
| 679 | /// |
| 680 | /// Increments *this by 1. |
| 681 | /// |
| 682 | /// \returns a new APInt value representing the original value of *this. |
| 683 | const APInt operator++(int) { |
| 684 | APInt API(*this); |
| 685 | ++(*this); |
| 686 | return API; |
| 687 | } |
| 688 | |
| 689 | /// \brief Prefix increment operator. |
| 690 | /// |
| 691 | /// \returns *this incremented by one |
| 692 | APInt &operator++(); |
| 693 | |
| 694 | /// \brief Postfix decrement operator. |
| 695 | /// |
| 696 | /// Decrements *this by 1. |
| 697 | /// |
| 698 | /// \returns a new APInt value representing the original value of *this. |
| 699 | const APInt operator--(int) { |
| 700 | APInt API(*this); |
| 701 | --(*this); |
| 702 | return API; |
| 703 | } |
| 704 | |
| 705 | /// \brief Prefix decrement operator. |
| 706 | /// |
| 707 | /// \returns *this decremented by one. |
| 708 | APInt &operator--(); |
| 709 | |
| 710 | /// \brief Logical negation operator. |
| 711 | /// |
| 712 | /// Performs logical negation operation on this APInt. |
| 713 | /// |
| 714 | /// \returns true if *this is zero, false otherwise. |
| 715 | bool operator!() const { |
| 716 | if (isSingleWord()) |
| 717 | return U.VAL == 0; |
| 718 | return countLeadingZerosSlowCase() == BitWidth; |
| 719 | } |
| 720 | |
| 721 | /// @} |
| 722 | /// \name Assignment Operators |
| 723 | /// @{ |
| 724 | |
| 725 | /// \brief Copy assignment operator. |
| 726 | /// |
| 727 | /// \returns *this after assignment of RHS. |
| 728 | APInt &operator=(const APInt &RHS) { |
| 729 | // If the bitwidths are the same, we can avoid mucking with memory |
| 730 | if (isSingleWord() && RHS.isSingleWord()) { |
| 731 | U.VAL = RHS.U.VAL; |
| 732 | BitWidth = RHS.BitWidth; |
| 733 | return clearUnusedBits(); |
| 734 | } |
| 735 | |
| 736 | AssignSlowCase(RHS); |
| 737 | return *this; |
| 738 | } |
| 739 | |
| 740 | /// @brief Move assignment operator. |
| 741 | APInt &operator=(APInt &&that) { |
| 742 | assert(this != &that && "Self-move not supported"); |
| 743 | if (!isSingleWord()) |
| 744 | delete[] U.pVal; |
| 745 | |
| 746 | // Use memcpy so that type based alias analysis sees both VAL and pVal |
| 747 | // as modified. |
| 748 | memcpy(&U, &that.U, sizeof(U)); |
| 749 | |
| 750 | BitWidth = that.BitWidth; |
| 751 | that.BitWidth = 0; |
| 752 | |
| 753 | return *this; |
| 754 | } |
| 755 | |
| 756 | /// \brief Assignment operator. |
| 757 | /// |
| 758 | /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
| 759 | /// the bit width, the excess bits are truncated. If the bit width is larger |
| 760 | /// than 64, the value is zero filled in the unspecified high order bits. |
| 761 | /// |
| 762 | /// \returns *this after assignment of RHS value. |
| 763 | APInt &operator=(uint64_t RHS) { |
| 764 | if (isSingleWord()) { |
| 765 | U.VAL = RHS; |
| 766 | clearUnusedBits(); |
| 767 | } else { |
| 768 | U.pVal[0] = RHS; |
| 769 | memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
| 770 | } |
| 771 | return *this; |
| 772 | } |
| 773 | |
| 774 | /// \brief Bitwise AND assignment operator. |
| 775 | /// |
| 776 | /// Performs a bitwise AND operation on this APInt and RHS. The result is |
| 777 | /// assigned to *this. |
| 778 | /// |
| 779 | /// \returns *this after ANDing with RHS. |
| 780 | APInt &operator&=(const APInt &RHS) { |
| 781 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 782 | if (isSingleWord()) |
| 783 | U.VAL &= RHS.U.VAL; |
| 784 | else |
| 785 | AndAssignSlowCase(RHS); |
| 786 | return *this; |
| 787 | } |
| 788 | |
| 789 | /// \brief Bitwise AND assignment operator. |
| 790 | /// |
| 791 | /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
| 792 | /// logically zero-extended or truncated to match the bit-width of |
| 793 | /// the LHS. |
| 794 | APInt &operator&=(uint64_t RHS) { |
| 795 | if (isSingleWord()) { |
| 796 | U.VAL &= RHS; |
| 797 | return *this; |
| 798 | } |
| 799 | U.pVal[0] &= RHS; |
| 800 | memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
| 801 | return *this; |
| 802 | } |
| 803 | |
| 804 | /// \brief Bitwise OR assignment operator. |
| 805 | /// |
| 806 | /// Performs a bitwise OR operation on this APInt and RHS. The result is |
| 807 | /// assigned *this; |
| 808 | /// |
| 809 | /// \returns *this after ORing with RHS. |
| 810 | APInt &operator|=(const APInt &RHS) { |
| 811 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 812 | if (isSingleWord()) |
| 813 | U.VAL |= RHS.U.VAL; |
| 814 | else |
| 815 | OrAssignSlowCase(RHS); |
| 816 | return *this; |
| 817 | } |
| 818 | |
| 819 | /// \brief Bitwise OR assignment operator. |
| 820 | /// |
| 821 | /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
| 822 | /// logically zero-extended or truncated to match the bit-width of |
| 823 | /// the LHS. |
| 824 | APInt &operator|=(uint64_t RHS) { |
| 825 | if (isSingleWord()) { |
| 826 | U.VAL |= RHS; |
| 827 | clearUnusedBits(); |
| 828 | } else { |
| 829 | U.pVal[0] |= RHS; |
| 830 | } |
| 831 | return *this; |
| 832 | } |
| 833 | |
| 834 | /// \brief Bitwise XOR assignment operator. |
| 835 | /// |
| 836 | /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
| 837 | /// assigned to *this. |
| 838 | /// |
| 839 | /// \returns *this after XORing with RHS. |
| 840 | APInt &operator^=(const APInt &RHS) { |
| 841 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 842 | if (isSingleWord()) |
| 843 | U.VAL ^= RHS.U.VAL; |
| 844 | else |
| 845 | XorAssignSlowCase(RHS); |
| 846 | return *this; |
| 847 | } |
| 848 | |
| 849 | /// \brief Bitwise XOR assignment operator. |
| 850 | /// |
| 851 | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
| 852 | /// logically zero-extended or truncated to match the bit-width of |
| 853 | /// the LHS. |
| 854 | APInt &operator^=(uint64_t RHS) { |
| 855 | if (isSingleWord()) { |
| 856 | U.VAL ^= RHS; |
| 857 | clearUnusedBits(); |
| 858 | } else { |
| 859 | U.pVal[0] ^= RHS; |
| 860 | } |
| 861 | return *this; |
| 862 | } |
| 863 | |
| 864 | /// \brief Multiplication assignment operator. |
| 865 | /// |
| 866 | /// Multiplies this APInt by RHS and assigns the result to *this. |
| 867 | /// |
| 868 | /// \returns *this |
| 869 | APInt &operator*=(const APInt &RHS); |
| 870 | APInt &operator*=(uint64_t RHS); |
| 871 | |
| 872 | /// \brief Addition assignment operator. |
| 873 | /// |
| 874 | /// Adds RHS to *this and assigns the result to *this. |
| 875 | /// |
| 876 | /// \returns *this |
| 877 | APInt &operator+=(const APInt &RHS); |
| 878 | APInt &operator+=(uint64_t RHS); |
| 879 | |
| 880 | /// \brief Subtraction assignment operator. |
| 881 | /// |
| 882 | /// Subtracts RHS from *this and assigns the result to *this. |
| 883 | /// |
| 884 | /// \returns *this |
| 885 | APInt &operator-=(const APInt &RHS); |
| 886 | APInt &operator-=(uint64_t RHS); |
| 887 | |
| 888 | /// \brief Left-shift assignment function. |
| 889 | /// |
| 890 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
| 891 | /// |
| 892 | /// \returns *this after shifting left by ShiftAmt |
| 893 | APInt &operator<<=(unsigned ShiftAmt) { |
| 894 | assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
| 895 | if (isSingleWord()) { |
| 896 | if (ShiftAmt == BitWidth) |
| 897 | U.VAL = 0; |
| 898 | else |
| 899 | U.VAL <<= ShiftAmt; |
| 900 | return clearUnusedBits(); |
| 901 | } |
| 902 | shlSlowCase(ShiftAmt); |
| 903 | return *this; |
| 904 | } |
| 905 | |
| 906 | /// \brief Left-shift assignment function. |
| 907 | /// |
| 908 | /// Shifts *this left by shiftAmt and assigns the result to *this. |
| 909 | /// |
| 910 | /// \returns *this after shifting left by ShiftAmt |
| 911 | APInt &operator<<=(const APInt &ShiftAmt); |
| 912 | |
| 913 | /// @} |
| 914 | /// \name Binary Operators |
| 915 | /// @{ |
| 916 | |
| 917 | /// \brief Multiplication operator. |
| 918 | /// |
| 919 | /// Multiplies this APInt by RHS and returns the result. |
| 920 | APInt operator*(const APInt &RHS) const; |
| 921 | |
| 922 | /// \brief Left logical shift operator. |
| 923 | /// |
| 924 | /// Shifts this APInt left by \p Bits and returns the result. |
| 925 | APInt operator<<(unsigned Bits) const { return shl(Bits); } |
| 926 | |
| 927 | /// \brief Left logical shift operator. |
| 928 | /// |
| 929 | /// Shifts this APInt left by \p Bits and returns the result. |
| 930 | APInt operator<<(const APInt &Bits) const { return shl(Bits); } |
| 931 | |
| 932 | /// \brief Arithmetic right-shift function. |
| 933 | /// |
| 934 | /// Arithmetic right-shift this APInt by shiftAmt. |
| 935 | APInt ashr(unsigned ShiftAmt) const { |
| 936 | APInt R(*this); |
| 937 | R.ashrInPlace(ShiftAmt); |
| 938 | return R; |
| 939 | } |
| 940 | |
| 941 | /// Arithmetic right-shift this APInt by ShiftAmt in place. |
| 942 | void ashrInPlace(unsigned ShiftAmt) { |
| 943 | assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
| 944 | if (isSingleWord()) { |
| 945 | int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); |
| 946 | if (ShiftAmt == BitWidth) |
| 947 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
| 948 | else |
| 949 | U.VAL = SExtVAL >> ShiftAmt; |
| 950 | clearUnusedBits(); |
| 951 | return; |
| 952 | } |
| 953 | ashrSlowCase(ShiftAmt); |
| 954 | } |
| 955 | |
| 956 | /// \brief Logical right-shift function. |
| 957 | /// |
| 958 | /// Logical right-shift this APInt by shiftAmt. |
| 959 | APInt lshr(unsigned shiftAmt) const { |
| 960 | APInt R(*this); |
| 961 | R.lshrInPlace(shiftAmt); |
| 962 | return R; |
| 963 | } |
| 964 | |
| 965 | /// Logical right-shift this APInt by ShiftAmt in place. |
| 966 | void lshrInPlace(unsigned ShiftAmt) { |
| 967 | assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
| 968 | if (isSingleWord()) { |
| 969 | if (ShiftAmt == BitWidth) |
| 970 | U.VAL = 0; |
| 971 | else |
| 972 | U.VAL >>= ShiftAmt; |
| 973 | return; |
| 974 | } |
| 975 | lshrSlowCase(ShiftAmt); |
| 976 | } |
| 977 | |
| 978 | /// \brief Left-shift function. |
| 979 | /// |
| 980 | /// Left-shift this APInt by shiftAmt. |
| 981 | APInt shl(unsigned shiftAmt) const { |
| 982 | APInt R(*this); |
| 983 | R <<= shiftAmt; |
| 984 | return R; |
| 985 | } |
| 986 | |
| 987 | /// \brief Rotate left by rotateAmt. |
| 988 | APInt rotl(unsigned rotateAmt) const; |
| 989 | |
| 990 | /// \brief Rotate right by rotateAmt. |
| 991 | APInt rotr(unsigned rotateAmt) const; |
| 992 | |
| 993 | /// \brief Arithmetic right-shift function. |
| 994 | /// |
| 995 | /// Arithmetic right-shift this APInt by shiftAmt. |
| 996 | APInt ashr(const APInt &ShiftAmt) const { |
| 997 | APInt R(*this); |
| 998 | R.ashrInPlace(ShiftAmt); |
| 999 | return R; |
| 1000 | } |
| 1001 | |
| 1002 | /// Arithmetic right-shift this APInt by shiftAmt in place. |
| 1003 | void ashrInPlace(const APInt &shiftAmt); |
| 1004 | |
| 1005 | /// \brief Logical right-shift function. |
| 1006 | /// |
| 1007 | /// Logical right-shift this APInt by shiftAmt. |
| 1008 | APInt lshr(const APInt &ShiftAmt) const { |
| 1009 | APInt R(*this); |
| 1010 | R.lshrInPlace(ShiftAmt); |
| 1011 | return R; |
| 1012 | } |
| 1013 | |
| 1014 | /// Logical right-shift this APInt by ShiftAmt in place. |
| 1015 | void lshrInPlace(const APInt &ShiftAmt); |
| 1016 | |
| 1017 | /// \brief Left-shift function. |
| 1018 | /// |
| 1019 | /// Left-shift this APInt by shiftAmt. |
| 1020 | APInt shl(const APInt &ShiftAmt) const { |
| 1021 | APInt R(*this); |
| 1022 | R <<= ShiftAmt; |
| 1023 | return R; |
| 1024 | } |
| 1025 | |
| 1026 | /// \brief Rotate left by rotateAmt. |
| 1027 | APInt rotl(const APInt &rotateAmt) const; |
| 1028 | |
| 1029 | /// \brief Rotate right by rotateAmt. |
| 1030 | APInt rotr(const APInt &rotateAmt) const; |
| 1031 | |
| 1032 | /// \brief Unsigned division operation. |
| 1033 | /// |
| 1034 | /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
| 1035 | /// RHS are treated as unsigned quantities for purposes of this division. |
| 1036 | /// |
| 1037 | /// \returns a new APInt value containing the division result |
| 1038 | APInt udiv(const APInt &RHS) const; |
| 1039 | APInt udiv(uint64_t RHS) const; |
| 1040 | |
| 1041 | /// \brief Signed division function for APInt. |
| 1042 | /// |
| 1043 | /// Signed divide this APInt by APInt RHS. |
| 1044 | APInt sdiv(const APInt &RHS) const; |
| 1045 | APInt sdiv(int64_t RHS) const; |
| 1046 | |
| 1047 | /// \brief Unsigned remainder operation. |
| 1048 | /// |
| 1049 | /// Perform an unsigned remainder operation on this APInt with RHS being the |
| 1050 | /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
| 1051 | /// of this operation. Note that this is a true remainder operation and not a |
| 1052 | /// modulo operation because the sign follows the sign of the dividend which |
| 1053 | /// is *this. |
| 1054 | /// |
| 1055 | /// \returns a new APInt value containing the remainder result |
| 1056 | APInt urem(const APInt &RHS) const; |
| 1057 | uint64_t urem(uint64_t RHS) const; |
| 1058 | |
| 1059 | /// \brief Function for signed remainder operation. |
| 1060 | /// |
| 1061 | /// Signed remainder operation on APInt. |
| 1062 | APInt srem(const APInt &RHS) const; |
| 1063 | int64_t srem(int64_t RHS) const; |
| 1064 | |
| 1065 | /// \brief Dual division/remainder interface. |
| 1066 | /// |
| 1067 | /// Sometimes it is convenient to divide two APInt values and obtain both the |
| 1068 | /// quotient and remainder. This function does both operations in the same |
| 1069 | /// computation making it a little more efficient. The pair of input arguments |
| 1070 | /// may overlap with the pair of output arguments. It is safe to call |
| 1071 | /// udivrem(X, Y, X, Y), for example. |
| 1072 | static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
| 1073 | APInt &Remainder); |
| 1074 | static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
| 1075 | uint64_t &Remainder); |
| 1076 | |
| 1077 | static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
| 1078 | APInt &Remainder); |
| 1079 | static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
| 1080 | int64_t &Remainder); |
| 1081 | |
| 1082 | // Operations that return overflow indicators. |
| 1083 | APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
| 1084 | APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
| 1085 | APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
| 1086 | APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
| 1087 | APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
| 1088 | APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
| 1089 | APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
| 1090 | APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
| 1091 | APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
| 1092 | |
| 1093 | /// \brief Array-indexing support. |
| 1094 | /// |
| 1095 | /// \returns the bit value at bitPosition |
| 1096 | bool operator[](unsigned bitPosition) const { |
| 1097 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); |
| 1098 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
| 1099 | } |
| 1100 | |
| 1101 | /// @} |
| 1102 | /// \name Comparison Operators |
| 1103 | /// @{ |
| 1104 | |
| 1105 | /// \brief Equality operator. |
| 1106 | /// |
| 1107 | /// Compares this APInt with RHS for the validity of the equality |
| 1108 | /// relationship. |
| 1109 | bool operator==(const APInt &RHS) const { |
| 1110 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); |
| 1111 | if (isSingleWord()) |
| 1112 | return U.VAL == RHS.U.VAL; |
| 1113 | return EqualSlowCase(RHS); |
| 1114 | } |
| 1115 | |
| 1116 | /// \brief Equality operator. |
| 1117 | /// |
| 1118 | /// Compares this APInt with a uint64_t for the validity of the equality |
| 1119 | /// relationship. |
| 1120 | /// |
| 1121 | /// \returns true if *this == Val |
| 1122 | bool operator==(uint64_t Val) const { |
| 1123 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
| 1124 | } |
| 1125 | |
| 1126 | /// \brief Equality comparison. |
| 1127 | /// |
| 1128 | /// Compares this APInt with RHS for the validity of the equality |
| 1129 | /// relationship. |
| 1130 | /// |
| 1131 | /// \returns true if *this == Val |
| 1132 | bool eq(const APInt &RHS) const { return (*this) == RHS; } |
| 1133 | |
| 1134 | /// \brief Inequality operator. |
| 1135 | /// |
| 1136 | /// Compares this APInt with RHS for the validity of the inequality |
| 1137 | /// relationship. |
| 1138 | /// |
| 1139 | /// \returns true if *this != Val |
| 1140 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
| 1141 | |
| 1142 | /// \brief Inequality operator. |
| 1143 | /// |
| 1144 | /// Compares this APInt with a uint64_t for the validity of the inequality |
| 1145 | /// relationship. |
| 1146 | /// |
| 1147 | /// \returns true if *this != Val |
| 1148 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
| 1149 | |
| 1150 | /// \brief Inequality comparison |
| 1151 | /// |
| 1152 | /// Compares this APInt with RHS for the validity of the inequality |
| 1153 | /// relationship. |
| 1154 | /// |
| 1155 | /// \returns true if *this != Val |
| 1156 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
| 1157 | |
| 1158 | /// \brief Unsigned less than comparison |
| 1159 | /// |
| 1160 | /// Regards both *this and RHS as unsigned quantities and compares them for |
| 1161 | /// the validity of the less-than relationship. |
| 1162 | /// |
| 1163 | /// \returns true if *this < RHS when both are considered unsigned. |
| 1164 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
| 1165 | |
| 1166 | /// \brief Unsigned less than comparison |
| 1167 | /// |
| 1168 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
| 1169 | /// the validity of the less-than relationship. |
| 1170 | /// |
| 1171 | /// \returns true if *this < RHS when considered unsigned. |
| 1172 | bool ult(uint64_t RHS) const { |
| 1173 | // Only need to check active bits if not a single word. |
| 1174 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
| 1175 | } |
| 1176 | |
| 1177 | /// \brief Signed less than comparison |
| 1178 | /// |
| 1179 | /// Regards both *this and RHS as signed quantities and compares them for |
| 1180 | /// validity of the less-than relationship. |
| 1181 | /// |
| 1182 | /// \returns true if *this < RHS when both are considered signed. |
| 1183 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
| 1184 | |
| 1185 | /// \brief Signed less than comparison |
| 1186 | /// |
| 1187 | /// Regards both *this as a signed quantity and compares it with RHS for |
| 1188 | /// the validity of the less-than relationship. |
| 1189 | /// |
| 1190 | /// \returns true if *this < RHS when considered signed. |
| 1191 | bool slt(int64_t RHS) const { |
| 1192 | return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() |
| 1193 | : getSExtValue() < RHS; |
| 1194 | } |
| 1195 | |
| 1196 | /// \brief Unsigned less or equal comparison |
| 1197 | /// |
| 1198 | /// Regards both *this and RHS as unsigned quantities and compares them for |
| 1199 | /// validity of the less-or-equal relationship. |
| 1200 | /// |
| 1201 | /// \returns true if *this <= RHS when both are considered unsigned. |
| 1202 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
| 1203 | |
| 1204 | /// \brief Unsigned less or equal comparison |
| 1205 | /// |
| 1206 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
| 1207 | /// the validity of the less-or-equal relationship. |
| 1208 | /// |
| 1209 | /// \returns true if *this <= RHS when considered unsigned. |
| 1210 | bool ule(uint64_t RHS) const { return !ugt(RHS); } |
| 1211 | |
| 1212 | /// \brief Signed less or equal comparison |
| 1213 | /// |
| 1214 | /// Regards both *this and RHS as signed quantities and compares them for |
| 1215 | /// validity of the less-or-equal relationship. |
| 1216 | /// |
| 1217 | /// \returns true if *this <= RHS when both are considered signed. |
| 1218 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
| 1219 | |
| 1220 | /// \brief Signed less or equal comparison |
| 1221 | /// |
| 1222 | /// Regards both *this as a signed quantity and compares it with RHS for the |
| 1223 | /// validity of the less-or-equal relationship. |
| 1224 | /// |
| 1225 | /// \returns true if *this <= RHS when considered signed. |
| 1226 | bool sle(uint64_t RHS) const { return !sgt(RHS); } |
| 1227 | |
| 1228 | /// \brief Unsigned greather than comparison |
| 1229 | /// |
| 1230 | /// Regards both *this and RHS as unsigned quantities and compares them for |
| 1231 | /// the validity of the greater-than relationship. |
| 1232 | /// |
| 1233 | /// \returns true if *this > RHS when both are considered unsigned. |
| 1234 | bool ugt(const APInt &RHS) const { return !ule(RHS); } |
| 1235 | |
| 1236 | /// \brief Unsigned greater than comparison |
| 1237 | /// |
| 1238 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
| 1239 | /// the validity of the greater-than relationship. |
| 1240 | /// |
| 1241 | /// \returns true if *this > RHS when considered unsigned. |
| 1242 | bool ugt(uint64_t RHS) const { |
| 1243 | // Only need to check active bits if not a single word. |
| 1244 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
| 1245 | } |
| 1246 | |
| 1247 | /// \brief Signed greather than comparison |
| 1248 | /// |
| 1249 | /// Regards both *this and RHS as signed quantities and compares them for the |
| 1250 | /// validity of the greater-than relationship. |
| 1251 | /// |
| 1252 | /// \returns true if *this > RHS when both are considered signed. |
| 1253 | bool sgt(const APInt &RHS) const { return !sle(RHS); } |
| 1254 | |
| 1255 | /// \brief Signed greater than comparison |
| 1256 | /// |
| 1257 | /// Regards both *this as a signed quantity and compares it with RHS for |
| 1258 | /// the validity of the greater-than relationship. |
| 1259 | /// |
| 1260 | /// \returns true if *this > RHS when considered signed. |
| 1261 | bool sgt(int64_t RHS) const { |
| 1262 | return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() |
| 1263 | : getSExtValue() > RHS; |
| 1264 | } |
| 1265 | |
| 1266 | /// \brief Unsigned greater or equal comparison |
| 1267 | /// |
| 1268 | /// Regards both *this and RHS as unsigned quantities and compares them for |
| 1269 | /// validity of the greater-or-equal relationship. |
| 1270 | /// |
| 1271 | /// \returns true if *this >= RHS when both are considered unsigned. |
| 1272 | bool uge(const APInt &RHS) const { return !ult(RHS); } |
| 1273 | |
| 1274 | /// \brief Unsigned greater or equal comparison |
| 1275 | /// |
| 1276 | /// Regards both *this as an unsigned quantity and compares it with RHS for |
| 1277 | /// the validity of the greater-or-equal relationship. |
| 1278 | /// |
| 1279 | /// \returns true if *this >= RHS when considered unsigned. |
| 1280 | bool uge(uint64_t RHS) const { return !ult(RHS); } |
| 1281 | |
| 1282 | /// \brief Signed greater or equal comparison |
| 1283 | /// |
| 1284 | /// Regards both *this and RHS as signed quantities and compares them for |
| 1285 | /// validity of the greater-or-equal relationship. |
| 1286 | /// |
| 1287 | /// \returns true if *this >= RHS when both are considered signed. |
| 1288 | bool sge(const APInt &RHS) const { return !slt(RHS); } |
| 1289 | |
| 1290 | /// \brief Signed greater or equal comparison |
| 1291 | /// |
| 1292 | /// Regards both *this as a signed quantity and compares it with RHS for |
| 1293 | /// the validity of the greater-or-equal relationship. |
| 1294 | /// |
| 1295 | /// \returns true if *this >= RHS when considered signed. |
| 1296 | bool sge(int64_t RHS) const { return !slt(RHS); } |
| 1297 | |
| 1298 | /// This operation tests if there are any pairs of corresponding bits |
| 1299 | /// between this APInt and RHS that are both set. |
| 1300 | bool intersects(const APInt &RHS) const { |
| 1301 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 1302 | if (isSingleWord()) |
| 1303 | return (U.VAL & RHS.U.VAL) != 0; |
| 1304 | return intersectsSlowCase(RHS); |
| 1305 | } |
| 1306 | |
| 1307 | /// This operation checks that all bits set in this APInt are also set in RHS. |
| 1308 | bool isSubsetOf(const APInt &RHS) const { |
| 1309 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
| 1310 | if (isSingleWord()) |
| 1311 | return (U.VAL & ~RHS.U.VAL) == 0; |
| 1312 | return isSubsetOfSlowCase(RHS); |
| 1313 | } |
| 1314 | |
| 1315 | /// @} |
| 1316 | /// \name Resizing Operators |
| 1317 | /// @{ |
| 1318 | |
| 1319 | /// \brief Truncate to new width. |
| 1320 | /// |
| 1321 | /// Truncate the APInt to a specified width. It is an error to specify a width |
| 1322 | /// that is greater than or equal to the current width. |
| 1323 | APInt trunc(unsigned width) const; |
| 1324 | |
| 1325 | /// \brief Sign extend to a new width. |
| 1326 | /// |
| 1327 | /// This operation sign extends the APInt to a new width. If the high order |
| 1328 | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
| 1329 | /// It is an error to specify a width that is less than or equal to the |
| 1330 | /// current width. |
| 1331 | APInt sext(unsigned width) const; |
| 1332 | |
| 1333 | /// \brief Zero extend to a new width. |
| 1334 | /// |
| 1335 | /// This operation zero extends the APInt to a new width. The high order bits |
| 1336 | /// are filled with 0 bits. It is an error to specify a width that is less |
| 1337 | /// than or equal to the current width. |
| 1338 | APInt zext(unsigned width) const; |
| 1339 | |
| 1340 | /// \brief Sign extend or truncate to width |
| 1341 | /// |
| 1342 | /// Make this APInt have the bit width given by \p width. The value is sign |
| 1343 | /// extended, truncated, or left alone to make it that width. |
| 1344 | APInt sextOrTrunc(unsigned width) const; |
| 1345 | |
| 1346 | /// \brief Zero extend or truncate to width |
| 1347 | /// |
| 1348 | /// Make this APInt have the bit width given by \p width. The value is zero |
| 1349 | /// extended, truncated, or left alone to make it that width. |
| 1350 | APInt zextOrTrunc(unsigned width) const; |
| 1351 | |
| 1352 | /// \brief Sign extend or truncate to width |
| 1353 | /// |
| 1354 | /// Make this APInt have the bit width given by \p width. The value is sign |
| 1355 | /// extended, or left alone to make it that width. |
| 1356 | APInt sextOrSelf(unsigned width) const; |
| 1357 | |
| 1358 | /// \brief Zero extend or truncate to width |
| 1359 | /// |
| 1360 | /// Make this APInt have the bit width given by \p width. The value is zero |
| 1361 | /// extended, or left alone to make it that width. |
| 1362 | APInt zextOrSelf(unsigned width) const; |
| 1363 | |
| 1364 | /// @} |
| 1365 | /// \name Bit Manipulation Operators |
| 1366 | /// @{ |
| 1367 | |
| 1368 | /// \brief Set every bit to 1. |
| 1369 | void setAllBits() { |
| 1370 | if (isSingleWord()) |
| 1371 | U.VAL = WORD_MAX; |
| 1372 | else |
| 1373 | // Set all the bits in all the words. |
| 1374 | memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); |
| 1375 | // Clear the unused ones |
| 1376 | clearUnusedBits(); |
| 1377 | } |
| 1378 | |
| 1379 | /// \brief Set a given bit to 1. |
| 1380 | /// |
| 1381 | /// Set the given bit to 1 whose position is given as "bitPosition". |
| 1382 | void setBit(unsigned BitPosition) { |
| 1383 | assert(BitPosition <= BitWidth && "BitPosition out of range"); |
| 1384 | WordType Mask = maskBit(BitPosition); |
| 1385 | if (isSingleWord()) |
| 1386 | U.VAL |= Mask; |
| 1387 | else |
| 1388 | U.pVal[whichWord(BitPosition)] |= Mask; |
| 1389 | } |
| 1390 | |
| 1391 | /// Set the sign bit to 1. |
| 1392 | void setSignBit() { |
| 1393 | setBit(BitWidth - 1); |
| 1394 | } |
| 1395 | |
| 1396 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
| 1397 | void setBits(unsigned loBit, unsigned hiBit) { |
| 1398 | assert(hiBit <= BitWidth && "hiBit out of range"); |
| 1399 | assert(loBit <= BitWidth && "loBit out of range"); |
| 1400 | assert(loBit <= hiBit && "loBit greater than hiBit"); |
| 1401 | if (loBit == hiBit) |
| 1402 | return; |
| 1403 | if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { |
| 1404 | uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
| 1405 | mask <<= loBit; |
| 1406 | if (isSingleWord()) |
| 1407 | U.VAL |= mask; |
| 1408 | else |
| 1409 | U.pVal[0] |= mask; |
| 1410 | } else { |
| 1411 | setBitsSlowCase(loBit, hiBit); |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | /// Set the top bits starting from loBit. |
| 1416 | void setBitsFrom(unsigned loBit) { |
| 1417 | return setBits(loBit, BitWidth); |
| 1418 | } |
| 1419 | |
| 1420 | /// Set the bottom loBits bits. |
| 1421 | void setLowBits(unsigned loBits) { |
| 1422 | return setBits(0, loBits); |
| 1423 | } |
| 1424 | |
| 1425 | /// Set the top hiBits bits. |
| 1426 | void setHighBits(unsigned hiBits) { |
| 1427 | return setBits(BitWidth - hiBits, BitWidth); |
| 1428 | } |
| 1429 | |
| 1430 | /// \brief Set every bit to 0. |
| 1431 | void clearAllBits() { |
| 1432 | if (isSingleWord()) |
| 1433 | U.VAL = 0; |
| 1434 | else |
| 1435 | memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); |
| 1436 | } |
| 1437 | |
| 1438 | /// \brief Set a given bit to 0. |
| 1439 | /// |
| 1440 | /// Set the given bit to 0 whose position is given as "bitPosition". |
| 1441 | void clearBit(unsigned BitPosition) { |
| 1442 | assert(BitPosition <= BitWidth && "BitPosition out of range"); |
| 1443 | WordType Mask = ~maskBit(BitPosition); |
| 1444 | if (isSingleWord()) |
| 1445 | U.VAL &= Mask; |
| 1446 | else |
| 1447 | U.pVal[whichWord(BitPosition)] &= Mask; |
| 1448 | } |
| 1449 | |
| 1450 | /// Set the sign bit to 0. |
| 1451 | void clearSignBit() { |
| 1452 | clearBit(BitWidth - 1); |
| 1453 | } |
| 1454 | |
| 1455 | /// \brief Toggle every bit to its opposite value. |
| 1456 | void flipAllBits() { |
| 1457 | if (isSingleWord()) { |
| 1458 | U.VAL ^= WORD_MAX; |
| 1459 | clearUnusedBits(); |
| 1460 | } else { |
| 1461 | flipAllBitsSlowCase(); |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | /// \brief Toggles a given bit to its opposite value. |
| 1466 | /// |
| 1467 | /// Toggle a given bit to its opposite value whose position is given |
| 1468 | /// as "bitPosition". |
| 1469 | void flipBit(unsigned bitPosition); |
| 1470 | |
| 1471 | /// Negate this APInt in place. |
| 1472 | void negate() { |
| 1473 | flipAllBits(); |
| 1474 | ++(*this); |
| 1475 | } |
| 1476 | |
| 1477 | /// Insert the bits from a smaller APInt starting at bitPosition. |
| 1478 | void insertBits(const APInt &SubBits, unsigned bitPosition); |
| 1479 | |
| 1480 | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
| 1481 | APInt extractBits(unsigned numBits, unsigned bitPosition) const; |
| 1482 | |
| 1483 | /// @} |
| 1484 | /// \name Value Characterization Functions |
| 1485 | /// @{ |
| 1486 | |
| 1487 | /// \brief Return the number of bits in the APInt. |
| 1488 | unsigned getBitWidth() const { return BitWidth; } |
| 1489 | |
| 1490 | /// \brief Get the number of words. |
| 1491 | /// |
| 1492 | /// Here one word's bitwidth equals to that of uint64_t. |
| 1493 | /// |
| 1494 | /// \returns the number of words to hold the integer value of this APInt. |
| 1495 | unsigned getNumWords() const { return getNumWords(BitWidth); } |
| 1496 | |
| 1497 | /// \brief Get the number of words. |
| 1498 | /// |
| 1499 | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
| 1500 | /// |
| 1501 | /// \returns the number of words to hold the integer value with a given bit |
| 1502 | /// width. |
| 1503 | static unsigned getNumWords(unsigned BitWidth) { |
| 1504 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
| 1505 | } |
| 1506 | |
| 1507 | /// \brief Compute the number of active bits in the value |
| 1508 | /// |
| 1509 | /// This function returns the number of active bits which is defined as the |
| 1510 | /// bit width minus the number of leading zeros. This is used in several |
| 1511 | /// computations to see how "wide" the value is. |
| 1512 | unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } |
| 1513 | |
| 1514 | /// \brief Compute the number of active words in the value of this APInt. |
| 1515 | /// |
| 1516 | /// This is used in conjunction with getActiveData to extract the raw value of |
| 1517 | /// the APInt. |
| 1518 | unsigned getActiveWords() const { |
| 1519 | unsigned numActiveBits = getActiveBits(); |
| 1520 | return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; |
| 1521 | } |
| 1522 | |
| 1523 | /// \brief Get the minimum bit size for this signed APInt |
| 1524 | /// |
| 1525 | /// Computes the minimum bit width for this APInt while considering it to be a |
| 1526 | /// signed (and probably negative) value. If the value is not negative, this |
| 1527 | /// function returns the same value as getActiveBits()+1. Otherwise, it |
| 1528 | /// returns the smallest bit width that will retain the negative value. For |
| 1529 | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
| 1530 | /// for -1, this function will always return 1. |
| 1531 | unsigned getMinSignedBits() const { |
| 1532 | if (isNegative()) |
| 1533 | return BitWidth - countLeadingOnes() + 1; |
| 1534 | return getActiveBits() + 1; |
| 1535 | } |
| 1536 | |
| 1537 | /// \brief Get zero extended value |
| 1538 | /// |
| 1539 | /// This method attempts to return the value of this APInt as a zero extended |
| 1540 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
| 1541 | /// uint64_t. Otherwise an assertion will result. |
| 1542 | uint64_t getZExtValue() const { |
| 1543 | if (isSingleWord()) |
| 1544 | return U.VAL; |
| 1545 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); |
| 1546 | return U.pVal[0]; |
| 1547 | } |
| 1548 | |
| 1549 | /// \brief Get sign extended value |
| 1550 | /// |
| 1551 | /// This method attempts to return the value of this APInt as a sign extended |
| 1552 | /// int64_t. The bit width must be <= 64 or the value must fit within an |
| 1553 | /// int64_t. Otherwise an assertion will result. |
| 1554 | int64_t getSExtValue() const { |
| 1555 | if (isSingleWord()) |
| 1556 | return SignExtend64(U.VAL, BitWidth); |
| 1557 | assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); |
| 1558 | return int64_t(U.pVal[0]); |
| 1559 | } |
| 1560 | |
| 1561 | /// \brief Get bits required for string value. |
| 1562 | /// |
| 1563 | /// This method determines how many bits are required to hold the APInt |
| 1564 | /// equivalent of the string given by \p str. |
| 1565 | static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
| 1566 | |
| 1567 | /// \brief The APInt version of the countLeadingZeros functions in |
| 1568 | /// MathExtras.h. |
| 1569 | /// |
| 1570 | /// It counts the number of zeros from the most significant bit to the first |
| 1571 | /// one bit. |
| 1572 | /// |
| 1573 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
| 1574 | /// zeros from the most significant bit to the first one bits. |
| 1575 | unsigned countLeadingZeros() const { |
| 1576 | if (isSingleWord()) { |
| 1577 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
| 1578 | return llvm::countLeadingZeros(U.VAL) - unusedBits; |
| 1579 | } |
| 1580 | return countLeadingZerosSlowCase(); |
| 1581 | } |
| 1582 | |
| 1583 | /// \brief Count the number of leading one bits. |
| 1584 | /// |
| 1585 | /// This function is an APInt version of the countLeadingOnes |
| 1586 | /// functions in MathExtras.h. It counts the number of ones from the most |
| 1587 | /// significant bit to the first zero bit. |
| 1588 | /// |
| 1589 | /// \returns 0 if the high order bit is not set, otherwise returns the number |
| 1590 | /// of 1 bits from the most significant to the least |
| 1591 | unsigned countLeadingOnes() const { |
| 1592 | if (isSingleWord()) |
| 1593 | return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
| 1594 | return countLeadingOnesSlowCase(); |
| 1595 | } |
| 1596 | |
| 1597 | /// Computes the number of leading bits of this APInt that are equal to its |
| 1598 | /// sign bit. |
| 1599 | unsigned getNumSignBits() const { |
| 1600 | return isNegative() ? countLeadingOnes() : countLeadingZeros(); |
| 1601 | } |
| 1602 | |
| 1603 | /// \brief Count the number of trailing zero bits. |
| 1604 | /// |
| 1605 | /// This function is an APInt version of the countTrailingZeros |
| 1606 | /// functions in MathExtras.h. It counts the number of zeros from the least |
| 1607 | /// significant bit to the first set bit. |
| 1608 | /// |
| 1609 | /// \returns BitWidth if the value is zero, otherwise returns the number of |
| 1610 | /// zeros from the least significant bit to the first one bit. |
| 1611 | unsigned countTrailingZeros() const { |
| 1612 | if (isSingleWord()) |
| 1613 | return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth); |
| 1614 | return countTrailingZerosSlowCase(); |
| 1615 | } |
| 1616 | |
| 1617 | /// \brief Count the number of trailing one bits. |
| 1618 | /// |
| 1619 | /// This function is an APInt version of the countTrailingOnes |
| 1620 | /// functions in MathExtras.h. It counts the number of ones from the least |
| 1621 | /// significant bit to the first zero bit. |
| 1622 | /// |
| 1623 | /// \returns BitWidth if the value is all ones, otherwise returns the number |
| 1624 | /// of ones from the least significant bit to the first zero bit. |
| 1625 | unsigned countTrailingOnes() const { |
| 1626 | if (isSingleWord()) |
| 1627 | return llvm::countTrailingOnes(U.VAL); |
| 1628 | return countTrailingOnesSlowCase(); |
| 1629 | } |
| 1630 | |
| 1631 | /// \brief Count the number of bits set. |
| 1632 | /// |
| 1633 | /// This function is an APInt version of the countPopulation functions |
| 1634 | /// in MathExtras.h. It counts the number of 1 bits in the APInt value. |
| 1635 | /// |
| 1636 | /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
| 1637 | unsigned countPopulation() const { |
| 1638 | if (isSingleWord()) |
| 1639 | return llvm::countPopulation(U.VAL); |
| 1640 | return countPopulationSlowCase(); |
| 1641 | } |
| 1642 | |
| 1643 | /// @} |
| 1644 | /// \name Conversion Functions |
| 1645 | /// @{ |
| 1646 | void print(raw_ostream &OS, bool isSigned) const; |
| 1647 | |
| 1648 | /// Converts an APInt to a string and append it to Str. Str is commonly a |
| 1649 | /// SmallString. |
| 1650 | void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
| 1651 | bool formatAsCLiteral = false) const; |
| 1652 | |
| 1653 | /// Considers the APInt to be unsigned and converts it into a string in the |
| 1654 | /// radix given. The radix can be 2, 8, 10 16, or 36. |
| 1655 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
| 1656 | toString(Str, Radix, false, false); |
| 1657 | } |
| 1658 | |
| 1659 | /// Considers the APInt to be signed and converts it into a string in the |
| 1660 | /// radix given. The radix can be 2, 8, 10, 16, or 36. |
| 1661 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
| 1662 | toString(Str, Radix, true, false); |
| 1663 | } |
| 1664 | |
| 1665 | /// \brief Return the APInt as a std::string. |
| 1666 | /// |
| 1667 | /// Note that this is an inefficient method. It is better to pass in a |
| 1668 | /// SmallVector/SmallString to the methods above to avoid thrashing the heap |
| 1669 | /// for the string. |
| 1670 | std::string toString(unsigned Radix, bool Signed) const; |
| 1671 | |
| 1672 | /// \returns a byte-swapped representation of this APInt Value. |
| 1673 | APInt byteSwap() const; |
| 1674 | |
| 1675 | /// \returns the value with the bit representation reversed of this APInt |
| 1676 | /// Value. |
| 1677 | APInt reverseBits() const; |
| 1678 | |
| 1679 | /// \brief Converts this APInt to a double value. |
| 1680 | double roundToDouble(bool isSigned) const; |
| 1681 | |
| 1682 | /// \brief Converts this unsigned APInt to a double value. |
| 1683 | double roundToDouble() const { return roundToDouble(false); } |
| 1684 | |
| 1685 | /// \brief Converts this signed APInt to a double value. |
| 1686 | double signedRoundToDouble() const { return roundToDouble(true); } |
| 1687 | |
| 1688 | /// \brief Converts APInt bits to a double |
| 1689 | /// |
| 1690 | /// The conversion does not do a translation from integer to double, it just |
| 1691 | /// re-interprets the bits as a double. Note that it is valid to do this on |
| 1692 | /// any bit width. Exactly 64 bits will be translated. |
| 1693 | double bitsToDouble() const { |
| 1694 | return BitsToDouble(getWord(0)); |
| 1695 | } |
| 1696 | |
| 1697 | /// \brief Converts APInt bits to a double |
| 1698 | /// |
| 1699 | /// The conversion does not do a translation from integer to float, it just |
| 1700 | /// re-interprets the bits as a float. Note that it is valid to do this on |
| 1701 | /// any bit width. Exactly 32 bits will be translated. |
| 1702 | float bitsToFloat() const { |
| 1703 | return BitsToFloat(getWord(0)); |
| 1704 | } |
| 1705 | |
| 1706 | /// \brief Converts a double to APInt bits. |
| 1707 | /// |
| 1708 | /// The conversion does not do a translation from double to integer, it just |
| 1709 | /// re-interprets the bits of the double. |
| 1710 | static APInt doubleToBits(double V) { |
| 1711 | return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); |
| 1712 | } |
| 1713 | |
| 1714 | /// \brief Converts a float to APInt bits. |
| 1715 | /// |
| 1716 | /// The conversion does not do a translation from float to integer, it just |
| 1717 | /// re-interprets the bits of the float. |
| 1718 | static APInt floatToBits(float V) { |
| 1719 | return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); |
| 1720 | } |
| 1721 | |
| 1722 | /// @} |
| 1723 | /// \name Mathematics Operations |
| 1724 | /// @{ |
| 1725 | |
| 1726 | /// \returns the floor log base 2 of this APInt. |
| 1727 | unsigned logBase2() const { return getActiveBits() - 1; } |
| 1728 | |
| 1729 | /// \returns the ceil log base 2 of this APInt. |
| 1730 | unsigned ceilLogBase2() const { |
| 1731 | APInt temp(*this); |
| 1732 | --temp; |
| 1733 | return temp.getActiveBits(); |
| 1734 | } |
| 1735 | |
| 1736 | /// \returns the nearest log base 2 of this APInt. Ties round up. |
| 1737 | /// |
| 1738 | /// NOTE: When we have a BitWidth of 1, we define: |
| 1739 | /// |
| 1740 | /// log2(0) = UINT32_MAX |
| 1741 | /// log2(1) = 0 |
| 1742 | /// |
| 1743 | /// to get around any mathematical concerns resulting from |
| 1744 | /// referencing 2 in a space where 2 does no exist. |
| 1745 | unsigned nearestLogBase2() const { |
| 1746 | // Special case when we have a bitwidth of 1. If VAL is 1, then we |
| 1747 | // get 0. If VAL is 0, we get WORD_MAX which gets truncated to |
| 1748 | // UINT32_MAX. |
| 1749 | if (BitWidth == 1) |
| 1750 | return U.VAL - 1; |
| 1751 | |
| 1752 | // Handle the zero case. |
| 1753 | if (isNullValue()) |
| 1754 | return UINT32_MAX; |
| 1755 | |
| 1756 | // The non-zero case is handled by computing: |
| 1757 | // |
| 1758 | // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. |
| 1759 | // |
| 1760 | // where x[i] is referring to the value of the ith bit of x. |
| 1761 | unsigned lg = logBase2(); |
| 1762 | return lg + unsigned((*this)[lg - 1]); |
| 1763 | } |
| 1764 | |
| 1765 | /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
| 1766 | /// otherwise |
| 1767 | int32_t exactLogBase2() const { |
| 1768 | if (!isPowerOf2()) |
| 1769 | return -1; |
| 1770 | return logBase2(); |
| 1771 | } |
| 1772 | |
| 1773 | /// \brief Compute the square root |
| 1774 | APInt sqrt() const; |
| 1775 | |
| 1776 | /// \brief Get the absolute value; |
| 1777 | /// |
| 1778 | /// If *this is < 0 then return -(*this), otherwise *this; |
| 1779 | APInt abs() const { |
| 1780 | if (isNegative()) |
| 1781 | return -(*this); |
| 1782 | return *this; |
| 1783 | } |
| 1784 | |
| 1785 | /// \returns the multiplicative inverse for a given modulo. |
| 1786 | APInt multiplicativeInverse(const APInt &modulo) const; |
| 1787 | |
| 1788 | /// @} |
| 1789 | /// \name Support for division by constant |
| 1790 | /// @{ |
| 1791 | |
| 1792 | /// Calculate the magic number for signed division by a constant. |
| 1793 | struct ms; |
| 1794 | ms magic() const; |
| 1795 | |
| 1796 | /// Calculate the magic number for unsigned division by a constant. |
| 1797 | struct mu; |
| 1798 | mu magicu(unsigned LeadingZeros = 0) const; |
| 1799 | |
| 1800 | /// @} |
| 1801 | /// \name Building-block Operations for APInt and APFloat |
| 1802 | /// @{ |
| 1803 | |
| 1804 | // These building block operations operate on a representation of arbitrary |
| 1805 | // precision, two's-complement, bignum integer values. They should be |
| 1806 | // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
| 1807 | // generally a pointer to the base of an array of integer parts, representing |
| 1808 | // an unsigned bignum, and a count of how many parts there are. |
| 1809 | |
| 1810 | /// Sets the least significant part of a bignum to the input value, and zeroes |
| 1811 | /// out higher parts. |
| 1812 | static void tcSet(WordType *, WordType, unsigned); |
| 1813 | |
| 1814 | /// Assign one bignum to another. |
| 1815 | static void tcAssign(WordType *, const WordType *, unsigned); |
| 1816 | |
| 1817 | /// Returns true if a bignum is zero, false otherwise. |
| 1818 | static bool tcIsZero(const WordType *, unsigned); |
| 1819 | |
| 1820 | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
| 1821 | static int tcExtractBit(const WordType *, unsigned bit); |
| 1822 | |
| 1823 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
| 1824 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
| 1825 | /// significant bit of DST. All high bits above srcBITS in DST are |
| 1826 | /// zero-filled. |
| 1827 | static void tcExtract(WordType *, unsigned dstCount, |
| 1828 | const WordType *, unsigned srcBits, |
| 1829 | unsigned srcLSB); |
| 1830 | |
| 1831 | /// Set the given bit of a bignum. Zero-based. |
| 1832 | static void tcSetBit(WordType *, unsigned bit); |
| 1833 | |
| 1834 | /// Clear the given bit of a bignum. Zero-based. |
| 1835 | static void tcClearBit(WordType *, unsigned bit); |
| 1836 | |
| 1837 | /// Returns the bit number of the least or most significant set bit of a |
| 1838 | /// number. If the input number has no bits set -1U is returned. |
| 1839 | static unsigned tcLSB(const WordType *, unsigned n); |
| 1840 | static unsigned tcMSB(const WordType *parts, unsigned n); |
| 1841 | |
| 1842 | /// Negate a bignum in-place. |
| 1843 | static void tcNegate(WordType *, unsigned); |
| 1844 | |
| 1845 | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
| 1846 | static WordType tcAdd(WordType *, const WordType *, |
| 1847 | WordType carry, unsigned); |
| 1848 | /// DST += RHS. Returns the carry flag. |
| 1849 | static WordType tcAddPart(WordType *, WordType, unsigned); |
| 1850 | |
| 1851 | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
| 1852 | static WordType tcSubtract(WordType *, const WordType *, |
| 1853 | WordType carry, unsigned); |
| 1854 | /// DST -= RHS. Returns the carry flag. |
| 1855 | static WordType tcSubtractPart(WordType *, WordType, unsigned); |
| 1856 | |
| 1857 | /// DST += SRC * MULTIPLIER + PART if add is true |
| 1858 | /// DST = SRC * MULTIPLIER + PART if add is false |
| 1859 | /// |
| 1860 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
| 1861 | /// start at the same point, i.e. DST == SRC. |
| 1862 | /// |
| 1863 | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
| 1864 | /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
| 1865 | /// result, and if all of the omitted higher parts were zero return zero, |
| 1866 | /// otherwise overflow occurred and return one. |
| 1867 | static int tcMultiplyPart(WordType *dst, const WordType *src, |
| 1868 | WordType multiplier, WordType carry, |
| 1869 | unsigned srcParts, unsigned dstParts, |
| 1870 | bool add); |
| 1871 | |
| 1872 | /// DST = LHS * RHS, where DST has the same width as the operands and is |
| 1873 | /// filled with the least significant parts of the result. Returns one if |
| 1874 | /// overflow occurred, otherwise zero. DST must be disjoint from both |
| 1875 | /// operands. |
| 1876 | static int tcMultiply(WordType *, const WordType *, const WordType *, |
| 1877 | unsigned); |
| 1878 | |
| 1879 | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
| 1880 | /// operands. No overflow occurs. DST must be disjoint from both operands. |
| 1881 | static void tcFullMultiply(WordType *, const WordType *, |
| 1882 | const WordType *, unsigned, unsigned); |
| 1883 | |
| 1884 | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
| 1885 | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
| 1886 | /// REMAINDER to the remainder, return zero. i.e. |
| 1887 | /// |
| 1888 | /// OLD_LHS = RHS * LHS + REMAINDER |
| 1889 | /// |
| 1890 | /// SCRATCH is a bignum of the same size as the operands and result for use by |
| 1891 | /// the routine; its contents need not be initialized and are destroyed. LHS, |
| 1892 | /// REMAINDER and SCRATCH must be distinct. |
| 1893 | static int tcDivide(WordType *lhs, const WordType *rhs, |
| 1894 | WordType *remainder, WordType *scratch, |
| 1895 | unsigned parts); |
| 1896 | |
| 1897 | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
| 1898 | /// restrictions on Count. |
| 1899 | static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
| 1900 | |
| 1901 | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
| 1902 | /// restrictions on Count. |
| 1903 | static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
| 1904 | |
| 1905 | /// The obvious AND, OR and XOR and complement operations. |
| 1906 | static void tcAnd(WordType *, const WordType *, unsigned); |
| 1907 | static void tcOr(WordType *, const WordType *, unsigned); |
| 1908 | static void tcXor(WordType *, const WordType *, unsigned); |
| 1909 | static void tcComplement(WordType *, unsigned); |
| 1910 | |
| 1911 | /// Comparison (unsigned) of two bignums. |
| 1912 | static int tcCompare(const WordType *, const WordType *, unsigned); |
| 1913 | |
| 1914 | /// Increment a bignum in-place. Return the carry flag. |
| 1915 | static WordType tcIncrement(WordType *dst, unsigned parts) { |
| 1916 | return tcAddPart(dst, 1, parts); |
| 1917 | } |
| 1918 | |
| 1919 | /// Decrement a bignum in-place. Return the borrow flag. |
| 1920 | static WordType tcDecrement(WordType *dst, unsigned parts) { |
| 1921 | return tcSubtractPart(dst, 1, parts); |
| 1922 | } |
| 1923 | |
| 1924 | /// Set the least significant BITS and clear the rest. |
| 1925 | static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); |
| 1926 | |
| 1927 | /// \brief debug method |
| 1928 | void dump() const; |
| 1929 | |
| 1930 | /// @} |
| 1931 | }; |
| 1932 | |
| 1933 | /// Magic data for optimising signed division by a constant. |
| 1934 | struct APInt::ms { |
| 1935 | APInt m; ///< magic number |
| 1936 | unsigned s; ///< shift amount |
| 1937 | }; |
| 1938 | |
| 1939 | /// Magic data for optimising unsigned division by a constant. |
| 1940 | struct APInt::mu { |
| 1941 | APInt m; ///< magic number |
| 1942 | bool a; ///< add indicator |
| 1943 | unsigned s; ///< shift amount |
| 1944 | }; |
| 1945 | |
| 1946 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
| 1947 | |
| 1948 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
| 1949 | |
| 1950 | /// \brief Unary bitwise complement operator. |
| 1951 | /// |
| 1952 | /// \returns an APInt that is the bitwise complement of \p v. |
| 1953 | inline APInt operator~(APInt v) { |
| 1954 | v.flipAllBits(); |
| 1955 | return v; |
| 1956 | } |
| 1957 | |
| 1958 | inline APInt operator&(APInt a, const APInt &b) { |
| 1959 | a &= b; |
| 1960 | return a; |
| 1961 | } |
| 1962 | |
| 1963 | inline APInt operator&(const APInt &a, APInt &&b) { |
| 1964 | b &= a; |
| 1965 | return std::move(b); |
| 1966 | } |
| 1967 | |
| 1968 | inline APInt operator&(APInt a, uint64_t RHS) { |
| 1969 | a &= RHS; |
| 1970 | return a; |
| 1971 | } |
| 1972 | |
| 1973 | inline APInt operator&(uint64_t LHS, APInt b) { |
| 1974 | b &= LHS; |
| 1975 | return b; |
| 1976 | } |
| 1977 | |
| 1978 | inline APInt operator|(APInt a, const APInt &b) { |
| 1979 | a |= b; |
| 1980 | return a; |
| 1981 | } |
| 1982 | |
| 1983 | inline APInt operator|(const APInt &a, APInt &&b) { |
| 1984 | b |= a; |
| 1985 | return std::move(b); |
| 1986 | } |
| 1987 | |
| 1988 | inline APInt operator|(APInt a, uint64_t RHS) { |
| 1989 | a |= RHS; |
| 1990 | return a; |
| 1991 | } |
| 1992 | |
| 1993 | inline APInt operator|(uint64_t LHS, APInt b) { |
| 1994 | b |= LHS; |
| 1995 | return b; |
| 1996 | } |
| 1997 | |
| 1998 | inline APInt operator^(APInt a, const APInt &b) { |
| 1999 | a ^= b; |
| 2000 | return a; |
| 2001 | } |
| 2002 | |
| 2003 | inline APInt operator^(const APInt &a, APInt &&b) { |
| 2004 | b ^= a; |
| 2005 | return std::move(b); |
| 2006 | } |
| 2007 | |
| 2008 | inline APInt operator^(APInt a, uint64_t RHS) { |
| 2009 | a ^= RHS; |
| 2010 | return a; |
| 2011 | } |
| 2012 | |
| 2013 | inline APInt operator^(uint64_t LHS, APInt b) { |
| 2014 | b ^= LHS; |
| 2015 | return b; |
| 2016 | } |
| 2017 | |
| 2018 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
| 2019 | I.print(OS, true); |
| 2020 | return OS; |
| 2021 | } |
| 2022 | |
| 2023 | inline APInt operator-(APInt v) { |
| 2024 | v.negate(); |
| 2025 | return v; |
| 2026 | } |
| 2027 | |
| 2028 | inline APInt operator+(APInt a, const APInt &b) { |
| 2029 | a += b; |
| 2030 | return a; |
| 2031 | } |
| 2032 | |
| 2033 | inline APInt operator+(const APInt &a, APInt &&b) { |
| 2034 | b += a; |
| 2035 | return std::move(b); |
| 2036 | } |
| 2037 | |
| 2038 | inline APInt operator+(APInt a, uint64_t RHS) { |
| 2039 | a += RHS; |
| 2040 | return a; |
| 2041 | } |
| 2042 | |
| 2043 | inline APInt operator+(uint64_t LHS, APInt b) { |
| 2044 | b += LHS; |
| 2045 | return b; |
| 2046 | } |
| 2047 | |
| 2048 | inline APInt operator-(APInt a, const APInt &b) { |
| 2049 | a -= b; |
| 2050 | return a; |
| 2051 | } |
| 2052 | |
| 2053 | inline APInt operator-(const APInt &a, APInt &&b) { |
| 2054 | b.negate(); |
| 2055 | b += a; |
| 2056 | return std::move(b); |
| 2057 | } |
| 2058 | |
| 2059 | inline APInt operator-(APInt a, uint64_t RHS) { |
| 2060 | a -= RHS; |
| 2061 | return a; |
| 2062 | } |
| 2063 | |
| 2064 | inline APInt operator-(uint64_t LHS, APInt b) { |
| 2065 | b.negate(); |
| 2066 | b += LHS; |
| 2067 | return b; |
| 2068 | } |
| 2069 | |
| 2070 | inline APInt operator*(APInt a, uint64_t RHS) { |
| 2071 | a *= RHS; |
| 2072 | return a; |
| 2073 | } |
| 2074 | |
| 2075 | inline APInt operator*(uint64_t LHS, APInt b) { |
| 2076 | b *= LHS; |
| 2077 | return b; |
| 2078 | } |
| 2079 | |
| 2080 | |
| 2081 | namespace APIntOps { |
| 2082 | |
| 2083 | /// \brief Determine the smaller of two APInts considered to be signed. |
| 2084 | inline const APInt &smin(const APInt &A, const APInt &B) { |
| 2085 | return A.slt(B) ? A : B; |
| 2086 | } |
| 2087 | |
| 2088 | /// \brief Determine the larger of two APInts considered to be signed. |
| 2089 | inline const APInt &smax(const APInt &A, const APInt &B) { |
| 2090 | return A.sgt(B) ? A : B; |
| 2091 | } |
| 2092 | |
| 2093 | /// \brief Determine the smaller of two APInts considered to be signed. |
| 2094 | inline const APInt &umin(const APInt &A, const APInt &B) { |
| 2095 | return A.ult(B) ? A : B; |
| 2096 | } |
| 2097 | |
| 2098 | /// \brief Determine the larger of two APInts considered to be unsigned. |
| 2099 | inline const APInt &umax(const APInt &A, const APInt &B) { |
| 2100 | return A.ugt(B) ? A : B; |
| 2101 | } |
| 2102 | |
| 2103 | /// \brief Compute GCD of two unsigned APInt values. |
| 2104 | /// |
| 2105 | /// This function returns the greatest common divisor of the two APInt values |
| 2106 | /// using Stein's algorithm. |
| 2107 | /// |
| 2108 | /// \returns the greatest common divisor of A and B. |
| 2109 | APInt GreatestCommonDivisor(APInt A, APInt B); |
| 2110 | |
| 2111 | /// \brief Converts the given APInt to a double value. |
| 2112 | /// |
| 2113 | /// Treats the APInt as an unsigned value for conversion purposes. |
| 2114 | inline double RoundAPIntToDouble(const APInt &APIVal) { |
| 2115 | return APIVal.roundToDouble(); |
| 2116 | } |
| 2117 | |
| 2118 | /// \brief Converts the given APInt to a double value. |
| 2119 | /// |
| 2120 | /// Treats the APInt as a signed value for conversion purposes. |
| 2121 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
| 2122 | return APIVal.signedRoundToDouble(); |
| 2123 | } |
| 2124 | |
| 2125 | /// \brief Converts the given APInt to a float vlalue. |
| 2126 | inline float RoundAPIntToFloat(const APInt &APIVal) { |
| 2127 | return float(RoundAPIntToDouble(APIVal)); |
| 2128 | } |
| 2129 | |
| 2130 | /// \brief Converts the given APInt to a float value. |
| 2131 | /// |
| 2132 | /// Treast the APInt as a signed value for conversion purposes. |
| 2133 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
| 2134 | return float(APIVal.signedRoundToDouble()); |
| 2135 | } |
| 2136 | |
| 2137 | /// \brief Converts the given double value into a APInt. |
| 2138 | /// |
| 2139 | /// This function convert a double value to an APInt value. |
| 2140 | APInt RoundDoubleToAPInt(double Double, unsigned width); |
| 2141 | |
| 2142 | /// \brief Converts a float value into a APInt. |
| 2143 | /// |
| 2144 | /// Converts a float value into an APInt value. |
| 2145 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
| 2146 | return RoundDoubleToAPInt(double(Float), width); |
| 2147 | } |
| 2148 | |
| 2149 | } // End of APIntOps namespace |
| 2150 | |
| 2151 | // See friend declaration above. This additional declaration is required in |
| 2152 | // order to compile LLVM with IBM xlC compiler. |
| 2153 | hash_code hash_value(const APInt &Arg); |
| 2154 | } // End of llvm namespace |
| 2155 | |
| 2156 | #endif |